JP4609763B2 - Method for producing low oxygen metal powder - Google Patents
Method for producing low oxygen metal powder Download PDFInfo
- Publication number
- JP4609763B2 JP4609763B2 JP2005300307A JP2005300307A JP4609763B2 JP 4609763 B2 JP4609763 B2 JP 4609763B2 JP 2005300307 A JP2005300307 A JP 2005300307A JP 2005300307 A JP2005300307 A JP 2005300307A JP 4609763 B2 JP4609763 B2 JP 4609763B2
- Authority
- JP
- Japan
- Prior art keywords
- metal powder
- powder
- thermal plasma
- hydrocarbon
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 112
- 229910052751 metal Inorganic materials 0.000 title claims description 67
- 239000002184 metal Substances 0.000 title claims description 66
- 229910052760 oxygen Inorganic materials 0.000 title claims description 42
- 239000001301 oxygen Substances 0.000 title claims description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims description 33
- 229930195733 hydrocarbon Natural products 0.000 claims description 33
- 150000002430 hydrocarbons Chemical class 0.000 claims description 25
- 150000002894 organic compounds Chemical class 0.000 claims description 24
- 239000002994 raw material Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 22
- 238000002844 melting Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 19
- 239000011261 inert gas Substances 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 description 16
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 239000007789 gas Substances 0.000 description 15
- 238000009832 plasma treatment Methods 0.000 description 15
- 235000021355 Stearic acid Nutrition 0.000 description 14
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 14
- 239000008117 stearic acid Substances 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 11
- 230000001603 reducing effect Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000013077 target material Substances 0.000 description 9
- -1 hydrocarbon organic compound Chemical class 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 230000005281 excited state Effects 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000003870 refractory metal Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003635 deoxygenating effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は金属粉末の製造方法に関するものである。 The present invention relates to a method for producing metal powder.
近年、半導体、液晶表示素子、磁気記録装置などの電子デバイスにおいてはスパッタリング法による薄膜が広く用いられている。スパッタリング法は真空槽内にターゲット材と呼ばれる母材とそれに対峙した基板を配置し、Arガス等の不活性ガスを導入しながらターゲット材の表面にグロー放電を発生させ、ターゲット材を構成する元素からなる薄膜を基板上に形成する方法である。
スパッタリング法の母材であるターゲット材には組織の均質性と不純物含有量の低減が求められている。不純物の中でも、特に酸素は、薄膜中に取り込まれ特性の劣化を引き起こす原因となり、また、ターゲット材の組織に含まれる酸化物として存在する場合には、スパッタ中に異常放電を招くとされ、低減が強く望まれている。
In recent years, thin films formed by sputtering have been widely used in electronic devices such as semiconductors, liquid crystal display elements, and magnetic recording devices. In the sputtering method, a base material called a target material and a substrate opposite to the base material are arranged in a vacuum chamber, an glow gas is generated on the surface of the target material while introducing an inert gas such as Ar gas, and the elements constituting the target material Is a method of forming a thin film on the substrate.
The target material, which is a base material for the sputtering method, is required to reduce the homogeneity of the structure and the impurity content. Among impurities, especially oxygen is taken into the thin film and causes deterioration of the characteristics, and if it exists as an oxide contained in the structure of the target material, it is considered to cause abnormal discharge during sputtering, and is reduced. Is strongly desired.
ターゲット材の製造方法は、溶解法と粉末焼結法とに大別されるが、特に、高融点金属元素からなるターゲット材は溶解が困難で、さらに、組織の均質化のための塑性加工も困難であるため、粉末焼結法により製造されることが多い。しかし、粉末焼結法では粉末粒子の比表面積が大きいため、粉末の表面に形成された酸化層の比率が高く、溶解法によるターゲット材よりも酸素含有量が高くなる欠点がある。特に、粒子が表面積の大きい多孔質構造、海綿状構造、樹枝状構造を持つ場合、その傾向が顕著となる。
このため、通常、水素ガスなどの還元性ガスを導入した雰囲気中で粉末に熱処理を施すことで、表面の酸化層を還元し、酸素含有量を低減する方法がとられている。
The target material manufacturing methods are roughly divided into a melting method and a powder sintering method. In particular, a target material made of a refractory metal element is difficult to dissolve, and further, plastic processing for homogenizing the structure is also possible. Since it is difficult, it is often produced by a powder sintering method. However, since the specific surface area of the powder particles is large in the powder sintering method, the ratio of the oxide layer formed on the surface of the powder is high, and there is a drawback that the oxygen content is higher than the target material obtained by the melting method. In particular, when the particles have a porous structure, a spongy structure, or a dendritic structure with a large surface area, the tendency becomes remarkable.
For this reason, usually, a method is employed in which the oxide layer on the surface is reduced to reduce the oxygen content by subjecting the powder to heat treatment in an atmosphere into which a reducing gas such as hydrogen gas is introduced.
上記方法とは異なる新規な方法として、本出願人は、高融点金属粉末を、水素ガスを導入した熱プラズマ炎内に導入することにより精錬(脱酸素)して金属粉末の酸素含有量を低減する方法を提案している(例えば、特許文献1参照)。
前述の、水素ガスなどの還元性ガスを導入した雰囲気中で粉末に熱処理を施す方法は、粉末粒子の表面酸化層に含まれる酸素の低減には効果があっても、粒子内部に含まれる酸素の低減効果までは得られない場合がある。また、特許文献1に開示された方法においても、効率的に多量の金属粉末の酸素含有量を低減するには限界がある。
本発明の目的は、上述した問題点を鑑みてなされたものであり、従来の粉末製造方法では実現できない、多量にかつ効率よく金属粉末の酸素含有量を低減できる低酸素金属粉末の製造方法を提供することである。
Although the above-described method for heat-treating a powder in an atmosphere introduced with a reducing gas such as hydrogen gas is effective in reducing the oxygen contained in the surface oxide layer of the powder particles, In some cases, it is not possible to obtain a reduction effect of. In addition, the method disclosed in Patent Document 1 also has a limit in efficiently reducing the oxygen content of a large amount of metal powder.
The object of the present invention has been made in view of the above-mentioned problems, and a low oxygen metal powder production method capable of reducing the oxygen content of a metal powder in large quantities and efficiently, which cannot be realized by conventional powder production methods. Is to provide.
本発明者等は、熱プラズマ炎中を通過する原料金属粉末に着目し、原料金属粉末に炭化水素系有機化合物を被覆することで、金属粉末の還元効果が向上することを見出し本発明に到達した。
すなわち、本発明は、炭化水素系有機化合物を加熱溶融して被覆した原料金属粉末を、不活性ガスを主体とする熱プラズマ炎中に通過させることにより前記原料金属粉末の酸素含有量を低減する低酸素金属粉末の製造方法である。
また、本発明において好ましくは、炭化水素系有機化合物を加熱溶融して被覆した原料金属粉末を、不活性ガスを主体とする熱プラズマ炎中に通過させ、次いで、真空中で加熱処理することにより前記原料金属粉末の酸素含有量を低減する低酸素金属粉末の製造方法である。
また、本発明において好ましくは、炭化水素系有機化合物を加熱溶融して被覆した原料金属粉末を、不活性ガスを主体とする熱プラズマ炎中に通過させ、次いで、水素雰囲気中で加熱処理することにより前記原料金属粉末の酸素含有量を低減する低酸素金属粉末の製造方法である。
The present inventors have focused on the raw metal powder that passes through the thermal plasma flame, and found that the reduction effect of the metal powder is improved by coating the raw metal powder with a hydrocarbon-based organic compound, thereby reaching the present invention. did.
That is, the present invention reduces the oxygen content of the raw metal powder by passing the raw metal powder coated by heating and melting the hydrocarbon-based organic compound through a thermal plasma flame mainly composed of an inert gas. This is a method for producing a low oxygen metal powder.
In the present invention, preferably, the raw material metal powder coated by heating and melting the hydrocarbon-based organic compound is passed through a thermal plasma flame mainly composed of an inert gas, and then heat-treated in a vacuum. It is a manufacturing method of the low oxygen metal powder which reduces the oxygen content of the said raw material metal powder.
Further, in the present invention, preferably, the raw metal powder coated by heating and melting the hydrocarbon-based organic compound is passed through a thermal plasma flame mainly composed of an inert gas, and then heat-treated in a hydrogen atmosphere. Is a method for producing a low oxygen metal powder that reduces the oxygen content of the raw metal powder.
本発明の製造方法によれば、原料金属粉末を熱プラズマ炎中へ効率的に供給するとともに還元作用を向上できるため、多量な原料金属粉末の酸素含有量の低減処理を効率的に行うことが可能となる。したがって、低酸素金属粉末の生産性を飛躍的に向上できるため、例えば、粉末焼結法による低酸素金属ターゲット材を製造する上で極めて有効である。 According to the manufacturing method of the present invention, since the raw metal powder can be efficiently supplied into the thermal plasma flame and the reduction action can be improved, the oxygen content of the large amount of the raw metal powder can be efficiently reduced. It becomes possible. Therefore, the productivity of the low-oxygen metal powder can be dramatically improved, which is extremely effective for producing a low-oxygen metal target material by a powder sintering method, for example.
上述したように、本発明の重要な特徴は、炭化水素系有機化合物を加熱溶融して被覆した原料金属粉末を、不活性ガスを主体とする熱プラズマ炎中に供給することにある。
なお、本発明における不活性ガスとは、周期表における0族に属する原子であるHe、Ne、Ar、Kr、Xe、Rnからなるガスを指すものとする。
As described above, an important feature of the present invention resides in supplying raw metal powder coated with a hydrocarbon-based organic compound by heating and melting into a thermal plasma flame mainly composed of an inert gas.
In addition, the inert gas in this invention shall point out the gas which consists of He, Ne, Ar, Kr, Xe, and Rn which are the atoms which belong to the 0 group in a periodic table.
熱プラズマ炎は5000〜20000Kの高温であるため、炭化水素系有機化合物を加熱溶融して被覆した原料金属粉末を熱プラズマ炎に供給すると、被覆された炭化水素系有機化合物は、瞬間的に溶融、蒸発、分解し、炭素原子、水素原子、各種イオン、励起状態原子、中性核種などが発生する。また、原料金属粉末粒子も同様に溶融し、液滴に変化する。 Since the thermal plasma flame is a high temperature of 5000 to 20000 K, when the raw material metal powder coated by heating and melting the hydrocarbon organic compound is supplied to the thermal plasma flame, the coated hydrocarbon organic compound is instantaneously melted. Evaporates and decomposes to generate carbon atoms, hydrogen atoms, various ions, excited state atoms, neutral nuclides, and the like. In addition, the raw metal powder particles are similarly melted and changed into droplets.
前記熱プラズマ炎の温度領域における炭化水素系有機化合物の主成分元素である炭素の酸化物標準生成自由エネルギーに注目すると、
2C+O2→2CO
で表される酸化物の標準生成自由エネルギーは、エリンガム図からもわかる様に、あらゆる金属元素の酸化物の標準生成自由エネルギーに比べて低いため、熱力学的に高い酸化物還元効果を持つ。同様に水素原子、各種イオン、励起状態原子、中性核種なども酸化物還元に寄与する。すなわち前記熱プラズマ炎中は強い酸化物還元性雰囲気となる。このような熱プラズマ炎中を通過した金属粉末粒子は、酸化物が還元されて酸素含有量が大幅に低減された球状の粒子として回収される。この際、添加した炭化水素系有機化合物の全てもしくは一部は還元作用により消費され、気相化して除去される。
Paying attention to the standard free energy of carbon oxide formation, which is the main component element of hydrocarbon-based organic compounds in the temperature range of the thermal plasma flame,
2C + O 2 → 2CO
As can be seen from the Ellingham diagram, the standard free energy of formation of the oxide is lower than the standard free energy of formation of oxides of all metal elements, and therefore has a high thermodynamic oxide reduction effect. Similarly, hydrogen atoms, various ions, excited state atoms, neutral nuclides, and the like also contribute to oxide reduction. That is, a strong oxide reducing atmosphere is formed in the thermal plasma flame. The metal powder particles that have passed through the thermal plasma flame are collected as spherical particles in which the oxide is reduced and the oxygen content is greatly reduced. At this time, all or a part of the added hydrocarbon-based organic compound is consumed by the reducing action and is removed by vaporization.
なお、例えば、上述の炭素による酸化物の還元効果を得るために、原料金属粉末と炭素粉末との混合粉を使用することも考えられるが、炭化水素系有機化合物の殆どは400℃以下の温度で分解するのに対し、炭素粉末は融点が4100℃と高く、短時間では十分な還元効果が得られにくいため好ましくない。 For example, in order to obtain the above-described effect of reducing oxides by carbon, it is conceivable to use a mixed powder of raw metal powder and carbon powder, but most of the hydrocarbon-based organic compounds have a temperature of 400 ° C. or lower. On the other hand, carbon powder has a melting point as high as 4100 ° C., which is not preferable because a sufficient reduction effect is difficult to be obtained in a short time.
本発明において炭化水素系有機化合物を使用するのは、炭化水素系有機化合物は、主要構成元素である炭素、水素がいずれも単体で酸化物還元効果を有する元素である上に、上記熱プラズマの高温下で蒸発、分解して、炭素原子、水素原子、各種イオン、励起状態原子、中性核種などが発生して、さらに優れた酸化物還元効果を発揮するためである。また、熱プラズマ処理後の低酸素金属粉末に残留しにくいという特徴も有する。
なお、本発明でいう炭化水素系有機化合物とは、分子構造に炭化水素からなる長鎖を有するものを指し、具体例としては飽和炭化水素(アルカン)、不飽和炭化水素(アルケン、アルキン)、長鎖アルコールと長鎖カルボン酸との固体エステルである蝋、脂肪酸、樹脂などで、室温で固体であるものが挙げられる。また、炭素、水素、酸素以外の成分元素を含まないものが、低酸素金属粉末への不純物の混入を抑制できるために望ましい。
なお、これらをそれぞれ単体で用いても良いが、粉末の表面性状や融点などを調整するため、複数を混合して用いても構わない。
In the present invention, the hydrocarbon-based organic compound is used because the hydrocarbon-based organic compound is an element in which carbon and hydrogen, which are the main constituent elements, are both simple elements and have an oxide reduction effect. This is because it evaporates and decomposes at a high temperature to generate carbon atoms, hydrogen atoms, various ions, excited state atoms, neutral nuclides, and the like, and further exhibits an excellent oxide reduction effect. Moreover, it also has a feature that it hardly remains in the low oxygen metal powder after the thermal plasma treatment.
The hydrocarbon organic compound referred to in the present invention refers to a compound having a long chain composed of hydrocarbon in the molecular structure, and specific examples include saturated hydrocarbon (alkane), unsaturated hydrocarbon (alkene, alkyne), Examples thereof include waxes, fatty acids, resins, and the like that are solid esters of long-chain alcohols and long-chain carboxylic acids that are solid at room temperature. In addition, it is desirable that a material containing no component elements other than carbon, hydrogen, and oxygen is able to suppress contamination of impurities into the low oxygen metal powder.
Each of these may be used alone, but a plurality of these may be mixed and used in order to adjust the surface properties and melting point of the powder.
また、炭化水素系有機化合物として、特に、蝋、脂肪酸に属するものを用いた場合には、原料金属粉末粒子間の摩擦が低減され流動性が向上し、後述する本発明の製造方法で用いる熱プラズマ装置において、熱プラズマ炎への原料金属粉末の供給速度を高めて、低酸素金属粉末の生産性を向上させる効果がある。 Also, when hydrocarbon organic compounds belonging to waxes and fatty acids are used, the friction between the raw metal powder particles is reduced and the fluidity is improved, and the heat used in the production method of the present invention described later is used. In the plasma apparatus, there is an effect of increasing the supply rate of the raw metal powder to the thermal plasma flame and improving the productivity of the low oxygen metal powder.
また、炭化水素系有機化合物を被覆することには、熱プラズマ炎中に通過させた際に微細粉末の蒸発に起因した滅失を抑制する副次的効果がある。このメカニズムの詳細は定かではないが、(1)熱プラズマの高温下で、炭化水素系有機化合物が蒸発、分解して、炭素原子、水素原子、各種イオン、励起状態原子、中性核種などが発生する際に、適度なエネルギー消費があること、(2)粒子のごく近傍のプラズマの状態が変化しプラズマからの熱伝導が低下することなどが影響していると想像される。 In addition, coating the hydrocarbon-based organic compound has a secondary effect of suppressing loss due to evaporation of the fine powder when it is passed through the thermal plasma flame. The details of this mechanism are not clear, but (1) hydrocarbon organic compounds evaporate and decompose under the high temperature of thermal plasma, resulting in carbon atoms, hydrogen atoms, various ions, excited-state atoms, neutral nuclides, etc. It is assumed that there is an appropriate consumption of energy when it is generated, and that (2) the state of the plasma in the immediate vicinity of the particles changes and the heat conduction from the plasma decreases.
また、原料金属粉末に炭化水素系有機化合物を被覆する方法としては、例えば、Vブレンダーや、ロッキングミキサーなどの一般的な混合装置で混合して混合粉を作製し、この混合粉を加熱して炭化水素系有機化合物だけを溶融させ、原料金属粉末粒子の表面に被覆する方法が適用できる。原料金属粉末の全面部を被覆する必要はないが、この方法によれば、単に原料金属粉末と炭化水素系有機化合物を混合しただけの状態に比べて、炭化水素系有機化合物が分散して、より均一に被覆できるため、熱プラズマ炎中での蒸発が生じ易くなり、酸化物還元効果が高くなる。
なお、炭化水素系有機化合物を加熱溶融して原料金属粉末に被覆する際の作業性や、加熱温度が高過ぎた場合に原料金属粉末が酸化される弊害を考慮すると、融点が100℃以下の炭化水素系有機化合物を使用することが望ましい。このような炭化水素系有機化合物の例としてはパルミチン酸、ステアリン酸、パラフィンワックス等を挙げることが出来る。
また、原料金属粉末への被覆する炭化水素系有機化合物の量は、熱プラズマ処理後の炭素の残存量を考慮して、原料金属粉末と炭化水素系有機化合物の総量に対して0.05〜1.00質量%であることが望ましい。
Moreover, as a method of coating the hydrocarbon-based organic compound on the raw metal powder, for example, a mixed powder is prepared by mixing with a general mixing apparatus such as a V blender or a rocking mixer, and the mixed powder is heated. A method of melting only the hydrocarbon-based organic compound and coating the surface of the raw metal powder particles can be applied. Although it is not necessary to cover the entire surface of the raw metal powder, according to this method, the hydrocarbon organic compound is dispersed as compared to a state where the raw metal powder and the hydrocarbon organic compound are simply mixed. Since it can coat | cover more uniformly, it becomes easy to produce evaporation in a thermal plasma flame, and an oxide reduction effect becomes high.
In consideration of the workability when the hydrocarbon-based organic compound is heated and melted to coat the raw metal powder, and the harmful effect of oxidizing the raw metal powder when the heating temperature is too high, the melting point is 100 ° C. or less. It is desirable to use a hydrocarbon-based organic compound. Examples of such hydrocarbon organic compounds include palmitic acid, stearic acid, paraffin wax and the like.
In addition, the amount of the hydrocarbon-based organic compound to be coated on the raw metal powder is 0.05 to about the total amount of the raw metal powder and the hydrocarbon-based organic compound in consideration of the residual amount of carbon after the thermal plasma treatment. It is desirable that it is 1.00 mass%.
本発明の製造方法は、熱プラズマ炎の温度があらゆる金属元素の融点を上回るため、理論的には全ての金属粉末に適用できるが、沸点が低い金属元素からなる粉末に適用した場合、上記熱プラズマ炎の高温下で蒸発して回収不能になる恐れがある。このため、Feの融点(1535℃)を越える高融点金属からなる粉末に適している。また、形態が多孔質構造、海綿状構造、樹枝状構造で、表面積が大きい粉末に対して特に適している。 Since the temperature of the thermal plasma flame exceeds the melting point of any metal element, the production method of the present invention is theoretically applicable to all metal powders, but when applied to a powder composed of a metal element having a low boiling point, The plasma flame may evaporate at high temperatures and become unrecoverable. For this reason, it is suitable for powder made of a refractory metal exceeding the melting point (1535 ° C.) of Fe. Further, it is particularly suitable for a powder having a porous structure, a spongy structure, and a dendritic structure and a large surface area.
上述した通り、炭化水素系有機化合物を被覆した原料金属粉末を不活性ガスを主体とする熱プラズマ炎に通過させて得られた金属粉末は、従来の製造技術による金属粉末に比べて酸素含有量が少ないものとなるが、さらに、真空中で加熱処理することにより、金属粉末に残留した炭素により、金属粉末が還元され、いっそう酸素含有量が低減される。なお、加熱温度が高すぎると、金属粉末が焼結される場合があるため、焼結を生じない上限の温度で行うと良い。また、真空中での加熱処理による酸素低減の効果を十分に得るためには、真空加熱雰囲気を1.0Pa以下とすることが望ましい。 As described above, the metal powder obtained by passing the raw metal powder coated with the hydrocarbon-based organic compound through a thermal plasma flame mainly composed of inert gas has an oxygen content as compared with the metal powder obtained by the conventional manufacturing technology. Furthermore, by performing the heat treatment in a vacuum, the metal powder is reduced by the carbon remaining in the metal powder, and the oxygen content is further reduced. In addition, since metal powder may be sintered when heating temperature is too high, it is good to carry out at the upper limit temperature which does not produce sintering. In order to sufficiently obtain the effect of reducing oxygen by heat treatment in vacuum, the vacuum heating atmosphere is desirably set to 1.0 Pa or less.
また、上記熱プラズマ炎を通過して得られた粉末を水素雰囲気中で加熱処理することによっても、金属粉末に残留した炭素が効率的に除去されると同時に、水素による還元効果により、いっそう酸素含有量が低減される。なお、この場合も、加熱温度が高すぎると、金属粉末が焼結される場合があるため、焼結を生じない上限の温度で行うと良い。 Also, by heating the powder obtained by passing through the thermal plasma flame in a hydrogen atmosphere, carbon remaining in the metal powder is efficiently removed, and at the same time, the reduction effect by hydrogen further increases the oxygen. The content is reduced. In this case, too, if the heating temperature is too high, the metal powder may be sintered.
以下の実施例1ではMo粉末に対する本発明の効果を説明する。
熱プラズマ装置には図1に示す構造のものを用いた。図1は本発明で用いるプラズマ処理装置の一例を示す構成図である。図1に示す装置は、冷却壁1で仕切られたプラズマ発生空間2の外側に設けた高周波コイル3と、高周波コイル3の軸方向の一方から作動ガスを供給する作動ガス供給部4と、高周波コイルの内側に発生させた熱プラズマ炎5中にキャリアガスとともに粉末原料を供給する粉末供給ノズル6と、プラズマ炎の下流側に設けたチャンバー7と、チャンバーからの排気を行う排気装置8を具備する粉末のプラズマ処理装置である。
この装置はΦ100mmの円筒形のプラズマ発生空間を有しており、処理時のプラズマ動作条件は出力200kW、圧力70kPa、作動ガスとして不活性ガスのArガス250L/min(nor)、H2ガス30L/min(nor)、キャリアガスとして不活性ガスのArガス10L/min(nor)に設定とした。また、熱プラズマ炎への原料金属粉末の供給速度は、20kg/hに設定した。
Example 1 below illustrates the effect of the present invention on Mo powder.
A thermal plasma apparatus having the structure shown in FIG. 1 was used. FIG. 1 is a block diagram showing an example of a plasma processing apparatus used in the present invention. The apparatus shown in FIG. 1 includes a high frequency coil 3 provided outside a plasma generation space 2 partitioned by a cooling wall 1, a working gas supply unit 4 for supplying a working gas from one of the axial directions of the high frequency coil 3, and a high frequency A powder supply nozzle 6 for supplying a powder raw material together with a carrier gas into a thermal plasma flame 5 generated inside the coil, a
This apparatus has a cylindrical plasma generation space of Φ100 mm, and plasma operating conditions during processing are an output of 200 kW, a pressure of 70 kPa, an inert gas Ar gas of 250 L / min (nor), and an H 2 gas of 30 L. / Min (nor), Ar gas as an inert gas was set to 10 L / min (nor) as a carrier gas. The supply rate of the raw metal powder to the thermal plasma flame was set to 20 kg / h.
実験に用いた原料の詳細を表1に示す。原料は全て市販のものである。炭化水素系有機化合物としては脂肪酸の一種であるステアリン酸(分子構造CH3(CH2)16COOH、分子量284.48、融点68〜71℃)を用いた。室温での形態は顆粒状でMo原料粉末に比べて粒径が非常に大きいため、乳鉢で粉砕して使用した。 Details of the raw materials used in the experiment are shown in Table 1. All raw materials are commercially available. As the hydrocarbon-based organic compound, stearic acid (molecular structure CH 3 (CH 2 ) 16 COOH, molecular weight 284.48, melting point 68 to 71 ° C.), which is a kind of fatty acid, was used. Since the form at room temperature is granular and the particle size is much larger than that of the Mo raw material powder, it was used after being pulverized in a mortar.
表2に本発明例、比較例、それぞれの詳細と、C、Oの分析値を示す。
本発明例1としては、ステアリン酸の含有量が0.1質量%となるようMo原料粉末とステアリン酸とをそれぞれ秤量し、Vブレンダーを用いて30分間混合した混合物を、ガラス瓶につめ、大気中で80℃で30分間加熱することでステアリン酸を加熱溶融させ、Mo原料粉末の粒子表面にステアリン酸を被覆した原料金属粉末を作製した。この原料金属粉末を、図1に示す熱プラズマ装置で上記の条件で発生させた熱プラズマ炎中に通過させて酸素含有量を低減する熱プラズマ処理を施した。
また、比較例1としては、Mo原料粉末をステアリン酸を被覆せずそのまま、本発明例1と同様の条件で、熱プラズマ炎中に通過させて熱プラズマ処理を施した。比較例2としては、炭素粉末の含有量が0.1質量%となるようにMo粉末と炭素粉末とをそれぞれ秤量し、Vブレンダーを用いて30分間混合した混合粉を作製した。この混合粉を本発明例1と同様の条件で、熱プラズマ炎中に通過させて、熱プラズマ処理を施した。
Table 2 shows examples of the present invention, comparative examples, details of each, and analytical values of C and O.
As Example 1 of the present invention, Mo raw material powder and stearic acid were weighed so that the content of stearic acid was 0.1% by mass, and a mixture obtained by mixing for 30 minutes using a V blender was put in a glass bottle, and the atmosphere The raw metal powder in which stearic acid was heated and melted by heating at 80 ° C. for 30 minutes to coat the particle surface of the Mo raw material powder with stearic acid was produced. The raw metal powder was passed through a thermal plasma flame generated under the above conditions by the thermal plasma apparatus shown in FIG. 1 to perform a thermal plasma treatment for reducing the oxygen content.
Moreover, as Comparative Example 1, the Mo raw material powder was passed through a thermal plasma flame as it was without being coated with stearic acid, and subjected to thermal plasma treatment. As Comparative Example 2, Mo powder and carbon powder were weighed so that the carbon powder content was 0.1% by mass, and a mixed powder was prepared by mixing for 30 minutes using a V blender. This mixed powder was passed through a thermal plasma flame under the same conditions as in Example 1 of the present invention, and was subjected to a thermal plasma treatment.
表2から、本発明例1によって得られたMo粉末は、参考値に挙げた熱プラズマ処理を施さないMo原料粉末や、比較例1、2のMo粉末に比べ、酸素が大幅に低減されていることがわかる。なお、炭素の残存は、本発明例1によって得られたMo粉末が、比較例2のMo粉末に比べて格段に低いことが分かる。この結果からも低酸素化と炭素残存量のバランスを考慮しても、炭化水素系有機化合物を加熱溶融して被覆した原料金属粉末を使用した熱プラズマ処理が望ましいことが分かる。 From Table 2, the Mo powder obtained by Inventive Example 1 is significantly reduced in oxygen compared to the Mo raw material powder not subjected to the thermal plasma treatment listed in the reference values and the Mo powders of Comparative Examples 1 and 2. I understand that. In addition, it turns out that the residual of carbon is remarkably low compared with the Mo powder of the comparative example 2 of Mo powder obtained by the example 1 of this invention. From this result, it can be seen that thermal plasma treatment using a raw metal powder coated with a hydrocarbon-based organic compound by heating and melting is desirable even in consideration of the balance between oxygen reduction and carbon residual amount.
また、本発明例2は、本発明例1のMo粉末をMo箔を敷いたアルミナ坩堝中に充填し、1.0×10−1Pa以下に減圧排気の制御をした真空炉内で1000℃、4hの真空熱処理を施したものである。前記熱プラズマ処理を施しただけのものに比べて、いっそう酸素量が低下し、残留していた炭素も低減され、極めて高品位なMo粉末が得られていることがわかる。 Inventive Example 2 was filled at 1000 ° C. in a vacuum furnace in which the Mo powder of Inventive Example 1 was filled in an alumina crucible covered with Mo foil and the vacuum exhaust was controlled to 1.0 × 10 −1 Pa or less. It is subjected to a vacuum heat treatment for 4 hours. It can be seen that the amount of oxygen is further reduced and the remaining carbon is reduced as compared with the case where only the thermal plasma treatment is performed, and an extremely high-quality Mo powder is obtained.
以下の実施例2ではRu粉末に対する本発明の効果を説明する。
本実施例では、プラズマ発生空間がΦ70mmの円筒形である以外は実施例1と同様な基本構造からなる装置を用いた。処理時のプラズマ動作条件は、出力30kW、圧力80kPa、作動ガスとして不活性ガスのArガス72L/min(nor)、H2ガス10L/min(nor)、キャリアガスとして不活性ガスのArガス4L/min(nor)に設定とした。また、熱プラズマ炎への原料金属粉末の供給速度は、0.36kg/hに設定した。
Example 2 below illustrates the effect of the present invention on Ru powder.
In this example, an apparatus having the same basic structure as that of Example 1 was used except that the plasma generation space was a cylindrical shape having a diameter of 70 mm. The plasma operating conditions at the time of processing were: output 30 kW, pressure 80 kPa, inert gas Ar gas 72 L / min (nor) as working gas, H 2 gas 10 L / min (nor), and inert gas Ar gas 4 L as carrier gas / Min (nor). The supply rate of the raw metal powder to the thermal plasma flame was set to 0.36 kg / h.
実験に用いた原料の詳細を表3に示す。原料は全て市販のものである。炭化水素系有機化合物としては脂肪酸の一種であるステアリン酸(分子構造CH3(CH2)16COOH、分子量284.48、融点68〜71℃)を用いた。室温での形態は顆粒状でRu原料粉末に比べて粒径が非常に大きいため、乳鉢で粉砕して使用した。 Table 3 shows the details of the raw materials used in the experiment. All raw materials are commercially available. As the hydrocarbon-based organic compound, stearic acid (molecular structure CH 3 (CH 2 ) 16 COOH, molecular weight 284.48, melting point 68 to 71 ° C.), which is a kind of fatty acid, was used. Since the form at room temperature is granular and the particle size is much larger than that of the Ru raw material powder, it was used after being pulverized in a mortar.
表4に本発明例、比較例、それぞれの詳細と、C、Oの分析値を示す。
本発明例3としては、ステアリン酸の含有量が0.1質量%となるようRu原料粉末とステアリン酸とをそれぞれ秤量し、Vブレンダーを用いて30分間混合した混合物を、ガラス瓶につめ、大気中で80℃で30分間加熱することでステアリン酸を加熱溶融させ、Ru原料粉末の粒子表面にステアリン酸を被覆した原料金属粉末を作製した。この原料金属粉末を、上記熱プラズマ装置で上記の条件で発生させた熱プラズマ炎中に通過させて熱プラズマ処理を施した。
また、比較例3としては、Ru原料粉末をステアリン酸を被覆せずそのまま、本発明例3と同様の条件で、熱プラズマ炎中に通過させて熱プラズマ処理を施した。
Table 4 shows examples of the present invention, comparative examples, details of each, and analytical values of C and O.
As Example 3 of the present invention, Ru raw material powder and stearic acid were weighed so that the content of stearic acid was 0.1% by mass, and a mixture obtained by mixing for 30 minutes using a V blender was put in a glass bottle, and the atmosphere The raw metal powder in which stearic acid was heated and melted by heating at 80 ° C. for 30 minutes to coat the surface of the Ru raw material powder with stearic acid was produced. This raw metal powder was passed through a thermal plasma flame generated under the above conditions by the above thermal plasma apparatus, and was subjected to a thermal plasma treatment.
Further, as Comparative Example 3, the Ru raw material powder was passed through the thermal plasma flame as it was without being coated with stearic acid, and was subjected to the thermal plasma treatment.
表4から、本発明例3によって得られたRu粉末は、参考値に挙げた熱プラズマ処理を施さないRu原料粉末や、比較例3のRu粉末に比べ、酸素が低減されていることがわかる。 From Table 4, it can be seen that the Ru powder obtained by Inventive Example 3 has reduced oxygen compared to the Ru raw material powder not subjected to the thermal plasma treatment mentioned in the reference values and the Ru powder of Comparative Example 3. .
本発明例4は、本発明例3のRu粉末をアルミナ坩堝中に充填し、圧力を105kPaに設定した水素雰囲気炉内で1000℃、3hの熱処理を施したものである。前記熱プラズマ処理を施しただけのもの(本発明例3)に比べて、いっそう酸素量が低下し、残留していた炭素も大幅に低減され、極めて高品位なRu粉末が得られていることがわかる。
また、本発明例5は、本発明例3のRu粉末をアルミナ坩堝中に充填し、1.0×10−1Pa以下に減圧排気の制御をした真空炉内で1000℃、3hの真空熱処理を施したものである。前記熱プラズマ処理を施しただけのもの(本発明例3)に比べて、いっそう酸素量が低下し、残留していた炭素も低減され、非常に高品位なRu粉末が得られていることがわかる。
Inventive Example 4 was obtained by filling the Ru powder of Inventive Example 3 in an alumina crucible and performing heat treatment at 1000 ° C. for 3 hours in a hydrogen atmosphere furnace set at a pressure of 105 kPa. Compared with the one just subjected to the thermal plasma treatment (Example 3 of the present invention), the amount of oxygen is further reduced, the remaining carbon is greatly reduced, and an extremely high-quality Ru powder is obtained. I understand.
Inventive Example 5 is a vacuum heat treatment at 1000 ° C. for 3 hours in a vacuum furnace in which the Ru powder of Inventive Example 3 is filled in an alumina crucible and controlled to be evacuated to 1.0 × 10 −1 Pa or less. Is given. Compared to the one just subjected to the thermal plasma treatment (Example 3 of the present invention), the amount of oxygen is further reduced, the remaining carbon is reduced, and a very high-quality Ru powder is obtained. Recognize.
本発明例3と比較例3における、熱プラズマ処理に投入したRu原料粉末と回収されたRu粉末との重量を比較した結果、本発明例3の方が蒸発による滅失量が減少し、熱プラズマ処理後の回収されたRu粉末の重量が3%増加していた。このことから、ステアリン酸を被覆することが熱プラズマ処理時の歩留り向上にも効果があることがわかる。
As a result of comparing the weights of the Ru raw material powder put into the thermal plasma treatment and the recovered Ru powder in the inventive example 3 and the comparative example 3, the inventive example 3 has less loss due to evaporation, and the thermal plasma. The weight of the recovered Ru powder after treatment increased by 3%. From this, it can be seen that coating with stearic acid is effective in improving the yield during the thermal plasma treatment.
1 冷却壁
2 プラズマ発生空間
3 高周波コイル
4 作動ガス供給部
5 熱プラズマ炎
6 粉末供給ノズル
7 チャンバー
8 排気装置
DESCRIPTION OF SYMBOLS 1 Cooling wall 2 Plasma generating space 3 High frequency coil 4 Working gas supply part 5 Thermal plasma flame 6
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005300307A JP4609763B2 (en) | 2004-10-15 | 2005-10-14 | Method for producing low oxygen metal powder |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004301299 | 2004-10-15 | ||
JP2005300307A JP4609763B2 (en) | 2004-10-15 | 2005-10-14 | Method for producing low oxygen metal powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006138012A JP2006138012A (en) | 2006-06-01 |
JP4609763B2 true JP4609763B2 (en) | 2011-01-12 |
Family
ID=36619016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005300307A Active JP4609763B2 (en) | 2004-10-15 | 2005-10-14 | Method for producing low oxygen metal powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4609763B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8012235B2 (en) | 2006-04-14 | 2011-09-06 | Hitachi Metals, Ltd. | Process for producing low-oxygen metal powder |
JP5426173B2 (en) * | 2007-01-12 | 2014-02-26 | 新日鉄住金マテリアルズ株式会社 | Mo-based sputtering target plate and manufacturing method thereof |
SG11201407009UA (en) * | 2012-10-25 | 2014-12-30 | Jx Nippon Mining & Metals Corp | Fe-Pt-BASED SPUTTERING TARGET HAVING NON-MAGNETIC SUBSTANCE DISPERSED THEREIN |
CN104550903B (en) * | 2014-12-11 | 2017-05-03 | 陕西斯瑞新材料股份有限公司 | Hydrogen plasma deoxidation method for chromium powder |
US20190061005A1 (en) * | 2017-08-30 | 2019-02-28 | General Electric Company | High Quality Spherical Powders for Additive Manufacturing Processes Along With Methods of Their Formation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002275625A (en) * | 2001-03-19 | 2002-09-25 | Hitachi Metals Ltd | Ru TARGET MATERIAL AND PRODUCTION METHOD THEREFOR |
JP2004091843A (en) * | 2002-08-30 | 2004-03-25 | Hitachi Metals Ltd | Manufacturing method of high purity high melting point metal powder |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5813601B2 (en) * | 1978-01-19 | 1983-03-15 | 株式会社小松製作所 | Method for reducing surface layer oxide of iron-based powder |
-
2005
- 2005-10-14 JP JP2005300307A patent/JP4609763B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002275625A (en) * | 2001-03-19 | 2002-09-25 | Hitachi Metals Ltd | Ru TARGET MATERIAL AND PRODUCTION METHOD THEREFOR |
JP2004091843A (en) * | 2002-08-30 | 2004-03-25 | Hitachi Metals Ltd | Manufacturing method of high purity high melting point metal powder |
Also Published As
Publication number | Publication date |
---|---|
JP2006138012A (en) | 2006-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102393229B1 (en) | Preparation of Tungsten Monocarbide (WC) Spherical Powder | |
US8012235B2 (en) | Process for producing low-oxygen metal powder | |
JP4837805B2 (en) | Magnetic material sputtering target | |
JP2009527640A (en) | High density molybdenum metal powder and method for producing the same | |
WO2009054369A9 (en) | Sputtering target for magnetic recording film and method for manufacturing such sputtering target | |
JP4609763B2 (en) | Method for producing low oxygen metal powder | |
JP4921806B2 (en) | Tungsten ultrafine powder and method for producing the same | |
JP2015096647A (en) | Alloy target of aluminum and rare earth element and manufacturing method of the same | |
JP4465662B2 (en) | Method for producing metal powder and method for producing target material | |
JP4731347B2 (en) | Method for producing composite copper fine powder | |
JP5861839B2 (en) | Method for manufacturing molybdenum target | |
CN115044794B (en) | Cu- (Y) with excellent performance 2 O 3 -HfO 2 ) Alloy and preparation method thereof | |
JP2020505754A (en) | Method for producing neodymium-iron-boron permanent magnet material | |
JP2013082998A (en) | MoTi TARGET MATERIAL, AND METHOD FOR PRODUCTION THEREOF | |
JPWO2017199873A1 (en) | Metal evaporation material | |
Xu et al. | The preparation process of ultrafine gain W-Re powder by wet chemical method and its effect on alloy properties | |
JP2008105936A (en) | Carbide powder | |
JPWO2020166380A1 (en) | Sputtering target material | |
JPWO2009107498A1 (en) | Sb-Te alloy powder for sintering, method for producing the same, and sintered body target | |
JP2007277067A (en) | Conductive corrosion resistant member and its manufacturing method | |
JP2011153381A (en) | Composite copper fine powder | |
JP5699016B2 (en) | Ru-Pd-based sputtering target and method for producing the same | |
JP4437934B2 (en) | Fluorine-containing indium-tin oxide sintered body and method for producing the same | |
US6179897B1 (en) | Method for the generation of variable density metal vapors which bypasses the liquidus phase | |
JP2005314716A (en) | Method for producing target material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080911 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100917 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100930 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4609763 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |