JP4609988B2 - Method for producing zinc oxide phosphor - Google Patents

Method for producing zinc oxide phosphor Download PDF

Info

Publication number
JP4609988B2
JP4609988B2 JP2004267714A JP2004267714A JP4609988B2 JP 4609988 B2 JP4609988 B2 JP 4609988B2 JP 2004267714 A JP2004267714 A JP 2004267714A JP 2004267714 A JP2004267714 A JP 2004267714A JP 4609988 B2 JP4609988 B2 JP 4609988B2
Authority
JP
Japan
Prior art keywords
zinc oxide
powder
phosphor
oxide phosphor
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004267714A
Other languages
Japanese (ja)
Other versions
JP2006083246A (en
Inventor
秀俊 齋藤
信義 南部
淳 中村
伊藤  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chelest Corp
Chubu Chelest Co Ltd
Nagaoka University of Technology
Original Assignee
Chelest Corp
Chubu Chelest Co Ltd
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chelest Corp, Chubu Chelest Co Ltd, Nagaoka University of Technology filed Critical Chelest Corp
Priority to JP2004267714A priority Critical patent/JP4609988B2/en
Publication of JP2006083246A publication Critical patent/JP2006083246A/en
Application granted granted Critical
Publication of JP4609988B2 publication Critical patent/JP4609988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電子線励起により紫色または緑色領域の蛍光を発する酸化亜鉛蛍光体の製造方法に関し、より詳細には、出発原料としてZnキレート錯体を用いることにより、粒径のほぼ揃った球状微粒子状に形態制御され、また該出発原料の焼成温度を制御することによって、電子線励起により紫外線発光もしくは緑色発光を発する酸化亜鉛蛍光体の新規な製造方法に関するものである。   The present invention relates to a method for producing a zinc oxide phosphor that emits fluorescence in the purple or green region by electron beam excitation, and more specifically, by using a Zn chelate complex as a starting material, spherical fine particles having almost uniform particle sizes. In addition, the present invention relates to a novel method for producing a zinc oxide phosphor that emits ultraviolet light or green light by electron beam excitation by controlling the firing temperature of the starting material.

酸化亜鉛蛍光体は導電性を有し、低加速電圧でも効率的に緑色蛍光を発するという特徴を有していることから、主に蛍光表示管などの如き低電圧駆動タイプの緑色蛍光体として広く利用されている。この蛍光体は、ZnOの酸素欠損によって生じたZnが発光中心を形成するいわゆる自己賦活型であることが知られており、ZnO:Znと記述される。ZnOの発光特性は、結晶内に存在する不純物準位の制御や、セラミックス中に存在する粒界界面準位の状態と強く関係しており、例えば上記ZnO:Znの緑色発光は、バンドギャップ内に存在する酸素欠損などの不純物準位に起因するものである。   Zinc oxide phosphor has conductivity and emits green fluorescence efficiently even at a low acceleration voltage. Therefore, it is widely used as a low-voltage driven type green phosphor such as a fluorescent display tube. It's being used. This phosphor is known to be a so-called self-activated type in which Zn generated by oxygen deficiency of ZnO forms a light emission center, and is described as ZnO: Zn. The emission characteristics of ZnO are strongly related to the control of impurity levels existing in the crystal and the state of grain boundary interface levels existing in ceramics. For example, the green emission of ZnO: Zn is within the band gap. This is due to impurity levels such as oxygen vacancies existing in the substrate.

一方、格子欠陥をなくして酸化亜鉛の結晶性を高めていくと、バンドギャップが3.3eVのバンド端発光(エキシトン発光)の効率が上がり、結果として385nmにピークを有する紫外線発光が得られる。この紫外線発光を有する酸化亜鉛は、近年盛んに行われている紫外線発光の高効率化を実現するための材料の一つとして有望視されている。   On the other hand, when the crystallinity of zinc oxide is improved by eliminating lattice defects, the efficiency of band edge emission (exciton emission) having a band gap of 3.3 eV is increased, and as a result, ultraviolet emission having a peak at 385 nm is obtained. This zinc oxide having ultraviolet light emission is considered promising as one of the materials for realizing high efficiency of ultraviolet light emission, which has been actively performed in recent years.

緑色蛍光を発するZnO:Znは、一般的にはZnCO3やZnOに少量のZnSを加えて粉砕・混合した後、窒素ガス/水素ガスの混合雰囲気中で還元焼成することにより得ているが、粉砕・混合工程では、固相同士を均一に混合できるようボールミル等で十分に混合しなければならない。また、焼成物は塊状で得られるため、蛍光体粉末とするには該焼成物を粉砕し、更に水洗処理しなければならず、工程が非常に煩雑となる。 ZnO: Zn that emits green fluorescence is generally obtained by adding a small amount of ZnS to ZnCO 3 or ZnO, crushing and mixing, and then reducing and firing in a mixed atmosphere of nitrogen gas / hydrogen gas. In the pulverization / mixing step, the solid phases must be sufficiently mixed by a ball mill or the like so that the solid phases can be mixed uniformly. In addition, since the fired product is obtained in the form of a lump, in order to obtain a phosphor powder, the fired product must be pulverized and further washed with water, which makes the process very complicated.

また紫外線発光を有する酸化亜鉛は、前述の如く酸化亜鉛の結晶性を高めることにより得られる。例えば、酸化亜鉛を酸素雰囲気中でアニール処理することによって得られることが知られており(特許文献1など)、また、酸化亜鉛結晶内の欠陥に基づく電気的に活性な電子は、水素プラズマ処理により不活性化する所謂パッシベート処理によって紫外線発光強度が増大することも知られている(非特許文献1)。   In addition, zinc oxide having ultraviolet emission can be obtained by increasing the crystallinity of zinc oxide as described above. For example, it is known that zinc oxide can be obtained by annealing in an oxygen atmosphere (Patent Document 1, etc.), and electrically active electrons based on defects in the zinc oxide crystal are treated with hydrogen plasma treatment. It is also known that the ultraviolet light emission intensity is increased by so-called passivating treatment that is inactivated by (Non-Patent Document 1).

ところが、酸化亜鉛が前述の様に紫外線発光素子として有望視されている中で検討されているのは、専らPVDやCVDにより得られた高結晶性の酸化亜鉛薄膜であり、結晶内の欠陥が生じ易い粉体の形態ではあまり検討されていないのが現状である。   However, as described above, zinc oxide is considered to be promising as an ultraviolet light emitting element, and the high-crystallinity zinc oxide thin film obtained exclusively by PVD or CVD has been studied. At present, it has not been studied so much in the form of powder that tends to occur.

また、今後ディスプレイの高精度・高緻密化が進むにつれて、蛍光面への蛍光体の塗布は一段と精密かつ均一に行なわねばならなくなるので、こうした要望に対応するには、蛍光体自体の粉末状態での分散性を高めると共に、粒径を小さくする必要がある。この様な条件を満たすには、蛍光体粉末が略球状で且つ粒径のほぼ揃った微粒子であることが望まれる。しかし、現在実用化されている粉末状酸化亜鉛蛍光体の殆どは歪な塊状であり、こうした観点からの改質が求められる。
特開平8−127769号公報 Jpn. J. Appl. Phys. Vol. 36 (1997) 289-291
In addition, as the display becomes more accurate and denser in the future, it will be necessary to apply the phosphor to the phosphor screen more precisely and uniformly. To meet these demands, the phosphor itself must be in a powder state. It is necessary to increase the dispersibility and reduce the particle size. In order to satisfy such conditions, it is desired that the phosphor powder is a fine particle having a substantially spherical shape and a substantially uniform particle size. However, most of the powdered zinc oxide phosphors that are currently in practical use are distorted lump, and modification from such a viewpoint is required.
JP-A-8-127769 Jpn. J. Appl. Phys. Vol. 36 (1997) 289-291

本発明はこうした状況の下でなされたものであって、その目的は、上述した如くディスプレイの高精度・高緻密化などにも容易に対応できる様、略球形で粒子径の揃った微粒子状に形態制御された酸化亜鉛蛍光体を効率よく製造することのできる方法を提供することにある。   The present invention has been made under such circumstances, and its purpose is to form particles that are substantially spherical and have a uniform particle size so that the display can be easily adapted to high precision and high density as described above. The object is to provide a method capable of efficiently producing a form-controlled zinc oxide phosphor.

上記課題を達成することのできた本発明に係る酸化亜鉛蛍光体の製造方法とは、
(1)Znの有機金属キレート錯体からなる粉末を製造する工程、
(2)前記工程(1)で得た粉末を焼成して酸化亜鉛粉末を得る工程、
(3)前記工程(2)で得た酸化亜鉛粉末を還元する工程
を含むところに特徴を有している。
The method for producing a zinc oxide phosphor according to the present invention, which has achieved the above-mentioned problems,
(1) a step of producing a powder comprising an organometallic chelate complex of Zn;
(2) A step of firing the powder obtained in the step (1) to obtain a zinc oxide powder,
(3) It is characterized in that it includes a step of reducing the zinc oxide powder obtained in the step (2).

本発明によって得られる上記酸化亜鉛蛍光体は、粒径のほぼ揃った略球形の微粉末状であり、該蛍光体の中でも代表的なものは、電子線励起によって390nm付近に発光ピークを有する紫外線発光型酸化亜鉛蛍光体、あるいは、電子線励起によって500nm付近に発光ピークを有する緑色発光型酸化亜鉛蛍光体である。   The zinc oxide phosphor obtained by the present invention is in the form of a substantially spherical fine powder having a substantially uniform particle size, and a typical example of the phosphor is an ultraviolet ray having an emission peak near 390 nm by electron beam excitation. It is a light-emitting zinc oxide phosphor or a green light-emitting zinc oxide phosphor having an emission peak near 500 nm by electron beam excitation.

上記本発明の製造方法を実施するに当たっては、上記工程(1)で、Znおよび/またはZn化合物と有機キレート形成剤を反応させることによって得られるZnキレート錯体水溶液を噴霧乾燥して粉末とする方法を採用すれば、酸化亜鉛蛍光体の前駆体となるZnキレート錯体粉末を瞬時の乾燥でほぼ球形で粒径の揃った微粉末として効率よく得ることができ、延いてはその形態を継承することで、その後に焼成工程および還元工程を経て得られる酸化亜鉛蛍光体も、略球形で粒径のほぼ揃った微粉末状のものとして得ることができるので好ましい。但し、上記において略球形とは、個々の粉体が概ね球形を呈していることを意味するもので、完全な球形である必要はなく、楕円状や卵状、或いは一部が破壊された破砕片状のものであってもよく、その形状自体が発光特性に影響を及ぼすものではない。   In carrying out the above production method of the present invention, in the step (1), a Zn chelate complex aqueous solution obtained by reacting Zn and / or a Zn compound and an organic chelate forming agent is spray-dried to form a powder. , The Zn chelate complex powder, which is the precursor of the zinc oxide phosphor, can be efficiently obtained as a fine powder with a substantially spherical shape and uniform particle size by instantaneous drying. Thus, the zinc oxide phosphor obtained through the subsequent firing step and reduction step is also preferable because it can be obtained as a fine powder having a substantially spherical shape and a substantially uniform particle size. However, in the above description, “substantially spherical” means that each individual powder has a substantially spherical shape, and does not have to be a perfect spherical shape, but an oval shape, an oval shape, or a partially broken piece. It may be a piece, and the shape itself does not affect the light emission characteristics.

本発明で使用する前記有機キレート形成剤としては、アミノカルボン酸系キレート剤および/またはその塩が最適である。   As the organic chelate forming agent used in the present invention, an aminocarboxylic acid chelating agent and / or a salt thereof is optimal.

本発明によれば、電子線励起によって390nm付近に発光ピークを有する紫外線発光型、もしくは500nm付近に発光ピークを有する緑色発光特性を有し、しかも粒径のほぼ揃った略球形で微粉末状の酸化亜鉛蛍光体を効率よく製造できる。そして得られる酸化亜鉛蛍光体は、緑色蛍光体ZnO:Znについては、電界放射ディスプレイ(FED)や蛍光表示管(VFD)向け低電圧駆動型の緑色蛍光体として、また紫外線発光型については、紫外線発光素子、レーザー発光素子、蛍光体の励起源などとして極めて有効に活用できる。   According to the present invention, an ultraviolet light emitting type having an emission peak near 390 nm by electron beam excitation, or a green light emitting characteristic having an emission peak near 500 nm, and having a substantially spherical and fine powdery shape with substantially uniform particle diameters. A zinc oxide phosphor can be produced efficiently. The obtained zinc oxide phosphor is a green phosphor ZnO: Zn as a low voltage driving type green phosphor for a field emission display (FED) or a fluorescent display tube (VFD), and for an ultraviolet light emitting type, an ultraviolet ray. It can be used extremely effectively as a light emitting element, a laser light emitting element, an excitation source of a phosphor, and the like.

本発明では、酸化亜鉛蛍光体を製造する際に、原料としてZnキレート錯体粉末を使用するところに特徴を有している。ここで前駆体となる該Znキレート錯体粉末は、亜鉛原料(Znおよび/またはZn化合物)と有機キレート形成剤を反応させて澄明な有機Znキレート錯体水溶液を調製した後、この水溶液を例えば噴霧乾燥することによって容易に得ることができる。   The present invention is characterized in that Zn chelate complex powder is used as a raw material when producing a zinc oxide phosphor. The Zn chelate complex powder as a precursor here is prepared by reacting a zinc raw material (Zn and / or Zn compound) with an organic chelate forming agent to prepare a clear aqueous solution of an organic Zn chelate complex, and then spraying this aqueous solution, for example, by spray drying. Can be easily obtained.

上記有機キレート形成剤としては、乾燥工程で熱分解を起すことのないよう、好ましくは200℃程度の温度では熱分解しないアミノカルボン酸系キレート剤が好ましく使用される。有機Znキレート錯体水溶液の調製に当たっては、Znイオンが完全に錯塩を形成し得る様に、Znに対し当量以上のキレート剤を用いて澄明な水溶液とするのがよい。   As the organic chelate forming agent, an aminocarboxylic acid chelating agent which is preferably not thermally decomposed at a temperature of about 200 ° C. is preferably used so as not to cause thermal decomposition in the drying step. In preparing the organic Zn chelate complex aqueous solution, it is preferable to use a chelating agent equivalent to or more than Zn to form a clear aqueous solution so that the Zn ions can completely form a complex salt.

上記の様にZnキレート錯体の澄明な水溶液を使用し、好ましくは該澄明な水溶液を噴霧乾燥で瞬時に乾燥する方法を採用することによって得られる有機Znキレート錯体粉末は、アモルファス状であって分子レベルで均一な組成を有するものとなり、外観は略球形で粒子径の揃った微粉末として得られるからである。しかも後記実施例でも明らかにする様に、従来の酸化亜鉛蛍光体の製法に比べると少ない工程で製造できる。更には、該有機Znキレート錯体粉末の焼成条件を制御することにより、電子線励起による緑色発光型酸化亜鉛蛍光体と紫外線発光型酸化亜鉛蛍光体を容易に製造することができる。   The organic Zn chelate complex powder obtained by using a clear aqueous solution of a Zn chelate complex as described above, preferably by adopting a method of instantly drying the clear aqueous solution by spray drying is amorphous and has molecular This is because the composition has a uniform composition at the level, and the appearance is obtained as a fine powder having a substantially spherical shape and uniform particle diameter. Moreover, as will be clarified in the examples described later, it can be manufactured with fewer steps compared to the conventional method of manufacturing a zinc oxide phosphor. Furthermore, by controlling the firing conditions of the organic Zn chelate complex powder, it is possible to easily produce a green light emitting zinc oxide phosphor and an ultraviolet light emitting zinc oxide phosphor by electron beam excitation.

すなわち噴霧乾燥法によって得られる有機Znキレート錯体粉末は、その特徴である略球形を有しており粒度もほぼ揃っているため、これを焼成すると、焼成前の形状や粒径をほぼ保った状態の酸化亜鉛蛍光体粉末として得ることができる。しかも、噴霧乾燥時の粉体化条件を適正にコントロールし、且つ、前駆体であるZnキレート錯体からなる粉体の形状や粒径を調整すれば、得られる酸化亜鉛蛍光体粉体の形状や粒径、更には粒度分布を任意に調整することが可能となる。   That is, the organic Zn chelate complex powder obtained by the spray drying method has a substantially spherical shape, which is the characteristic, and the particle size is almost uniform. It can be obtained as a zinc oxide phosphor powder. Moreover, if the powdering conditions at the time of spray drying are appropriately controlled, and the shape and particle size of the powder comprising the Zn chelate complex as the precursor are adjusted, the shape of the obtained zinc oxide phosphor powder and It is possible to arbitrarily adjust the particle size and further the particle size distribution.

また、該有機Znキレート錯体粉末から作製した酸化亜鉛蛍光体は、上記の様に略球形で方向性を有していないので、例えば励起源に電子線を用いる様々の用途に適用できるが、特に紫外線発光素子、レーザー発光素子を始めとして、蛍光体の励起源などに高い適性を発揮する。もっとも本発明では、先にも述べた様に個々の粉体が略球形であるものに制限される訳ではなく、楕円状や卵状、或いはそれらの一部が破壊された破砕片状のものであってもよく、それらも本発明の技術的範囲に包含される。   In addition, since the zinc oxide phosphor prepared from the organic Zn chelate complex powder is substantially spherical and does not have directionality as described above, it can be applied to various applications using an electron beam as an excitation source. Exhibits high suitability for excitation sources of phosphors, including ultraviolet light emitting devices and laser light emitting devices. However, in the present invention, as described above, individual powders are not limited to those having a substantially spherical shape, but are oval, oval, or crushed pieces in which a part thereof is broken. They may be included in the technical scope of the present invention.

次に、酸化亜鉛蛍光体の製法についてより詳細に説明する。   Next, the manufacturing method of a zinc oxide fluorescent substance is demonstrated in detail.

(1)本発明の蛍光体を製造するに当たっては、まず第1の工程で有機Znキレート錯体からなる粉末を製造する。該粉末の製造は、例えば次の様にして行われる。まずZnおよび/またはZn化合物を有機キレート形成剤と反応させて、澄明な有機Znキレート錯体水溶液を調製する。この反応は、水性媒体中で、たとえば温度20℃〜沸点、好ましくは50〜70℃の範囲で行われる。好ましい水溶液濃度は、固形分換算で5質量%以上30質量%以下、より好ましくは10質量%以上20質量%以下であるが、勿論これらの温度域および濃度域に限定されるわけではない。   (1) In producing the phosphor of the present invention, first, a powder composed of an organic Zn chelate complex is produced in the first step. The powder is produced, for example, as follows. First, Zn and / or Zn compound is reacted with an organic chelate forming agent to prepare a clear organic Zn chelate complex aqueous solution. This reaction is carried out in an aqueous medium, for example, at a temperature of 20 ° C to boiling point, preferably 50 to 70 ° C. A preferable aqueous solution concentration is 5% by mass or more and 30% by mass or less, more preferably 10% by mass or more and 20% by mass or less in terms of solid content, but it is of course not limited to these temperature range and concentration range.

有機キレート形成剤の使用量は、全Znを完全溶解できるよう、Znイオンに対して当量以上とするのがよく、好ましくは1.0倍モル以上1.5倍モル以下である。尚、Znキレート錯体が完全に溶解しない場合は、アンモニアやアミン等を加えて完全溶解させるのがよい。   The amount of the organic chelate-forming agent used is preferably equal to or greater than that of Zn ions so that all Zn can be completely dissolved, and is preferably 1.0 to 1.5 times mol. If the Zn chelate complex is not completely dissolved, it is preferable to add ammonia, amine or the like and completely dissolve it.

Zn原料としては、金属亜鉛、炭酸塩、硝酸塩、水酸化物、酸化物などを使用できるが、本発明において特に好ましいのは、反応後に余分なイオン等が残らないという観点から金属亜鉛、炭酸塩、水酸化物、酸化物が好ましく、最も好ましいのは、反応性も良好である酸化物や炭酸塩である。   As the Zn raw material, metal zinc, carbonate, nitrate, hydroxide, oxide, and the like can be used, but particularly preferable in the present invention is metal zinc, carbonate from the viewpoint that no extra ions remain after the reaction. Hydroxides and oxides are preferable, and oxides and carbonates having good reactivity are most preferable.

ところで、酸化亜鉛蛍光体を製造する際に一番問題となるのは、不純物元素の混入であり、殊に有機金属キレート錯体の中でもナトリウム塩やカリウム塩などは熱分解後も蛍光体内に残留するため使用は避けるべきである。また塩素、硫黄、リン等が含まれる無機酸や無機酸塩(塩酸、硫酸、リン酸またはこれらの塩など)および有機物(チオール化合物など)は、焼成過程でほぼ完全に熱分解するが、均一組成のZnキレート錯体の生成に悪影響を及ぼす恐れもあるので、極力少なく抑えることが望ましい。   By the way, the most serious problem in producing a zinc oxide phosphor is the mixing of impurity elements, and sodium salts, potassium salts, etc. remain in the phosphor even after pyrolysis, especially among organometallic chelate complexes. Therefore, use should be avoided. Also, inorganic acids and inorganic acid salts (such as hydrochloric acid, sulfuric acid, phosphoric acid or their salts) and organic substances (such as thiol compounds) containing chlorine, sulfur, phosphorus, etc., are almost completely thermally decomposed during firing, but are uniform Since there is a possibility of adversely affecting the formation of a Zn chelate complex having a composition, it is desirable to suppress it as much as possible.

本発明で用いる有機キレート形成剤としては、エチレンジアミン四酢酸、1,2−シクロヘキサンジアミン四酢酸、ジヒドロキシエチルグリシン、ジアミノプロパノール四酢酸、ジエチレントリアミン五酢酸、エチレンジアミン二酢酸、エチレンジアミン二プロピオン酸、ヒドロキシエチレンジアミン三酢酸、グリコールエーテルジアミン四酢酸、ヘキサメチレンジアミン四酢酸、エチレンジアミンジ(o−ヒドロキシフェニル)酢酸、ヒドロキシエチルイミノ二酢酸、イミノ二酢酸、1,3−ジアミノプロパン四酢酸、1,2−ジアミノプロパン四酢酸、ニトリロ三酢酸、ニトリロ三プロピオン酸、トリエチレンテトラミン六酢酸、エチレンジアミン二こはく酸、1,3−ジアミノプロパン二こはく酸、グルタミン酸−N,N−二酢酸、アスパラギン酸−N,N−二酢酸、などの水溶性のアミノカルボン酸系キレート剤を挙げることができ、これらのモノマー、オリゴマー或はポリマーのいずれも用いることができる。   Examples of the organic chelate forming agent used in the present invention include ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, dihydroxyethylglycine, diaminopropanoltetraacetic acid, diethylenetriaminepentaacetic acid, ethylenediaminediacetic acid, ethylenediaminedipropionic acid, hydroxyethylenediaminetriacetic acid. , Glycol ether diamine tetraacetic acid, hexamethylenediamine tetraacetic acid, ethylenediamine di (o-hydroxyphenyl) acetic acid, hydroxyethyliminodiacetic acid, iminodiacetic acid, 1,3-diaminopropanetetraacetic acid, 1,2-diaminopropanetetraacetic acid Nitrilotriacetic acid, nitrilotripropionic acid, triethylenetetramine hexaacetic acid, ethylenediamine disuccinic acid, 1,3-diaminopropane disuccinic acid, glutamic acid-N, N-diacetic acid, Aspartic acid -N, N-diacetic acid, may be mentioned water-soluble aminocarboxylic acid chelating agents such as, can be used any of these monomers, oligomers or polymers.

また、遊離酸タイプやアンモニウム塩またはアミン塩などを、Znとのキレート生成定数や、キレート錯体の安定性、更にはキレート錯体の水またはアルカリ水溶液中への溶解性などを考慮して使用することが好ましい。   Use free acid type, ammonium salt or amine salt in consideration of chelate formation constant with Zn, stability of chelate complex, and solubility of chelate complex in water or alkaline aqueous solution. Is preferred.

上記の様にして調製された有機Znキレート錯体水溶液は、次いで噴霧乾燥によって粉体化される。噴霧乾燥する際の条件は、水溶液の濃度や溶液処理速度、噴霧空気量、熱風空気量等によって適宜に設定すればよいが、乾燥温度は、好ましくは有機物が分解しない温度を上限とし、また十分に乾燥できる温度を採用すればよい。こうした観点から、乾燥温度は100〜200℃程度の範囲がよく、より一般的なのは140〜180℃の範囲である。こうした乾燥温度を考慮すると、本発明で用いる上記アミノカルボン酸系キレート剤としては、200℃程度以下の温度で熱分解しないものを選択することが望ましい。   The organic Zn chelate complex aqueous solution prepared as described above is then pulverized by spray drying. The conditions for spray drying may be set as appropriate depending on the concentration of the aqueous solution, the solution processing speed, the amount of sprayed air, the amount of hot air, and the like. What is necessary is just to employ | adopt the temperature which can be dried. From this point of view, the drying temperature is preferably in the range of about 100 to 200 ° C, and more generally in the range of 140 to 180 ° C. In view of such a drying temperature, it is desirable to select an aminocarboxylic acid chelating agent used in the present invention that does not thermally decompose at a temperature of about 200 ° C. or lower.

(2)前記工程(1)で得た粉末は、次いで焼成することにより金属酸化物粉末とされる。この際の好ましい条件は下記の通りである。   (2) The powder obtained in the step (1) is then fired to form a metal oxide powder. Preferred conditions at this time are as follows.

前記工程(1)で得られた有機Znキレート錯体を含む粉末は、そのまま焼成すると有機成分が熱分解して酸化亜鉛の粉末となる。500℃以上で焼成すると、有機成分は全て分解焼失して酸化亜鉛となるが、焼成温度が800℃未満では、その後に還元処理を行ってもごく微弱な発光しか得られないので、焼成温度は800℃以上とすることが望ましい。なお、焼成時および熱処理時の雰囲気は必ずしも空気中である必要はなく、必要に応じて酸素富化雰囲気や中性雰囲気、還元雰囲気で行ってもよい。   When the powder containing the organic Zn chelate complex obtained in the step (1) is baked as it is, the organic component is thermally decomposed to become zinc oxide powder. When baked at 500 ° C. or higher, all organic components are decomposed and burned to become zinc oxide. However, if the baking temperature is less than 800 ° C., only a very weak light emission can be obtained even after subsequent reduction treatment. It is desirable to set it at 800 ° C. or higher. Note that the atmosphere during firing and heat treatment is not necessarily in air, and may be performed in an oxygen-enriched atmosphere, a neutral atmosphere, or a reducing atmosphere as necessary.

(3)上記工程(2)で得た酸化亜鉛粉末は、次いで還元処理を行う。このときの還元処理は、上記工程(2)で得た酸化亜鉛粉末を還元雰囲気中で熱処理すればよい。好ましい熱処理温度は500〜1200℃であり、より好ましくは600〜1000℃の範囲である。また還元雰囲気は水素を含む弱還元性雰囲気であれば特に制限されないが、好ましいのは、アルゴン/水素混合雰囲気あるいは窒素/水素混合雰囲気である。上記工程(2)において900℃で焼成したものを還元処理すると発光ピークが約500nmの緑色発光が得られ、また1000℃で焼成したものを還元処理すると発光ピークが約390nmである紫外線発光が得られる。   (3) The zinc oxide powder obtained in the above step (2) is then subjected to a reduction treatment. For the reduction treatment at this time, the zinc oxide powder obtained in the step (2) may be heat-treated in a reducing atmosphere. A preferable heat treatment temperature is 500 to 1200 ° C, and more preferably 600 to 1000 ° C. The reducing atmosphere is not particularly limited as long as it is a weakly reducing atmosphere containing hydrogen, but an argon / hydrogen mixed atmosphere or a nitrogen / hydrogen mixed atmosphere is preferable. When the product fired at 900 ° C. in the above step (2) is reduced, green light emission with an emission peak of about 500 nm is obtained, and when the product fired at 1000 ° C. is reduced, ultraviolet light emission with an emission peak of about 390 nm is obtained. It is done.

なお、前記工程(2)および(3)は、各々異なる焼成炉を用いて行ってもよく、或は、1つの焼成炉で焼成雰囲気と温度を変えることで連続的に行うことも勿論可能である。   The steps (2) and (3) may be performed using different firing furnaces, or may be performed continuously by changing the firing atmosphere and temperature in one firing furnace. is there.

上記の様に本発明によれば、有機Znキレート錯体粉末を酸素の存在下で有機物を分解して酸化亜鉛粉末を作製する工程と、得られた酸化亜鉛粉末を水素含有還元雰囲気中で処理する工程を実施することで、発光ピークが390nm付近である紫外線発光を有する酸化亜鉛蛍光体、あるいは発光ピークが500nm付近である緑色発光を有するZn蛍光体を容易に得ることができる。   As described above, according to the present invention, a process of producing an organic Zn chelate complex powder by decomposing an organic substance in the presence of oxygen to produce a zinc oxide powder, and treating the obtained zinc oxide powder in a hydrogen-containing reducing atmosphere. By carrying out the steps, a zinc oxide phosphor having ultraviolet emission whose emission peak is around 390 nm or a Zn phosphor having green emission whose emission peak is around 500 nm can be easily obtained.

本発明を実施する際に使用される前記有機Znキレート錯体粉末は、前述した如くZn原料と有機キレート形成剤を反応させることにより澄明な有機Znキレート錯体水溶液を調製した後、該水溶液を乾燥することによって製造されるが、この時の乾燥には噴霧乾燥法を採用することが望ましい。すなわち噴霧乾燥法では、前述した様に微細で粒径の揃った球状粒子が得られ易いからである。ここで使用する有機キレート形成剤としては、アミノカルボン酸系キレート剤が好ましく使用される。   The organic Zn chelate complex powder used in practicing the present invention is prepared by reacting a Zn raw material with an organic chelate forming agent as described above to prepare a clear organic Zn chelate complex aqueous solution, and then drying the aqueous solution. However, it is desirable to employ a spray drying method for the drying at this time. That is, the spray-drying method is easy to obtain fine spherical particles having a uniform particle diameter as described above. As the organic chelate forming agent used here, an aminocarboxylic acid chelating agent is preferably used.

本発明に係る紫外線発光型酸化亜鉛蛍光体粉末は、例えば励起源として電子線を用いる様々の用途に適用できるが、特に紫外線発光素子、レーザー発光素子を始めとして、蛍光体の励起源などに極めて有効に活用できる。   The ultraviolet light emission type zinc oxide phosphor powder according to the present invention can be applied to various uses using an electron beam as an excitation source, for example, but it is extremely useful as an excitation source for phosphors such as an ultraviolet light emitting element and a laser light emitting element. Can be used effectively.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
1リットルのビーカーに、エチレンジアミン四酢酸(EDTA)115gと水を加えて総量を500gとした後、アンモニア水54gを加えて溶解させた。これを撹拌しながら、酸化亜鉛31gを加えた後、100℃に昇温して0.5時間撹拌を続けることにより完全に溶解させた。この溶液に水を加えて濃度調整し、無色透明のZn−EDTA錯体水溶液を得た。
Example 1
In a 1 liter beaker, 115 g of ethylenediaminetetraacetic acid (EDTA) and water were added to make the total amount 500 g, and then 54 g of aqueous ammonia was added and dissolved. While stirring this, 31 g of zinc oxide was added, and then the temperature was raised to 100 ° C. and stirring was continued for 0.5 hour to completely dissolve the mixture. Water was added to this solution to adjust the concentration to obtain a colorless and transparent aqueous Zn-EDTA complex solution.

この溶液を、噴霧乾燥法によって乾燥温度160℃で粉末化することにより、Zn−EDTA錯体粉末を得た。この粉末のX線回折チャートを確認したところ、入射X線の散乱によるハロー図形を示し、結晶構造はアモルファス(非晶質)のものであった。   This solution was pulverized by a spray drying method at a drying temperature of 160 ° C. to obtain a Zn-EDTA complex powder. When the X-ray diffraction chart of this powder was confirmed, it showed a halo figure due to scattering of incident X-rays, and the crystal structure was amorphous.

この錯体粉末を、大気開放型の電気炉を用いて大気雰囲気下に700〜1000℃で3時間焼成することにより、有機物を熱分解除去して酸化亜鉛粉末を得た。図1は、大気雰囲気下に1000℃で焼成したときの該粉末のSEM写真であり、粒径の揃った略球形の微粉末であることを確認できる。   The complex powder was baked at 700 to 1000 ° C. for 3 hours in an air atmosphere using an open air electric furnace to thermally decompose and remove organic substances to obtain a zinc oxide powder. FIG. 1 is an SEM photograph of the powder when fired at 1000 ° C. in an air atmosphere, and it can be confirmed that the powder is a substantially spherical fine powder having a uniform particle diameter.

また図3は、大気雰囲気下に700〜1000℃で3時間焼成して得た酸化亜鉛粉末に、室温で30kVの電子線を照射することにより観測された発光スペクトルである(図中の符号は実験Noを表わす)。大気雰囲気下において900℃以上で焼成を行なうと、500nm付近をピークとする発光が表れるが、その輝度は微弱であることが確認できる。   FIG. 3 is an emission spectrum observed by irradiating a zinc oxide powder obtained by firing at 700 to 1000 ° C. for 3 hours in an air atmosphere with an electron beam of 30 kV at room temperature. Represents experiment No). When firing at 900 ° C. or higher in an air atmosphere, light emission having a peak near 500 nm appears, but it can be confirmed that the luminance is weak.

各焼成温度で得られた酸化亜鉛粉末をAr+H2(3.8%)の気流中で800℃×1時間処理することにより、酸化亜鉛蛍光体粉末を得た。図2は大気雰囲気下に1000℃で焼成した後に還元雰囲気で処理して得られた酸化亜鉛粉末のSEM写真であり、還元雰囲気処理後も還元前の形状をほぼ維持していることが確認できる。 A zinc oxide phosphor powder was obtained by treating the zinc oxide powder obtained at each firing temperature in an air stream of Ar + H 2 (3.8%) at 800 ° C. for 1 hour. FIG. 2 is an SEM photograph of zinc oxide powder obtained by firing in an air atmosphere at 1000 ° C. and then processing in a reducing atmosphere, and it can be confirmed that the shape before reduction is substantially maintained after the reducing atmosphere treatment. .

各焼成温度で得られた酸化亜鉛蛍光体粉末に、室温で30kVの電子線を照射することにより観測された発光スペクトルを図4(図中の符号は実験Noを表わす)に示す。この図からも明らかな様に、大気雰囲気での焼成温度が800℃以下では微弱な緑色発光が確認されるのみであるが、900℃では発光ピーク波長が約500nmの緑色発光を確認できる。また、1000℃では発光ピーク波長が390nmである非常にシャープな紫外線発光を示すことが分かる。   An emission spectrum observed by irradiating the zinc oxide phosphor powder obtained at each firing temperature with an electron beam of 30 kV at room temperature is shown in FIG. 4 (the symbol in the figure represents Experiment No.). As is clear from this figure, only weak green light emission is confirmed when the firing temperature in the air atmosphere is 800 ° C. or lower, but green light emission with an emission peak wavelength of about 500 nm can be confirmed at 900 ° C. Further, it can be seen that at 1000 ° C., a very sharp ultraviolet light emission having an emission peak wavelength of 390 nm is exhibited.

実施例に記載したZn−EDTA錯体粉末を大気雰囲気下1000℃で3時間焼成して得た酸化亜鉛粉末のSEM写真である。It is a SEM photograph of the zinc oxide powder obtained by baking the Zn-EDTA complex powder described in the Example at 1000 ° C. for 3 hours in the air atmosphere. 実施例に記載した図1の酸化亜鉛粉末をAr+H2(3.8%)の気流中で800℃×1時間処理することにより得た酸化亜鉛蛍光体粉末のSEM写真である。Is an SEM photograph of zinc oxide phosphor powder obtained by treating 800 ° C. × 1 hour in a stream of the zinc oxide powder Ar + H 2 in FIG. 1 described (3.8%) in the examples. 実施例で大気雰囲気下に700〜1000℃で3時間焼成して得た酸化亜鉛粉末に、30kVの電子線を室温で照射することによって観測された発光スペクトルである。It is the emission spectrum observed by irradiating the electron beam of 30 kV at room temperature to the zinc oxide powder obtained by baking at 700-1000 degreeC for 3 hours by air atmosphere in the Example. 実施例で大気雰囲気下に700〜1000℃で3時間焼成したのち還元雰囲気で処理して得た酸化亜鉛粉末に、30kVの電子線を室温で照射することによって観測された発光スペクトルである。It is the emission spectrum observed by irradiating a 30-kV electron beam at room temperature to the zinc oxide powder obtained by baking at 700-1000 degreeC for 3 hours by the atmospheric condition in the Example, and processing by a reducing atmosphere.

Claims (5)

酸化亜鉛蛍光体を製造する方法であって、
(1)Znおよび/またはZn化合物と有機キレート形成剤を反応させることにより得られたZnの有機金属キレート錯体水溶液を噴霧乾燥して、Znの有機金属キレート錯体からなる粉末を製造する工程、
(2)前記工程(1)で得た粉末を800℃以上で空気中で焼成して酸化亜鉛粉末を得る工程、
(3)前記工程(2)で得た酸化亜鉛粉末を、500〜1200℃の範囲でアルゴン/水素混合雰囲気または窒素/水素混合雰囲気で熱処理して、還元する工程
を含むことを特徴とする酸化亜鉛蛍光体の製造方法。
A method for producing a zinc oxide phosphor, comprising:
(1) A step of producing a powder composed of an organometallic chelate complex of Zn by spray-drying an aqueous organometallic chelate complex solution of Zn obtained by reacting Zn and / or a Zn compound with an organic chelate forming agent ,
(2) A step of obtaining a zinc oxide powder by firing the powder obtained in the step (1) in air at 800 ° C. or higher ,
(3) An oxidation process comprising the step of reducing the zinc oxide powder obtained in the step (2) by heat treatment in an argon / hydrogen mixed atmosphere or nitrogen / hydrogen mixed atmosphere in a range of 500 to 1200 ° C. A method for producing a zinc phosphor.
酸化亜鉛蛍光体が、電子線励起によって390nm付近に発光ピークを有する紫外線発光型酸化亜鉛蛍光体である請求項1に記載の酸化亜鉛蛍光体の製造方法。   The method for producing a zinc oxide phosphor according to claim 1, wherein the zinc oxide phosphor is an ultraviolet light emitting zinc oxide phosphor having an emission peak in the vicinity of 390 nm by electron beam excitation. 酸化亜鉛蛍光体が、電子線励起によって500nm付近に発光ピークを有する緑色発光型酸化亜鉛蛍光体である請求項1に記載の酸化亜鉛蛍光体の製造方法。   The method for producing a zinc oxide phosphor according to claim 1, wherein the zinc oxide phosphor is a green light emitting zinc oxide phosphor having an emission peak in the vicinity of 500 nm by electron beam excitation. 前記酸化亜鉛蛍光体は、略球形のものである請求項1〜3のいずれかに記載の酸化亜鉛蛍光体の製造方法。 The said zinc oxide fluorescent substance is a substantially spherical thing, The manufacturing method of the zinc oxide fluorescent substance in any one of Claims 1-3. 前記有機キレート形成剤として、アミノカルボン酸系キレート剤および/またはその塩を使用する請求項1〜のいずれかに記載の酸化亜鉛蛍光体の製造方法。 The method for producing a zinc oxide phosphor according to any one of claims 1 to 4 , wherein an aminocarboxylic acid chelating agent and / or a salt thereof is used as the organic chelate forming agent.
JP2004267714A 2004-09-15 2004-09-15 Method for producing zinc oxide phosphor Active JP4609988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004267714A JP4609988B2 (en) 2004-09-15 2004-09-15 Method for producing zinc oxide phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267714A JP4609988B2 (en) 2004-09-15 2004-09-15 Method for producing zinc oxide phosphor

Publications (2)

Publication Number Publication Date
JP2006083246A JP2006083246A (en) 2006-03-30
JP4609988B2 true JP4609988B2 (en) 2011-01-12

Family

ID=36162021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267714A Active JP4609988B2 (en) 2004-09-15 2004-09-15 Method for producing zinc oxide phosphor

Country Status (1)

Country Link
JP (1) JP4609988B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388099B2 (en) 2007-12-28 2014-01-15 国立大学法人大阪大学 Core-shell type quantum dot fluorescent fine particles
JP5868542B1 (en) * 2014-12-12 2016-02-24 大電株式会社 Phosphor production method, phosphor, light-emitting element, and light-emitting device based on nitride or oxynitride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590583A (en) * 1978-12-28 1980-07-09 Matsushita Electric Ind Co Ltd Production of zinc oxide fluorescent substance
WO2002044303A1 (en) * 2000-11-30 2002-06-06 Chubu Chelest Co., Ltd. Process for producing fluorescent metal oxide material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590583A (en) * 1978-12-28 1980-07-09 Matsushita Electric Ind Co Ltd Production of zinc oxide fluorescent substance
WO2002044303A1 (en) * 2000-11-30 2002-06-06 Chubu Chelest Co., Ltd. Process for producing fluorescent metal oxide material

Also Published As

Publication number Publication date
JP2006083246A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP5211297B2 (en) Metal nitride manufacturing method
Bandi et al. Host sensitized novel red phosphor CaZrSi2O7: Eu3+ for near UV and blue LED-based white LEDs
TWI471408B (en) Aluminum oxide phosphor and producing method thereof
JP4847860B2 (en) Aluminate phosphor and process for producing the same
US6712993B2 (en) Phosphor and its production process
US20060001007A1 (en) Spherical light storing phosphor powder and process for producing the same
Li et al. Sintering condition and optical properties of Zn3V2O8 phosphor
JP5176084B2 (en) Method for producing metal oxide phosphor
US7799312B2 (en) Method for manufacturing high-density indium tin oxide target, methods for preparing tin oxide powder and indium oxide powder used therefor
JP4609988B2 (en) Method for producing zinc oxide phosphor
JP2004323656A (en) Manufacturing process of spherical phosphorescent material and spherical phosphorescent material
JP2007145991A (en) High-luminance emission particle and method for producing the same
JP2005053735A (en) Process for producing zinc sulfide particle
US7901651B2 (en) Method of preparing zinc silicate-based phosphor and zinc silicate-based phosphor prepared using the method
Marí et al. Optical properties of Yb-doped ZnO/MgO nanocomposites
WO2004096949A1 (en) Zinc oxide phosphor, process for producing the same and light emitting device
Van et al. Controlling blue and red light emissions from europium (Eu 2+)/manganese (Mn 2+)-codoped beta-tricalcium phosphate [β-Ca 3 (PO 4) 2 (TCP)] phosphors
JP2004256763A (en) Method for producing phosphor
JP2010053009A (en) Method for producing zinc oxide
JP2009019082A (en) Manufacturing method for fluorescence emission powder, and fluorescence emission powder
JP2006274244A (en) Blue light-emitting phosphor powder and method for producing the same
JPWO2007105598A1 (en) Method for producing aluminate phosphor and aluminate phosphor
JP2008174690A (en) Europium-activated yttrium oxide fluorophor material and production method thereof
Chen et al. Photoluminescence of Lu 2 O 3: Eu 3+ phosphors obtained by glycine-nitrate combustion synthesis
JP2005239821A (en) Method for manufacturing phosphor, phosphor, and fluorescent character display tube using the phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250