JP4314860B2 - Blast furnace closing material - Google Patents

Blast furnace closing material Download PDF

Info

Publication number
JP4314860B2
JP4314860B2 JP2003094350A JP2003094350A JP4314860B2 JP 4314860 B2 JP4314860 B2 JP 4314860B2 JP 2003094350 A JP2003094350 A JP 2003094350A JP 2003094350 A JP2003094350 A JP 2003094350A JP 4314860 B2 JP4314860 B2 JP 4314860B2
Authority
JP
Japan
Prior art keywords
blast furnace
resin
phenol
closing material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003094350A
Other languages
Japanese (ja)
Other versions
JP2004299961A (en
Inventor
健一 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2003094350A priority Critical patent/JP4314860B2/en
Publication of JP2004299961A publication Critical patent/JP2004299961A/en
Application granted granted Critical
Publication of JP4314860B2 publication Critical patent/JP4314860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、高密度で高強度の高炉閉塞材に好適な高炉閉塞材に関する。
【0002】
【従来の技術】
高炉出銑孔用閉塞材(高炉出銑孔用マッド材)は、一般にアルミナ粉、炭化珪素、粘土粉、コークスなど耐火原料配合物(骨材)に、タール、ピッチなどのタール系結合剤、あるいはノボラック型フェノール樹脂等の樹脂系結合剤が添加されたものが用いられている。前記ノボラック型フェノール樹脂は、銑鉄に接触して、樹脂分が分解しながら炭素結合により骨材を結合させている。これらの高炉出銑孔用閉塞材は自動充填装置を用いて高炉出銑孔へ供給、充填されている。この際、高炉出銑孔用閉塞材は、円滑な充填作業の点から適度な流動性と必要であり、また、高炉出銑孔用閉塞材の強度を確保するため、使用する樹脂の有効成分を高くする必要があるが、流動性を確保するために溶剤を添加して使用すると、樹脂成分が充填装置に付着したり、高炉出銑孔閉塞時の急加熱により、溶剤が急激に揮発し、高炉出銑孔用閉塞材の硬化物自体が脆弱化したりする問題があった。
【0003】
前記の問題点を改善するため、従来は、エチレングリコールモノエチルエーテルおよび/またはジエチレングリコールモノエチルエーテルで溶解したノボラック型フェノール樹脂よりなる樹脂系結合剤とヘキサメチレンテトラミンを含むことを特徴とした高炉出銑孔用マッド材を用いることが提案されていた(例えば、特許文献1参照。)。しかし、この技術では、樹脂中の残留フェノール量を高くして、低粘度化した樹脂を用いており、樹脂系結合剤から得られる硬化物の気孔率が大きく、それに伴い密度、機械強度は不十分であった。
【0004】
【特許文献1】
特開平10−36178号公報(第2〜第5頁)
【0005】
【発明が解決しようとする課題】
従って、本発明の課題は、流動性が良好で、硬化した際の硬化物の密度が高く、かつ高機械強度を得ることができる高炉出銑孔用閉塞材を得ることにある。
【0006】
【課題を解決するための手段】
本発明者は、上記課題を解決するため鋭意検討の結果、以下の知見を得た。
残留フェノール量を1重量%以下まで低減した、GPCによる数平均分子量が500〜800のノボラック型フェノール樹脂を、高炉出銑孔用閉塞材の樹脂成分として用いると、施工作業時の加熱によるモノマー気散が少なくなり、硬化した高炉出銑孔用閉塞材の気孔率を低下させることができる。
【0007】
本発明は、このような知見に基づきなされたものである。即ち、本発明は、ノボラック型フェノール樹脂(A)と耐火性骨材(B)を含有する高炉用閉塞材において、前記ノボラック型フェノール樹脂(A)が残留フェノール量を1重量%以下まで低減した、GPCによる数平均分子量が400〜1000のノボラック型フェノール樹脂であることを特徴とする高炉用閉塞材を提供する。
【0008】
【発明の実施の形態】
前記ノボラック型フェノール樹脂(A)は、GPCによる数平均分子量が400〜1000であることが必要である。数平均分子量が400未満の時は、高炉出銑孔用閉塞材の硬化物の強度が不足して好ましくない。また、数平均分子量が1000を超える場合は、得られる樹脂の粘度が高く、高炉出銑孔用閉塞材を充填しにくいことから好ましくない。さらに、数平均分子量が500〜800であることが特に好ましい。
【0009】
また、ノボラック型フェノール樹脂(A)中の残留フェノール量は1重量%以下であることが必要である。残留フェノール量(未反応フェノールモノマーの含有量)は、低いほど好ましが、通常0.01重量%程度の量まで削減しておけばよい。また、残留フェノール量が1.0重量%を超えると、高炉出銑孔用閉塞材の硬化物の空孔率が大きくなり、硬化物の強度が低下したり、フェノールの揮散による作業環境の悪化をもたらしたりして好ましくない。
【0010】
前記ノボラック型フェノール樹脂(A)は、例えば、フェノール類とアルデヒド類との反応によって得られる。この際、フェノール類とアルデヒド類とのモル比〔アルデヒド類〕/〔フェノール類〕を0.3〜0.7として反応させ、次いで、残留した未反応フェノールを1.0重量%以下となる迄低減させればよい。
【0011】
前記のモル比は、樹脂の収率が良好なことから、0.3以上が好ましく、前記の分子量を800以下の範囲に調整することが容易なことから、0.7以下が好ましい。
【0012】
前記ノボラック型フェノー樹脂(A)の製造方法は、例えば、次の工程を経て製造することが出来る。フェノール類とアルデヒド類とを、〔ホルムアルデヒド〕/〔フェノール類〕=0.3〜0.7〔モル比〕となるように仕込み、更に触媒としての酸を添加して、100℃で1〜5時間反応させる。その後、常圧脱水、減圧脱水工程を経て、180〜230℃の温度で、ノボラック型フェノール樹脂(A)中に残留する未反応フェノールモノマーの含有量を1.0重量%以下となるように、ノボラック型フェノール樹脂(A)中に残留した未反応フェノールを除去する。
【0013】
更に具体的には、フェノールと37重量%のホルムアルデヒド水溶液との混合物に反応触媒として蓚酸を添加し、反応系内の温度を水の沸点である100℃とし、1〜5時間反応させた後、200℃迄常圧状態で蒸留を行い、更に減圧蒸留して、残留フェノール量を前述のレベルまで低減する。
【0014】
原料として使用するフェノール類としては、特に限定されるものではなく、たとえばフェノール、あるいはクレゾール、キシレノール、エチルフェノール、ブチルフェノール、オクチルフェノールなどのアルキルフェノール類、レゾルシン、カテコールなどの多価フェノール類、ハロゲン化フェノール、フェニルフェノール、アミノフェノールなどが挙げられる。またこれらのフェノール類は、その使用にあたって1種類のみに限定されるものではなく、2種以上の併用も可能である。
【0015】
本発明のアルデヒド類としてはフェノール樹脂製造の際に一般的に用いられるホルムアルデヒド、パラホルムアルデヒド、トリオキサン等のホルムアルデヒド、アセトアルデヒド等が有効であり、ウロトロピンもまた用いることが出来る。
【0016】
本発明で触媒として用いる酸類としては、ノボラック型フェノール樹脂の製造の際一般的に用いられる酸が使用可能であり、例えば、蓚酸、塩酸、燐酸、硫酸、パラトルエンスルホン酸、フェノールスルホン酸が挙げられ、ハイオルソノボラック樹脂製造用の触媒である酢酸亜鉛、オクチル酸亜鉛等も用いられる。
【0017】
また、本発明の高炉用閉塞材組成物には、更に有機溶剤を用いることができ、例えば、エチレングリコール等、ポリエーテルグリコール等のグリコール類、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル等のグリコールエーテル類が好ましい。前記有機溶剤の配合量としては、得られるノボラック型フェノー樹脂(A)の有機溶剤溶液の固形分として、60〜85重量%となるように配合することが好ましい。
【0018】
また、本発明の高炉用閉塞材組成物には、耐火性骨材(B)を用いることができる。前記耐火性骨材(B)としては、例えば、アルミナ、アルミナ−シリカ、シリカ、高アルミナ、マグネシア、マグネシア−カルシア、スピネル、炭化珪素、炭化物、窒化物、炭素、コークス、粘土、各種金属等が挙げられる。これらは、通常複数種類を配合して用いる。耐火性骨材(B)の配合量は、耐火性骨材(B)100重量部あたり、前記ノボラック型フェノー樹脂(A)10〜20重量部の範囲で配合することが好ましい。
【0019】
また、本発明の高炉用閉塞材組成物には、硬化剤として、ヘキサメチレンテトラミンを加えることができる。その添加割合は、ノボラック型フェノール樹脂(a)100重量部に対して、0.1〜3重量部が好ましい。
【0020】
【実施例】
次に本発明を実施例、比較例により具体的に説明する。なお、例中「部」「%」と表示しているものはそれぞれ重量部、重量%を表す。また、数平均分子量とはGPC(ゲルパーミエイションクロマトグラフィー)により、分子量既知のポリスチレンに換算した分子量を示す。残留フェノールの測定は、残留フェノール1%以上の場合はGPCで測定し、これ以下の場合はガスクロマトグラフィーでの測定に依った。
【0021】
製造例1
2リットルの4つ口フラスコに攪拌機、温度計をセットしフェノール941gと37.2%ホルマリン40.3gで〔フェノール〕/〔ホルムアルデヒド〕比を(10モル)/(0.5モル)として仕込み、蓚酸2水和物8.82gを添加し、還流温度(100℃)に昇温して、更に37.2%ホルマリン362.9gを仕込み、全仕込み比率=〔フェノール〕/〔ホルムアルデヒド〕=(10モル)/(0.5モル+4.5モル)で、1時間かけて滴下した。還流温度で3時間反応した後、蒸留を開始し180℃迄昇温した。その後温度を220℃まで上げ50torr(6.65kPa)で減圧蒸留を1時間行い、B&R法の軟化点75℃、ガスクロマトグラフィーで測定したフリーフェノール量0.3%、GPCによる数平均分子量780で、またC13−NMRで求めた結合モル比が0.70であるノボラック樹脂を得た。該ノボラック樹脂を固形分70%になるようにエチレングリコールで希釈してノボラック樹脂液(I)を得た。このノボラック樹脂液の25℃に於ける粘度は、10000mPa・sであった。
【0022】
製造例2
製造例1に同じく2リットルの4つ口フラスコに、フェノール941gと、37.2%ホルマリン40.3gを仕込み、蓚酸2水和物8.82gを添加、還流温度100℃に昇温して、更に37%ホルマリン202.7gを1時間かけて滴下した。還流温度で5時間反応した後、蒸留を開始し180℃迄昇温した。その後温度を220℃まで上げ50torr(6.65kPas)で減圧蒸留を1時間行い環球法(B&R法)の軟化点が45℃、ガスクロマトグラフィーで測定した残留フェノール量0.1%、GPCによる数平均分子量520、またC13−NMRで求めた結合モル比が0.30であるノボラック樹脂を得て、ジエチレングリコールで固形分70%に希釈してノボラック樹脂液(II)を得た。この樹脂液の25℃の粘度は 25000mPa・sであった。
【0023】
製造例3
2リットルの4つ口フラスコに攪拌機、温度計をセットしフェノール941gと37.2%ホルマリン40.3gで〔フェノール〕/〔ホルムアルデヒド〕比を(10モル)/(0.5モル)として仕込み、蓚酸2水和物8.82gを添加し、還流温度(100℃)に昇温して、更に37.2%ホルマリン362.9gを仕込み、全仕込み比率=〔フェノール〕/〔ホルムアルデヒド〕=(10モル)/(0.5モル+6.5モル)で、1時間かけて滴下した。還流温度で3時間反応した後水分除去のため、減圧下120℃で、理論上の水分量に相当する233.2gの留分を抜き出し、次いで冷却した。ガスクロマトグラフィーで測定したフリーフェノール量5%、GPCによる数平均分子量800で、またC13−NMRで求めた樹脂全体の結合モル比が0.70であるノボラック樹脂を得た。該ノボラック樹脂を固形分70%になるようにエチレングリコールで希釈してノボラック樹脂液(III)を得た。このノボラック樹脂液の25℃に於ける粘度は、33000mPa・sであった。
【0024】
製造例4
製造例1に同じく2リットルの4つ口フラスコに、フェノール94gと、98%硫酸18.8gを添加、還流温度100℃に昇温して、更に37%ホルマリン362.9gを1時間かけて滴下した。還流温度で3時間反応した後冷却した。ガスクロマトグラフィーで測定したフリーフェノール量8%、GPCによる数平均分子量630で、またC13−NMRで求めた結合モル比が0.70であるノボラック樹脂(IVa)を得た。該ノボラック樹脂を固形分30%になるようにエチレングリコールモノエチルエーテルで希釈してノボラック樹脂液(IV)を得た。このノボラック樹脂液の25℃に於ける粘度は、50000mPa・sであった。
【0025】
製造例5
製造例1に同じく2リットルの4つ口フラスコに、フェノール941gと、37.2%ホルマリン608gを仕込み、蓚酸2水和物5.5gを添加、還流温度100℃に昇温し、還流温度で4時間反応した後、蒸留を開始し180℃迄昇温した。その後温度を220℃まで上げ50torr(6.65kPas)で減圧蒸留を行い、遊離のフェノール、ホルムアルデヒドを除去して固形状ノボラック樹脂を得た。該樹脂を70%でエチレングリコール溶液(C)とした。GPCによる数平均分子量は880、またC13−NMRで求めた結合モル比は0.75であった。この樹脂液の25℃の粘度は75000mPa・sであった。
【0026】
製造例
製造例4で得られた樹脂(IVa)の固形分70%を、溶剤のジエチレングリコール30%で溶液(V)とした。この樹脂液の25℃の粘度は 15000mPa・sであった。
【0027】
実施例1
アルミナ35部、炭化珪素15部、コークス10部、及び窒化物20部を主体とした耐火性骨材100部に対し、樹脂液(I)を19部とヘキサミン2%(対樹脂液)添加して、品川式遊星ミキサーを用い室温で混合、混練して高炉出銑孔用閉塞材を得た。該高炉出銑孔用閉塞材を内径50×長さ300mmのパイプに充填して、900℃で1時間急加熱して高炉出銑孔用閉塞材の組織を観察した。冷却後の焼成物(硬化した閉塞材)は内部に亀裂も無く、良好な組織を有した。また、表1に各例の高炉出銑孔用閉塞材の圧縮強度、気孔率、比重を比較して示した。
【0028】
実施例2
実施例1の樹脂液(I)の量を17部とした他は実施例1と同様にして高炉出銑孔用閉塞材を得た。次いで、実施例1と同様の試験を行い、その結果を表1に示した。
【0029】
実施例3
樹脂液を(II)とした他は実施例2と同様にして高炉出銑孔用閉塞材を得た。次いで、実施例1と同様の試験を行い、その結果を表1に示した。
【0030】
比較例1、2
合成例3、4で得られた樹脂(III)、(IV)を用いて、実施例1と同様にして高炉出銑孔用閉塞材を得た。次いで、実施例1と同様の試験を行い、その結果を表2に示した。
【0031】
比較例3
樹脂液を(V)とした他は実施例1と同様にして高炉出銑孔用閉塞材を得た。次いで、実施例1と同様の試験を行い、その結果を表2に示した。
【0032】
比較例4
樹脂液を(III)とした他は実施例2と同様にして高炉出銑孔用閉塞材を得た次いで、実施例1と同様の試験を行い、その結果を表2に示した。
比較例5
樹脂液を(IV)とした他は実施例1と同様にして高炉出銑孔用閉塞材を得た。次いで、実施例1と同様の試験を行い、その結果を表2に示した。
【0033】
【表1】

Figure 0004314860
【0034】
【表2】
Figure 0004314860
【0035】
【発明の効果】
本発明の、残留フェノール量と分子量を制御したフェノールノボラック樹脂を含有する高炉閉塞材によれば、バインダーとしての樹脂液添加量を低減しても、高い機械的強度と低い気孔率の硬化物を与える高炉出銑孔用閉塞材を得ることが出来る。そのため高炉出銑孔用閉塞材は、熔銑との摩擦や、熔銑からの熱によって樹脂成分が損耗される事を低減化し、その耐蝕性が向上する。また、樹脂成分中の残留フェノール量が少ないので、環境への排出成分の低下も図れた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blast furnace plugging material suitable for a high density and high strength blast furnace plugging material.
[0002]
[Prior art]
Blast furnace outlet hole plugging material (blast furnace outlet hole mud material) is generally composed of refractory raw materials (aggregates) such as alumina powder, silicon carbide, clay powder, coke, tar binders such as tar, pitch, Or what added resin-type binders, such as a novolak-type phenol resin, is used. The novolac-type phenol resin is in contact with pig iron, and the aggregate is bonded by carbon bonds while the resin component is decomposed. These blast furnace tapping holes are supplied and filled into the blast furnace tapping holes using an automatic filling device. At this time, the blast furnace outlet hole plugging material is required to have appropriate fluidity from the viewpoint of smooth filling work, and in order to ensure the strength of the blast furnace outlet hole plugging material, the active ingredient of the resin used However, if a solvent is added to ensure fluidity, the solvent will rapidly evaporate due to resin components adhering to the filling device or rapid heating when the blast furnace outlet is closed. Further, there has been a problem that the cured product of the blast furnace outlet hole closing material itself becomes brittle.
[0003]
In order to improve the above-mentioned problems, a conventional blast furnace discharge characterized by containing a resin binder composed of a novolac-type phenol resin dissolved in ethylene glycol monoethyl ether and / or diethylene glycol monoethyl ether and hexamethylenetetramine. It has been proposed to use a fistula mud material (see, for example, Patent Document 1). However, this technology uses a resin whose viscosity is reduced by increasing the amount of residual phenol in the resin, and the porosity of the cured product obtained from the resin-based binder is large, and accordingly the density and mechanical strength are poor. It was enough.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-36178 (pages 2 to 5)
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to obtain a blast furnace outlet hole closing material that has good fluidity, has a high density of a cured product when cured, and can obtain high mechanical strength.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor has obtained the following knowledge.
When a novolac type phenol resin having a GPC number average molecular weight of 500 to 800 and having a residual phenol content reduced to 1% by weight or less is used as a resin component of a blast furnace outlet blocker, Scattering is reduced, and the porosity of the hardened blast furnace exit hole plugging material can be reduced.
[0007]
The present invention has been made based on such findings. That is, according to the present invention, in the blast furnace closing material containing the novolac-type phenol resin (A) and the refractory aggregate (B), the novolac-type phenol resin (A) reduces the residual phenol content to 1% by weight or less. A blast furnace plugging material characterized by being a novolak type phenol resin having a number average molecular weight of 400 to 1000 by GPC .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The novolac type phenol resin (A) needs to have a number average molecular weight of 400 to 1000 by GPC. When the number average molecular weight is less than 400, the strength of the cured product of the blast furnace exit hole plugging material is not preferable. Moreover, when the number average molecular weight exceeds 1000, it is not preferable because the viscosity of the obtained resin is high and it is difficult to fill the blast furnace exit hole closing material. Furthermore, the number average molecular weight is particularly preferably 500 to 800.
[0009]
Further, the amount of residual phenol in the novolac type phenol resin (A) needs to be 1% by weight or less. The residual phenol amount (content of unreacted phenol monomer) is preferably as low as possible, but it may be reduced to an amount of usually about 0.01% by weight. In addition, if the amount of residual phenol exceeds 1.0% by weight, the porosity of the cured product of the blast furnace exit hole plugging material increases, the strength of the cured product decreases, or the working environment deteriorates due to the volatilization of phenol. Is undesirable.
[0010]
The novolac type phenol resin (A) can be obtained, for example, by a reaction between phenols and aldehydes. At this time, the molar ratio of the phenols to the aldehydes [aldehydes] / [phenols] is reacted at 0.3 to 0.7, and then the remaining unreacted phenol is reduced to 1.0% by weight or less. What is necessary is just to reduce.
[0011]
The molar ratio is preferably 0.3 or more because the resin yield is good, and 0.7 or less is preferable because the molecular weight can be easily adjusted to a range of 800 or less.
[0012]
The method for producing the novolac type phenol resin (A) can be produced, for example, through the following steps. Phenols and aldehydes were charged so that [formaldehyde] / [phenols] = 0.3 to 0.7 [molar ratio], and an acid as a catalyst was further added. Let react for hours. After that, the content of the unreacted phenol monomer remaining in the novolac type phenol resin (A) at a temperature of 180 to 230 ° C. through a normal pressure dehydration process and a vacuum dehydration process is 1.0% by weight or less. Unreacted phenol remaining in the novolak type phenol resin (A) is removed.
[0013]
More specifically, oxalic acid is added as a reaction catalyst to a mixture of phenol and a 37% by weight aqueous formaldehyde solution, the temperature in the reaction system is set to 100 ° C., which is the boiling point of water, and reacted for 1 to 5 hours. Distillation is performed at 200 ° C under normal pressure, and further distillation under reduced pressure to reduce the amount of residual phenol to the above level.
[0014]
The phenols used as a raw material are not particularly limited. For example, phenols or alkylphenols such as cresol, xylenol, ethylphenol, butylphenol and octylphenol, polyhydric phenols such as resorcin and catechol, halogenated phenols, Examples include phenylphenol and aminophenol. In addition, these phenols are not limited to one type, and two or more types can be used in combination.
[0015]
As the aldehydes of the present invention, formaldehyde such as formaldehyde, paraformaldehyde, and trioxane generally used in the production of phenol resin, acetaldehyde, and the like are effective, and urotropine can also be used.
[0016]
As acids used as a catalyst in the present invention, acids generally used in the production of novolak type phenol resins can be used, and examples thereof include oxalic acid, hydrochloric acid, phosphoric acid, sulfuric acid, paratoluenesulfonic acid, and phenolsulfonic acid. In addition, zinc acetate, zinc octylate and the like, which are catalysts for producing high ortho novolak resins, are also used.
[0017]
The blast furnace plugging material composition of the present invention can further use an organic solvent, such as ethylene glycol, glycols such as polyether glycol, glycols such as ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, etc. Ethers are preferred. The amount of the organic solvent is preferably 60% to 85% by weight as the solid content of the organic solvent solution of the novolak type phenol resin (A) to be obtained.
[0018]
Moreover, a refractory aggregate (B) can be used for the closing agent composition for blast furnaces of this invention. Examples of the refractory aggregate (B) include alumina, alumina-silica, silica, high alumina, magnesia, magnesia-calcia, spinel, silicon carbide, carbide, nitride, carbon, coke, clay, various metals, and the like. Can be mentioned. These are usually used in combination of a plurality of types. The blending amount of the refractory aggregate (B) is preferably 10 to 20 parts by weight per 100 parts by weight of the refractory aggregate (B).
[0019]
Further, hexamethylenetetramine can be added as a curing agent to the blast furnace closing material composition of the present invention. The addition ratio is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the novolac type phenol resin (a).
[0020]
【Example】
Next, the present invention will be specifically described with reference to examples and comparative examples. In the examples, “parts” and “%” are shown as parts by weight and% by weight, respectively. The number average molecular weight is a molecular weight converted to polystyrene having a known molecular weight by GPC (gel permeation chromatography). The residual phenol was measured by GPC when the residual phenol was 1% or more, and when it was less than this, it was measured by gas chromatography.
[0021]
Production Example 1
A stirrer and thermometer were set in a 2 liter four-necked flask and charged with 941 g of phenol and 40.3 g of 37.2% formalin at a [phenol] / [formaldehyde] ratio of (10 mol) / (0.5 mol). 8.82 g of oxalic acid dihydrate was added, the temperature was raised to the reflux temperature (100 ° C.), and 362.9 g of 37.2% formalin was further charged. The total charge ratio = [phenol] / [formaldehyde] = (10 Mol) / (0.5 mol + 4.5 mol) was added dropwise over 1 hour. After reacting at reflux temperature for 3 hours, distillation was started and the temperature was raised to 180 ° C. Thereafter, the temperature was raised to 220 ° C., and vacuum distillation was performed at 50 torr (6.65 kPa) for 1 hour, the softening point of B & R method was 75 ° C., the amount of free phenol measured by gas chromatography was 0.3%, and the number average molecular weight by GPC was 780. Moreover, the novolak resin whose bond molar ratio calculated | required by C13-NMR is 0.70 was obtained. The novolak resin was diluted with ethylene glycol so as to have a solid content of 70% to obtain a novolak resin liquid (I). The viscosity of this novolak resin liquid at 25 ° C. was 10,000 mPa · s.
[0022]
Production Example 2
Similarly to Preparation Example 1, 941 g of phenol and 40.3 g of 37.2% formalin were charged into a 2 liter four-necked flask, and 8.82 g of oxalic acid dihydrate was added, and the temperature was raised to a reflux temperature of 100 ° C. Further, 202.7 g of 37% formalin was added dropwise over 1 hour. After reacting at the reflux temperature for 5 hours, distillation was started and the temperature was raised to 180 ° C. Thereafter, the temperature was raised to 220 ° C., and vacuum distillation was performed at 50 torr (6.65 kPas) for 1 hour, the softening point of the ring and ball method (B & R method) was 45 ° C., the residual phenol amount measured by gas chromatography was 0.1%, the number by GPC A novolak resin having an average molecular weight of 520 and a bond molar ratio determined by C13-NMR of 0.30 was obtained, and diluted with diethylene glycol to a solid content of 70% to obtain a novolak resin liquid (II). The viscosity of this resin liquid at 25 ° C. was 25000 mPa · s.
[0023]
Production Example 3
A stirrer and thermometer were set in a 2 liter four-necked flask and charged with 941 g of phenol and 40.3 g of 37.2% formalin at a [phenol] / [formaldehyde] ratio of (10 mol) / (0.5 mol). 8.82 g of oxalic acid dihydrate was added, the temperature was raised to the reflux temperature (100 ° C.), and 362.9 g of 37.2% formalin was further charged. The total charge ratio = [phenol] / [formaldehyde] = (10 Mol) / (0.5 mol + 6.5 mol). After reacting at the reflux temperature for 3 hours, 233.2 g of a fraction corresponding to the theoretical water content was withdrawn at 120 ° C. under reduced pressure, and then cooled. A novolak resin having a free phenol amount of 5% measured by gas chromatography, a number average molecular weight of 800 by GPC, and a bond molar ratio of the whole resin determined by C13-NMR of 0.70 was obtained. The novolak resin was diluted with ethylene glycol so as to have a solid content of 70% to obtain a novolak resin liquid (III). The novolac resin liquid had a viscosity at 25 ° C. of 33000 mPa · s.
[0024]
Production Example 4
Similarly to Production Example 1, 94 g of phenol and 18.8 g of 98% sulfuric acid were added to a 2 liter four-necked flask, the temperature was raised to 100 ° C., and 362.9 g of 37% formalin was added dropwise over 1 hour. did. The mixture was reacted at reflux temperature for 3 hours and then cooled. A novolak resin ( IVa ) having a free phenol amount of 8% measured by gas chromatography, a number average molecular weight of 630 by GPC, and a bond molar ratio determined by C13-NMR of 0.70 was obtained. The novolak resin was diluted with ethylene glycol monoethyl ether so as to have a solid content of 30% to obtain a novolak resin liquid ( IV ). The viscosity of this novolak resin liquid at 25 ° C. was 50000 mPa · s.
[0025]
Production Example 5
Similarly to Preparation Example 1, 941 g of phenol and 608 g of 37.2% formalin are charged into a 2 liter four-necked flask, 5.5 g of oxalic acid dihydrate is added, the temperature is raised to 100 ° C., and the reflux temperature is increased. After reacting for 4 hours, distillation was started and the temperature was raised to 180 ° C. Thereafter, the temperature was raised to 220 ° C. and distillation under reduced pressure was performed at 50 torr (6.65 kPas) to remove free phenol and formaldehyde to obtain a solid novolak resin. The resin was made into an ethylene glycol solution (C) at 70%. The number average molecular weight by GPC was 880, and the bond molar ratio determined by C 13 -NMR was 0.75. The viscosity of this resin liquid at 25 ° C. was 75000 mPa · s.
[0026]
Production Example 6
A solid (70%) of the resin ( IVa ) obtained in Production Example 4 was made into a solution (V) with 30% diethylene glycol as a solvent. The viscosity of this resin liquid at 25 ° C. was 15000 mPa · s.
[0027]
Example 1
19 parts of resin liquid (I) and 2% hexamine (to resin liquid) are added to 100 parts of refractory aggregate mainly composed of 35 parts of alumina, 15 parts of silicon carbide, 10 parts of coke and 20 parts of nitride. Then, using a Shinagawa planetary mixer, the mixture was mixed and kneaded at room temperature to obtain a blast furnace exit hole closing material. The blast furnace tap hole closing material was filled into a pipe having an inner diameter of 50 × length of 300 mm, and rapidly heated at 900 ° C. for 1 hour to observe the structure of the blast furnace tap hole closing material. The fired product after cooling (cured plugging material) had no cracks inside and had a good structure. Table 1 shows a comparison of the compressive strength, porosity, and specific gravity of the blast furnace tapping hole closing material of each example.
[0028]
Example 2
Except that the amount of the resin liquid (I) in Example 1 was 17 parts, a blast furnace outlet hole closing material was obtained in the same manner as in Example 1. Next, the same test as in Example 1 was performed, and the results are shown in Table 1.
[0029]
Example 3
Except that the resin liquid was changed to (II), a blast furnace outlet hole blocking material was obtained in the same manner as in Example 2. Next, the same test as in Example 1 was performed, and the results are shown in Table 1.
[0030]
Comparative Examples 1 and 2
Using the resins (III) and (IV) obtained in Synthesis Examples 3 and 4, a blast furnace exit hole closing material was obtained in the same manner as in Example 1. Next, the same test as in Example 1 was performed, and the results are shown in Table 2.
[0031]
Comparative Example 3
Except that the resin liquid was changed to (V), a blast furnace outlet hole blocking material was obtained in the same manner as in Example 1. Next, the same test as in Example 1 was performed, and the results are shown in Table 2.
[0032]
Comparative Example 4
Except that the resin liquid was changed to (III), a blast furnace outlet hole plugging material was obtained in the same manner as in Example 2, and then the same test as in Example 1 was performed. The results are shown in Table 2.
Comparative Example 5
Except that the resin solution was changed to (IV), a blast furnace outlet hole blocking material was obtained in the same manner as in Example 1. Next, the same test as in Example 1 was performed, and the results are shown in Table 2.
[0033]
[Table 1]
Figure 0004314860
[0034]
[Table 2]
Figure 0004314860
[0035]
【The invention's effect】
According to the blast furnace plugging material containing the phenol novolak resin in which the residual phenol amount and the molecular weight are controlled according to the present invention, a cured product having high mechanical strength and low porosity can be obtained even when the amount of the resin liquid added as the binder is reduced. It is possible to obtain the blast furnace outlet blocking material to be provided. Therefore, the blast furnace outlet hole closing material reduces the wear of the resin component due to friction with the hot metal and heat from the hot metal, and improves its corrosion resistance. In addition, since the amount of residual phenol in the resin component is small, the discharge component to the environment can be reduced.

Claims (2)

ノボラック型フェノール樹脂(A)と耐火性骨材(B)を含有する高炉用閉塞材において、前記ノボラック型フェノール樹脂(A)が残留フェノール量を1重量%以下まで低減した、GPCによる数平均分子量が400〜1000のノボラック型フェノール樹脂であることを特徴とする高炉用閉塞材。Number average molecular weight by GPC in which the novolac type phenolic resin (A) reduces the residual phenol content to 1% by weight or less in the blast furnace closing material containing the novolac type phenolic resin (A) and the refractory aggregate (B). Is a novolac type phenolic resin having a viscosity of 400 to 1,000. 前記ノボラック型フェノール樹脂(A)が、アルデヒド類とフェノールとを、これらのモル比〔アルデヒド類〕/〔フェノール類〕が0.3〜0.7となる範囲で反応させたものである請求項1に記載高炉用閉塞材。  The novolac-type phenol resin (A) is obtained by reacting aldehydes and phenol in a range in which the molar ratio [aldehydes] / [phenols] is 0.3 to 0.7. The blast furnace closing material described in 1.
JP2003094350A 2003-03-31 2003-03-31 Blast furnace closing material Expired - Fee Related JP4314860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094350A JP4314860B2 (en) 2003-03-31 2003-03-31 Blast furnace closing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094350A JP4314860B2 (en) 2003-03-31 2003-03-31 Blast furnace closing material

Publications (2)

Publication Number Publication Date
JP2004299961A JP2004299961A (en) 2004-10-28
JP4314860B2 true JP4314860B2 (en) 2009-08-19

Family

ID=33406936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094350A Expired - Fee Related JP4314860B2 (en) 2003-03-31 2003-03-31 Blast furnace closing material

Country Status (1)

Country Link
JP (1) JP4314860B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577550B2 (en) * 2004-02-26 2010-11-10 Dic株式会社 Closure composition for blast furnace
JP2006151718A (en) * 2004-11-26 2006-06-15 Shinagawa Refract Co Ltd Plugging material for molten metal tapping hole

Also Published As

Publication number Publication date
JP2004299961A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP5208676B2 (en) Refractory composition
JP4314860B2 (en) Blast furnace closing material
JP4648163B2 (en) Refractory composition
JP4609725B2 (en) Process for producing blast furnace outlet closing material composition
JP4423928B2 (en) Refractory composition
JP2021187979A (en) Phenol resin composition for monolithic refractory
JP3583824B2 (en) Blast furnace taphole filler
JP4319796B2 (en) Refractory composition
JP4129508B2 (en) Refractory binder
JPS5833184B2 (en) Binder for irregular shaped blast furnace materials
JP4337431B2 (en) Binder composition for amorphous refractories
JP4684464B2 (en) Refractory composition
JP5275124B2 (en) Refractory composition, irregular refractory, regular refractory
JPS58213672A (en) Binder for refractories
JP3521060B2 (en) Binder composition for amorphous refractories
JPS5819351A (en) Liquid phenolic resin for refractory
JP2020122076A (en) Resin composition for unshaped refractory
JP2004115571A (en) Novolak type phenol resin for refractory binder
WO2003051948A1 (en) High carbon yield phenolic resole
JPS589781B2 (en) Binder for irregular shaped furnace materials for blast furnaces
JP4577550B2 (en) Closure composition for blast furnace
JP2007262358A (en) Phenol resin composition for mud material and mud material comprising the same
JPH0859768A (en) Phenolic resin as binder for monolithic refractory
JP2006089662A (en) Resin composition for binding of refractory material and refractory product
JP2006273903A (en) Binder composition for monolithic refractory

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees