JP4611486B2 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP4611486B2
JP4611486B2 JP2000089718A JP2000089718A JP4611486B2 JP 4611486 B2 JP4611486 B2 JP 4611486B2 JP 2000089718 A JP2000089718 A JP 2000089718A JP 2000089718 A JP2000089718 A JP 2000089718A JP 4611486 B2 JP4611486 B2 JP 4611486B2
Authority
JP
Japan
Prior art keywords
discharge lamp
frequency
voltage
circuit
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000089718A
Other languages
Japanese (ja)
Other versions
JP2001273994A5 (en
JP2001273994A (en
Inventor
徹也 小林
和彦 次田
勇 小川
浩治 柴田
健治 濱崎
弘明 西川
尚起 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000089718A priority Critical patent/JP4611486B2/en
Publication of JP2001273994A publication Critical patent/JP2001273994A/en
Publication of JP2001273994A5 publication Critical patent/JP2001273994A5/ja
Application granted granted Critical
Publication of JP4611486B2 publication Critical patent/JP4611486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、インバータによる高周波電力で放電灯を点灯させる放電灯点灯装置に関する。
【0002】
【従来の技術】
図7は例えば特開2000−21592号公報に示された従来の放電灯点灯装置の回路図であり、図において、IVはインバータ回路で、直流電源Eに直列に接続された起動抵抗R1及び制御電源用のコンデンサC16と、このコンデンサC16に並列に接続された定電圧ダイオードZDと、直流電源Eの両極間に設けられた一対のスイッチング素子Q2、Q3、インバータ制御回路IC2と(以下、「IV制御回路IC2」という)、IV制御回路IC2が発振する高周波信号の周波数fH、fLを設定する周波数制御回路FC2とで構成されている。
【0003】
この周波数制御回路FC2は、IV制御回路IC2の端子8と直流電源Eの負極側との間に挿入された予熱発振抵抗R40と、端子7と負極側との間に挿入された発振コンデンサC19と、端子6と負極側との間に挿入された主発振抵抗R19とでなり、周波数fH、fLは抵抗R19、抵抗R40に流れる電流に基づいて決められる。
【0004】
IV制御回路IC2は、コンデンサC16の充電電圧が動作電圧に達すると、端子2、4を介して周波数fHの高周波信号を発振し、スイッチング素子Q2、Q3を交互にオン・オフする。その後、その発振周波数を徐々に下げ周波数fLの高周波信号に切り換えて発振する。また、このIV制御回路IC2は、放電灯LAの不点灯の有無を識別するための閾値が設定されており、端子5にその閾値に達する電圧が印加されたときスイッチング素子Q2、Q3の駆動を停止するようになっている。
【0005】
LACは放電灯回路で、電極F12がスイッチング素子Q3のソース側に接続された放電灯LAと、その放電灯LAのもう一方の電極F11とスイッチング素子Q2、Q3の接続点との間に挿入されたバラストチョークT2及びカップリングコンデンサC22と、放電灯LAに並列に接続された始動用のコンデンサC23とで構成されている。
【0006】
ここで、図8の放電灯回路におけるLC直列共振の曲線図に示すように、インバータ回路IVの発振周波数fに応じて発生を下げて共振電圧が上昇する過程の周波数fSで放電灯LAが点灯し、これに伴い動作電圧が点Saから点Sbに移動する。そして、共振周波数fOの高周波信号を発振し、さらに、周波数fLの高周波信号でスイッチング素子Q2、Q3が駆動され、放電灯LAの両極間に点Lbに示す共振電圧が発生し、点灯状態が継続される。一方、放電灯LAが不点灯状態のときは、高周波信号の周波数がfPになったとき両極間に点Paに示す共振電圧が発生する。
【0007】
NPは不点灯検出回路で、カップリングコンデンサC22及び電極F11の接続点と電極F12側との間に挿入された抵抗R62、R63と、この抵抗R62、R63の接続点と前記端子5との間に挿入されたダイオードD6と、正極がそのダイオードD6のカソード側に、負極が電極F12側にそれぞれ接続されたコンデンサC21とで構成されている。この不点灯検出回路NPは、放電灯LAが正常に点灯しているときは、コンデンサC21に生成される直流電圧が前記閾値未満になるように、また、不点灯のときは、その直流電圧が閾値に達するよう抵抗R62、R63の値が設定されている。
【0008】
次に、従来の放電灯点灯装置の動作を説明する。直流電源Eが投入されると、その直流電流が起動電流として起動抵抗R1を介してコンデンサC16に流れる。この電流供給によりコンデンサC16の充電電圧がIV制御回路IC2の動作電圧に達すると、IV制御回路IC2は、周波数制御回路FC2の制御に基づいて周波数fHの高周波信号を発振し、スイッチング素子Q2、Q3を交互にオン・オフする。
【0009】
スイッチング素子Q2がオンしたときは、直流電源E→スイッチング素子Q2→バラストチョークT2→カップリングコンデンサC22→電極F11→始動用のコンデンサC23→電極F12→直流電源Eの閉ループで電流が流れ、スイッチング素子Q3がオンしたときは、カップリングコンデンサC22→バラストチョークT2→スイッチング素子Q3→電極F12→始動用のコンデンサC23→電極F11→カップリングコンデンサC22の閉ループで電流が流れ、バラストチョークT2、カップリングコンデンサC22、電極F11、コンデンサC23、電極F12の直列回路に周波数fHの高周波電流が流れる。
【0010】
この状態は所定時間継続され、電極F11、F12が予熱される。その後は、高周波信号の周波数がfSとなって放電灯LAが点灯を開始し、さらに、共振周波数f0の高周波信号を発振し、そして、周波数fHの高周波信号を発振してから所定時間後に周波数fLの高周波信号を発振する。この時は、放電灯LAが点灯を継続する。
【0011】
一方、不点灯検出回路NPは、放電灯LAの両極間に発生する共振電圧を抵抗R62、R63で分圧して直流電圧を生成し、IV制御回路IC2の端子5に印加している。放電灯LAが正常に点灯したときは、IV制御回路IC2に設定されている閾値を越えない直流電圧となり、放電灯LAが不点灯のときは閾値に達する直流電圧となる。閾値に達する直流電圧が生成されるタイミングは、図8に示すように曲線(a)上において点Paであり、IV制御回路IC2が共振周波数fOの高周波信号を発振する前に停止し装置を保護する。
【0012】
ここで、放電灯LAの両極間に印加される共振電圧の波形について説明する。図9は放電灯の両極間に印加したときの従来の共振電圧の波形図であり、図中(a)は放電灯点灯時の波形図で、(b)は放電灯不点灯時の波形図である。まず、(a)に示す波形について説明する。時間t0−t1間は放電灯LAの電極F11、F12を予熱する時間で、周波数fHの高周波信号が発振されたときの共振電圧である。その後は発振周波数の低下に伴い共振電圧が大きくなっていき、周波数fSの高周波信号が発振されたとき放電灯LAが始動し(時間t2)、両極間の共振電圧がV3からV1側に降下する。この後、周波数がfLまで変化、即ち、時間t1から所定時間後に周波数がfLの高周波信号が発振され放電灯LAの両極間の共振電圧がV1となる。放電灯LAが不点灯のときは(b)に示すように、電極F11、F12の予熱後(時間t0−t1)、共振電圧が発振周波数の低下に伴い大きくなっていき、周波数fS後(時間t2)の周波数fPの高周波信号が発振されたとき放電灯LAの両極間には共振電圧V5が印加される(時間t3)。この電圧値はIV制御回路IC2に設定されている閾値に達する直流電圧となる。
【0013】
【発明が解決しようとする課題】
しかしながら、前述した従来の放電灯点灯装置では、放電灯LAが寿命末期或いは不良等で、IV制御回路IC2の発振周波数がバラストチョークT2とコンデンサC23の直列共振周波数fOに近づいても点灯しない場合、不点灯検出回路NPによりその周波数fOに達する前にIV制御回路IC2の発振が停止するが、直流電源E投入から放電灯LAが点灯するまでの予熱時間に対して、周波数fHから周波数fLに移行する時間が非常に短いので、IV制御回路IC2の発振の停止直前では比較的周波数fOに近づくことになり、コンデンサC23の共振電圧やバラストチョークT2の共振電流が大きくなり、このコンデンサC23やバラストチョークT2が許容公差の制限を必要とし、大形で高価なものを必要とした。
【0014】
また、不点灯検出回路NPのバラツキにより、発振停止時の共振電圧変動が大きく、放電灯LAが正常ランプであるにもかかわらず、放電灯LAが点灯する前にIV制御回路IC2が発振を停止してしまう恐れがあり実用的ではなかった。
【0015】
この発明は上述のような課題を解決するためになされたもので、放電灯が正常ランプであるにもかかわらず、IV制御回路が発振を停止してしまうことがなく、また、放電灯回路の始動用コンデンサやバラストチョークが小形で安価なものを使用して、共振周波数に近づいても過剰な共振電圧を抑制して特別な保護回路を必要とせず、さらに、予熱と点灯をスムーズにでき、また、調光のできる放電灯点灯装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
この発明に係る放電灯点灯装置は、放電灯を点灯させる放電灯点灯装置において、直流電源と、制御回路の高周波信号でスイッチング素子をオン・オフして前記直流電源の電圧を高周波電力に変換するインバータ回路と、このインバータ回路からの高周波電力により放電灯を点灯させる放電灯回路と、可変可能な基準値を設定する基準値可変手段を有し、前記高周波電力を前記基準値と等しくなるように前記制御回路を制御するフィードバック回路と、放電灯の点灯を検知した場合、前記基準値可変手段に対し、あらかじめ定められた高周波信号に対応した基準共振電圧に設定している状態から、前記基準値を変化させて前記放電灯の点灯状態を調光点灯にする共振電圧に設定させる放電検出回路と、を備える。
【0018】
また、制御回路の高周波信号があらかじめ定められた高周波信号となる間、前記制御回路の高周波信号を徐々に変化させる周波数制御手段を備える。
【0019】
【発明の実施の形態】
実施の形態1.
図1はこの発明に係る放電灯点灯装置の回路図、図2は放電灯の両極間に印加したときの共振電圧の波形図である。
図1において、IVはインバータ回路で、直流電源Eに直列に接続された起動抵抗R1及び制御電源用のコンデンサC16と、このコンデンサC16に並列に接続された定電圧ダイオードZDと、直流電源Eの両極間に設けられた一対のスイッチング素子Q2、Q3と、インバータ制御回路IC2と、FBは発振周波数を制御することにより、出力を設定された値に維持するフィードバック回路である。スイッチング素子Q2は、ドレインが直流電源に接続されソースがスイッチング素子Q3のドレインに接続され、ゲートが後述のIV制御集積回路IC2のピン2に接続されている。スイッチング素子Q3は、ソースが検出抵抗R29を介して直流電源Eに接続され、ゲートがIV制御集積回路IC2のピン4に接続されている。
【0020】
IC2はインバータIVを制御するIV制御集積回路であり、1は制御電源コンデンサC16と起動抵抗R1の接続点に接続される電源入力端子、2、4はスイッチング素子Q2、Q3の駆動電圧を出力する電圧出力端子、3は基準電圧出力端子、6は共振周波数を決定する電流を出力する主発振抵抗接続端子、7はコンデンサC19の充電、放電のための電流入出力端子、8は予熱発振周波数決定する電流を出力する予熱発振抵抗接続端子、R40は予熱発振抵抗接続端子8に接続された予熱発振接続抵抗R40である。
【0021】
次に、フィードバック回路FBの構成について説明する。フィードバック回路FBは、電圧出力端子6から流出する電流を決める主発振抵抗R19とR4と電流入出力端子7に接続されたコンデンサC19と、放電灯LAに流れる高周波電圧を検出する検出抵抗R29、検出抵抗R29で検出された高周波電圧を平均化し、抵抗R27とコンデンサC21からなる積分回路IN、抵抗R1とコンデンサC16の接続点と電源Eの負極の間に直列に接続された分圧抵抗R2、R3と、抵抗R2、R3の接続点からの基準電圧が非反転入力端子に接続され、積分回路IN及びIV制御集積回路IC2の電流出力端子6に直列に接続された抵抗R4、ダイオードD1、コンデンサC1が反転入力端子に接続され、積分回路INの出力電圧を基準電圧に等しくなるようにするオペアンプIC3からなる誤差増幅器EAから構成される。
【0022】
LACは放電灯回路で、電極F12がスイッチング素子Q3のソース側に接続された放電灯LAと、その放電灯LAのもう一方の電極F11とスイッチング素子Q2、Q3の接続点との間に挿入されたバラストチョークT2及びカップリングコンデンサC22と、放電灯LAに並列に接続された始動用のコンデンサC23とで構成されている。
【0023】
次に、放電灯点灯装置の動作を図1、図2、図8により説明する。直流電源Eが投入されると、その直流電流が起動電流として起動抵抗R1を介してコンデンサC16に流れる。この電流供給によりコンデンサC16の充電電圧がIV制御回路IC2の動作電圧に達すると、IV制御回路IC2は、コンデンサC16の充電電圧が動作電圧に達すると、端子2、4を介して周波数fHの高周波信号を発振し、スイッチング素子Q2、Q3を交互にオン・オフする。その後、その発振周波数を徐々に下げ周波数fLの高周波信号に切り換えて発振する。
【0024】
スイッチング素子Q2がオンしたときは、直流電源E→スイッチング素子Q2→バラストチョークT2→カップリングコンデンサC22→電極F11→始動用のコンデンサC23→電極F12→直流電源Eの閉ループで電流が流れ、スイッチング素子Q3がオンしたときは、カップリングコンデンサC22→バラストチョークT2→スイッチング素子Q3→電極F12→始動用のコンデンサC23→電極F11→カップリングコンデンサC22の閉ループで電流が流れ、バラストチョークT2、カップリングコンデンサC22、電極F11、コンデンサC23、電極F12の直列回路に周波数fHの高周波電流が流れる。
【0025】
この状態は所定時間継続され、電極F11、F12が予熱される。その後、通常は高周波信号の周波数がfSとなって放電灯LAが点灯を開始し、さらに、共振周波数fOの高周波信号を発振し、そして、周波数fHの高周波信号を発振してから所定時間後に周波数fLの高周波信号を発振する。この時は、放電灯LAが点灯を継続する。
【0026】
一方、検出抵抗R29に生じた高周波電圧がフィードバック回路FBの積分回路INによって平均化され、この直流電圧が誤差増幅器EAのオペアンプIC3の反転入力端子に入力されている。ところで、IV制御集積回路IC2の発振周波数はコンデンサC19の容量値と、IV制御集積回路IC2の主発振抵抗接続端子(電流出力端子)6から抵抗R19とR4に流出する電流値で決定され、これらの電流値が大きいほど発振周波数が高い。そして、電流出力端子6から抵抗R19に流れる電流は、オペアンプIC3の出力電圧の変化に応じて変化することにより、IV制御集積回路IC2の発振周波数が制御される。
【0027】
そして、放電灯LAが不点灯のときにおいて、図8の曲線(a)において共振周波数fOの高周波信号を発振する前の周波数fpで共振電圧がPaで保たれるように、誤差増幅回路EAの非反転入力端子に入力される基準電圧を決め、分圧抵抗R2、R3の抵抗値を設定する。
【0028】
従って、IV制御集積回路IC2の発振周波数の制御は、積分回路INの出力電圧が、オペアンプIC3の非反転入力端子の基準電圧に等しくなるように、オペアンプIC3の出力電圧が制御されることにより行われる。この結果、検出抵抗R29を流れる高周波電流の平均値、すなわち、放電灯LAの予熱電極F1、F2で消費される電力の和である負荷電力が一定に保たれる。
よって、放電灯LAが不点灯のときは、共振周波数fOの高周波信号を発振する前に周波数fpのとき、共振電圧をPaで保持され装置を保護する。
【0029】
ここで、さらに図2、図8により説明する。図2(a)は放電灯点灯時、図3(b)は放電灯不点灯時の波形図である。A1は放電灯LAの両極F11、F12間に印加される共振電圧の波形図、A2は放電灯LAの電極F1、F2で消費される負荷電力の波形図、A3は誤差増幅回路EAのオペアンプIC3の非反転入力端子の基準電圧波形図、A4はオペアンプIC3の反転入力端子に入力される電圧波形図、A5はオペアンプIC3の出力波形図である。
【0030】
まず、放電灯点灯時について、図2(a)により説明する。時間t0−t1間は放電灯LAの電極F11、F12を予熱する時間で、周波数fHの高周波信号が発振され共振電圧はHaである。その後は発振周波数の低下に伴い共振電圧が大きくなっていき、時間t2で周波数fSの高周波信号が発振されたとき共振電圧はSaとなり放電灯LAが始動し、この後、周波数がfLまで変化し共振電圧はSbに低下し、さらにLbになる。
【0031】
このとき、A4に示す積分回路INの出力電圧が、A3に示すオペアンプIC3の非反転入力端子の基準電圧に等しくなるように、A5に示すオペアンプIC3の出力電圧がIV制御集積回路IC2により制御される。そして、A2に示すように放電灯LAが始動後、放電灯LAの負荷電力が一定に保たれる。
【0032】
次に、放電灯LAが不点灯のときを図2(b)により説明する。
時間t0−t1間は予熱時間で、周波数fHの高周波信号が発振され共振電圧はHaである。その後は発振周波数の低下に伴い共振電圧が大きくなっていき、時間t2で周波数fSの高周波信号が発振されたとき共振電圧はSaとなるが、放電灯LAが始動しないので、さらに、発振周波数の低下に伴い共振電圧が大きくなっていき、時間t3で共振点のf0前に設定した共振周波数fpの高周波信号が発振されたとき共振電圧はPaとなる。
【0033】
このとき、A4に示す積分回路INの出力電圧が、A3に示すオペアンプIC3の非反転入力端子の基準電圧に等しくなるように、A5に示すオペアンプIC3の出力電圧がIV制御集積回路IC2により制御される。そして、A1に示すように、周波数fPの高周波信号が発振されたとき共振電圧はPaに保たれ、A2に示すように放電灯LAの負荷電力が一定に保たれる。
【0034】
以上のように、始動用コンデンサやバラストチョークが小形で安価なものを使用し、また、特別な保護回路を設けないで、放電灯LAが不点灯のときは、共振周波数f0に近づいても共振点のf0前に設定した共振周波数fpの共振電圧はPaに保たれるので、放電灯が正常ランプであるにもかかわらず、IV制御回路が発振を停止してしまうことがないようにすることができる。
【0035】
実施の形態2.
図3はこの発明に係る放電灯点灯装置の回路図、図4は動作波形図である。図において、実施の形態1の図1同一または相当部分には同じ符号を付し説明を省略する。コンデンサC18は抵抗R45と直列接続され、この直列接続されたコンデンサC18と抵抗R45は主発振抵抗R19と並列に接続されている。
周波数制御手段は抵抗R19、抵抗R45及びコンデンサC18から構成される。
【0036】
この構成において、IV制御集積回路IC2の発振周波数はコンデンサC19の容量値と、IV制御集積回路IC2の主発振抵抗接続端子6から抵抗R19、抵抗R45及びコンデンサC18に流出する電流値で決定され、これらの電流値が大きいほど発振周波数が高い。そして、電流出力端子6から抵抗R19に流れる電流は、オペアンプIC3の出力電圧の変化に応じて変化することにより、IV制御集積回路IC2からの予熱周波数fH、始動周波数fS及び保護周波数fp等の発振周波数が制御される。
【0037】
一方、抵抗R45に流れる電流はコンデンサ18の充電に伴い、徐々に減少する。そして、この変化率及びコンデンサC18が満充電になる時間は抵抗R45とコンデンサC18の時定数で決まる。従って、予熱周波数fH→始動周波数fS→保護周波数fpへの変化が徐々に行われる。
【0038】
また、IV制御集積回路IC2の発振周波数の制御は、実施の形態1と同様に積分回路INの出力電圧が、オペアンプIC3の非反転入力端子の基準電圧に等しくなるように、オペアンプIC3の出力電圧が制御されることにより行われ、放電灯LAの負荷電力が一定に保たれる。
【0039】
ここで、さらに図4により説明する。図4(a)は放電灯点灯時、図4(b)は放電灯不点灯時の波形図である。そして、A1は放電灯LAの両極F11、F12間に印加される共振電圧の波形図、A2は放電灯LAの電極F1、F2で消費される負荷電力の波形図、A3は誤差増幅回路EAのオペアンプIC3の非反転入力端子の基準電圧波形図、A4はオペアンプIC3の反転入力端子に入力される電圧波形図、A5はオペアンプIC3の出力波形図である。
【0040】
放電灯点灯時は、図4(a)A1に示すように、時間t0−t1間の予熱時は、共振電圧はHaから徐々に大きくなっていき、時間t2で周波数fSの高周波信号が発振されたとき共振電圧はSaとなり放電灯LAが始動し、この後、周波数がfLまで変化し共振電圧はSbに低下し、さらにLbなる。A2に示すように負荷電力も同様に徐々に変化しt2で一定となる。
【0041】
このとき、A4に示す積分回路INの出力電圧が、A3に示すオペアンプIC3の非反転入力端子の基準電圧に等しくなるように、A5に示すオペアンプIC3の出力電圧がIV制御集積回路IC2により制御される。そして、A2に示すように放電灯LAが始動後、放電灯LAの負荷電力が一定に保たれる。
【0042】
次に、放電灯LAが不点灯時は、図4(b)A1に示すように、時間t0−t1間の予熱時間で、共振電圧はHaから徐々に大きくなっていき、時間t2で共振電圧TはSaとなるが、放電灯LAが始動しないので、さらに、発振周波数の低下に伴い共振電圧が徐々に大きくなっていき、時間t3で共振点のf0前に設定した共振周波数fpの高周波信号が発振されたとき共振電圧はPaとなる。
【0043】
このとき、A4に示す積分回路INの出力電圧が、A3に示すオペアンプIC3の非反転入力端子の基準電圧に等しくなるように、A5に示すオペアンプIC3の出力電圧がIV制御集積回路IC2により制御される。そして、A1に示すように、周波数fPの高周波信号が発振されたとき共振電圧はPaに保たれ、A2に示すように放電灯LAの負荷電力が一定に保たれる。
【0044】
以上のように、周波数の変化を徐々に行われるようにしたので、放電灯LAの両極の予熱と点灯をスムーズに行うことができ、また、放電灯LAが点灯開始しない場合でも、共振周波数f0に近づいても共振点のf0前に設定した共振周波数fpの共振電圧はPaに保たれるので、放電灯LAが正常ランプであるにもかかわらず、IV制御回路が発振を停止してしまうことがないようにすることができる。
【0045】
実施の形態3.
図5はこの発明に係る放電灯点灯装置の回路図、図6は動作波形図である。
図において、実施の形態1の図1同一または相当部分には同じ符号を付し説明を省略する。R30は誤差増幅回路EAの抵抗R2と直列に接続され基準電圧を可変する基準値可変手段である可変抵抗、LAKは放電灯LAの点灯を検出する放電灯検出回路である。
【0046】
この構成における放電灯点灯時の動作を図6により説明する。図において A1は放電灯LAに印加される共振電圧の波形図、A2は放電灯LAで消費される負荷電力の波形図、A3は放電検出回路LAKの波形図、A4は誤差増幅回路EAのオペアンプIC3の非反転入力端子の基準電圧波形図、A5はオペアンプIC3の反転入力端子に入力される電圧波形図、A6はオペアンプIC3の出力波形図である。
【0047】
図において時間t0−t2間の予熱時と放電灯LA点灯時までは、可変抵抗30の抵抗を第1の値に設定して示す第1の基準電圧とする(A4)。このとき放電灯LAに印加される共振電圧はHaであり、時間t2で周波数fSの高周波信号が発振されたとき共振電圧はSaとなり(A1)、に放電灯LAの始動を放電検出回路LAKが検知したときに(A3)、可変抵抗30の抵抗を第2の値に設定して第2の基準電圧とする(A4)。すると、周波数がfsからfLまで変化するとき、共振電圧を第1に対応した共振電圧Sb、Lbとは別の第2の基準電圧に対応した共振電圧となる(A1)。放電灯LAで消費される負荷電力も同様の波形図となる(A2)。この第2の基準電圧は任意に設定し、放電灯LAの共振電圧及び負荷電力を任意に変化できる。
【0048】
以上のように、可変抵抗R30の値を任意に変化させて放電灯LAの調光をすることができる。
【0049】
【発明の効果】
以上のように、この発明によれば、放電灯を点灯させる放電灯点灯装置において、直流電源と、制御回路の高周波信号でスイッチング素子をオン・オフして前記直流電源の電圧を高周波電力に変換するインバータ回路と、このインバータ回路からの高周波電力により放電灯を点灯させる放電灯回路と、可変可能な基準値を設定する基準値可変手段を有し、前記高周波電力を前記基準値と等しくなるように前記制御回路を制御するフィードバック回路と、放電灯の点灯を検知した場合、前記基準値可変手段に対し、あらかじめ定められた高周波信号に対応した基準共振電圧に設定している状態から、前記基準値を変化させて前記放電灯の点灯状態を調光点灯にする共振電圧に設定させる放電検出回路と、を備えたので、調光用の回路を特に必要とせず調光をすることができる。
【0051】
また、制御回路の高周波信号があらかじめ定められた高周波信号となる間、前記制御回路の高周波信号を徐々に変化させる周波数制御手段を備えたので、予熱と点灯をスムーズにできる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す放電灯点灯装置の回路図である。
【図2】 この発明の実施の形態1を示す放電灯点灯装置の動作波形図である。
【図3】 この発明の実施の形態2を示す放電灯点灯装置の回路図である。
【図4】 この発明の実施の形態2を示す放電灯点灯装置の動作波形図である。
【図5】 この発明の実施の形態3を示す放電灯点灯装置の回路図である。
【図6】 この発明の実施の形態3を示す放電灯点灯装置の動作波形図である。
【図7】 従来の放電灯点灯装置の回路図である。
【図8】 放電灯回路におけるLC直列共振の曲線図である。
【図9】 従来の放電灯点灯装置の放電灯の両極間に印加したときの共振電圧の波形図である。
【符号の説明】
IV インバータ回路、R1 起動抵抗、C16 制御電源用のコンデンサ、ZD 定電圧ダイオード、Q2、Q3 スイッチング素子、FB フィードバック回路、IC2 IV制御集積回路、R19 主発振抵抗、R40 予熱発振接続抵抗、R29 検出抵抗、C18、C19、C21 コンデンサ、IN 積分回路、R2、R3、分圧抵抗、R27 抵抗、D1 ダイオード、IC3 オペアンプ、EA 誤差増幅回路、LAC 放電灯回路、LA 放電灯、LAK 放電灯検出回路、R30 可変抵抗。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a discharge lamp lighting device for lighting a discharge lamp with high frequency power by an inverter.
[0002]
[Prior art]
FIG. 7 is a circuit diagram of a conventional discharge lamp lighting device disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-21592. In the figure, IV is an inverter circuit, and a starting resistor R1 connected in series to a DC power source E and a control. A power supply capacitor C16, a constant voltage diode ZD connected in parallel to the capacitor C16, a pair of switching elements Q2 and Q3 provided between both poles of the DC power supply E, and an inverter control circuit IC2 (hereinafter referred to as “IV And a frequency control circuit FC2 for setting the frequencies fH and fL of the high-frequency signal oscillated by the IV control circuit IC2.
[0003]
The frequency control circuit FC2 includes a preheating oscillation resistor R40 inserted between the terminal 8 of the IV control circuit IC2 and the negative electrode side of the DC power supply E, and an oscillation capacitor C19 inserted between the terminal 7 and the negative electrode side. The main oscillation resistor R19 inserted between the terminal 6 and the negative electrode side, and the frequencies fH and fL are determined based on the currents flowing through the resistors R19 and R40.
[0004]
When the charging voltage of the capacitor C16 reaches the operating voltage, the IV control circuit IC2 oscillates a high-frequency signal having a frequency fH via the terminals 2 and 4 and turns on and off the switching elements Q2 and Q3 alternately. Thereafter, the oscillation frequency is gradually lowered to switch to a high frequency signal of frequency fL and oscillate. The IV control circuit IC2 is set with a threshold value for identifying whether or not the discharge lamp LA is not lit. When a voltage reaching the threshold value is applied to the terminal 5, the switching elements Q2 and Q3 are driven. It comes to stop.
[0005]
LAC is a discharge lamp circuit, and is inserted between the discharge lamp LA in which the electrode F12 is connected to the source side of the switching element Q3, and the connection point between the other electrode F11 of the discharge lamp LA and the switching elements Q2 and Q3. The ballast choke T2 and the coupling capacitor C22, and the starting capacitor C23 connected in parallel to the discharge lamp LA.
[0006]
Here, as shown in the curve diagram of LC series resonance in the discharge lamp circuit of FIG. 8, the discharge lamp LA is lit at the frequency fS in the process of decreasing the generation and increasing the resonance voltage according to the oscillation frequency f of the inverter circuit IV. Accordingly, the operating voltage moves from the point Sa to the point Sb. Then, a high-frequency signal having the resonance frequency fO is oscillated, and the switching elements Q2 and Q3 are driven by the high-frequency signal having the frequency fL, and the resonance voltage indicated by the point Lb is generated between both electrodes of the discharge lamp LA, and the lighting state continues. Is done. On the other hand, when the discharge lamp LA is in a non-lighting state, a resonance voltage indicated by a point Pa is generated between both poles when the frequency of the high-frequency signal becomes fP.
[0007]
NP is a non-lighting detection circuit, and resistors R62 and R63 inserted between the connection point of the coupling capacitor C22 and the electrode F11 and the electrode F12 side, and between the connection point of the resistors R62 and R63 and the terminal 5 And a capacitor C21 having a positive electrode connected to the cathode side of the diode D6 and a negative electrode connected to the electrode F12 side. This non-lighting detection circuit NP is configured so that when the discharge lamp LA is normally lit, the DC voltage generated in the capacitor C21 is less than the threshold value, and when the discharge lamp LA is not lit, the DC voltage is The values of the resistors R62 and R63 are set so as to reach the threshold value.
[0008]
Next, the operation of the conventional discharge lamp lighting device will be described. When the DC power source E is turned on, the DC current flows as a starting current to the capacitor C16 via the starting resistor R1. When the charging voltage of the capacitor C16 reaches the operating voltage of the IV control circuit IC2 due to this current supply, the IV control circuit IC2 oscillates a high-frequency signal of the frequency fH based on the control of the frequency control circuit FC2, and the switching elements Q2, Q3 Turn on and off alternately.
[0009]
When the switching element Q2 is turned on, a current flows in a closed loop of the DC power supply E → the switching element Q2 → the ballast choke T2 → the coupling capacitor C22 → the electrode F11 → the starting capacitor C23 → the electrode F12 → the DC power supply E. When Q3 is turned on, current flows in a closed loop of coupling capacitor C22 → ballast choke T2 → switching element Q3 → electrode F12 → starting capacitor C23 → electrode F11 → coupling capacitor C22, and ballast choke T2, coupling capacitor A high-frequency current of frequency fH flows through a series circuit of C22, electrode F11, capacitor C23, and electrode F12.
[0010]
This state is continued for a predetermined time, and the electrodes F11 and F12 are preheated. After that, the frequency of the high frequency signal becomes fS and the discharge lamp LA starts to light, further oscillates the high frequency signal of the resonance frequency f0, and oscillates the high frequency signal of the frequency fH after a predetermined time. Oscillates a high frequency signal. At this time, the discharge lamp LA continues to be lit.
[0011]
On the other hand, the non-lighting detection circuit NP generates a DC voltage by dividing the resonance voltage generated between the two electrodes of the discharge lamp LA by the resistors R62 and R63, and applies it to the terminal 5 of the IV control circuit IC2. When the discharge lamp LA is normally lit, the DC voltage does not exceed the threshold value set in the IV control circuit IC2, and when the discharge lamp LA is not lit, the DC voltage reaches the threshold value. The timing at which the DC voltage reaching the threshold is generated is a point Pa on the curve (a) as shown in FIG. 8, and the IV control circuit IC2 stops before oscillating a high frequency signal of the resonance frequency fO to protect the device. To do.
[0012]
Here, the waveform of the resonance voltage applied between the two electrodes of the discharge lamp LA will be described. FIG. 9 is a waveform diagram of a conventional resonance voltage when applied between both electrodes of a discharge lamp, where (a) is a waveform diagram when the discharge lamp is lit and (b) is a waveform diagram when the discharge lamp is not lit. It is. First, the waveform shown in (a) will be described. The time t0-t1 is a time for preheating the electrodes F11 and F12 of the discharge lamp LA, and is a resonance voltage when a high frequency signal of the frequency fH is oscillated. Thereafter, the resonance voltage increases as the oscillation frequency decreases. When a high-frequency signal having the frequency fS is oscillated, the discharge lamp LA is started (time t2), and the resonance voltage between the two electrodes decreases from V3 to V1. . Thereafter, the frequency changes to fL, that is, a high-frequency signal having a frequency of fL is oscillated after a predetermined time from time t1, and the resonance voltage between both electrodes of the discharge lamp LA becomes V1. When the discharge lamp LA is not lit, as shown in (b), after preheating the electrodes F11 and F12 (time t0-t1), the resonance voltage increases as the oscillation frequency decreases, and after the frequency fS (time When a high-frequency signal having a frequency fP of t2) is oscillated, a resonance voltage V5 is applied between both electrodes of the discharge lamp LA (time t3). This voltage value is a DC voltage that reaches the threshold value set in the IV control circuit IC2.
[0013]
[Problems to be solved by the invention]
However, in the above-described conventional discharge lamp lighting device, when the discharge lamp LA is at the end of its life or defective, and the oscillation frequency of the IV control circuit IC2 does not light even when it approaches the series resonance frequency fO of the ballast choke T2 and the capacitor C23, The oscillation of the IV control circuit IC2 stops before the frequency fO is reached by the non-lighting detection circuit NP, but the frequency fH is shifted to the frequency fL with respect to the preheating time from when the DC power source E is turned on until the discharge lamp LA is turned on. Therefore, the frequency fO is relatively close to immediately before the oscillation of the IV control circuit IC2 is stopped, and the resonance voltage of the capacitor C23 and the resonance current of the ballast choke T2 become large. T2 required a tolerance limit and was large and expensive.
[0014]
Also, due to variations in the non-lighting detection circuit NP, the resonance voltage fluctuation is large when the oscillation is stopped, and the IV control circuit IC2 stops oscillating before the discharge lamp LA is lit even though the discharge lamp LA is a normal lamp. This is not practical.
[0015]
The present invention has been made to solve the above-described problems, and the IV control circuit does not stop oscillating even though the discharge lamp is a normal lamp. Using a small and inexpensive starting capacitor and ballast choke, suppressing excessive resonance voltage even when approaching the resonance frequency, no special protection circuit is required, and preheating and lighting can be performed smoothly. It is another object of the present invention to provide a discharge lamp lighting device capable of dimming.
[0016]
[Means for Solving the Problems]
  The discharge lamp lighting device according to the present invention is a discharge lamp lighting device for lighting a discharge lamp, and converts the voltage of the DC power source into high frequency power by turning on and off the switching element with a DC power source and a high frequency signal of a control circuit. An inverter circuit;A discharge lamp circuit for lighting the discharge lamp by high-frequency power from the inverter circuit; and reference value variable means for setting a variable reference value; and the control circuit is configured to make the high-frequency power equal to the reference value. When detecting a feedback circuit to be controlled and lighting of the discharge lamp, the reference value is changed from a state in which the reference value variable means is set to a reference resonance voltage corresponding to a predetermined high-frequency signal. A discharge detection circuit for setting the lighting state of the discharge lamp to a resonance voltage for dimming lighting; andIs provided.
[0018]
Further, a frequency control means is provided for gradually changing the high frequency signal of the control circuit while the high frequency signal of the control circuit becomes a predetermined high frequency signal.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a circuit diagram of a discharge lamp lighting device according to the present invention, and FIG. 2 is a waveform diagram of a resonance voltage when applied between both electrodes of the discharge lamp.
In FIG. 1, IV is an inverter circuit, which includes a starting resistor R1 and a control power supply capacitor C16 connected in series to the DC power supply E, a constant voltage diode ZD connected in parallel to the capacitor C16, and a DC power supply E. A pair of switching elements Q2, Q3, an inverter control circuit IC2, and an FB provided between the two poles are feedback circuits that maintain the output at a set value by controlling the oscillation frequency. The switching element Q2 has a drain connected to a DC power supply, a source connected to the drain of the switching element Q3, and a gate connected to a pin 2 of an IV control integrated circuit IC2 described later. The switching element Q3 has a source connected to the DC power supply E via the detection resistor R29, and a gate connected to the pin 4 of the IV control integrated circuit IC2.
[0020]
IC2 is an IV control integrated circuit for controlling the inverter IV, 1 is a power supply input terminal connected to the connection point of the control power supply capacitor C16 and the starting resistor R1, and 2 and 4 output driving voltages of the switching elements Q2 and Q3. Voltage output terminal, 3 is a reference voltage output terminal, 6 is a main oscillation resistor connection terminal for outputting a current for determining a resonance frequency, 7 is a current input / output terminal for charging and discharging the capacitor C19, and 8 is a preheating oscillation frequency determination. R40 is a preheating oscillation connection terminal R40 connected to the preheating oscillation resistor connection terminal 8 for outputting a current to be preheated oscillation resistance connection terminal R40.
[0021]
Next, the configuration of the feedback circuit FB will be described. The feedback circuit FB includes main oscillation resistors R19 and R4 that determine a current flowing out from the voltage output terminal 6, a capacitor C19 connected to the current input / output terminal 7, a detection resistor R29 that detects a high-frequency voltage flowing in the discharge lamp LA, and a detection The high frequency voltage detected by the resistor R29 is averaged, and the voltage dividing resistors R2 and R3 connected in series between the connecting point of the resistor R27 and the capacitor C21, the connecting point of the resistor R1 and the capacitor C16, and the negative electrode of the power source E. The reference voltage from the connection point of the resistors R2 and R3 is connected to the non-inverting input terminal, and the resistor R4, the diode D1, and the capacitor C1 connected in series to the current output terminal 6 of the integrating circuit IN and the IV control integrated circuit IC2. Is connected to the inverting input terminal, and the error increase is made up of the operational amplifier IC3 that makes the output voltage of the integrating circuit IN equal to the reference voltage. It consists vessel EA.
[0022]
LAC is a discharge lamp circuit, and is inserted between the discharge lamp LA in which the electrode F12 is connected to the source side of the switching element Q3, and the connection point between the other electrode F11 of the discharge lamp LA and the switching elements Q2 and Q3. The ballast choke T2 and the coupling capacitor C22, and the starting capacitor C23 connected in parallel to the discharge lamp LA.
[0023]
Next, the operation of the discharge lamp lighting device will be described with reference to FIGS. When the DC power source E is turned on, the DC current flows as a starting current to the capacitor C16 via the starting resistor R1. When the charging voltage of the capacitor C16 reaches the operating voltage of the IV control circuit IC2 due to this current supply, the IV control circuit IC2 detects that the charging voltage of the capacitor C16 reaches the operating voltage and the high frequency of the frequency fH via the terminals 2 and 4. A signal is oscillated, and switching elements Q2 and Q3 are alternately turned on and off. Thereafter, the oscillation frequency is gradually lowered to switch to a high frequency signal of frequency fL and oscillate.
[0024]
When the switching element Q2 is turned on, a current flows in a closed loop of the DC power supply E → the switching element Q2 → the ballast choke T2 → the coupling capacitor C22 → the electrode F11 → the starting capacitor C23 → the electrode F12 → the DC power supply E. When Q3 is turned on, current flows in a closed loop of coupling capacitor C22 → ballast choke T2 → switching element Q3 → electrode F12 → starting capacitor C23 → electrode F11 → coupling capacitor C22, and ballast choke T2, coupling capacitor A high-frequency current of frequency fH flows through a series circuit of C22, electrode F11, capacitor C23, and electrode F12.
[0025]
This state is continued for a predetermined time, and the electrodes F11 and F12 are preheated. Thereafter, the frequency of the high-frequency signal is usually fS, and the discharge lamp LA starts to light, further oscillates the high-frequency signal of the resonance frequency fO, and then oscillates the high-frequency signal of the frequency fH after a predetermined time. Oscillates a high-frequency signal of fL. At this time, the discharge lamp LA continues to be lit.
[0026]
On the other hand, the high frequency voltage generated in the detection resistor R29 is averaged by the integrating circuit IN of the feedback circuit FB, and this DC voltage is input to the inverting input terminal of the operational amplifier IC3 of the error amplifier EA. Incidentally, the oscillation frequency of the IV control integrated circuit IC2 is determined by the capacitance value of the capacitor C19 and the current value flowing out from the main oscillation resistance connection terminal (current output terminal) 6 of the IV control integrated circuit IC2 to the resistors R19 and R4. The larger the current value, the higher the oscillation frequency. The current flowing from the current output terminal 6 to the resistor R19 changes in accordance with the change in the output voltage of the operational amplifier IC3, whereby the oscillation frequency of the IV control integrated circuit IC2 is controlled.
[0027]
When the discharge lamp LA is not lit, the error amplifying circuit EA maintains the resonance voltage Pa at the frequency fp before oscillating the high frequency signal having the resonance frequency fO in the curve (a) of FIG. A reference voltage input to the non-inverting input terminal is determined, and resistance values of the voltage dividing resistors R2 and R3 are set.
[0028]
Therefore, the oscillation frequency of the IV control integrated circuit IC2 is controlled by controlling the output voltage of the operational amplifier IC3 so that the output voltage of the integrating circuit IN becomes equal to the reference voltage of the non-inverting input terminal of the operational amplifier IC3. Is called. As a result, the average value of the high-frequency current flowing through the detection resistor R29, that is, the load power that is the sum of the power consumed by the preheating electrodes F1 and F2 of the discharge lamp LA is kept constant.
Therefore, when the discharge lamp LA is not lit, the resonance voltage is held at Pa and the device is protected at the frequency fp before the high frequency signal having the resonance frequency fO is oscillated.
[0029]
Here, it will be further described with reference to FIGS. 2A is a waveform diagram when the discharge lamp is lit, and FIG. 3B is a waveform diagram when the discharge lamp is not lit. A1 is a waveform diagram of the resonance voltage applied between the two poles F11 and F12 of the discharge lamp LA, A2 is a waveform diagram of load power consumed by the electrodes F1 and F2 of the discharge lamp LA, and A3 is an operational amplifier IC3 of the error amplifier circuit EA. Is a reference voltage waveform diagram of the non-inverting input terminal, A4 is a voltage waveform diagram inputted to the inverting input terminal of the operational amplifier IC3, and A5 is an output waveform diagram of the operational amplifier IC3.
[0030]
First, the discharge lamp lighting will be described with reference to FIG. Between times t0 and t1, the electrodes F11 and F12 of the discharge lamp LA are preheated. A high frequency signal having a frequency fH is oscillated and the resonance voltage is Ha. Thereafter, the resonance voltage increases as the oscillation frequency decreases. When a high-frequency signal having the frequency fS is oscillated at time t2, the resonance voltage becomes Sa and the discharge lamp LA starts, and then the frequency changes to fL. The resonance voltage drops to Sb and further becomes Lb.
[0031]
At this time, the output voltage of the operational amplifier IC3 indicated by A5 is controlled by the IV control integrated circuit IC2 so that the output voltage of the integrating circuit IN indicated by A4 becomes equal to the reference voltage of the non-inverting input terminal of the operational amplifier IC3 indicated by A3. The And as shown to A2, after the discharge lamp LA starts, the load electric power of the discharge lamp LA is kept constant.
[0032]
Next, the case where the discharge lamp LA is not lit will be described with reference to FIG.
The time between t0 and t1 is a preheating time, a high frequency signal having a frequency fH is oscillated, and the resonance voltage is Ha. Thereafter, the resonance voltage increases as the oscillation frequency decreases, and when a high-frequency signal having the frequency fS is oscillated at time t2, the resonance voltage becomes Sa. However, since the discharge lamp LA does not start, The resonance voltage increases with the decrease, and the resonance voltage becomes Pa when a high-frequency signal having the resonance frequency fp set before f0 of the resonance point is oscillated at time t3.
[0033]
At this time, the output voltage of the operational amplifier IC3 indicated by A5 is controlled by the IV control integrated circuit IC2 so that the output voltage of the integrating circuit IN indicated by A4 becomes equal to the reference voltage of the non-inverting input terminal of the operational amplifier IC3 indicated by A3. The As shown in A1, when a high-frequency signal having a frequency fP is oscillated, the resonance voltage is kept at Pa, and the load power of the discharge lamp LA is kept constant as shown in A2.
[0034]
As described above, when the starting capacitor and ballast choke are small and inexpensive, and there is no special protection circuit, and the discharge lamp LA is not lit, resonance occurs even when it approaches the resonance frequency f0. Since the resonance voltage of the resonance frequency fp set before the point f0 is kept at Pa, the IV control circuit should not stop oscillating even though the discharge lamp is a normal lamp. Can do.
[0035]
Embodiment 2. FIG.
FIG. 3 is a circuit diagram of a discharge lamp lighting device according to the present invention, and FIG. 4 is an operation waveform diagram. In the figure, the same or corresponding parts in FIG. The capacitor C18 is connected in series with the resistor R45, and the capacitor C18 and the resistor R45 connected in series are connected in parallel with the main oscillation resistor R19.
The frequency control means includes a resistor R19, a resistor R45, and a capacitor C18.
[0036]
In this configuration, the oscillation frequency of the IV control integrated circuit IC2 is determined by the capacitance value of the capacitor C19 and the current values flowing from the main oscillation resistance connection terminal 6 of the IV control integrated circuit IC2 to the resistor R19, the resistor R45, and the capacitor C18. The larger these current values, the higher the oscillation frequency. The current flowing from the current output terminal 6 to the resistor R19 changes according to the change in the output voltage of the operational amplifier IC3, thereby oscillating the preheating frequency fH, starting frequency fS, protection frequency fp, etc. from the IV control integrated circuit IC2. The frequency is controlled.
[0037]
On the other hand, the current flowing through the resistor R45 gradually decreases as the capacitor 18 is charged. The rate of change and the time for which the capacitor C18 is fully charged are determined by the time constants of the resistor R45 and the capacitor C18. Therefore, the change from the preheating frequency fH to the starting frequency fS to the protection frequency fp is gradually performed.
[0038]
Further, the oscillation frequency of the IV control integrated circuit IC2 is controlled such that the output voltage of the operational amplifier IC3 is equal to the reference voltage of the non-inverting input terminal of the operational amplifier IC3 as in the first embodiment. Is controlled, and the load power of the discharge lamp LA is kept constant.
[0039]
Here, a further description will be given with reference to FIG. 4A is a waveform diagram when the discharge lamp is lit, and FIG. 4B is a waveform diagram when the discharge lamp is not lit. A1 is a waveform diagram of the resonance voltage applied between the two poles F11 and F12 of the discharge lamp LA, A2 is a waveform diagram of load power consumed by the electrodes F1 and F2 of the discharge lamp LA, and A3 is the error amplifier circuit EA. A reference voltage waveform diagram of the non-inverting input terminal of the operational amplifier IC3, A4 is a voltage waveform diagram inputted to the inverting input terminal of the operational amplifier IC3, and A5 is an output waveform diagram of the operational amplifier IC3.
[0040]
When the discharge lamp is lit, as shown in A1 of FIG. 4A, during preheating between times t0 and t1, the resonance voltage gradually increases from Ha, and a high frequency signal having a frequency fS is oscillated at time t2. Then, the resonance voltage becomes Sa, and the discharge lamp LA is started. Thereafter, the frequency changes to fL, the resonance voltage decreases to Sb, and further becomes Lb. As indicated by A2, the load power also changes gradually and becomes constant at t2.
[0041]
At this time, the output voltage of the operational amplifier IC3 indicated by A5 is controlled by the IV control integrated circuit IC2 so that the output voltage of the integrating circuit IN indicated by A4 becomes equal to the reference voltage of the non-inverting input terminal of the operational amplifier IC3 indicated by A3. The And as shown to A2, after the discharge lamp LA starts, the load electric power of the discharge lamp LA is kept constant.
[0042]
Next, when the discharge lamp LA is not lit, as shown in FIG. 4 (b) A1, the resonance voltage gradually increases from Ha during the preheating time between time t0 and t1, and at time t2, the resonance voltage is increased. T becomes Sa, but since the discharge lamp LA does not start, the resonance voltage gradually increases as the oscillation frequency decreases, and the high frequency signal having the resonance frequency fp set before the resonance point f0 at time t3. When is oscillated, the resonance voltage becomes Pa.
[0043]
At this time, the output voltage of the operational amplifier IC3 indicated by A5 is controlled by the IV control integrated circuit IC2 so that the output voltage of the integrating circuit IN indicated by A4 becomes equal to the reference voltage of the non-inverting input terminal of the operational amplifier IC3 indicated by A3. The As shown in A1, when a high-frequency signal having a frequency fP is oscillated, the resonance voltage is kept at Pa, and the load power of the discharge lamp LA is kept constant as shown in A2.
[0044]
As described above, since the change of the frequency is gradually performed, the two electrodes of the discharge lamp LA can be preheated and lit smoothly, and even when the discharge lamp LA does not start lighting, the resonance frequency f0. Since the resonance voltage of the resonance frequency fp set before f0 of the resonance point is maintained at Pa even when approaching, the IV control circuit stops oscillating even though the discharge lamp LA is a normal lamp. There can be no.
[0045]
Embodiment 3 FIG.
FIG. 5 is a circuit diagram of a discharge lamp lighting device according to the present invention, and FIG. 6 is an operation waveform diagram.
In the figure, the same or corresponding parts in FIG. R30 is a variable resistor that is a reference value variable means that is connected in series with the resistor R2 of the error amplifier circuit EA and varies the reference voltage, and LAK is a discharge lamp detection circuit that detects lighting of the discharge lamp LA.
[0046]
The operation when the discharge lamp is lit in this configuration will be described with reference to FIG. In the figure, A1 is a waveform diagram of resonance voltage applied to the discharge lamp LA, A2 is a waveform diagram of load power consumed by the discharge lamp LA, A3 is a waveform diagram of the discharge detection circuit LAK, and A4 is an operational amplifier of the error amplification circuit EA. A reference voltage waveform diagram of the non-inverting input terminal of IC3, A5 is a voltage waveform diagram inputted to the inverting input terminal of the operational amplifier IC3, and A6 is an output waveform diagram of the operational amplifier IC3.
[0047]
In the figure, the first reference voltage indicated by setting the resistance of the variable resistor 30 to the first value is used (A4) until preheating between time t0 and t2 and until the discharge lamp LA is lit. At this time, the resonance voltage applied to the discharge lamp LA is Ha, and when a high-frequency signal having the frequency fS is oscillated at time t2, the resonance voltage becomes Sa (A1), and the discharge detection circuit LAK starts the discharge lamp LA. When detected (A3), the resistance of the variable resistor 30 is set to the second value to be the second reference voltage (A4). Then, when the frequency changes from fs to fL, the resonance voltage becomes a resonance voltage corresponding to a second reference voltage different from the resonance voltages Sb and Lb corresponding to the first (A1). The load power consumed by the discharge lamp LA also has a similar waveform diagram (A2). The second reference voltage is arbitrarily set, and the resonance voltage and load power of the discharge lamp LA can be arbitrarily changed.
[0048]
As described above, the discharge lamp LA can be dimmed by arbitrarily changing the value of the variable resistor R30.
[0049]
【The invention's effect】
  As described above, according to the present invention, in the discharge lamp lighting device for lighting the discharge lamp, the switching element is turned on / off by the high frequency signal of the DC power supply and the control circuit to convert the voltage of the DC power supply into the high frequency power. An inverter circuit toA discharge lamp circuit for lighting the discharge lamp by high-frequency power from the inverter circuit; and reference value variable means for setting a variable reference value; and the control circuit is configured to make the high-frequency power equal to the reference value. When detecting a feedback circuit to be controlled and lighting of the discharge lamp, the reference value is changed from a state in which the reference value variable means is set to a reference resonance voltage corresponding to a predetermined high-frequency signal. And a discharge detection circuit for setting the lighting state of the discharge lamp to a resonance voltage for dimming lighting, so that dimming can be performed without requiring a dimming circuit.
[0051]
Further, since the frequency control means for gradually changing the high-frequency signal of the control circuit is provided while the high-frequency signal of the control circuit becomes a predetermined high-frequency signal, preheating and lighting can be performed smoothly.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a discharge lamp lighting device showing Embodiment 1 of the present invention.
FIG. 2 is an operation waveform diagram of the discharge lamp lighting device according to the first embodiment of the present invention.
FIG. 3 is a circuit diagram of a discharge lamp lighting device showing Embodiment 2 of the present invention.
FIG. 4 is an operation waveform diagram of the discharge lamp lighting device according to Embodiment 2 of the present invention.
FIG. 5 is a circuit diagram of a discharge lamp lighting device according to Embodiment 3 of the present invention.
FIG. 6 is an operation waveform diagram of the discharge lamp lighting device according to Embodiment 3 of the present invention.
FIG. 7 is a circuit diagram of a conventional discharge lamp lighting device.
FIG. 8 is a curve diagram of LC series resonance in a discharge lamp circuit.
FIG. 9 is a waveform diagram of a resonance voltage when applied between both electrodes of a discharge lamp of a conventional discharge lamp lighting device.
[Explanation of symbols]
IV inverter circuit, R1 start resistance, C16 capacitor for control power supply, ZD constant voltage diode, Q2, Q3 switching element, FB feedback circuit, IC2 IV control integrated circuit, R19 main oscillation resistance, R40 preheating oscillation connection resistance, R29 detection resistance , C18, C19, C21 capacitor, IN integrating circuit, R2, R3, voltage dividing resistor, R27 resistor, D1 diode, IC3 operational amplifier, EA error amplifier circuit, LAC discharge lamp circuit, LA discharge lamp, LAK discharge lamp detection circuit, R30 Variable resistance.

Claims (2)

放電灯を点灯させる放電灯点灯装置において、
直流電源と、
制御回路の高周波信号でスイッチング素子をオン・オフして前記直流電源の電圧を高周波電力に変換するインバータ回路と、
このインバータ回路からの高周波電力により放電灯を点灯させる放電灯回路と、
可変可能な基準値を設定する基準値可変手段を有し、前記高周波電力を前記基準値と等しくなるように前記制御回路を制御するフィードバック回路と、
放電灯の点灯を検知した場合、前記基準値可変手段に対し、あらかじめ定められた高周波信号に対応した基準共振電圧に設定している状態から、前記基準値を変化させて前記放電灯の点灯状態を調光点灯にする共振電圧に設定させる放電検出回路と、
を備えたことを特徴とする放電灯点灯装置。
In a discharge lamp lighting device for lighting a discharge lamp,
DC power supply,
An inverter circuit that converts the voltage of the DC power source into high-frequency power by turning on and off the switching element with a high-frequency signal of the control circuit;
A discharge lamp circuit for lighting the discharge lamp with high-frequency power from the inverter circuit;
A feedback circuit that has reference value variable means for setting a variable reference value, and controls the control circuit so that the high-frequency power is equal to the reference value;
When the lighting of the discharge lamp is detected, the reference value changing means is set to a reference resonance voltage corresponding to a predetermined high-frequency signal, and the lighting state of the discharge lamp is changed by changing the reference value. A discharge detection circuit that sets the resonance voltage to light control lighting,
A discharge lamp lighting device comprising:
制御回路の高周波信号があらかじめ定められた高周波信号となる間、前記制御回路の高周波信号を徐々に変化させる周波数制御手段を備えたことを特徴とする請求項記載の放電灯点灯装置。While the high-frequency signal of the control circuit is a high frequency signal predetermined, the discharge lamp lighting apparatus according to claim 1, further comprising a frequency control means for gradually changing the frequency signal of the control circuit.
JP2000089718A 2000-03-28 2000-03-28 Discharge lamp lighting device Expired - Fee Related JP4611486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089718A JP4611486B2 (en) 2000-03-28 2000-03-28 Discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089718A JP4611486B2 (en) 2000-03-28 2000-03-28 Discharge lamp lighting device

Publications (3)

Publication Number Publication Date
JP2001273994A JP2001273994A (en) 2001-10-05
JP2001273994A5 JP2001273994A5 (en) 2007-03-29
JP4611486B2 true JP4611486B2 (en) 2011-01-12

Family

ID=18605436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089718A Expired - Fee Related JP4611486B2 (en) 2000-03-28 2000-03-28 Discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP4611486B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991378B2 (en) * 2007-04-23 2012-08-01 パナソニック株式会社 Discharge lamp lighting device and lighting fixture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374090A (en) * 1989-08-12 1991-03-28 Matsushita Electric Works Ltd Discharge lamp lighting device
JPH0417298A (en) * 1990-05-09 1992-01-22 Hitachi Lighting Ltd Lighting device for discharge lamp
JP2000030887A (en) * 1998-07-14 2000-01-28 Mitsubishi Electric Corp Discharge lamp lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374090A (en) * 1989-08-12 1991-03-28 Matsushita Electric Works Ltd Discharge lamp lighting device
JPH0417298A (en) * 1990-05-09 1992-01-22 Hitachi Lighting Ltd Lighting device for discharge lamp
JP2000030887A (en) * 1998-07-14 2000-01-28 Mitsubishi Electric Corp Discharge lamp lighting device

Also Published As

Publication number Publication date
JP2001273994A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
EP1987705B1 (en) Voltage fed inverter for fluorescent lamps
JP3600976B2 (en) Discharge lamp lighting device
JP2008159382A (en) Discharge lamp lighting circuit
JP2006108117A (en) Discharge lamp lighting device
US7557522B2 (en) Preheat control device for modulating voltage of gas-discharge lamp
JP4611486B2 (en) Discharge lamp lighting device
US5369340A (en) Driving scheme for a high intensity discharge ballast down converter
WO2004068914A1 (en) Discharge tube operation device
JP4124791B2 (en) Electronic ballast for fluorescent lamp
JP2006520129A (en) Digital lighting ballast oscillator
JP2001284091A (en) Discharge lamp lighting device
TW415159B (en) Discharge lamp lighting device
JP2656520B2 (en) Discharge lamp lighting device
JP4168258B2 (en) External electrode rare gas discharge lamp lighting device
JP4439969B2 (en) Discharge lamp lighting device
JP3755194B2 (en) Discharge lamp lighting device
JPH1126177A (en) Discharge lamp lighting device
JP4088911B2 (en) Discharge lamp lighting device
JP2004303520A (en) Discharge lamp lighting device
KR20090035033A (en) Method and circuit for heating an electrode of a discharge lamp
JP4069687B2 (en) Discharge lamp lighting device
JP3746673B2 (en) Piezoelectric transformer control circuit
KR200360276Y1 (en) Electronic Ballast
JP3011992B2 (en) Discharge lamp lighting device
JP4556459B2 (en) Discharge lamp lighting device and lighting fixture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees