JP4608764B2 - Control method for vehicle with auxiliary power unit - Google Patents

Control method for vehicle with auxiliary power unit Download PDF

Info

Publication number
JP4608764B2
JP4608764B2 JP2000350862A JP2000350862A JP4608764B2 JP 4608764 B2 JP4608764 B2 JP 4608764B2 JP 2000350862 A JP2000350862 A JP 2000350862A JP 2000350862 A JP2000350862 A JP 2000350862A JP 4608764 B2 JP4608764 B2 JP 4608764B2
Authority
JP
Japan
Prior art keywords
vehicle
auxiliary power
motor
unit
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000350862A
Other languages
Japanese (ja)
Other versions
JP2002145168A (en
Inventor
広之 中田
正人 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000350862A priority Critical patent/JP4608764B2/en
Publication of JP2002145168A publication Critical patent/JP2002145168A/en
Application granted granted Critical
Publication of JP4608764B2 publication Critical patent/JP4608764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、人力と補助動力装置による補助動力とを用いて、駆動する補助動力装置付き車輌の制御方法に関するものである。
【0002】
【従来の技術】
近年、電動モータなどの既知の駆動装置を補助動力装置として装備し、当該補助動力装置による補助動力を操作者や使用者などによる人力駆動力に加えて作用させ、走行、駆動する補助動力装置付き車輌が知られている。具体的に言えば、例えば操作者がペダルを踏むことにより生じるペダル踏力(回転力)、あるいはハンドリムを回すことにより生じる回転力に、電動モータを駆動することにより生じる補助動力を加えて、車輪を回転させ走行する電動モータ付き自転車、電動モータ付き車椅子または荷物搬送車がある。
【0003】
このような補助動力装置付き車輌でも、下り坂で減速させる場合は、機械的に車輪を拘束する方式が通常用いられている。このような方式では、位置エネルギーが車輪拘束部分での発熱により消費され、補助駆動装置のバッテリー等には位置エネルギーが戻ってこない。そこで、モータに通常に補助する場合と逆の電流(ACモータの場合は位相反転した電流、以後回生電流と呼ぶ)を流し、モータを発電動作させることにより、回生制動(ブレーキ)を用いることが考えられる。回生制動では、バッテリーに回生電流が戻るため、バッテリーが充電される。このことにより、省エネルギーが実現され、同じバッテリー容量でも、回生制動を用いない場合に比べ、補助動力を有効にした走行距離を飛躍的に伸ばすことが可能となる。
【0004】
従来の補助動力装置付き車輌で回生制動を用いている例としては、特開平9−254861号公報や特開平10−81290公報に開示されたように、制動力を操作するレバーの操作量に比例して回生制動量を決定するか、所望の車速に対して実車速を追従させるように回生制動量を操作しているものなどがある。
【0005】
また別の発明として特願平10−147150に記載の発明に、補助動力装置付き車輌の走行抵抗を検出し、走行抵抗が正(上り坂)の場合に検出した走行抵抗に応じた補助動力を車輌に与えるものがある。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平9−254861号公報に記載の補助動力装置付き車輌では、前記の制動力を操作するレバー(ブレーキレバー)の操作量に比例して回生制動量を決定するため、運転者が意識して制動をかける必要があり、自動車のエンジンブレーキのように自動的には制動がかからない。つまり下り坂において、人がレバーを操作しなければ車輌には回生制動が作用せずバッテリーの消耗を削減することはできない。
【0007】
さらに、操作レバー(ブレーキレバー)が回生制動のスイッチと機械制動のブレーキレバーとを兼ねているので、機械制動が回生制動より早く作動する場合がある。この場合は、回生制動力が不十分になり、機械制動による熱損失が不必要に大きくなり、その分回生電流量が減少し、走行距離を伸ばすには不利となる。
【0008】
また、特願平10−81290に記載の補助動力装置付き車輌では、操作レバー(ブレーキレバー)を作動しない場合の、回生制動力を車輌に作用させる方法が示されている。
【0009】
この方法のフローチャートを図6に示す。まず、人が設定した目標車速等のパラメーターを初期設定する(100)、その後モータの信号電圧と制動信号と目標車速を読み取る(102)。次に、操作レバーでブレーキを作動させているかを判断し(104)、ブレーキを作動させていなければ目標速度と実速度の差ΔVを算出する(106)。求めた差ΔVにもとづいてモータトルクをサーチし(108)、サーチした値にもとづいてモータに正トルク又は負トルク(回生制動)を発生させる(112)。なおブレーキを作動していればそのレバーの握り量に応じた負のトルクをサーチする(110)。
【0010】
この方法において、人が操作レバーを作動から開放した時、つまり回生制動が有効になった時に、車輌の目標速度と実速度の差が非常に大きい場合は車速差ΔVが非常に大きくなる。このような場合、108に示すようにモータに発生するモータトルク値はマイナスのMAX値となり、車輌に急激に回生制動がかかり、非常に危険である。
【0011】
またこの方法では、人が車輌を設定した目標車速以下で走行させたい場合(車輌を止める前など)に、操作レバーでブレーキを作動させていなければ、設定した目標車速に車輌の速度を合せようとするため、車輌の実車速を目標車速以下に維持することが難しく、危険な場合もある。
【0012】
また特願平10−147150に記載の発明は、走行抵抗が正の値の場合(上り坂)のみ、走行抵抗に応じた補助動力を車輌に与えるものであるが、この方法では、車輌の速度を減速させるのは機械制動のみであり、電動機による回生制動は行っておらずバッテリーの消耗を削減させることができない。
【0013】
本発明は、上記のような問題点を解決するためになされたものであり、人力駆動力と、車輌の加速度と速度から、電動モータの回生制動力を決定することにより、安全な回生制動を実現し、さらにバッテリーの消耗も抑えることを目的としている。
【0014】
【課題を解決するための手段】
上記目的を達成するために本発明の補助動力装置付き車輌の制御方法は、前記人力駆動力Thを検出する工程と、前記検出した人力駆動力Thから前記モータに加える補助力電流指令Ihを演算する工程と、前記車輌走行部の速度Vを検出する工程と、前記検出した速度Vから加速度αを演算する工程と、前記検出した人力駆動力Thと速度V及び前記加速度αから(数1)に示す前記車輌走行部の走行抵抗g(θ)を演算する工程と、を備え、
前記走行抵抗g(θ)が正の時は、前記補助動力駆動部に(数2)で示すモータ電流指令Icomを与え、前記走行抵抗g(θ)が負の時は、前記補助動力駆動部に(数)で示すモータ電流指令Icomを与え、モータ電流指令Icomが負の値の場合に前記補助動力駆動部が回生制動することを特徴とする補助動力装置付き車輌の制御方法。
【数1】

Figure 0004608764
【数2】
Figure 0004608764
【数
Figure 0004608764
kfh:人力駆動力を車輌駆動力に換算する係数
Fm:モータ補助による車輌駆動力
M:自転車と人間の重量
D:路面の摩擦係数
kh:補助動力比率
ki:モータのトルク定数
kc:走行抵抗のキャンセル度合を決定するキャンセル係数
Ig:走行抵抗g(θ)をモータ電流値に換算した値
f(V):車輌速度Vに関する単調増加の関数
V(0):回生制動を始める設定車輌速度
【0015】
さらに、車輌速度Vに関する単調増加の関数f(V)は、(数)に示す関係であることを特徴とする。
【数4】
Figure 0004608764
a:回生制動の特性を定める定数
【0018】
このように構成することにより、走行中の車輌において人が意識して操作レバー等を操作することなく補助動力装置付き車輌が自動的に回生制動力を調整し、しかも回生制動が急激に車輌に加わらないため安全な補助動力装置付き車輌の制御方法を実現することができる。さらに、自動で回生制動が制御されているため機械ブレーキの制動力や、作動頻度が大幅に削減できバッテリーの消耗を抑えることができる。
【0019】
【発明の実施の形態】
図1〜図5に本発明の実施の形態を示す。
【0020】
(実施の形態1)
図1は補助動力装置付き車輌である電動補助付き自転車の概略構成を示す構造図であり、図2は図1に示した補助動力装置付き車輌の制御手段を示すブロック図である。
【0021】
図1に示すように、本実施例の補助動力装置付き車輌は、当該車輌を走行するための車輌走行部1、車輌走行部1を駆動するための人力駆動部2及び電気動力駆動部3、及び電気動力駆動部3の制御を行う制御部4を具備している。
【0022】
車輌走行部1は、路面と接して車輌を走行するための車輪1a、1b、及び車輪1a、1bを回転自在にそれぞれ支持する支持機構1c、1dを備えている。車輪走行部1には、人力駆動部2からの人力駆動力と、電源4aにより駆動される電気動力駆動部3からの電気動力が供給され、これにより車輪1bが回転して車輌が走行する。
【0023】
人力駆動部2は、操作者や使用者などの人力を受け取るためのペダル2aと、その人力を人力駆動力として車輌走行部1に伝達するためのクランク軸2bやチェーン等の伝達機構2cを備えている。
【0024】
図2に示すように電気動力駆動部3は、電動機である電動モータ6などの駆動装置を備え、制御部4から電流を流すことにより作動(回転)する。さらに、電気動力駆動部3は、その回転力を電気動力として減速機5、伝達機構2c(図1)を介して車輌走行部1に伝達する。電動モータ6は速度検出部10を備え、モータ回転速度を制御部4に逐次出力している。
【0025】
制御部4は、人力駆動部2から車輌走行部1に伝達された人力駆動力を検出する人力駆動力検出センサ7、この人力駆動力センサ7の出力と速度検出部10から得たモータの回転信号を演算することにより得られる車輌加速度からモータの駆動電流を指令する制御回路8、この電流指令に従ってモータに電流を流すモータ駆動回路9、制御部の各回路に電力を供給する電源4aを備えている。
【0026】
次に、本実施形態における補助動力装置付き車輌の制御方法について、図3を参照して説明する。図3は、図2の補助動力装置付き車輌の制御手段の制御を説明するフローチャートである。図3に示すように、本実施形態の補助動力装置付き車輌では、まず人力駆動力検出部センサ7が人力駆動部2から車輌走行本体部1に伝達された人力駆動力Thを検出する(ステップS1)。検出した人力駆動力Thに補助動力比率khを乗算し、人力駆動力を補助する補助動力としての電動モータに加えるべき補助力電流指令Ihを演算する(ステップS2)。
Ih=kh×Th/ki (1)
ここでkiはモータのトルク定数である。
【0027】
次に速度検出部10から検出したモータ周速度ωに、減速機の減速比や車輪径等を勘案した係数kvを乗算し、車輌速度vを演算する(ステップS3)。
Figure 0004608764
そして、その車輌速度Vを微分することにより車輌加速度αを演算する(ステップS4)。
Figure 0004608764
次に車輌の路面傾斜による走行抵抗g(θ)を演算する(ステップS5)。電動自転車の運動方程式は以下のように表すことができる。
Figure 0004608764
ここで、Fhは人力による車輌駆動力、Fmはモータ補助による車輌駆動力、Mは自転車と人間の重量、Dは路面の摩擦係数、θは路面の傾きを表す。力学上、Dは路面の摩擦に限定しない抵抗係数を意味し、『転がり抵抗』『空気抵抗』『内部抵抗』の複合抵抗であるが、日常使用では『転がり抵抗』が他より大きな要因となるため、ここでは路面の摩擦係数という。
【0028】
人力による車輌駆動力(人間の力)Fh、モータ補助による車輌駆動力Fmは以下のように表すことが出来る。
Fh=kfh×Th (5)
Fm=kfm×ki×Im (6)
ここで、kfhは人力駆動力を車輌駆動力に換算する係数、kfmはモータトルクを車輌駆動力に換算する係数、Imはモータ電流である。(4)〜(6)式により、路面傾斜による走行抵抗g(θ)は以下のように計算できる。ここでθは概念的に車輌走行平面に対する角度であるが、実際の車輌走行抵抗は、風等の外力が加わるので実際の角度と一致しない場合がある。
g(θ)=Fh+Fm−M×α−D×V
=kfh×Th+kfm×ki×Im−M×α−D×V (7)
(7)式で演算した走行抵抗g(θ)が負になっている時は、(4)式より車輌を加速させる力が加わっていることになる。つまり坂を下っていると判断できる(ステップS6)。g(θ)が正の時は、(1)式で求めたIhをそのままモータ電流指令Icomとして用いる(ステップS7)。
【0029】
ここで、g(θ)が負になっている時は、g(θ)をモータ電流値に換算したIgをモータ電流指令Icomに加えることにより、路面傾斜による走行抵抗をキャンセルする事が可能となる(ステップS7)。このことにより、坂道を下るときも、平地走行時と同じ感覚で走行することが可能となる。Igは以下のように計算できる(ステップS8)。
Ig=g(θ)/(kfm×ki) (8)
モータ電流指令Icomは、(1)式と(8)式より以下のように求めることが出来る(ステップS9)。ここで、kcは走行抵抗のキャンセル度合を決定するキャンセル係数である。
Icom=Ih+kc×Ig (9)
(9)式において、g(θ)が負の時はIgは常に負であるので、Igの絶対値が補助力電流指令Ihの絶対値を上回ったときは、電流指令Icomが負となり、モータは回生制動を行うことになる。このことにより、負の値の走行抵抗が回生制動により相殺されているので、下り坂においても平地の同様の感覚でペダルをこぐことが可能になる。つまり、補助力電流指令Ihは(1)式に示すように、人力駆動力Thに比例するので、下り坂の途中で人間がペダルをこぐのを停止しても、急激な回生制動がその車輌に加わることが無く、安全に走行することが可能になる。
【0030】
さらに、常に自動で回生制動が制御されているため機械ブレーキの制動力や、作動頻度が大幅に削減できバッテリーの消耗を抑えることができる。
【0031】
なお、この実施例では、モータ回転速度の検出で速度検出部を構成したが、車輪や減速機、クランク等の回転数の検出を用いて速度検出部を構成しても良い。
【0032】
(実施の形態2)
上記実施の形態1において、キャンセル係数kcの設定によっては、補助動力の無い通常の車輌と同様に、車輌の速度が下り坂で増加し続ける可能性がある。そこで、車輌の速度増加し続けることがない補助動力装置付き車輌の制御方法を次に示す。
【0033】
図4は本発明の第2の実施の形態である補助動力装置付き車輌の制御手段の制御を説明するフローチャートである。速度に関する単調増加関数を用いてモータの電流指令値を演算する以外は第1の実施の形態と同様である。
【0034】
図4のフローチャートに示すように、ステップ1からステップ7迄は、第1の実施形態と同様の制御動作を行う。
【0035】
ステップ6でg(θ)が負の値つまり補助動力装置付き車輌が下り坂を下っている場合は、あらかじめ用意した車輌速度Vに関して単調増加の関数f(V)により、その値を演算する(ステップS8)。ここでは、一例として(11)式に示す関数で説明するが、他の単調増加関数でも良い。
Figure 0004608764
ここで、a、V0は回生制動の特性を定める定数である。この式をグラフ化したものが、図5である。速度VがV0までは0で、それ以上になると2次曲線で増加するように設定している。
【0036】
モータの電流指令Icomを、(1)式と(10)式より演算する(ステップS9)。
Icom=Ih−f(V) (11)
(11)式より、車輌速度Vが上昇すればするほどf(V)は大きくなるので、補助力電流指令Ihより大きくなると、Icomは負となり、回生電流が流れ、回生制動が有効となる。つまり、下り坂において車輌の速度がV0を越えf(V)がIhを上回ると回生制動が実行され、車輌の速度上昇に伴い回生制動力が徐々に増加する。つまり、急な下り坂でも、車輌の速度が所望の値V0を超えると自動的に徐々に回生制動が車輌に加わり、急激な制動力の変化無く車輌速度Vを抑制することが出来るので、下り坂において車輌の安全な回生制動を実現できる。
【0037】
また、自動で回生制動が制御されているため機械ブレーキの制動力や、作動頻度が大幅に削減できバッテリーの消耗を抑えることができる。
【0038】
ここでは、単調増加関数を数式f(V)で示したが、速度Vに関して単調に増加するテーブルを数式f(V)の替わりに用いても良い。
【0039】
また、下り坂を判断して、(11)式においてf(V)を減算しているが、坂の上り下りに関わらず(11)式を適用すると、回生制動による速度制限にも利用できる。
【0040】
また、第1、第2の実施例で、車輌が下り坂を走行しているかどうかを判断すのに人力駆動力と車輌の速度から走行抵抗を演算し求めたが、傾斜計やジャイロなどを用いて下り坂を判断しても良い。
【0041】
さらに、第1、第2の実施例を組合わせモータ電流指令Icomを次の様に設定することも出来る。
Icom=Ih+kc×Ig−f(V) (12)
この(12)式でモータ電流指令を求め車輌を制御することにより、下り坂において、人間が平地の同様の感覚で走行が出来る。さらに車輌の速度が所望の速度を超えると徐々に制動力を車輌に発生させることができ、安全でバッテリーの消耗が少ない補助動力装置付き車輌を実現することが出来る。
【0042】
【発明の効果】
以上のように、本発明の補助動力装置付き車輌の制御方法によれば、人が意識して操作レバー等を操作することなく補助動力装置付き車輌が自動的に回生制動力を調整し、しかも回生制動が急激に車輌に加わらないため安全で乗り心地を損なわない補助動力装置付き車輌とその制御方法を実現することができる。
【0043】
また、自動で回生制動が制御されているため機械ブレーキの制動力や、作動頻度が大幅に削減できバッテリーの消耗を抑えることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の補助動力装置付き車輌を示す概略構成図
【図2】本発明の実施の形態の補助動力装置付き車輌の制御手段を示すブロック図
【図3】本発明の実施の形態1の補助動力装置付き車輌の制御を示すフローチャート
【図4】本発明の実施の形態2の補助動力装置付き車輌の制御を示すフローチャート
【図5】本発明の実施の形態2の単調増加の関数f(V)を示すグラフ
【図6】従来の補助動力装置付き車輌の制御を示すフローチャート
【符号の説明】
1 車輌走行部
2 人力駆動部
3 電気動力駆動部(補助動力駆動部)
4 制御部
5 減速機
6 モータ(電動機)
7 人力駆動力検出センサ
8 制御回路
9 モータ駆動回路
10 速度検出部[0001]
BACKGROUND OF THE INVENTION
The present invention, by using the auxiliary power according to human power and the auxiliary power unit, a method for controlling the auxiliary power unit with vehicle tanks driving.
[0002]
[Prior art]
In recent years, a known driving device such as an electric motor has been equipped as an auxiliary power device, and the auxiliary power device that travels and drives by driving the auxiliary power by the auxiliary power device in addition to the human power driving force by an operator or a user is provided. Vehicles are known. Specifically, for example, by adding the auxiliary power generated by driving the electric motor to the pedal pressing force (rotational force) generated by the operator pressing the pedal or the rotational force generated by turning the hand rim, There are bicycles with electric motors that rotate, wheelchairs with electric motors, and luggage carriers.
[0003]
Even in such a vehicle with an auxiliary power device, when the vehicle is decelerated on a downhill, a method of mechanically restraining the wheel is usually used. In such a system, the potential energy is consumed by the heat generated in the wheel restraint portion, and the potential energy does not return to the battery or the like of the auxiliary drive device. Therefore, regenerative braking (brake) can be used by causing the motor to generate electricity by passing a current (phase-inverted current in the case of an AC motor, hereinafter referred to as regenerative current) that flows to the motor in a reverse manner. Conceivable. In regenerative braking, the regenerative current returns to the battery, so the battery is charged. As a result, energy saving is realized, and even with the same battery capacity, it is possible to dramatically increase the travel distance in which the auxiliary power is effective as compared with the case where regenerative braking is not used.
[0004]
As an example of using regenerative braking in a conventional vehicle with an auxiliary power unit, as disclosed in Japanese Patent Laid-Open Nos. 9-254861 and 10-81290, it is proportional to the amount of operation of a lever that operates the braking force. In some cases, the regenerative braking amount is determined or the regenerative braking amount is manipulated so that the actual vehicle speed follows the desired vehicle speed.
[0005]
As another invention, in the invention described in Japanese Patent Application No. 10-147150, the running resistance of a vehicle with an auxiliary power device is detected, and auxiliary power corresponding to the running resistance detected when the running resistance is positive (uphill) is provided. There is something to give to the vehicle.
[0006]
[Problems to be solved by the invention]
However, in the vehicle with an auxiliary power device described in Japanese Patent Laid-Open No. 9-254861, the regenerative braking amount is determined in proportion to the amount of operation of the lever (brake lever) that operates the braking force. Therefore, it is necessary to apply braking, and braking is not automatically applied like an engine brake of an automobile. In other words, regenerative braking does not act on the vehicle unless a person operates the lever on the downhill, and battery consumption cannot be reduced.
[0007]
Further, since the operation lever (brake lever) serves as both a regenerative braking switch and a mechanical braking brake lever, the mechanical braking may operate faster than the regenerative braking. In this case, the regenerative braking force becomes insufficient, the heat loss due to mechanical braking becomes unnecessarily large, the amount of regenerative current decreases accordingly, and this is disadvantageous for extending the travel distance.
[0008]
Further, in the vehicle with an auxiliary power device described in Japanese Patent Application No. 10-81290, there is shown a method of applying a regenerative braking force to the vehicle when the operation lever (brake lever) is not operated.
[0009]
A flowchart of this method is shown in FIG. First, parameters such as a target vehicle speed set by a person are initially set (100), and then a motor signal voltage, a braking signal, and a target vehicle speed are read (102). Next, it is determined whether the brake is operated with the operation lever (104). If the brake is not operated, a difference ΔV between the target speed and the actual speed is calculated (106). The motor torque is searched based on the obtained difference ΔV (108), and positive torque or negative torque (regenerative braking) is generated in the motor based on the searched value (112). If the brake is operated, a negative torque corresponding to the grip amount of the lever is searched (110).
[0010]
In this method, when a person releases the operation lever from operation, that is, when regenerative braking is enabled, if the difference between the target speed and the actual speed of the vehicle is very large, the vehicle speed difference ΔV becomes very large. In such a case, as shown at 108, the motor torque value generated in the motor becomes a negative MAX value, and the vehicle is suddenly subjected to regenerative braking, which is very dangerous.
[0011]
Also, with this method, if the person wants to drive the vehicle at a speed lower than the set target vehicle speed (before stopping the vehicle, etc.), the vehicle speed should be adjusted to the set target vehicle speed unless the brake is operated with the operating lever. Therefore, it may be difficult and dangerous to maintain the actual vehicle speed below the target vehicle speed.
[0012]
In the invention described in Japanese Patent Application No. 10-147150, only when the running resistance is a positive value (uphill), auxiliary power corresponding to the running resistance is given to the vehicle. It is only mechanical braking that slows down the battery, and regenerative braking by the electric motor is not performed, and battery consumption cannot be reduced.
[0013]
The present invention has been made to solve the above-described problems. Safe regenerative braking is achieved by determining the regenerative braking force of the electric motor from the manpower driving force and the acceleration and speed of the vehicle. The goal is to realize and further reduce battery consumption.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a method for controlling a vehicle with an auxiliary power device according to the present invention comprises a step of detecting the human power driving force Th and an auxiliary power current command Ih applied to the motor from the detected human power driving force Th. A step of detecting the speed V of the vehicle traveling unit, a step of calculating an acceleration α from the detected speed V, and the detected human power driving force Th, the speed V and the acceleration α (Equation 1) Calculating a running resistance g (θ) of the vehicle running section shown in
When the running resistance g (θ) is positive, a motor current command Icom shown in (Expression 2) is given to the auxiliary power drive unit , and when the running resistance g (θ) is negative, the auxiliary power drive unit. A control method for a vehicle with an auxiliary power device , wherein the motor current command Icom shown in (Equation 3 ) is given to the motor power command Icom and the auxiliary power drive unit performs regenerative braking when the motor current command Icom is a negative value .
[Expression 1]
Figure 0004608764
[Expression 2]
Figure 0004608764
[Equation 3 ]
Figure 0004608764
kfh: coefficient for converting human driving force into vehicle driving force Fm: vehicle driving force with motor assistance M: weight of bicycle and human D: friction coefficient of road surface
kh: Auxiliary power ratio
ki: motor torque constant kc: cancel coefficient for determining the cancellation degree of running resistance Ig: value obtained by converting running resistance g (θ) to motor current value f (V): monotonically increasing function with respect to vehicle speed V
V (0): Set vehicle speed at which regenerative braking starts
Further, the monotonically increasing function f (V) related to the vehicle speed V is characterized by the relationship shown in (Equation 4 ).
[Expression 4]
Figure 0004608764
a: Constant that determines the characteristics of regenerative braking.
With this configuration, the vehicle with the auxiliary power device automatically adjusts the regenerative braking force without operating the operation lever or the like in a running vehicle, and the regenerative braking is suddenly applied to the vehicle. Since it does not participate, a safe control method for a vehicle with an auxiliary power device can be realized. Furthermore, since the regenerative braking is automatically controlled, the braking force of the mechanical brake and the operation frequency can be greatly reduced, and the battery consumption can be suppressed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
1 to 5 show an embodiment of the present invention.
[0020]
(Embodiment 1)
FIG. 1 is a structural diagram showing a schematic configuration of an electrically assisted bicycle that is a vehicle with an auxiliary power device, and FIG. 2 is a block diagram showing a control means of the vehicle with an auxiliary power device shown in FIG.
[0021]
As shown in FIG. 1, a vehicle with an auxiliary power device according to the present embodiment includes a vehicle travel unit 1 for traveling the vehicle, a human power drive unit 2 and an electric power drive unit 3 for driving the vehicle travel unit 1, And the control part 4 which controls the electric power drive part 3 is comprised.
[0022]
The vehicle travel unit 1 includes wheels 1a and 1b for traveling the vehicle in contact with the road surface, and support mechanisms 1c and 1d that rotatably support the wheels 1a and 1b, respectively. The wheel travel unit 1 is supplied with the human power driving force from the human power driving unit 2 and the electric power from the electric power driving unit 3 driven by the power source 4a, whereby the wheel 1b rotates and the vehicle travels.
[0023]
The human power drive unit 2 includes a pedal 2a for receiving human power such as an operator and a user, and a transmission mechanism 2c such as a crankshaft 2b and a chain for transmitting the human power to the vehicle travel unit 1 as human power driving force. ing.
[0024]
As shown in FIG. 2, the electric power driving unit 3 includes a driving device such as an electric motor 6 that is an electric motor, and operates (rotates) by passing a current from the control unit 4. Furthermore, the electric power drive unit 3 transmits the rotational force as electric power to the vehicle travel unit 1 via the speed reducer 5 and the transmission mechanism 2c (FIG. 1). The electric motor 6 includes a speed detection unit 10 and sequentially outputs the motor rotation speed to the control unit 4.
[0025]
The control unit 4 includes a human power driving force detection sensor 7 that detects the human power driving force transmitted from the human power driving unit 2 to the vehicle traveling unit 1, the output of the human power driving force sensor 7, and the rotation of the motor obtained from the speed detection unit 10. A control circuit 8 for instructing a motor drive current from vehicle acceleration obtained by calculating a signal, a motor drive circuit 9 for supplying current to the motor in accordance with the current command, and a power source 4a for supplying power to each circuit of the control unit are provided. ing.
[0026]
Next, the control method of the vehicle with an auxiliary power device in the present embodiment will be described with reference to FIG. FIG. 3 is a flowchart for explaining the control of the control means of the vehicle with an auxiliary power unit shown in FIG. As shown in FIG. 3, in the vehicle with an auxiliary power device of the present embodiment, first, the human power driving force detection unit sensor 7 detects the human driving force Th transmitted from the human power driving unit 2 to the vehicle travel main body 1 (step). S1). The detected human power driving force Th is multiplied by the auxiliary power ratio kh to calculate an auxiliary power current command Ih to be applied to the electric motor as auxiliary power for assisting the human power driving force (step S2).
Ih = kh × Th / ki (1)
Here, ki is a torque constant of the motor.
[0027]
Next, a vehicle speed v is calculated by multiplying the motor peripheral speed ω detected from the speed detection unit 10 by a coefficient kv taking into account the reduction gear ratio, wheel diameter, etc. of the reduction gear (step S3).
Figure 0004608764
Then, the vehicle acceleration α is calculated by differentiating the vehicle speed V (step S4).
Figure 0004608764
Next, the running resistance g (θ) due to the road surface inclination of the vehicle is calculated (step S5). The equation of motion of an electric bicycle can be expressed as follows:
Figure 0004608764
Here, Fh is a vehicle driving force by human power, Fm is a vehicle driving force by motor assistance, M is a weight of a bicycle and a human, D is a friction coefficient of the road surface, and θ is an inclination of the road surface. In terms of mechanics, D means a resistance coefficient that is not limited to road friction, and is a combined resistance of "rolling resistance", "air resistance", and "internal resistance", but in everyday use, "rolling resistance" is a greater factor than others. For this reason, it is referred to as the road friction coefficient.
[0028]
The vehicle driving force (human force) Fh by human power and the vehicle driving force Fm by motor assistance can be expressed as follows.
Fh = kfh × Th (5)
Fm = kfm × ki × Im (6)
Here, kfh is a coefficient for converting human driving force into vehicle driving force, kfm is a coefficient for converting motor torque into vehicle driving force, and Im is a motor current. From the equations (4) to (6), the running resistance g (θ) due to the road surface inclination can be calculated as follows. Here, θ is conceptually an angle with respect to the vehicle travel plane, but the actual vehicle travel resistance may not match the actual angle because an external force such as wind is applied.
g (θ) = Fh + Fm−M × α−D × V
= Kfh × Th + kfm × ki × Im−M × α−D × V (7)
When the running resistance g (θ) calculated by the equation (7) is negative, the force for accelerating the vehicle is applied from the equation (4). That is, it can be determined that the vehicle is going down a hill (step S6). When g (θ) is positive, Ih obtained by equation (1) is used as it is as the motor current command Icom (step S7).
[0029]
Here, when g (θ) is negative, it is possible to cancel the running resistance due to the road surface inclination by adding Ig obtained by converting g (θ) to a motor current value to the motor current command Icom. (Step S7). As a result, even when going down a hill, it is possible to travel with the same feeling as when traveling on flat ground. Ig can be calculated as follows (step S8).
Ig = g (θ) / (kfm × ki) (8)
The motor current command Icom can be obtained from the equations (1) and (8) as follows (step S9). Here, kc is a cancellation coefficient that determines the cancellation degree of the running resistance.
Icom = Ih + kc × Ig (9)
In equation (9), when g (θ) is negative, Ig is always negative. Therefore, when the absolute value of Ig exceeds the absolute value of the auxiliary force current command Ih, the current command Icom becomes negative, and the motor Will perform regenerative braking. As a result, since the negative running resistance is offset by regenerative braking, the pedal can be pedaled with the same feeling on a flat ground even on a downhill. That is, as shown in the equation (1), the auxiliary force current command Ih is proportional to the manpower driving force Th. Therefore, even if the person stops pedaling on the downhill, rapid regenerative braking is performed on the vehicle. It is possible to travel safely without being added to the vehicle.
[0030]
Furthermore, since regenerative braking is always controlled automatically, the braking force of the mechanical brake and the operation frequency can be greatly reduced, and battery consumption can be suppressed.
[0031]
In this embodiment, the speed detection unit is configured by detecting the motor rotation speed. However, the speed detection unit may be configured by detecting the number of rotations of wheels, a reducer, a crank, and the like.
[0032]
(Embodiment 2)
In the first embodiment, depending on the setting of the cancellation coefficient kc, there is a possibility that the speed of the vehicle may continue to increase on a downhill as in a normal vehicle without auxiliary power. Therefore, a control method of a vehicle with an auxiliary power device that does not keep increasing the vehicle speed will be described below.
[0033]
FIG. 4 is a flowchart for explaining the control of the control means of the vehicle with an auxiliary power unit according to the second embodiment of the present invention. This is the same as the first embodiment except that the motor current command value is calculated using a monotonically increasing function related to speed.
[0034]
As shown in the flowchart of FIG. 4, from step 1 to step 7, the same control operation as in the first embodiment is performed.
[0035]
If g (θ) is a negative value in step 6, that is, if the vehicle with an auxiliary power unit is going downhill, the value is calculated by a monotonically increasing function f (V) with respect to the vehicle speed V prepared in advance ( Step S8). Here, the function shown in the equation (11) will be described as an example, but another monotonically increasing function may be used.
Figure 0004608764
Here, a and V0 are constants that determine the characteristics of regenerative braking. FIG. 5 is a graph of this equation. The speed V is set to 0 until V0, and is increased so as to increase with a quadratic curve when the speed V exceeds that.
[0036]
A motor current command Icom is calculated from equations (1) and (10) (step S9).
Icom = Ih−f (V) (11)
From equation (11), f (V) increases as the vehicle speed V increases. Therefore, when it exceeds the assisting force current command Ih, Icom becomes negative, regenerative current flows, and regenerative braking becomes effective. That is, when the vehicle speed exceeds V0 and f (V) exceeds Ih on the downhill, regenerative braking is executed, and the regenerative braking force gradually increases as the vehicle speed increases. In other words, even on a steep downhill, when the vehicle speed exceeds the desired value V0, regenerative braking is automatically gradually applied to the vehicle, and the vehicle speed V can be suppressed without sudden changes in braking force. Safe regenerative braking of the vehicle can be realized on the slope.
[0037]
Further, since the regenerative braking is automatically controlled, the braking force of the mechanical brake and the operation frequency can be greatly reduced, and the battery consumption can be suppressed.
[0038]
Here, the monotonically increasing function is represented by the formula f (V), but a table that monotonically increases with respect to the speed V may be used instead of the formula f (V).
[0039]
Further, the downhill is judged and f (V) is subtracted in the equation (11). However, if the equation (11) is applied regardless of the uphill / downhill, it can be used for speed limitation by regenerative braking.
[0040]
In the first and second embodiments, the running resistance is calculated from the human driving force and the vehicle speed to determine whether or not the vehicle is traveling downhill, but an inclinometer, a gyro, etc. It may be used to determine the downhill.
[0041]
Further, the motor current command Icom can be set as follows by combining the first and second embodiments.
Icom = Ih + kc × Ig−f (V) (12)
By obtaining the motor current command using this equation (12) and controlling the vehicle, a human can travel on the downhill with the same feeling on a flat ground. Further, when the vehicle speed exceeds a desired speed, a braking force can be gradually generated in the vehicle, and a vehicle with an auxiliary power device that is safe and consumes less battery can be realized.
[0042]
【The invention's effect】
As described above, according to the control method for a vehicle with an auxiliary power device of the present invention, the vehicle with the auxiliary power device automatically adjusts the regenerative braking force without operating a control lever or the like with consciousness of a person. Since the regenerative braking is not suddenly applied to the vehicle, it is possible to realize a vehicle with an auxiliary power device that is safe and does not impair the ride comfort and its control method.
[0043]
Further, since the regenerative braking is automatically controlled, the braking force of the mechanical brake and the operation frequency can be greatly reduced, and the battery consumption can be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a vehicle with an auxiliary power unit according to an embodiment of the present invention. FIG. 2 is a block diagram showing control means of the vehicle with an auxiliary power unit according to the embodiment of the present invention. FIG. 4 is a flowchart showing control of a vehicle with an auxiliary power unit according to the first embodiment of the present invention. FIG. 4 is a flowchart showing control of a vehicle with an auxiliary power unit according to the second embodiment of the present invention. Graph showing monotonically increasing function f (V) FIG. 6 is a flowchart showing control of a conventional vehicle with an auxiliary power unit.
1 Vehicle traveling unit 2 Human power drive unit 3 Electric power drive unit (auxiliary power drive unit)
4 Control unit 5 Reducer 6 Motor (electric motor)
7 Human Power Drive Force Detection Sensor 8 Control Circuit 9 Motor Drive Circuit 10 Speed Detection Unit

Claims (2)

走行を行うための車輌走行部、前記車輌走行部に人力駆動力を与える人力駆動部、及び前記車輌走行部にモータにより補助動力を与える補助動力駆動部を備えた補助動力装置付き車輌の制御方法であって、
前記人力駆動力Thを検出する工程と、前記検出した人力駆動力Thから前記モータに加える補助力電流指令Ihを演算する工程と、前記車輌走行部の速度Vを検出する工程と、前記検出した速度Vから加速度αを演算する工程と、前記検出した人力駆動力Thと速度V及び前記加速度αから(数1)に示す前記車輌走行部の走行抵抗g(θ)を演算する工程と、を備え、
前記走行抵抗g(θ)が正の時は、前記補助動力駆動部に(数2)で示すモータ電流指令Icomを与え、
前記走行抵抗g(θ)が負の時は、
前記補助動力駆動部に(数)で示すモータ電流指令Icomを与え、モータ電流指令Icomが負の値の場合に前記補助動力駆動部が回生制動することを特徴とする補助動力装置付き車輌の制御方法。
Figure 0004608764
Figure 0004608764
Figure 0004608764
kfh:人力駆動力を車輌駆動力に換算する係数
Fm:モータ補助による車輌駆動力
M:自転車と人間の重量
D:路面の摩擦係数
kh:補助動力比率
ki:モータのトルク定数
kc:走行抵抗のキャンセル度合を決定するキャンセル係数
Ig:走行抵抗g(θ)をモータ電流値に換算した値
f(V):車輌速度Vに関する単調増加の関数
V(0):回生制動を始める設定車輌速度
Control method for vehicle with auxiliary power device, comprising vehicle traveling unit for traveling, human power driving unit for applying human power driving force to vehicle traveling unit, and auxiliary power driving unit for providing auxiliary power to motor traveling unit by motor Because
Detecting the human driving force Th, calculating an auxiliary force current command Ih applied to the motor from the detected human driving force Th, detecting a speed V of the vehicle traveling unit, and detecting a step of calculating the acceleration α from the speed V, the step of calculating a running resistance g of the vehicle running unit showing the detected human power Th and the speed V and from the acceleration α in equation (1) (theta), the Prepared,
When the running resistance g (θ) is positive, a motor current command Icom shown in (Expression 2) is given to the auxiliary power drive unit,
When the running resistance g (θ) is negative,
A motor current command Icom indicated by (Equation 3 ) is given to the auxiliary power drive unit, and when the motor current command Icom is a negative value, the auxiliary power drive unit performs regenerative braking . Control method.
Figure 0004608764
Figure 0004608764
Figure 0004608764
kfh: coefficient for converting human driving force into vehicle driving force Fm: vehicle driving force with motor assistance M: weight of bicycle and human D: friction coefficient of road surface
kh: Auxiliary power ratio
ki: motor torque constant kc: cancel coefficient for determining the cancellation degree of running resistance Ig: value obtained by converting running resistance g (θ) to motor current value f (V): monotonically increasing function with respect to vehicle speed V
V (0): Set vehicle speed at which regenerative braking starts
前記車輌速度Vに関する単調増加の関数f(V)は、(数)に示す関係であることを特徴とする請求項1記載の補助動力装置付き車輌の制御方法。
Figure 0004608764
a:回生制動の特性を定める定数
The method for controlling a vehicle with an auxiliary power unit according to claim 1, wherein the monotonically increasing function f (V) with respect to the vehicle speed V has a relationship expressed by (Equation 4 ).
Figure 0004608764
a: Constant that determines the characteristics of regenerative braking
JP2000350862A 2000-11-17 2000-11-17 Control method for vehicle with auxiliary power unit Expired - Fee Related JP4608764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350862A JP4608764B2 (en) 2000-11-17 2000-11-17 Control method for vehicle with auxiliary power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350862A JP4608764B2 (en) 2000-11-17 2000-11-17 Control method for vehicle with auxiliary power unit

Publications (2)

Publication Number Publication Date
JP2002145168A JP2002145168A (en) 2002-05-22
JP4608764B2 true JP4608764B2 (en) 2011-01-12

Family

ID=18824017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350862A Expired - Fee Related JP4608764B2 (en) 2000-11-17 2000-11-17 Control method for vehicle with auxiliary power unit

Country Status (1)

Country Link
JP (1) JP4608764B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014200081A1 (en) 2013-06-14 2014-12-18 マイクロスペース株式会社 Motor drive control device
US11383790B2 (en) 2018-03-22 2022-07-12 Shimano Inc. Human-powered vehicle control device
US11390357B2 (en) 2018-03-22 2022-07-19 Shimano Inc. Human-powered vehicle control device
US11401003B2 (en) 2018-03-22 2022-08-02 Shimano Inc. Human-powered vehicle control device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518301B2 (en) * 2001-02-28 2010-08-04 本田技研工業株式会社 Control device for battery-assisted bicycle
JP4518298B2 (en) * 2001-02-28 2010-08-04 本田技研工業株式会社 Control device for battery-assisted bicycle
JP4518299B2 (en) * 2001-02-28 2010-08-04 本田技研工業株式会社 Control device for battery-assisted bicycle
JP4518300B2 (en) * 2001-02-28 2010-08-04 本田技研工業株式会社 Control device for battery-assisted bicycle
JP2004120875A (en) * 2002-09-25 2004-04-15 Matsushita Electric Works Ltd Power vehicle
JP5018732B2 (en) * 2008-10-21 2012-09-05 三菱自動車工業株式会社 Electric vehicle regeneration control device
JP5824650B2 (en) * 2010-09-30 2015-11-25 パナソニックIpマネジメント株式会社 Regenerative braking control device for vehicle
IT1404164B1 (en) * 2011-02-03 2013-11-15 Milano Politecnico ELECTRICALLY ASSISTED RIDING BICYCLE
JP2013209077A (en) * 2012-02-27 2013-10-10 Honda Motor Co Ltd Power-assisted bicycle
FR3009270B1 (en) * 2013-07-31 2016-09-09 Michelin & Cie DEVICE AND METHOD FOR CONTROLLING THE POWER OF ASSISTANCE OF A POWER-ASSISTED VELO
FR3018057B1 (en) * 2014-02-28 2018-06-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives ASSISTING THE MOVEMENT OF A ROLLING OBJECT BY ASSERVING USING THE ACCELERATION OF THE ROLLING OBJECT
CN106926709B (en) * 2015-12-31 2021-08-31 罗伯特·博世有限公司 Braking energy recovery device and method and light electric vehicle
JP6712580B2 (en) * 2017-09-25 2020-06-24 太陽誘電株式会社 Motor drive control device and electrically assisted vehicle
JP7376222B2 (en) * 2017-12-20 2023-11-08 株式会社シマノ drive system
JP6624527B2 (en) 2018-02-19 2019-12-25 有限会社オダ技商 Wheelchair with auxiliary force generator
JP6768020B2 (en) 2018-03-06 2020-10-14 太陽誘電株式会社 Motor drive control device and electrically power assisted vehicle
JP7492825B2 (en) * 2019-12-27 2024-05-30 株式会社シマノ Control device for human-powered vehicles
IT202000014560A1 (en) * 2020-06-18 2021-12-18 Zehus S P A METHOD AND DEVICE FOR CONTROLLING THE CRUISE SPEED OF A HYBRID OR ELECTRIC PROPULSION VEHICLE
CN112009267B (en) * 2020-09-09 2022-02-08 厦门金龙联合汽车工业有限公司 New energy passenger car self-adaptive optimization control method based on real-time working condition recognition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976983A (en) * 1995-09-08 1997-03-25 Toshio Akao Motor assisted bicycle
JPH1035576A (en) * 1996-05-24 1998-02-10 Sony Corp Travelling device and travel control method
JPH11227668A (en) * 1998-02-13 1999-08-24 Aichi Steel Works Ltd Torque assist bicycle and its manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3642364B2 (en) * 1996-03-29 2005-04-27 本田技研工業株式会社 Bicycle regeneration control device with auxiliary power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976983A (en) * 1995-09-08 1997-03-25 Toshio Akao Motor assisted bicycle
JPH1035576A (en) * 1996-05-24 1998-02-10 Sony Corp Travelling device and travel control method
JPH11227668A (en) * 1998-02-13 1999-08-24 Aichi Steel Works Ltd Torque assist bicycle and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014200081A1 (en) 2013-06-14 2014-12-18 マイクロスペース株式会社 Motor drive control device
US9896153B2 (en) 2013-06-14 2018-02-20 Microspace Corporation Motor driving control apparatus
US10040508B2 (en) 2013-06-14 2018-08-07 Microspace Corporation Motor driving control apparatus
US11383790B2 (en) 2018-03-22 2022-07-12 Shimano Inc. Human-powered vehicle control device
US11390357B2 (en) 2018-03-22 2022-07-19 Shimano Inc. Human-powered vehicle control device
US11401003B2 (en) 2018-03-22 2022-08-02 Shimano Inc. Human-powered vehicle control device

Also Published As

Publication number Publication date
JP2002145168A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP4608764B2 (en) Control method for vehicle with auxiliary power unit
JP3263844B2 (en) Regenerative braking control device for electric vehicle
US8078348B2 (en) Electric vehicle and regeneration control method for electric vehicle
JP3642364B2 (en) Bicycle regeneration control device with auxiliary power
US20100256848A1 (en) Drive assist device and method for motor driven truck
US20090115246A1 (en) Traction Control Device for Vehicle
JP4604815B2 (en) Vehicle drive control device
JP3468843B2 (en) Bicycle with electric motor and control method therefor
JP3054234B2 (en) Bicycle with electric motor
JP2002152903A (en) Regenerative braking controller for electric vehicle
JPH09202221A (en) Brake control device for vehicle
US11492073B2 (en) Power assisted driving system and method
JPH0576106A (en) Driver for electric automobile
JP3201290B2 (en) Regenerative braking control device for electric vehicles
JPH11303953A (en) Driving force transmission device
JP4852931B2 (en) Vehicle left and right torque distribution control device
JP2005335534A (en) Vehicle with auxiliary power unit
JP2005255074A (en) Skater
JP4183791B2 (en) Vehicle with auxiliary power unit
JPH09156571A (en) Motor assisted bicycle and control method therefor
JPH0550977A (en) Bicycle
JP3588928B2 (en) Electric bicycle
JP2001039380A (en) Automatic gearshift operating device for bicycle
JPH11334676A (en) Car with auxiliary power unit and control method for the same
JP4641740B2 (en) Vehicle with auxiliary power unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4608764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees