JP4610989B2 - High frequency vibration horn and manufacturing method thereof - Google Patents

High frequency vibration horn and manufacturing method thereof Download PDF

Info

Publication number
JP4610989B2
JP4610989B2 JP2004292689A JP2004292689A JP4610989B2 JP 4610989 B2 JP4610989 B2 JP 4610989B2 JP 2004292689 A JP2004292689 A JP 2004292689A JP 2004292689 A JP2004292689 A JP 2004292689A JP 4610989 B2 JP4610989 B2 JP 4610989B2
Authority
JP
Japan
Prior art keywords
horn
frequency vibration
tip
hardness
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004292689A
Other languages
Japanese (ja)
Other versions
JP2006102635A (en
Inventor
孝 大河原
英明 丸木
純典 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2004292689A priority Critical patent/JP4610989B2/en
Publication of JP2006102635A publication Critical patent/JP2006102635A/en
Application granted granted Critical
Publication of JP4610989B2 publication Critical patent/JP4610989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

本発明は、高周波振動発生装置に連結されて液体中で高周波振動を行ない、その先端側にてキャビテーション泡を発生させてショットピーニング等を行う金属製の高周波振動用ホーンおよびその製造方法に関する。   The present invention relates to a high frequency vibration horn made of metal that is connected to a high frequency vibration generator and performs high frequency vibration in a liquid and generates cavitation bubbles on the tip side thereof to perform shot peening and the like, and a method of manufacturing the same.

従来、ショットピーニング等の技術に関し、鋼球等を被処理物に噴射することが一般的に行われていた。これに対し、近年ではジェット流体噴射によるキャビテーション技術を利用するショットピーニング等も提案されている。   Conventionally, with respect to techniques such as shot peening, it has been generally performed to inject a steel ball or the like onto a workpiece. On the other hand, in recent years, shot peening using a cavitation technique by jet fluid injection has been proposed.

近年、本願出願人においては、高周波振動発生装置に連結されて液体中で高周波振動、例えば超音波振動を行ない、その先端側にてキャビテーション泡を発生させてショットピーニングを行う技術を提案した(例えば、特許文献1参照)。ここでは、金属製の高周波振動用ホーン、すなわち超音波振動子のホーンを適用している。   In recent years, the applicant of the present application has proposed a technique for performing shot peening by performing high-frequency vibration, for example, ultrasonic vibration in a liquid connected to a high-frequency vibration generator and generating cavitation bubbles on the tip side thereof (for example, , See Patent Document 1). Here, a metal high-frequency vibration horn, that is, a horn of an ultrasonic transducer is applied.

ところで、このホーンは例えばチタン合金等の金属によって構成しているが、このホーンの先端を液体中で振動させると、ホーンの先端部にてキャビテーション泡が発生し、このキャビテーション泡によってホーン先端部分が壊食され易い。   By the way, this horn is made of, for example, a metal such as a titanium alloy. However, when the tip of the horn is vibrated in a liquid, cavitation bubbles are generated at the tip of the horn, and the tip of the horn is caused by the cavitation bubbles. Easily eroded.

この対策として、ホーンの先端部にセラミックス部品などをねじ込む方式が適用されているが、ホーンのストロークが数十μm〜100μmなどになると、セラミックス部分がホーンの伸びに追随できないために破損する問題が生じる。   As a countermeasure, a method of screwing ceramic parts or the like into the tip of the horn is applied. However, if the stroke of the horn becomes several tens to 100 μm, the ceramic portion cannot follow the extension of the horn, and thus it is damaged. Arise.

一方、摺動材、ボルト、ナット等の締結材、耐食容器、メガネフレーム、医用・歯科用材料等の分野では、チタン合金にプラズマ処理を施して耐摩耗性等を改善する技術が提案されている(例えば、特許文献2,3,4等参照)。ただし、これらの技術では、部品の全体に浸炭処理を施している。
特開2003−220523号公報 特開平7−90542号公報 特開2001−152316号公報 特開2002−88463号公報
On the other hand, in the fields of sliding materials, fastening materials such as bolts and nuts, corrosion-resistant containers, eyeglass frames, and medical / dental materials, a technique for improving wear resistance by applying plasma treatment to titanium alloys has been proposed. (For example, see Patent Documents 2, 3, 4, etc.). However, in these techniques, the entire part is carburized.
JP 2003-220523 A JP-A-7-90542 JP 2001-152316 A JP 2002-88463 A

チタン合金等によって構成されたホーンの全体に浸炭処理を施すと、ホーン全体の硬度が高まり、弾性係数が変化し、ホーンの振動と伸びを阻害する。すなわち、ホーン全体のストロークが設定値以下に減少し、ストロークが小さくなる変化が生じる。そのため、所定のストロークの振動による効果が得られなくなる。   Carburizing the entire horn made of titanium alloy or the like increases the hardness of the entire horn, changes the elastic coefficient, and inhibits vibration and elongation of the horn. That is, the stroke of the entire horn is reduced to a set value or less, and the stroke becomes smaller. For this reason, the effect of vibration of a predetermined stroke cannot be obtained.

一方、ホーンの壊食は、ホーン先端部に発生するキャビテーションによって生じるので、先端部のみ硬化することが望ましい。   On the other hand, since erosion of the horn is caused by cavitation generated at the tip of the horn, it is desirable that only the tip is cured.

本発明は、このような事情に鑑みてなされたものであり、ホーンに生じる繰返しの伸縮に対して表面の硬化層が剥離しにくく、ホーンの伸縮による振動ストロークが減少することを抑制でき、振動が阻害されないようにした高周波振動用ホーンおよびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and the hardened layer on the surface is difficult to peel off due to repeated expansion and contraction that occurs in the horn, and it is possible to suppress a decrease in vibration stroke due to expansion and contraction of the horn. An object of the present invention is to provide a high-frequency vibration horn and a method for manufacturing the same.

前記の目的を達成するために、請求項1に係る発明では、高周波振動発生装置に連結されて液体中で高周波振動を行ない、その先端側にてキャビテーション泡を発生させる母材となる金属製の高周波振動用ホーンであって、前記母材となるその先端側の外周面および端面に浸炭処理による皮膜を形成し、この浸炭処理による先端部分の皮膜は、硬度が外面側から内面側に向って次第に低く変化し、前記ホーンの母材との間に硬度の境界面が生じない傾斜構造とされ、かつ前記皮膜の硬度は、Hv600以上、850以下であることを特徴とする高周波振動用ホーンを提供する。 In order to achieve the above object, the invention according to claim 1 is made of a metal which is connected to a high-frequency vibration generator and performs high-frequency vibration in a liquid, and serves as a base material for generating cavitation bubbles on the tip side thereof. A horn for high-frequency vibration, in which a coating by carburizing treatment is formed on the outer peripheral surface and end surface of the tip side which is the base material, and the coating of the tip portion by this carburizing treatment has a hardness from the outer surface side toward the inner surface side A high-frequency vibration horn characterized by having an inclined structure that gradually changes to a low level and does not generate a hardness boundary surface with the base material of the horn, and the hardness of the coating is Hv 600 or more and 850 or less. provide.

皮膜の硬度がHv600未満では、キャビテーション作用による壊食量が多くなり、また850を超えると浸炭処理表面に高周波振動によって微細なクラックが生じ易い。 If the hardness of the film is less than Hv600, the amount of erosion due to the cavitation increases, and if it exceeds 850, fine cracks are likely to occur on the carburized surface due to high-frequency vibration.

請求項に係る発明では、前記ホーンのストロークが10μm以上、150μm以下である高周波振動用ホーンを提供する。 In the invention which concerns on Claim 2 , the stroke of the said horn provides the horn for high frequency vibrations which are 10 micrometers or more and 150 micrometers or less.

請求項に係る発明では、請求項1記載の高周波振動用ホーンを製造する方法であって、前記ホーンの先端部の表面を低温プラズマ法により浸炭処理することを特徴とする高周波振動用ホーンの製造方法を提供する。 According to a third aspect of the present invention, there is provided a method for producing the high-frequency vibration horn according to the first aspect, wherein the front end portion of the horn is carburized by a low temperature plasma method. A manufacturing method is provided.

請求項に係る発明では、前記ホーンの先端側を除く部分にマスキングを施し、前記ホーンの先端側にのみ低温プラズマ処理によって浸炭処理を施す高周波振動用ホーンの製造方法を提供する。 According to a fourth aspect of the present invention, there is provided a method for manufacturing a high-frequency vibration horn in which masking is performed on a portion other than the tip side of the horn, and carburizing treatment is performed only on the tip side of the horn by low-temperature plasma treatment.

本発明によれば、ホーン先端部に発生するキャビテーションによって生じる壊食が確実に防止できるようになる。また、表面から内部へ連続的に硬度を変化させることにより、母材との境界面が生じないため、繰返しの伸縮に対して表面の硬化層が剥離しにくくなる。さらに、表面硬化によってホーン表面の弾性係数が変化するがホーン先端部を部分的に硬化することにより、ホーンの伸縮が阻害されない。すなわち、振動が減少することを抑制でき、ホーンの所定のストローク振動による効果を維持することができるようになる。   According to the present invention, it is possible to reliably prevent erosion caused by cavitation generated at the horn tip. Moreover, since the boundary surface with the base material does not occur by continuously changing the hardness from the surface to the inside, the hardened layer on the surface is difficult to peel off due to repeated expansion and contraction. Furthermore, although the elastic coefficient of the horn surface changes due to surface hardening, the horn expansion and contraction is not inhibited by partially hardening the horn tip. That is, it is possible to suppress a decrease in vibration, and it is possible to maintain an effect due to a predetermined stroke vibration of the horn.

以下、本発明に係る高周波振動用ホーンおよびその製造方法の実施形態について、図面を参照して説明する。図1は、ショットピーニング等に適用される高周波振動装置を示す説明図であり、図2は高周波振動用ホーンの製造方法を示す説明図である。図3は、作用効果を示すグラフである。   Embodiments of a high-frequency vibration horn and a method for manufacturing the same according to the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a high-frequency vibration device applied to shot peening and the like, and FIG. 2 is an explanatory view showing a method for manufacturing a high-frequency vibration horn. FIG. 3 is a graph showing the effects.

図1に示すように、本実施形態の高周波振動装置は、高周波電源1からの通電によって高周波振動を発生させる高周波振動発生装置2と、この高周波振動発生装置2の圧電セラミックス製振動子3に連結されて高周波振動をする細長なホーン4と、これらを支持してホーン4の先端面が被改質材5の表面に平行となる対向位置に配置させる支持装置6と、ホーン4と被改質材5の表面との間に液体7を介在させる容器等からなる液体保持装置8とを備えて構成されている。これにより、ホーン4と被改質材5の表面とは、液体7に浸漬された状態となる。   As shown in FIG. 1, the high-frequency vibration device of this embodiment is connected to a high-frequency vibration generator 2 that generates high-frequency vibration by energization from a high-frequency power source 1 and a piezoelectric ceramic vibrator 3 of the high-frequency vibration generator 2. The elongated horn 4 that vibrates at a high frequency, the support device 6 that supports the horn 4 and places the front end surface of the horn 4 parallel to the surface of the material 5 to be reformed, and the horn 4 and the material to be reformed A liquid holding device 8 including a container or the like in which the liquid 7 is interposed between the surface of the material 5 is provided. As a result, the horn 4 and the surface of the material to be modified 5 are immersed in the liquid 7.

高周波振動発生装置2の振動子3は、超磁歪材料または圧電型セラミックッス材料を用いて構成され、この振動子3は高周波電源1から高周波電流を供給され、例えば超音波領域の高周波振動をする。高周波振動発生装置2のホーン4は被改質材5の表面(上面)に対峙した状態で配置される。   The vibrator 3 of the high-frequency vibration generator 2 is configured using a giant magnetostrictive material or a piezoelectric ceramic material, and the vibrator 3 is supplied with a high-frequency current from the high-frequency power source 1 and, for example, performs high-frequency vibration in the ultrasonic region. The horn 4 of the high-frequency vibration generator 2 is arranged facing the surface (upper surface) of the material 5 to be modified.

ホーン4の先端部である下面と被改質材5の表面と平行との間に例えば10mm以下、望ましくは0.1〜数mm(例えば6mm)の間隔(ギャップ)δが設定されている。この状態で、ホーン4は上下方向(矢印a方向)に往復振動をする。また、ホーン4のストロークは、10μm以上150μm以下とされている。   An interval (gap) δ of, for example, 10 mm or less, preferably 0.1 to several mm (for example, 6 mm) is set between the lower surface, which is the tip of the horn 4, and the surface of the material 5 to be modified. In this state, the horn 4 reciprocates in the vertical direction (arrow a direction). The stroke of the horn 4 is set to 10 μm or more and 150 μm or less.

そして、ホーン4が高周波の往復振動を行うと、被改質材5の表面とホーン4の表面との間隙に介在している液体7に微細なキャビテーション気泡9が連続的に発生する一方、ホーン4の高周波往復振動によってその気泡9が次々に潰されるため、この気泡9は発生と崩壊とを連続的に繰り返す。   When the horn 4 performs high-frequency reciprocal vibration, fine cavitation bubbles 9 are continuously generated in the liquid 7 interposed in the gap between the surface of the material 5 to be modified and the surface of the horn 4. Since the bubbles 9 are crushed one after another by the high-frequency reciprocating vibration 4, the bubbles 9 are continuously generated and collapsed.

このホーン4の表面が液体の飽和蒸気圧以下となり、キャビテーション気泡9が生成される。ホーン4の表面に対向する被改質材5の表面も同様に液体の飽和蒸気圧以下となり、キャビテーション気泡9が生成される。   The surface of the horn 4 becomes below the saturated vapor pressure of the liquid, and cavitation bubbles 9 are generated. Similarly, the surface of the material to be reformed 5 facing the surface of the horn 4 becomes equal to or lower than the saturated vapor pressure of the liquid, and cavitation bubbles 9 are generated.

次に、ホーン4が瞬間的に下方に移動すると、キャビテーション気泡9が押し潰される。キャビテーション気泡9が押し潰される際には、数百メガパスカルの超高圧が瞬間的に発生し、衝撃波となって周囲に伝搬する。この衝撃波は、ホーン4の先端部4aの端面と被改質材5の表面とに達し、各々に表面に対して大きな衝撃カを作用させ、相対する互いの面を高衝撃波にて打撃することになり、被改質材5の表面に高密度でキャビテーションによる衝撃力を形成させることができる。   Next, when the horn 4 instantaneously moves downward, the cavitation bubble 9 is crushed. When the cavitation bubble 9 is crushed, an ultrahigh pressure of several hundred megapascals is instantaneously generated and propagates around as a shock wave. This shock wave reaches the end face of the front end 4a of the horn 4 and the surface of the material 5 to be reformed, and a large shock force is applied to each of the surfaces, and the opposing surfaces are struck with a high shock wave. Thus, the impact force by cavitation can be formed on the surface of the material 5 to be reformed at high density.

このような構成において、ホーン4の先端部4aには高衝撃力が作用し、上述したように、壊食のおそれが生じる。これに対し、本実施形態では、高周波振動発生装置2に連結されて液体7中で高周波振動を行ない、その先端4a側にてキャビテーション泡9を発生させる部分の先端側の外周面4bおよび端面4cに浸炭処理による皮膜10が形成されている。   In such a configuration, a high impact force acts on the tip portion 4a of the horn 4, and there is a risk of erosion as described above. On the other hand, in the present embodiment, the outer peripheral surface 4b and the end surface 4c on the tip side of the portion that is connected to the high-frequency vibration generator 2 and performs high-frequency vibration in the liquid 7 and generates the cavitation bubbles 9 on the tip 4a side. A film 10 is formed by carburization.

このホーン4の浸炭処理による先端部分の皮膜10は、硬度が外面側から内面側に向って次第に低く変化し、ホーン4の母材との間に硬度の境界面が生じない傾斜構造とされている。そして、皮膜10の硬度は、例えばHv600以上850以下とされている。   The coating 10 on the tip portion of the horn 4 by carburizing treatment has an inclined structure in which the hardness gradually decreases from the outer surface side toward the inner surface side, and no boundary surface of hardness is generated between the base material of the horn 4. Yes. And the hardness of the film | membrane 10 shall be Hv600 or more and 850 or less, for example.

このような構成によると、ホーン4の先端側の周面4bおよび端面4cに浸炭処理による皮膜10が形成されているため、この部分に発生するキャビテーションによって生じる壊食を防止することができる。また、皮膜10は、その表面から内部へ連続的に硬度を変化させることにより、ホーン4の母材との境界面が生じないため、繰返しの伸縮に対して表面の硬化層が剥離しにくい。   According to such a configuration, since the coating 10 is formed by carburization on the peripheral surface 4b and the end surface 4c on the tip side of the horn 4, erosion caused by cavitation occurring in this portion can be prevented. In addition, since the coating 10 is continuously changed in hardness from the surface to the inside thereof, a boundary surface with the base material of the horn 4 is not generated, and thus the hardened layer on the surface is difficult to peel off due to repeated expansion and contraction.

さらに、表面硬化によってホーン4表面の弾性係数が変化するがホーン4の先端部のみを部分的に硬化したことにより、ホーン4の伸縮が阻害されない。すなわち、振動が減少することを抑制できるようになる。   Furthermore, although the elastic coefficient of the surface of the horn 4 changes due to surface hardening, the expansion and contraction of the horn 4 is not hindered because only the tip of the horn 4 is partially cured. That is, it becomes possible to suppress a decrease in vibration.

次に、図2および図3によって高周波振動用ホーンの製造方法およびその作用について説明する。   Next, a method for manufacturing a high-frequency vibration horn and its operation will be described with reference to FIGS.

図2に示すように、本実施形態の方法では、真空炉11内に例えば上下にて対向する1対の電極12,13が設けられ、これらの電極12,13がプラズマ電源装置14に接続されている。   As shown in FIG. 2, in the method of the present embodiment, a pair of electrodes 12 and 13 that are opposed to each other, for example, are provided in the vacuum furnace 11, and these electrodes 12 and 13 are connected to the plasma power supply device 14. ing.

真空炉11には真空ポンプ15およびガス供給装置16が接続されており、真空炉11内の真空度調整および反応ガス(例えばCH、CH2、Ar等)の供給等が行われるようになっている。 A vacuum pump 15 and a gas supply device 16 are connected to the vacuum furnace 11 to adjust the degree of vacuum in the vacuum furnace 11 and supply reactive gases (for example, CH 4 , C 3 H 8 , H 2 , Ar, etc.). It has come to be.

真空炉内では、下部電極13上にホーン4が図1と上下逆の配置で垂直に設置され、上向きのホーン4の先端部4aが、上部電極12に所定距離をあけて対向している。   In the vacuum furnace, the horn 4 is installed vertically on the lower electrode 13 in an upside down arrangement with respect to FIG. 1, and the tip 4 a of the upward horn 4 faces the upper electrode 12 with a predetermined distance.

施工時においては、ホーン4の先端部4a側を除く部分が、マスキング用導電性ケース17によってマスキングされる。そして、真空炉11内が反応ガス雰囲気とされ、プラズマ電源装置14から電極12,13に高圧電流が供給される。   At the time of construction, the portion of the horn 4 excluding the front end 4a side is masked by the masking conductive case 17. Then, the inside of the vacuum furnace 11 is made a reactive gas atmosphere, and a high-voltage current is supplied from the plasma power supply device 14 to the electrodes 12 and 13.

これにより、ホーン4の先端部4aの表面に対し、プラズマ18が発生し、マスキングされていないホーン4の先端部4a側にのみ低温プラズマ処理による浸炭処理が施される。すなわち、低温プラズマ法の浸炭処理が行われる。   As a result, plasma 18 is generated on the surface of the tip portion 4a of the horn 4, and carburizing treatment by low temperature plasma treatment is performed only on the tip portion 4a side of the horn 4 that is not masked. That is, the carburizing process of the low temperature plasma method is performed.

この結果、上述したように、ホーン4の先端部4a側の外周面4bおよび端面4cに浸炭処理による皮膜10が形成される。   As a result, as described above, the coating 10 is formed by carburization on the outer peripheral surface 4b and the end surface 4c of the horn 4 on the front end 4a side.

このホーン4の浸炭処理による先端部分の皮膜10は、硬度が外面側から内面側に向って次第に低く変化し、ホーン4の母材との間に硬度の境界面が生じない傾斜構造とされている。   The coating 10 on the tip portion of the horn 4 by carburizing treatment has an inclined structure in which the hardness gradually decreases from the outer surface side toward the inner surface side, and no boundary surface of hardness is generated between the base material of the horn 4. Yes.

図3は、実施例として、チタン合金製ホーン(Ti−6Al−4V)に上記の低温プラズマ法による浸炭処理を施した場合の試験結果を示している。この図3の縦軸にビッカース硬度(Hvq0.245N)を表し、横軸に表面からの深さ(μm)を示している。   FIG. 3 shows a test result when the carburizing treatment by the low temperature plasma method is applied to a titanium alloy horn (Ti-6Al-4V) as an example. The vertical axis of FIG. 3 represents Vickers hardness (Hvq0.245N), and the horizontal axis represents the depth (μm) from the surface.

試料aは、浸炭処理温度が850℃、処理時間が1時間の場合である。試料bは、薪炭処理温度が750℃、処理時間が2時間の場合である。試料cは、薪炭処理が温度810℃、処理時間が2時間の場合である。試料dは、薪炭処理が温度690℃、処理時間が3時間の場合である。 Sample a is a case where the carburizing temperature is 850 ° C. and the processing time is 1 hour. Sample b is a case where the charcoal treatment temperature is 750 ° C. and the treatment time is 2 hours. Sample c is when the charcoal treatment is at a temperature of 810 ° C. and the treatment time is 2 hours. Sample d is a case where the charcoal treatment temperature is 690 ° C. and the treatment time is 3 hours.

また、皮膜の硬度がHv600未満では、キャビテーション作用による壊食量が多くなり、また850を超えると浸炭処理表面に高周波振動によって微細なクラックが生じ易いことが認められた。 Moreover, when the hardness of the film is less than Hv600, the amount of erosion due to the cavitation increases, and when it exceeds 850, it is recognized that fine cracks are likely to occur on the carburized surface due to high-frequency vibration.

図3に示すように、各試料とも、ホーン4の表面からの深さが50μm以上の内部では通常のチタン合金同様に、硬度が300Hv程度であるが、表面硬度は600以上、850Hv程度(平均的に700Hv)であり、表面硬度が極めて高くなっていることが確認された。   As shown in FIG. 3, each sample has a hardness of about 300 Hv in the interior of the horn 4 having a depth from the surface of 50 μm or more, like a normal titanium alloy, but the surface hardness is about 600 or more and about 850 Hv (average) It was confirmed that the surface hardness was extremely high.

また、ホーン4の浸炭処理による先端部分の皮膜10は、硬度が外面側から内面側に向って次第に低く変化し、ホーン4の母材との間に硬度の境界面が生じない傾斜構造となっていることが確認された。   Further, the coating 10 on the tip portion of the horn 4 by carburizing treatment has an inclined structure in which the hardness gradually decreases from the outer surface side to the inner surface side, and no boundary surface of hardness is generated between the base material of the horn 4. It was confirmed that

以上の結果、本実施形態によれば、ホーン4先端部に発生するキャビテーションによって生じる壊食を確実に防止することができる。また、表面から内部へ連続的に硬度を変化させることにより、母材との境界面が生じないため、繰返しの伸縮に対して表面の硬化層が剥離しにくいものが実現できる。   As a result, according to the present embodiment, erosion caused by cavitation occurring at the tip of the horn 4 can be reliably prevented. Moreover, since the boundary surface with the base material does not occur by continuously changing the hardness from the surface to the inside, it is possible to realize a material in which the cured layer on the surface is difficult to peel off due to repeated expansion and contraction.

さらに、表面硬化によってホーン4表面の弾性係数が変化するが、本実施形態によれば、ホーン4の先端部4aを部分的に硬化することにより、ホーンの伸縮が阻害されないため、ホーン4の振動が減少することを抑制でき、ホーン4全体の硬度を高める場合と異なり、ホーン4の振動と伸びを阻害することがない。すなわち、ホーン全体のストロークは設定値以下に減少することがなく、ストロークが小さくなる変化が生じない。したがって、ホーン4の所定のストローク振動による効果を維持することができる。   Furthermore, although the elastic coefficient of the surface of the horn 4 changes due to the surface hardening, according to the present embodiment, the distal end portion 4a of the horn 4 is partially hardened so that the expansion and contraction of the horn is not hindered. Can be suppressed, and unlike the case where the hardness of the entire horn 4 is increased, the vibration and elongation of the horn 4 are not hindered. That is, the stroke of the entire horn does not decrease below the set value, and the stroke does not change. Therefore, the effect by the predetermined stroke vibration of the horn 4 can be maintained.

本発明の実施形態によるショットピーニング等に適用される高周波振動装置を示す説明図。Explanatory drawing which shows the high frequency vibration apparatus applied to shot peening etc. by embodiment of this invention. 本発明の実施形態による高周波振動用ホーンの製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of the horn for high frequency vibration by embodiment of this invention. 本発明の実施形態による作用効果を示すグラフ。The graph which shows the effect by embodiment of this invention.

符号の説明Explanation of symbols

1 高周波電源
2 高周波振動発生装置
3 振動子
4 ホーン
4a ホーンの先端部
4b 外周面
4c 端面
5 被改質材
6 支持装置
7 液体
8 液体保持装置
9 キャビテーション気泡
10 皮膜
11 真空炉
12 電極
13 電極
14 プラズマ電源装置
15 真空ポンプ
16 ガス供給装置
17 マスキング用導電性ケース
18 プラズマ
DESCRIPTION OF SYMBOLS 1 High frequency power supply 2 High frequency vibration generator 3 Vibrator 4 Horn 4a Horn tip part 4b Outer peripheral surface 4c End surface 5 Reformable material 6 Support device 7 Liquid 8 Liquid holding device 9 Cavitation bubble 10 Film 11 Vacuum furnace 12 Electrode 13 Electrode 14 Plasma power supply device 15 Vacuum pump 16 Gas supply device 17 Conductive case 18 for masking Plasma

Claims (4)

高周波振動発生装置に連結されて液体中で高周波振動を行ない、その先端側にてキャビテーション泡を発生させる母材となる金属製の高周波振動用ホーンであって、前記母材となるその先端側の外周面および端面に浸炭処理による皮膜を形成し、この浸炭処理による先端部分の皮膜は、硬度が外面側から内面側に向って次第に低く変化し、前記ホーンの母材との間に硬度の境界面が生じない傾斜構造とされ、かつ前記皮膜の硬度は、Hv600以上、850以下であることを特徴とする高周波振動用ホーン。 Is connected to the high frequency vibration generating device subjected to high-frequency vibrations in the liquid, a metal of a high-frequency vibration horn serving as a base material for generating cavitation bubbles at its tip side, the tip end side to be the base material A film formed by carburizing treatment is formed on the outer peripheral surface and the end surface, and the film of the tip portion by this carburizing treatment changes in hardness gradually from the outer surface side toward the inner surface side. A high-frequency vibration horn characterized by having an inclined structure that does not generate a surface and having a hardness of Hv600 or more and 850 or less . 前記ホーンのストロークは、10μm以上、150μm以下である請求項1記載の高周波振動用ホーン。 The horn for high-frequency vibration according to claim 1, wherein a stroke of the horn is 10 µm or more and 150 µm or less. 請求項1記載の高周波振動用ホーンを製造する方法であって、前記ホーンの先端部の表面を低温プラズマ法により浸炭処理することを特徴とする高周波振動用ホーンの製造方法。 2. A method of manufacturing a high frequency vibration horn according to claim 1, wherein the surface of the tip of the horn is carburized by a low temperature plasma method. 前記ホーンの先端側を除く部分にマスキングを施し、前記ホーンの先端側にのみ低温プラズマ処理によって浸炭処理を施す請求項3記載の高周波振動用ホーンの製造方法。 The method for manufacturing a horn for high-frequency vibration according to claim 3, wherein masking is performed on a portion excluding the tip side of the horn, and carburizing treatment is performed only on the tip side of the horn by low-temperature plasma treatment.
JP2004292689A 2004-10-05 2004-10-05 High frequency vibration horn and manufacturing method thereof Active JP4610989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292689A JP4610989B2 (en) 2004-10-05 2004-10-05 High frequency vibration horn and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292689A JP4610989B2 (en) 2004-10-05 2004-10-05 High frequency vibration horn and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006102635A JP2006102635A (en) 2006-04-20
JP4610989B2 true JP4610989B2 (en) 2011-01-12

Family

ID=36372934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292689A Active JP4610989B2 (en) 2004-10-05 2004-10-05 High frequency vibration horn and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4610989B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690890B1 (en) * 2015-12-04 2016-12-28 단국대학교 산학협력단 Ultrasonic internal surface peening treatment apparatus
KR101778707B1 (en) * 2017-01-12 2017-09-14 단국대학교 산학협력단 Apparatus for controling peening position in ultrasonic internal surface peenigin system
KR101869022B1 (en) * 2017-09-08 2018-06-19 단국대학교 산학협력단 Apparatus for controling peening position in ultrasonic internal surface peenigin system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015178A (en) * 1998-07-03 2000-01-18 Ngk Spark Plug Co Ltd Ultrasonic horn
JP2001335932A (en) * 2000-05-24 2001-12-07 Natl Inst Of Advanced Industrial Science & Technology Meti Method for controlling solid surface treatment by low temperature plasma
JP2003148294A (en) * 2001-11-12 2003-05-21 Hitachi Ltd Fuel pump and cylinder injection engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015178A (en) * 1998-07-03 2000-01-18 Ngk Spark Plug Co Ltd Ultrasonic horn
JP2001335932A (en) * 2000-05-24 2001-12-07 Natl Inst Of Advanced Industrial Science & Technology Meti Method for controlling solid surface treatment by low temperature plasma
JP2003148294A (en) * 2001-11-12 2003-05-21 Hitachi Ltd Fuel pump and cylinder injection engine

Also Published As

Publication number Publication date
JP2006102635A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
KR101411773B1 (en) Method for modifying or producing materials and joints with specific properties by generating and applying adaptive impulses, a normalizing energy thereof and pauses therebetween
Abdullah et al. Strength enhancement of the welded structures by ultrasonic peening
JP4951292B2 (en) Metal parts treated by compressing sublayers and methods for obtaining such parts
Soyama et al. The use of various peening methods to improve the fatigue strength of titanium alloy Ti6Al4V manufactured by electron beam melting.
Bozdana et al. Deep cold rolling with ultrasonic vibrations—a new mechanical surface enhancement technique
KR100939799B1 (en) Method for Producing Wear-Resistant and Fatigue-Resistant Edge Layers from Titanium Alloys, and Correspondingly Produced Components
JP2005002475A5 (en)
US8627695B2 (en) Method for ultrasound shot-blasting of turbomachine parts
Bozdana et al. Comparative experimental study on effects of conventional and ultrasonic deep cold rolling processes on Ti–6Al–4V
JP4610989B2 (en) High frequency vibration horn and manufacturing method thereof
Fereidooni et al. Influence of severe plastic deformation on fatigue life applied by ultrasonic peening in welded pipe 316 Stainless Steel joints in corrosive environment
CN114686676B (en) Method for real-time coupling strengthening of electric pulse and laser shock wave
US20150306736A1 (en) Surface treatment of a metal part by oblique shot peening
RU2394919C1 (en) Procedure for ultrasonic treatment of welded metal structures
JP2006082162A5 (en)
JPWO2012032630A1 (en) gear
Ye et al. Improvement of microstructure and surface behaviors of welded S50C steel components under electropulsing assisted ultrasonic surface modification
JP2003220523A (en) Surface modifying method and device
JP2018031334A (en) Laminate structure and machine component including laminate structure
RU2447162C2 (en) Method of ultrasonic processing of welded metal structures
Yongzhen et al. Effect of Ultrasonic Impact on Corrosion Fatigue Properties of Titanium Alloy Welded Joints
JP2009078305A (en) Surface-treatment equipment and method
RU2743500C1 (en) Method for strengthening the surface layer of the compressor blades of gas turbine engines
Manouchehrifar et al. Finite element simulation of deep rolling and evaluate the influence of parameters on residual stress
JP2006082163A (en) Dimple forming method and dimple forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250