JP4609725B2 - Process for producing blast furnace outlet closing material composition - Google Patents

Process for producing blast furnace outlet closing material composition Download PDF

Info

Publication number
JP4609725B2
JP4609725B2 JP2006022416A JP2006022416A JP4609725B2 JP 4609725 B2 JP4609725 B2 JP 4609725B2 JP 2006022416 A JP2006022416 A JP 2006022416A JP 2006022416 A JP2006022416 A JP 2006022416A JP 4609725 B2 JP4609725 B2 JP 4609725B2
Authority
JP
Japan
Prior art keywords
phenol resin
type phenol
blast furnace
resin
furnace outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006022416A
Other languages
Japanese (ja)
Other versions
JP2007204291A (en
Inventor
健一 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2006022416A priority Critical patent/JP4609725B2/en
Publication of JP2007204291A publication Critical patent/JP2007204291A/en
Application granted granted Critical
Publication of JP4609725B2 publication Critical patent/JP4609725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、高炉出銑口閉塞材として好適な高炉出銑口閉塞材組成物の製造方法に関する。   The present invention relates to a method for producing a blast furnace outlet closing material composition suitable as a blast furnace outlet closing material.

高炉より銑鉄を取り出した後にマッドガンを用いて該出銑口を閉塞するために使用する高炉出銑口閉塞材は、耐火性骨材と該耐火性骨材の結着材から構成されており、通常、タール、樹脂等を結着材として用い、耐火性骨材と混合、混練して製造されている。従来より、前記結着材として樹脂を用いる場合、硬化物の耐火性に優れる点からノボラック型フェノール樹脂を主剤として用い、その硬化剤としてヘキサメチレンテトラミンが広く用いられている。しかし、結着材としてノボラック型フェノール樹脂とヘキサメチレンテトラミンとを併用した場合、加熱、硬化時に前記ヘキサメチレンテトラミンの分解によりアンモニアガス等の揮発成分の発生を招来してしまう為、作業環境上の問題を有していた。そこで、このような問題を解決するため、レゾール型フェノール樹脂をノボラック型フェノール樹脂の硬化剤として併用して使用することが提案されている(例えば、特許文献1参照)。   The blast furnace outlet closing material used to close the outlet using a mud gun after removing pig iron from the blast furnace is composed of a fireproof aggregate and a binder of the fireproof aggregate. Usually, tar, resin or the like is used as a binder, and is mixed and kneaded with a refractory aggregate. Conventionally, when a resin is used as the binder, a novolac type phenol resin is used as a main agent from the viewpoint of excellent fire resistance of a cured product, and hexamethylenetetramine has been widely used as the curing agent. However, when a novolac type phenolic resin and hexamethylenetetramine are used in combination as a binder, the generation of volatile components such as ammonia gas is caused by decomposition of the hexamethylenetetramine at the time of heating and curing. Had a problem. Then, in order to solve such a problem, it has been proposed to use a resol type phenol resin in combination as a curing agent for a novolac type phenol resin (see, for example, Patent Document 1).

しかし、この方法は単純にブレンドによって硬化させるため、高炉内部における閉塞材深度を確保するには相当な時間を要し、充填作業性の低下を招くものであった。その一方で高粘性の結着材を使用した場合には、短時間の作業である程度の閉塞材深度を確保することができるものの、高炉出銑口閉塞材自体の粘性が極めて高くなってしまうために充填作業の際、マッドガンに過度のトルクが必要となってしまい、却って充填作業性を低下させるものであった。   However, since this method is simply cured by blending, it takes a considerable amount of time to secure the depth of the plugging material inside the blast furnace, leading to a decrease in filling workability. On the other hand, when a high-viscosity binder is used, a certain degree of plugging material depth can be secured in a short time, but the viscosity of the blast furnace outlet plugging material itself becomes extremely high. In addition, during the filling operation, an excessive torque is required for the mud gun, and on the contrary, the filling workability is lowered.

特願2004−284888Japanese Patent Application No. 2004-284888

従って、本発明が解決しようとする課題は、作業環境性が良好であると共に、適度な固さと硬化物の耐火性を具備し、かつ、短時間で閉塞材深度を確保できることにより、マッドガンによる充填作業性に優れる高炉出銑口閉塞材を提供することにある。   Accordingly, the problem to be solved by the present invention is that the working environment is good, the hardness of the cured product is appropriate, and the depth of the plugging material can be secured in a short time. An object of the present invention is to provide a blast furnace outlet closing material excellent in workability.

本発明者は、前記の課題を解決するため、鋭意検討した結果、高炉出銑口閉塞材において耐火性骨材の結着材として分子量を所定の範囲に調節された前記ノボラック型フェノール樹脂(A)と前記レゾール型フェノール樹脂(B)とを混練後、該樹脂間の反応生成物の分子量が適切な分子量に達するまで加熱することで、適度な固さを具備すると共に、結着材と耐火性骨材との密着性が良好となってマッドガンによる出銑口への充填作業性に優れる高炉出銑口閉塞材組成物が得られることを見出し、本発明を完成するに至った。   As a result of intensive investigations to solve the above-mentioned problems, the present inventor has found that the novolac-type phenolic resin (A) whose molecular weight is adjusted to a predetermined range as a binder for a refractory aggregate in a blast furnace outlet closing material. ) And the resol type phenolic resin (B) and then heated until the molecular weight of the reaction product between the resins reaches an appropriate molecular weight. As a result, it was found that a blast furnace outlet closing material composition having good adhesion to the conductive aggregate and excellent in filling workability to the outlet with a mud gun can be obtained, and the present invention has been completed.

即ち、本発明は、数平均分子量が1,000以下のノボラック型フェノール樹脂(A)と、数平均分子量が800以下のレゾール型フェノール樹脂(B)とを、耐火性骨材(C)に配合し混練した後、得られた混練物を加熱し、前記ノボラック型フェノール樹脂(A)と、前記レゾール型フェノール樹脂(B)との反応生成物の数平均分子量が1,500〜5,000となるまで加熱することを特徴とする高炉出銑口閉塞材組成物の製造方法に関する。   That is, the present invention blends a novolak type phenolic resin (A) having a number average molecular weight of 1,000 or less and a resol type phenolic resin (B) having a number average molecular weight of 800 or less into a fireproof aggregate (C). After kneading, the obtained kneaded product is heated until the number average molecular weight of the reaction product of the novolac type phenol resin (A) and the resol type phenol resin (B) is 1,500 to 5,000. The present invention relates to a method for producing a blast furnace outlet closing material composition, characterized by heating.

本発明によれば、高炉出銑口閉塞材組成物をマッドガンにより出銑口へ充填する時に良好な作業性を有する高炉出銑口閉塞材組成物の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the blast furnace outlet opening obstruction | occlusion material composition which has favorable workability | operativity when filling a blast furnace outlet opening obstruction | occlusion material composition with a mud gun can be provided.

以下、本発明を詳細に説明する。
本発明の高炉出銑口閉塞材組成物の製造方法は、数平均分子量が1,000以下のノボラック型フェノール樹脂(A)と、数平均分子量が800以下のレゾール型フェノール樹脂(B)と、耐火性骨材(C)とを配合し混練する工程(以下、この工程を「第一工程」と略記する。)、及び続いて、前記ノボラック型フェノール樹脂(A)と、前記レゾール型フェノール樹脂(B)との反応生成物の数平均分子量が1,500〜5,000となるまで、前記の第一工程で得られた混練物を加熱する工程(以下、この工程を「第二工程」と略記する。)から構成される。
Hereinafter, the present invention will be described in detail.
The method for producing a blast furnace outlet closing material composition of the present invention includes a novolak type phenol resin (A) having a number average molecular weight of 1,000 or less, a resol type phenol resin (B) having a number average molecular weight of 800 or less, A step of blending and kneading the refractory aggregate (C) (hereinafter, this step is abbreviated as “first step”), and then the novolac type phenol resin (A) and the resol type phenol resin. A step of heating the kneaded product obtained in the first step until the number average molecular weight of the reaction product with (B) is 1,500 to 5,000 (hereinafter, this step is abbreviated as “second step”). ).

本発明の第一工程はノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)と耐火性骨材(C)とを混練装置に投入し分散混合する工程である。ここで、使用する混練装置として例えばミックスマラーや、遊星型ミキサー、ニーダー等が挙げられるがその中でもミックスマラーが、ノボラック型フェノール樹脂(A)、レゾール型フェノール樹脂(B)、及び耐火性骨材(C)の混練性が良好であり、組成物の均一性に優れる点から好ましい。 The first step of the present invention is a step in which a novolac type phenol resin (A), a resol type phenol resin (B) and a refractory aggregate (C) are charged into a kneading apparatus and dispersed and mixed. Here, examples of the kneading apparatus to be used include a mix muller, a planetary mixer, and a kneader. Among them, the mix muller includes a novolac type phenol resin (A), a resol type phenol resin (B), and a refractory aggregate. The kneadability of (C) is good, which is preferable from the viewpoint of excellent uniformity of the composition.

混練時の温度は、混練中の前記ノボラック型フェノール樹脂(A)と前記レゾール型フェノール樹脂(B)との反応を抑制できる点から20℃〜40℃の範囲であることが好ましい。混練に要する時間は30分〜60分程度が充填作業性の面で好ましいが特に限定するものでない。 The temperature at the time of kneading is preferably in the range of 20 ° C. to 40 ° C. from the viewpoint that the reaction between the novolak type phenol resin (A) and the resol type phenol resin (B) during kneading can be suppressed. The time required for kneading is preferably about 30 to 60 minutes in terms of filling workability, but is not particularly limited.

前記第一工程で使用するノボラック型フェノール樹脂(A)、及びレゾール型フェノール樹脂(B)は、それらの分子量が大きく樹脂粘度が高くなる場合、耐火性骨材(C)の個々の粒子表面を濡らすことが困難になり、樹脂類と耐火性骨材の良好な混合分散状態が得られないため、ノボラック型フェノール樹脂(A)の数平均分子量は1,000以下であって、かつ、レゾール型フェノール樹脂(B)は、数平均分子量が800以下であることが好ましい。ここで、前記レゾール型フェノール樹脂は、ノボラック型フェノール樹脂に比べて低粘度であることにより結着材成分全体の粘度を低減することが可能となる。 The novolak-type phenol resin (A) and the resol-type phenol resin (B) used in the first step have individual particle surfaces of the refractory aggregate (C) when their molecular weight is large and the resin viscosity is high. Since it becomes difficult to wet and a good mixed and dispersed state of resins and refractory aggregates cannot be obtained, the novolak type phenol resin (A) has a number average molecular weight of 1,000 or less and a resol type The phenol resin (B) preferably has a number average molecular weight of 800 or less. Here, the resol-type phenol resin has a lower viscosity than the novolac-type phenol resin, so that the viscosity of the entire binder component can be reduced.

耐火性骨材(C)の個々の粒子表面を良好に濡らし、配合物の良好な分散混合状態を得るために、本発明で用いるノボラック型フェノール樹脂(A)及びレゾール型フェノール樹脂(B)は、該樹脂を有機溶剤で溶解し使用することができる。有機溶剤で溶解する方法は、ノボラック型フェノール樹脂(A)及びレゾール型フェノール樹脂(B)のそれぞれを単独で溶解する方法、ノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)を混合して同時に溶解する方法の何れの方法を用いても良い。 The novolak type phenol resin (A) and the resol type phenol resin (B) used in the present invention are used in order to wet the individual particle surfaces of the refractory aggregate (C) well and to obtain a good dispersion and mixing state of the blend. The resin can be used by dissolving in an organic solvent. The method of dissolving with an organic solvent is a method of dissolving each of the novolac type phenol resin (A) and the resol type phenol resin (B) alone, and the novolac type phenol resin (A) and the resol type phenol resin (B) are mixed. Any method of dissolving at the same time may be used.

前記ノボラック型フェノール樹脂(A)及びレゾール型フェノール樹脂(B)を溶解するために用いる有機溶剤は、沸点が高いものが好ましく、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等のグリコール類が挙げられ、更に、前記グリコール類をメタノール、エタノール、ブタノールのような低級アルコールでエーテル化したカルビトール類やセロソルブ類を挙げることができ、好ましくは前記のノボラック型フェノール樹脂(A)及びレゾール型フェノール樹脂(B)の溶解性が良いことからエチレングリコールである。 The organic solvent used for dissolving the novolak type phenol resin (A) and the resol type phenol resin (B) preferably has a high boiling point, such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, etc. In addition, carbitols and cellosolves obtained by etherifying the glycols with lower alcohols such as methanol, ethanol, and butanol can be used, and the novolak type phenol resin (A) is preferable. And since it has good solubility of the resol type phenol resin (B), it is ethylene glycol.

前記有機溶剤を用いて製造した、ノボラック型フェノール樹脂(A)溶液、又はレゾール型フェノール樹脂(B)溶液、又はノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)との混合物の溶液の粘度は、25℃において30,000mPa・s以下の範囲であることが好ましい。 A novolac-type phenol resin (A) solution, a resol-type phenol resin (B) solution, or a mixture of a novolac-type phenol resin (A) and a resol-type phenol resin (B) produced using the organic solvent. The viscosity is preferably in the range of 30,000 mPa · s or less at 25 ° C.

前記ノボラック型フェノール樹脂(A)溶液、又は前記レゾール型フェノール樹脂(B)溶液、又は前記ノボラック型フェノール樹脂(A)と前記レゾール型フェノール樹脂(B)との混合物の溶液の固形分含有率は、本発明の製造方法で得られた高炉出銑口閉塞材組成物が出銑口へ充填され、その後、該組成物中のノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)とが、高炉内の熱により反応、硬化し炭化した際の炭素成分の残留率が高い方が良いという観点から質量%で60%〜80%が好ましい。   The solid content of the solution of the novolac type phenol resin (A) solution, the resol type phenol resin (B) solution, or the mixture of the novolac type phenol resin (A) and the resol type phenol resin (B) is The blast furnace outlet closing material composition obtained by the production method of the present invention is filled into the outlet, and then the novolac type phenol resin (A) and the resol type phenol resin (B) in the composition are From the standpoint that it is better that the residual ratio of the carbon component when the reaction, curing, and carbonization with the heat in the blast furnace is high, 60% to 80% by mass is preferable.

本発明で用いるノボラック型フェノール樹脂(A)は、ホルムアルデヒド類とフェノール類とを、ホルムアルデヒド類のアルデヒド単位のモル数(F)とフェノール類のモル数(P)のモル比[ホルムアルデヒド類のアルデヒド単位のモル数(F)/フェノール類のモル数(P)]が0.5〜0.9となるように配合し、酸性の反応触媒存在下で反応させて得ることができる。使用する酸性の反応触媒は、例えば塩酸、硫酸、リン酸、アルキルスルホン酸等が挙げられる。また、本発明で用いるレゾール型フェノール樹脂(B)はホルムアルデヒド類とフェノール類とを、ホルムアルデヒド類のアルデヒド単位のモル数(F)とフェノール類のモル数(P)のモル比[ホルムアルデヒド類のアルデヒド単位のモル数(F)/フェノール類のモル数(P)]が1.0〜2.0となる範囲で配合し、アルカリ性の反応触媒存在下で反応させて得ることができる。使用するアルカリ性の反応触媒は、例えば水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基や、モノエタノールアミン、モノエチルアミン、トリエチルアミン等のアミン類が挙げられ、好ましくはトリエチルアミンである。前記のホルムアルデヒド類は、例えばホルマリン、パラホルムアルデヒド等を挙げることができ、前記のフェノール類は例えばフェノール、ビスフェノールA、ビスフェノールF、クレゾール、キシレノール等を挙げることができ、好ましくはフェノール、クレゾールである。 The novolak-type phenol resin (A) used in the present invention comprises formaldehydes and phenols in a molar ratio of the number of moles of aldehyde units (F) to the number of moles of phenols (P) [aldehyde unit of formaldehydes]. The number of moles of (F) / the number of moles of phenol (P)] is 0.5 to 0.9, and the reaction is carried out in the presence of an acidic reaction catalyst. Examples of the acidic reaction catalyst to be used include hydrochloric acid, sulfuric acid, phosphoric acid, alkylsulfonic acid and the like. The resol type phenolic resin (B) used in the present invention comprises formaldehydes and phenols in a molar ratio of the number of moles of aldehyde units (F) and the number of moles of phenols (P) [aldehyde of formaldehyde The number of moles of units (F) / number of moles of phenols (P)] is in the range of 1.0 to 2.0, and can be obtained by reacting in the presence of an alkaline reaction catalyst. Examples of the alkaline reaction catalyst to be used include inorganic bases such as sodium hydroxide, potassium hydroxide and ammonia, and amines such as monoethanolamine, monoethylamine and triethylamine, preferably triethylamine. Examples of the formaldehydes include formalin and paraformaldehyde, and examples of the phenols include phenol, bisphenol A, bisphenol F, cresol, and xylenol, preferably phenol and cresol.

本発明におけるノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)との配合比率は、前記ノボラック型フェノール樹脂(A)と、前記レゾール型フェノール樹脂(B)との反応生成物が、該反応生成物中のメチレン基の数(Me)と芳香環の数(Ar)の比[メチレン基の数(Me)/芳香環の数(Ar)]において、充填時に良好な作業性を得るという観点から0.5〜1.1となるように配合することが好ましい。   The blending ratio of the novolac type phenol resin (A) and the resol type phenol resin (B) in the present invention is such that the reaction product of the novolac type phenol resin (A) and the resol type phenol resin (B) According to the ratio of the number of methylene groups (Me) and the number of aromatic rings (Ar) in the reaction product [number of methylene groups (Me) / number of aromatic rings (Ar)], good workability can be obtained at the time of filling. It is preferable to mix | blend so that it may become 0.5-1.1 from a viewpoint.

本発明の第二工程は、前記の第一工程で製造したノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)と耐火性骨材(C)との分散混合物を加熱し、ノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)との反応で生成する反応物を、数平均分子量で1,500〜5,000の範囲まで高分子量化する工程である。かかる第二工程において加熱を行うことで後続するマッドガンでの充填工程において良好な作業性を得ることができる。この工程において高分子量化が不十分であると、得られた高炉出銑口閉塞材組成物の粘性が低く、マッドガンを用いて充填する際に適切な深度を得るために、マッドガンの充填圧力を下げる必要があり、その結果充填に要する時間が長くかかり良好な充填作業性が得られない。該反応物の高分子量化が進みすぎると、その結果得られる高炉出銑口閉塞材組成物の粘性が高くなりすぎ、マッドガンを用いて充填する際に充填圧力を高くする必要が生じたり、充填圧力を高くしても該高炉出銑口閉塞材組成物が固いため充填できなくなったりして充填作業性の悪化を招く。 In the second step of the present invention, the novolac-type phenol resin (A), the resol-type phenol resin (B) and the refractory aggregate (C) produced in the first step are heated to produce a novolak-type phenol. This is a step of increasing the molecular weight of a reaction product produced by the reaction between the resin (A) and the resol type phenol resin (B) to a range of 1,500 to 5,000 in terms of number average molecular weight. By performing the heating in the second step, good workability can be obtained in the subsequent filling step with a mud gun. Insufficient high molecular weight in this process, the viscosity of the resulting blast furnace outlet closing material composition is low, and in order to obtain an appropriate depth when filling with a mud gun, the filling pressure of the mud gun is reduced. As a result, it takes a long time to fill, and good filling workability cannot be obtained. When the molecular weight of the reactant is increased too much, the viscosity of the resulting blast furnace outlet closing material composition becomes too high, and it becomes necessary to increase the filling pressure when filling with a mud gun. Even if the pressure is increased, the blast furnace outlet closing material composition is hard and cannot be filled, resulting in deterioration of filling workability.

前記第二工程における加熱は、前記ノボラック型フェノール樹脂(A)と前記レゾール型フェノール樹脂(B)との反応で生成する反応物を、数平均分子量で1,500〜5,000の範囲まで高分子量化するための反応制御が容易であることより50℃〜100℃の温度範囲で行うことが好ましい。   The heating in the second step increases the reaction product generated by the reaction of the novolak type phenol resin (A) and the resol type phenol resin (B) to a range of 1,500 to 5,000 in number average molecular weight. It is preferable to carry out in a temperature range of 50 ° C. to 100 ° C. because the reaction control for increasing the molecular weight is easy.

本発明の耐火性骨材(C)は、通常の耐火物に用いられる耐火物用骨材であって、例えばマグネシア、アルミナ、炭化珪素、ロウ石、ジルコニア、窒化物、金属粉、金属繊維、炭素質の土壌黒鉛、鱗状黒鉛、人造の石油や石炭から得られるピッチの粒や粉が挙げられ、中でもマグネシア又はアルミナと上記例示の耐火性骨材との混合物やマグネシアとアルミナとの混合物と上記例示の耐火性骨材との混合物として使用することが耐火性に優れる点から好ましい。   The refractory aggregate (C) of the present invention is a refractory aggregate used for ordinary refractories, such as magnesia, alumina, silicon carbide, wax, zirconia, nitride, metal powder, metal fiber, Carbonaceous soil graphite, scaly graphite, pitch grains and powders obtained from artificial petroleum and coal are mentioned, among others, a mixture of magnesia or alumina and the above-mentioned refractory aggregate or a mixture of magnesia and alumina and the above It is preferable to use it as a mixture with the exemplified fire resistant aggregate from the viewpoint of excellent fire resistance.

本発明の高炉出銑口閉塞材組成物において各配合物の配合割合は、耐火性骨材(C)100質量部に対して、ノボラック型フェノール樹脂(A)と、レゾール型フェノール樹脂(B)との混合物が20質量部〜30質量部なる範囲が好ましい。   In the blast furnace outlet closure material composition of the present invention, the blending ratio of each compound is such that the novolac type phenol resin (A) and the resol type phenol resin (B) with respect to 100 parts by mass of the refractory aggregate (C). And the mixture is preferably in the range of 20 to 30 parts by mass.

以下に本発明を実施例により更に詳細に説明するが、本発明はこれら実施例にのみ限定されるものではない。   Examples The present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

まず、高炉出銑口閉塞材組成物のバインダーに用いるために、ノボラック型フェノール樹脂、レゾール型フェノール樹脂の各製造を行った。 First, in order to use for the binder of a blast furnace outlet opening obstruction | occlusion material composition, each manufacture of a novolak type phenol resin and a resole type phenol resin was performed.

製造例1
フェノール10モルと、37%ホルムアルデヒド5モル相当の水溶液とを2Lの四つ口フラスコに仕込み、硫酸触媒で反応後に減圧脱水して、エチレングリコールで70%濃度で、25℃粘度21,000mPa.sとした溶液を製造した。得られたノボラック型フェノール樹脂溶液を「N−1」とする。「N−1」中のノボラック型フェノール樹脂の数平均分子量は850であった。
Production Example 1
10 mol of phenol and an aqueous solution equivalent to 5 mol of 37% formaldehyde were charged into a 2 L four-necked flask, dehydrated under reduced pressure after reaction with a sulfuric acid catalyst, and 70% concentration with ethylene glycol, 25 ° C. viscosity 21,000 mPa.s. A solution designated s was produced. Let the obtained novolak-type phenol resin solution be "N-1." The number average molecular weight of the novolak type phenol resin in “N-1” was 850.

製造例2
フェノール10モルと、50%ホルムアルデヒド7モル相当の水溶液とを仕込み、塩酸触媒でN−1製造と同じく反応、脱水し、エチルカルビトールで70%濃度、25℃粘度29,000mPa.sに調整した溶液を得た。得られたノボラック型フェノール樹脂溶液を「N−2」とする。「N−2」中のノボラック型フェノール樹脂の数平均分子量は800であった。
Production Example 2
10 mol of phenol and an aqueous solution equivalent to 7 mol of 50% formaldehyde were charged, reacted and dehydrated with hydrochloric acid catalyst in the same manner as in the production of N-1, dehydrated, 70% concentration with ethyl carbitol, 25 ° C. viscosity, 29,000 mPa.s. A solution adjusted to s was obtained. Let the obtained novolak-type phenol resin solution be "N-2". The number average molecular weight of the novolak type phenol resin in “N-2” was 800.

製造例3
クレゾール10モルと、92%パラホルムアルデヒドの4モル相当と、42%ホルムアルデヒド5モル相当の水溶液とを仕込み、リン酸触媒でN−1製造と同じく反応、脱水し、プロピレングリコールで70%濃度、25℃粘度12,000mPa.sに調整した溶液を得た。得られたノボラック型フェノール樹脂溶液を「N−3」とする。「N−3」中のノボラック型フェノール樹脂の数平均分子量は900であった。
Production Example 3
10 mol of cresol, 4 mol of 92% paraformaldehyde, and an aqueous solution corresponding to 5 mol of 42% formaldehyde were charged, reacted and dehydrated in the same manner as N-1 production using a phosphoric acid catalyst, 70% concentration with propylene glycol, 25 ° C viscosity 12,000 mPa.s A solution adjusted to s was obtained. Let the obtained novolak-type phenol resin solution be "N-3". The number average molecular weight of the novolak type phenol resin in “N-3” was 900.

製造例4
フェノール10モルと、ホルムアルデヒド10モル相当の42%水溶液とを仕込み、水酸化ナトリウム水溶液触媒で反応し、減圧脱水により濃縮し、エチレングリコールで70%濃度、25℃粘度380mPa.sに調整したレゾール型フェノール樹脂液を製造した。得られたレゾール型フェノール樹脂溶液を「R−1」とする。「R−1」中のレゾール型フェノール樹脂の数平均分子量は520であった。
Production Example 4
10 mol of phenol and a 42% aqueous solution equivalent to 10 mol of formaldehyde were reacted, reacted with a sodium hydroxide aqueous solution catalyst, concentrated by dehydration under reduced pressure, 70% concentration with ethylene glycol, 25 ° C. viscosity 380 mPa.s. A resol type phenolic resin solution adjusted to s was produced. Let the obtained resol type phenol resin solution be "R-1." The number average molecular weight of the resol type phenol resin in “R-1” was 520.

製造例5
ビスフェノールA10モルと、ホルムアルデヒド15モル相当の50%水溶液とを仕込み、アンモニア触媒で反応し、減圧脱水により濃縮し、プロピレングリコールで70%濃度、25℃粘度960mPa.sに調整したレゾール樹脂液を製造した。得られたレゾール型フェノール樹脂を「R−2」とする。「R−2」中のレゾール型フェノール樹脂の数平均分子量は600であった。
Production Example 5
10 mol of bisphenol A and a 50% aqueous solution equivalent to 15 mol of formaldehyde were charged, reacted with an ammonia catalyst, concentrated by dehydration under reduced pressure, 70% concentration with propylene glycol, 25 ° C. viscosity 960 mPa.s. A resole resin solution adjusted to s was produced. Let the obtained resol type phenol resin be "R-2." The number average molecular weight of the resol type phenol resin in “R-2” was 600.

製造例6
フェノール940gと、ホルムアルデヒド20モル相当の92%パラホルムアルデヒドを水400gと共に仕込み、トリエチルアミン触媒で反応し、減圧脱水により濃縮し、エチルセロソルブで70%濃度、25℃粘度700mPa.sに調整したレゾール型フェノール樹脂液を製造した。得られたレゾール型フェノール樹脂溶液を「R−3」とする。「R−3」中のレゾール型フェノール樹脂の数平均分子量は700であった。
Production Example 6
940 g of phenol and 92% paraformaldehyde equivalent to 20 mol of formaldehyde were added together with 400 g of water, reacted with a triethylamine catalyst, concentrated by dehydration under reduced pressure, 70% concentration with ethyl cellosolve, 25 ° C. viscosity 700 mPa.s. A resol type phenolic resin solution adjusted to s was produced. Let the obtained resol type phenol resin solution be "R-3". The number average molecular weight of the resol type phenol resin in “R-3” was 700.

前記製造例1〜6において、樹脂成分の数平均分子量は、混練物中の樹脂成分をメタノールにより抽出して、GPCで測定した。   In Production Examples 1 to 6, the number average molecular weight of the resin component was measured by GPC after extracting the resin component in the kneaded product with methanol.

以下にアルミナを代表的な耐火性骨材として用い、各質量配合部で配合した実施例及び比較例を示す。なお、下記各実施例及び比較例における加熱条件は、50mm直径、100mm長さの鉄パイプ中に該組成物の一定重量を押し込み、マッドガンに見立てたプランジャー加圧機で押し出す際の圧力が同等になるよう、加熱温度とプランジャーでの加圧圧力との関係を事前に求めておいてそれぞれ加熱温度と加熱時間とを設定したものである。従って、実施例1〜3及び比較例1の配合固さはほぼ一致しているが、比較例2においては加熱処理を行わないため配合されたままの固さである。   Examples and comparative examples in which alumina is used as a typical refractory aggregate and blended in each mass blending part are shown below. The heating conditions in each of the following examples and comparative examples are such that a constant weight of the composition is pushed into an iron pipe having a diameter of 50 mm and a length of 100 mm, and the pressure at the time of extruding with a plunger presser similar to a mud gun is equal. Thus, the relationship between the heating temperature and the pressure applied by the plunger is obtained in advance, and the heating temperature and the heating time are respectively set. Therefore, although the compounding hardness of Examples 1-3 and the comparative example 1 is substantially in agreement, since the heat processing is not performed in the comparative example 2, it is the hardness as it was mix | blended.

実施例1
耐火性骨材100部に製造例1で得られた「N−1」の19部と製造例4で得られたレゾール型フェノール樹脂溶液「R−1」の1部とを混練機により30分間混練して、作業に適正な固さにするため80℃で1日間保持して高分子量化した。これを後述する評価試験に用いた。高分子量化した樹脂成分の数平均分子量は約4,500であった。
Example 1
19 parts of “N-1” obtained in Production Example 1 and 1 part of resol type phenolic resin solution “R-1” obtained in Production Example 4 were mixed in 100 parts of fire-resistant aggregate for 30 minutes using a kneader. The mixture was kneaded and held at 80 ° C. for 1 day to obtain a high molecular weight in order to obtain an appropriate hardness for the work. This was used for the evaluation test described later. The number average molecular weight of the high molecular weight resin component was about 4,500.

実施例2
耐火性骨材100部に製造例2で得られたノボラック型フェノール樹脂溶液「N−2」の10部と製造例5で得られたレゾール型フェノール樹脂溶液「R−2」の10部とを混練機により30分間混練して、作業に適正な固さにするため60℃で10時間保持して高分子量化した。これを後述する評価試験に用いた。高分子量化した樹脂成分の数平均分子量は約2,500であった。
Example 2
10 parts of the novolac type phenolic resin solution “N-2” obtained in Production Example 2 and 10 parts of the resol type phenolic resin solution “R-2” obtained in Production Example 5 were added to 100 parts of fireproof aggregate. The mixture was kneaded with a kneader for 30 minutes, and held at 60 ° C. for 10 hours to increase the molecular weight in order to obtain an appropriate hardness for the work. This was used for the evaluation test described later. The number average molecular weight of the high molecular weight resin component was about 2,500.

実施例3
耐火性骨材100部に製造例3で得られたノボラック型フェノール樹脂溶液「N−3」の12部と製造例6で得られたレゾール型フェノール樹脂溶液「R−3」の8部とを混練機により30分間混練して、作業に適正な固さにするため80℃で12時間保持して高分子量化した。これを後述する評価試験に用いた。高分子量化した樹脂成分の数平均分子量は約3,050であった。
Example 3
12 parts of the novolac type phenolic resin solution “N-3” obtained in Production Example 3 and 8 parts of the resol type phenolic resin solution “R-3” obtained in Production Example 6 were added to 100 parts of fireproof aggregate. The mixture was kneaded with a kneader for 30 minutes, and held at 80 ° C. for 12 hours to increase the molecular weight in order to obtain an appropriate hardness for the work. This was used for the evaluation test described later. The number average molecular weight of the high molecular weight resin component was about 3,050.

比較例1
耐火性骨材100部に製造例1で得られたノボラック型フェノール樹脂溶液「N−1」を20部とヘキサメチレンテトラミンを0.6部配合して、実施例と同様に混練物を得た。
Comparative Example 1
20 parts of the novolac-type phenolic resin solution “N-1” obtained in Production Example 1 and 0.6 part of hexamethylenetetramine were blended with 100 parts of refractory aggregate to obtain a kneaded product in the same manner as in the example. .

比較例2
耐火性骨材100部に製造例2で得られたノボラック型フェノール樹脂溶液「N−2」の10部と製造例5で得られたレゾール型フェノール樹脂溶液「R−2」の10部とを混練機により30分間混練して、実施例2と同様の混練物を製造し、熱処理無しでこれを後述する評価試験に用いた。この樹脂成分の数平均分子量は約700でそれぞれの樹脂をブレンドした状態のままであった。
Comparative Example 2
10 parts of the novolac type phenolic resin solution “N-2” obtained in Production Example 2 and 10 parts of the resol type phenolic resin solution “R-2” obtained in Production Example 5 were added to 100 parts of fireproof aggregate. The kneaded material was kneaded with a kneader for 30 minutes to produce a kneaded material similar to that of Example 2, and this was used in an evaluation test described later without heat treatment. The number average molecular weight of this resin component was about 700, and each resin was still blended.

以下の物性評価試験は該組成物を25mm径×25mm高さの試験片として製造した後、乾燥硬化させるために、200℃で1時間乾燥し室温に冷却して、密度、圧縮強度、気孔率を測定した。結果を表1に示す。 In the following physical property evaluation test, the composition was produced as a test piece of 25 mm diameter × 25 mm height, and then dried and cured at 200 ° C. for 1 hour, cooled to room temperature, density, compressive strength, and porosity. Was measured. The results are shown in Table 1.

Figure 0004609725
Figure 0004609725

上記の通り、実施例1〜3は結着材についてハンドリング性の良好な分子量範囲を有しながらも、ヘキサメチレンテトラミンで硬化させる比較例1と同等な硬化物性能を有するものとなる。また、比較例2は結着材成分の分子量が低く、充填作業性に劣ることは自明である。

As described above, Examples 1 to 3 have a cured product performance equivalent to that of Comparative Example 1 in which the binder is cured with hexamethylenetetramine, while having a molecular weight range with good handling properties. Moreover, it is obvious that Comparative Example 2 has a low molecular weight of the binder component and is inferior in filling workability.

Claims (7)

数平均分子量が1,000以下のノボラック型フェノール樹脂(A)と、数平均分子量が800以下のレゾール型フェノール樹脂(B)とを、耐火性骨材(C)に配合し混練した後、得られた混練物を加熱し、前記ノボラック型フェノール樹脂(A)と、前記レゾール型フェノール樹脂(B)との反応生成物の数平均分子量が1,500〜5,000となるまで加熱することを特徴とする高炉出銑口閉塞材組成物の製造方法。 A novolak type phenolic resin (A) having a number average molecular weight of 1,000 or less and a resol type phenolic resin (B) having a number average molecular weight of 800 or less are blended in a fireproof aggregate (C) and kneaded. The obtained kneaded product is heated and heated until the number average molecular weight of the reaction product of the novolac type phenol resin (A) and the resol type phenol resin (B) is 1,500 to 5,000. A method for producing a blast furnace outlet closing material composition. 前記ノボラック型フェノール樹脂(A)と、前記レゾール型フェノール樹脂(B)との反応生成物が、該反応生成物中のメチレン基の数(Me)と芳香環の数(Ar)の比[メチレン基の数(Me)/芳香環の数(Ar)]において、0.5〜1.1である請求項1記載の高炉出銑口閉塞材組成物の製造方法。 The reaction product of the novolac type phenol resin (A) and the resol type phenol resin (B) has a ratio of the number of methylene groups (Me) and the number of aromatic rings (Ar) in the reaction product [methylene The number of groups (Me) / number of aromatic rings (Ar)] is 0.5 to 1.1. The method for producing a blast furnace outlet closing material composition according to claim 1. 前記ノボラック型フェノール樹脂(A)及び前記レゾール型フェノール樹脂(B)を、それぞれ固形分含有率が質量%で60%〜80%の有機溶剤溶液として用いる請求項1又は2記載の高炉出銑口閉塞材組成物の製造方法。 The blast furnace outlet according to claim 1 or 2, wherein the novolac type phenol resin (A) and the resol type phenol resin (B) are used as an organic solvent solution having a solid content of 60% to 80% by mass. A method for producing an occlusive composition. 前記ノボラック型フェノール樹脂(A)及び前記レゾール型フェノール樹脂(B)を、それぞれ固形分含有率が質量%で60%〜80%であって、かつ、25℃における粘度が30,000mPa・s以下である有機溶剤溶液として用いる請求項1〜3のいずれか一つに記載の高炉出銑口閉塞材組成物の製造方法。 The novolac type phenol resin (A) and the resol type phenol resin (B) each have a solid content of 60% to 80% by mass and a viscosity at 25 ° C. of 30,000 mPa · s or less. The manufacturing method of the blast furnace outlet closure material composition as described in any one of Claims 1-3 used as an organic-solvent solution which is. 前記ノボラック型フェノール樹脂(A)と前記レゾール型フェノール樹脂(B)とを、固形分含有率が質量%で60%〜80%となるように有機溶剤と混合して樹脂溶液を得、次いで、該樹脂溶液に前記耐火性骨材(C)を配合する請求項1又は2記載の高炉出銑口閉塞材組成物の製造方法。 The novolac-type phenol resin (A) and the resol-type phenol resin (B) are mixed with an organic solvent so that the solid content is 60% to 80% by mass% to obtain a resin solution, The manufacturing method of the blast furnace outlet opening obstruction | occlusion material composition of Claim 1 or 2 which mix | blends the said refractory aggregate (C) with this resin solution. 前記ノボラック型フェノール樹脂(A)と前記レゾール型フェノール樹脂(B)とを、固形分含有率が質量%で60%〜80%であって、かつ、25℃における粘度が30,000mPa・s以下となるように有機溶剤と混合して樹脂溶液を得、次いで、該樹脂溶液に前記耐火性骨材(C)を配合する請求項1、2又は5記載の高炉出銑口閉塞材組成物の製造方法。 The novolac type phenolic resin (A) and the resol type phenolic resin (B) have a solid content of 60% to 80% by mass and a viscosity at 25 ° C. of 30,000 mPa · s or less. A blast furnace outlet closing material composition according to claim 1, 2 or 5, wherein a resin solution is obtained by mixing with an organic solvent so that the resin solution is mixed with the refractory aggregate (C). Production method. 前記した加熱を、50℃〜100℃の温度条件で行う請求項1〜6のいずれか一つに記載の高炉出銑口閉塞材組成物の製造方法。


The manufacturing method of the blast furnace outlet closing material composition as described in any one of Claims 1-6 which performs above-described heating on the temperature conditions of 50 to 100 degreeC.


JP2006022416A 2006-01-31 2006-01-31 Process for producing blast furnace outlet closing material composition Expired - Fee Related JP4609725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022416A JP4609725B2 (en) 2006-01-31 2006-01-31 Process for producing blast furnace outlet closing material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022416A JP4609725B2 (en) 2006-01-31 2006-01-31 Process for producing blast furnace outlet closing material composition

Publications (2)

Publication Number Publication Date
JP2007204291A JP2007204291A (en) 2007-08-16
JP4609725B2 true JP4609725B2 (en) 2011-01-12

Family

ID=38484081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022416A Expired - Fee Related JP4609725B2 (en) 2006-01-31 2006-01-31 Process for producing blast furnace outlet closing material composition

Country Status (1)

Country Link
JP (1) JP4609725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747741B (en) * 2021-02-20 2021-11-21 中國鋼鐵股份有限公司 Thermosetting blast furnace grouting material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864448B (en) * 2014-04-01 2015-04-15 郑州市瑞沃耐火材料有限公司 Water-free stemming for medium and large blast furnace
JP6497405B2 (en) * 2017-03-23 2019-04-10 品川リフラクトリーズ株式会社 Mud material for closing blast furnace outlet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140909A (en) * 1975-05-30 1976-12-04 Nippon Steel Corp Mud for blast furnace
JPH08143372A (en) * 1994-11-22 1996-06-04 Harima Ceramic Co Ltd Castable refractory for hot repairing and its production
JPH11349384A (en) * 1998-06-03 1999-12-21 Nkk Corp Production of closing material and binder composition for closing material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140909A (en) * 1975-05-30 1976-12-04 Nippon Steel Corp Mud for blast furnace
JPH08143372A (en) * 1994-11-22 1996-06-04 Harima Ceramic Co Ltd Castable refractory for hot repairing and its production
JPH11349384A (en) * 1998-06-03 1999-12-21 Nkk Corp Production of closing material and binder composition for closing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747741B (en) * 2021-02-20 2021-11-21 中國鋼鐵股份有限公司 Thermosetting blast furnace grouting material

Also Published As

Publication number Publication date
JP2007204291A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US4072531A (en) Plugging compositions for blast furnace tap holes
JP4609725B2 (en) Process for producing blast furnace outlet closing material composition
JP6497405B2 (en) Mud material for closing blast furnace outlet
JP5376238B2 (en) Method for producing phenolic resin
JP4423928B2 (en) Refractory composition
JP3518610B2 (en) Phenolic resin composition for refractories
JP2021187979A (en) Phenol resin composition for monolithic refractory
JP3583824B2 (en) Blast furnace taphole filler
JP4314860B2 (en) Blast furnace closing material
JP5275124B2 (en) Refractory composition, irregular refractory, regular refractory
JP6326839B2 (en) Carbon-containing refractories
JPS5819351A (en) Liquid phenolic resin for refractory
JP4337431B2 (en) Binder composition for amorphous refractories
JP2020122076A (en) Resin composition for unshaped refractory
JP2003267788A (en) Binder composition for refractory material
JPH0859336A (en) Refractory composition
JP2009035661A (en) Phenol resin composition for friction material, its manufacturing method, and friction material
JP5487533B2 (en) Phenol resin composition for friction material, method for producing the same, and friction material
JP2007262358A (en) Phenol resin composition for mud material and mud material comprising the same
JPS6144831B2 (en)
JP2004115571A (en) Novolak type phenol resin for refractory binder
JP4577550B2 (en) Closure composition for blast furnace
JP2006089545A (en) Binder composition for monolithic refractory
JPH0812453A (en) Monolithic refractory composition
JPH011752A (en) Phenolic resin composition for refractories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees