JP4608685B2 - Volatile organic compound recovery unit - Google Patents

Volatile organic compound recovery unit Download PDF

Info

Publication number
JP4608685B2
JP4608685B2 JP2007212700A JP2007212700A JP4608685B2 JP 4608685 B2 JP4608685 B2 JP 4608685B2 JP 2007212700 A JP2007212700 A JP 2007212700A JP 2007212700 A JP2007212700 A JP 2007212700A JP 4608685 B2 JP4608685 B2 JP 4608685B2
Authority
JP
Japan
Prior art keywords
container
cylinder
microwave
recovery unit
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007212700A
Other languages
Japanese (ja)
Other versions
JP2009045535A (en
Inventor
保徳 塚原
雄二 和田
清高 大西
雅一 樋口
正照 高倉
忠 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2007212700A priority Critical patent/JP4608685B2/en
Publication of JP2009045535A publication Critical patent/JP2009045535A/en
Application granted granted Critical
Publication of JP4608685B2 publication Critical patent/JP4608685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)

Description

この発明は、揮発性有機化合物(以下、「VOC」)を含有するガスからVOCを分離し回収するユニットに関する。   The present invention relates to a unit for separating and recovering VOC from a gas containing a volatile organic compound (hereinafter referred to as “VOC”).

浮遊粒子状物質及び光化学オキシダントによる大気汚染の防止を図るため、これらの原因物質の一つであるVOCの工場・事業場からの排出を抑制するべく、平成16年に大気汚染防止法の一部が改正された。
VOCの除去装置は、燃焼方式と吸着方式とに大別される。吸着方式は、活性炭を充填した槽の入口から排ガスを導入し、VOCを活性炭に吸着させ、出口から浄化ガスを排出するというものである。そして、吸着したVOCは、加熱蒸発させて出口から導入されるキャリアガスとともに回収される。従って、吸着方式は、VOCを回収して再利用できる、CO2の発生を伴わないので地球温暖化を助長しない等、燃焼方式に無い利点を有する。また、吸着剤としての活性炭は、マイクロ波吸収性を有することから、回収時にこれにマイクロ波を照射することにより活性炭を直接効率よく加熱することができるという利点も有する。
In order to prevent air pollution caused by suspended particulate matter and photochemical oxidants, part of the Air Pollution Control Act was established in 2004 to suppress emissions from VOC, one of these causative substances, from factories and business establishments. Was amended.
VOC removal devices are roughly classified into a combustion method and an adsorption method. In the adsorption method, exhaust gas is introduced from an inlet of a tank filled with activated carbon, VOC is adsorbed on the activated carbon, and purified gas is discharged from the outlet. Then, the adsorbed VOC is recovered by heating and evaporation together with the carrier gas introduced from the outlet. Therefore, the adsorption method has advantages not found in the combustion method such that VOC can be recovered and reused, and it does not accompany global warming because it does not involve the generation of CO 2 . Moreover, since activated carbon as an adsorbent has microwave absorption, it also has an advantage that activated carbon can be directly and efficiently heated by irradiating it with microwaves during recovery.

従来、吸着方式のVOC除去装置に用いられる活性炭は、価格が安い等の理由から粒状が主流であったが、吸着槽内に充填された粒状活性炭は吸着熱が蓄積されて自然発火するおそれがある。従って、回収用のキャリアガスとして水蒸気を用いざるを得ず、このため除去可能なVOCが低沸点且つ水不溶性のものに限定されていた。そこで、近年、活性炭を気体が流通しやすく放熱性に優れたハニカム状のブロックに成形し、これを粒状活性炭に代えて吸着槽に装填することが提案された(特許文献1)。これにより発火のおそれがなくなり、キャリアガスとして窒素などの乾燥ガスを用いて種々のVOCを回収することが可能となった。
特開2006−187767
Conventionally, activated carbon used in adsorption-type VOC removal devices has been mainly in the form of particles for reasons such as low cost, but the granular activated carbon filled in the adsorption tank is likely to spontaneously ignite due to accumulation of adsorption heat. is there. Therefore, water vapor must be used as a carrier gas for recovery, and therefore, the removable VOC is limited to a low boiling point and water insoluble. Therefore, in recent years, it has been proposed to form activated carbon into a honeycomb-shaped block that allows gas to flow easily and has excellent heat dissipation, and loads this into an adsorption tank instead of granular activated carbon (Patent Document 1). As a result, there is no risk of ignition, and various VOCs can be recovered using a dry gas such as nitrogen as the carrier gas.
JP 2006-187767 A

しかし、マイクロ波が活性炭内に浸入する深さは有限である。従って、浸入深さを超える厚さに活性炭を成形したり、あるいはそのような厚さになるように複数個のブロックを積層したりしても、マイクロ波の届かない部分は加熱されず、そこに吸着したVOCは回収不可能となる。かといって浸入深さと同程度の厚さでは、吸着されずに通過するVOCの量が多すぎて実用性に乏しくなる。また、いずれにしてもハニカム状の活性炭は成形コストが高く、採算性に劣る。
それ故、この発明の課題は、VOCの吸着率及び脱着率のいずれも優れた回収ユニットを安価に提供することにある。
However, the depth at which microwaves penetrate into the activated carbon is finite. Therefore, even if the activated carbon is formed to a thickness exceeding the penetration depth, or a plurality of blocks are laminated so as to have such a thickness, the portion where the microwave does not reach is not heated. VOCs adsorbed on the surface cannot be recovered. On the other hand, if the thickness is about the same as the penetration depth, the amount of VOC that passes without being adsorbed is too large, and the practicality becomes poor. In any case, honeycomb-shaped activated carbon has a high molding cost and is inferior in profitability.
Therefore, an object of the present invention is to provide a recovery unit that is excellent in both the adsorption rate and desorption rate of VOC at low cost.

その課題を解決するために、この発明の回収ユニットは、
マイクロ波透過性の緻密なガラスもしくはセラミックからなり径方向に配列させられた複数の筒と、
マイクロ波透過性のガラスウールもしくはセラミックウールからなり前記各筒の外周面を覆うシートと、
活性炭からなり前記筒内に充填された多数のペレットと、
マイクロ波透過性且つ気体不透過性の材料からなり、前記複数の筒を収納するとともに、各筒の周囲の空間を気密に封じる一方、筒の内部が外部と通じることを許容する定形の容器と
を備えることを特徴とする。
In order to solve the problem, the recovery unit of the present invention is:
A plurality of tubes made of dense glass or ceramics that are transparent to microwaves and arranged in the radial direction;
A sheet made of microwave-permeable glass wool or ceramic wool and covering the outer peripheral surface of each cylinder;
A large number of pellets made of activated carbon and filled in the cylinder;
A shaped container made of a microwave permeable and gas impermeable material, containing the plurality of tubes and hermetically sealing the space around each tube, while allowing the inside of the tube to communicate with the outside It is characterized by providing.

この回収ユニットによれば、VOC含有排ガスが各筒内を通って筒の一方から他方に送られ、その間にVOCがペレットに吸着される。容器が各筒の周囲の空間を気密に封じているので、排ガスが筒外を通過することはない。筒が貫通しているので、吸着熱は浄化ガスとともに速やかに放出される。従って、自然発火することはない。ペレットの個数は、処理する排ガスの量や濃度に応じて排ガスが十分に浄化される程度に定められる。そして、筒及びシートがマイクロ波透過性の材料からなることから、複数の筒が配列させられていても回収時にはマイクロ波が筒、シート又は筒間の空間を通って筒内に浸入し、各ペレットを直接加熱する。従って、各ペレットに吸着したVOCの大部分が脱着される。しかも筒及びシートはマイクロ波透過性材料からなるので、加熱されることはなく、マイクロ波のエネルギーのほとんどが脱着に効率よく消費される。また、シートはウールからなるので、筒の熱膨張や衝撃を吸収するとともに、隣接する筒同士を断熱する。   According to this recovery unit, VOC-containing exhaust gas passes through each cylinder and is sent from one of the cylinders to the other, while VOC is adsorbed on the pellets. Since the container hermetically seals the space around each cylinder, the exhaust gas does not pass outside the cylinder. Since the cylinder penetrates, the heat of adsorption is quickly released together with the purified gas. Therefore, it does not ignite spontaneously. The number of pellets is determined so that the exhaust gas is sufficiently purified according to the amount and concentration of the exhaust gas to be treated. And since the cylinder and the sheet are made of a microwave permeable material, even when a plurality of cylinders are arranged, the microwaves penetrate into the cylinder through the cylinder, the sheet or the space between the cylinders at the time of collection, Heat the pellet directly. Therefore, most of the VOC adsorbed on each pellet is desorbed. Moreover, since the cylinder and the sheet are made of a microwave transparent material, they are not heated and most of the microwave energy is efficiently consumed for desorption. Moreover, since a sheet | seat consists of wool, while absorbing the thermal expansion and impact of a pipe | tube, it heat-insulates adjacent pipe | tubes.

前記筒の内径は、前記マイクロ波の浸入可能な深さよりも大きく且つ当該深さの2倍以下であるのが好ましい。前記の通り筒及びシートはマイクロ波透過性材料からなるので、マイクロ波が筒の全外周面から浸入することが可能である。このためマイクロ波の浸入可能な深さよりも内径を大きくして筒一本当たりの吸着量を大きくすることができるからである。尚、マイクロ波の浸入深さは、マイクロ波の周波数によって異なるが、筒内部に温度センサを差し込んだ状態でマイクロ波を照射し、温度が上昇する位置をもって求めることができる。2.45GHzのマイクロ波の場合は20mmである。
筒を構成する材料としては、PEEK、PTFE、ガラス、石英、セラミックスが使用できるが、耐熱性が必要であるため、ガラス、石英、セラミックスおよびPEEKが最適である。
It is preferable that an inner diameter of the cylinder is larger than a depth at which the microwave can penetrate and not more than twice the depth. As described above, since the cylinder and the sheet are made of a microwave permeable material, the microwave can enter from the entire outer peripheral surface of the cylinder. This is because the adsorption amount per cylinder can be increased by making the inner diameter larger than the depth at which microwaves can penetrate. Although the microwave penetration depth varies depending on the microwave frequency, it can be obtained from the position where the temperature rises when the microwave is irradiated with the temperature sensor inserted into the cylinder. In the case of 2.45 GHz microwave, it is 20 mm.
As the material constituting the cylinder, PEEK, PTFE, glass, quartz, and ceramics can be used. However, since heat resistance is required, glass, quartz, ceramics, and PEEK are optimal.

前記容器に適用するマイクロ波透過性材料としては、ガラス、石英、セラミックスなどの無機材料でもよいが、成形性の点でポリエステル、ポリプロピレン、ナイロン、ポリエチレン、ポリスチレン、フッ素樹脂、PEEK、フェノール樹脂、エポキシ樹脂、キシレン樹脂、ジアリルフタレート樹脂、ポリカーボネート、メラミン樹脂、フラン樹脂などの樹脂がよい。また、これらの材料中に繊維を含有させて強化してもよい。   The microwave transmissive material applied to the container may be an inorganic material such as glass, quartz, ceramics, but polyester, polypropylene, nylon, polyethylene, polystyrene, fluororesin, PEEK, phenol resin, epoxy in terms of moldability. Resins such as resin, xylene resin, diallyl phthalate resin, polycarbonate, melamine resin, and furan resin are preferable. Further, these materials may be reinforced by containing fibers.

前記ペレットは、レッシングリング (Lessing ring)形状をなすと好ましい。粒状よりは圧力損失が小さく、ハニカム状よりも成形コストが低く、且つ仕切り板により十分な強度が確保されるからである。この場合、筒の内径をD、レッシングリング の直径をd、レッシングリング の軸長をLとするとき、d=D/6〜D/2、L=d/2〜2dの範囲が好ましい。   The pellet is preferably in the form of a Lessing ring. This is because the pressure loss is smaller than the granular shape, the molding cost is lower than that of the honeycomb shape, and sufficient strength is secured by the partition plate. In this case, when the inner diameter of the cylinder is D, the diameter of the lessing ring is d, and the axial length of the lessing ring is L, the ranges of d = D / 6 to D / 2 and L = d / 2 to 2d are preferable.

この発明において、前記容器を保持し、マイクロ波導波管を固定するハウジングは限定されないが、好ましい構成では、前記容器を気密に保持するとともに、容器外周面との間に容器を包囲する冷却室を形成するハウジングと、冷却室を間にして容器外周面と対向するハウジングの部分に固定されたマイクロ波導波管とを備える。これにより、VOCの吸着熱やマイクロ波照射に伴う熱が冷却室に放散され、容器の変形を防ぐからである。更に、外部の冷却ガス源より前記ハウジング及び前記容器の下部を貫通し、冷却室に至る冷却管を備えるとよい。容器の下部は筒の重力を受けて熱変形しやすく、この部分の蓄熱を早期に防ぐことで熱変形を防止できるからである。前記冷却ガスは、前記筒を通過した浄化ガスであってよい。   In the present invention, the housing for holding the container and fixing the microwave waveguide is not limited. However, in a preferable configuration, the cooling chamber that holds the container in an airtight manner and surrounds the container is provided between the container and the outer peripheral surface. A housing to be formed; and a microwave waveguide fixed to a portion of the housing facing the outer peripheral surface of the container with the cooling chamber interposed therebetween. Thereby, the heat of adsorption of VOC and the heat accompanying microwave irradiation are dissipated into the cooling chamber, thereby preventing deformation of the container. Furthermore, it is preferable to provide a cooling pipe that penetrates the lower part of the housing and the container from an external cooling gas source and reaches the cooling chamber. This is because the lower part of the container is susceptible to thermal deformation due to the gravity of the cylinder, and thermal deformation can be prevented by preventing heat storage in this part at an early stage. The cooling gas may be a purified gas that has passed through the cylinder.

この発明の回収ユニットは、回収時のキャリアガスが水蒸気でなくても自然発火することがないので、種々のVOCをそれに適したキャリアガスで回収することができる。また、排ガスの浄化に必要な本数及びサイズの筒を組み合わせて吸着率を高めることができ、その場合でも各筒内にマイクロ波が浸入するので、脱着率も高い。よって、VOCを効率よく再利用することができる。また、充填されるペレットの形状は限定されないので、安価に製造可能である。   Since the recovery unit of the present invention does not ignite spontaneously even if the carrier gas at the time of recovery is not water vapor, various VOCs can be recovered with a carrier gas suitable for it. In addition, the adsorption rate can be increased by combining cylinders of the number and size necessary for purification of exhaust gas. Even in this case, since microwaves enter each cylinder, the desorption rate is also high. Therefore, the VOC can be reused efficiently. Moreover, since the shape of the filled pellet is not limited, it can be manufactured at low cost.

この発明の実施形態を図面を参照して説明する。図1は実施形態に係る回収ユニットの鉛直方向断面図、図2は同じく水平方向断面図、図3は図1の一部拡大図、図4は同回収ユニットの要部を示す斜視図、図5(a)は回収ユニットの筒内に充填されるペレットを示す平面図、図5(b)は同じく斜視図である。   Embodiments of the present invention will be described with reference to the drawings. 1 is a vertical cross-sectional view of a recovery unit according to the embodiment, FIG. 2 is a horizontal cross-sectional view of the same, FIG. 3 is a partially enlarged view of FIG. 1, and FIG. 5 (a) is a plan view showing pellets filled in the cylinder of the recovery unit, and FIG. 5 (b) is a perspective view of the same.

回収ユニット1は、ステンレス製のハウジング2を備える。ハウジング2は、四面の外壁21と、天板22と、床板23とで囲まれる直方体状をなす。各外壁21にはマイクロ波導波管3が取り付けられている。天板22及び床板23は、それぞれ中央が開口しており、処理ガスの出入り口24、25となっている。ハウジング2内には繊維強化樹脂からなる容器4が設置されている。繊維強化樹脂中の繊維及び樹脂は、いずれもマイクロ波透過性を有し、樹脂としてはPEEKが好ましく挙げられる。外壁21の内周面と容器4の外周面との間には冷却室9となる枠状の空間が設けられている。外壁21の一方の側の上端付近には冷却ガスの出口26が設けられている。   The recovery unit 1 includes a stainless steel housing 2. The housing 2 has a rectangular parallelepiped shape surrounded by the four outer walls 21, the top plate 22, and the floor plate 23. A microwave waveguide 3 is attached to each outer wall 21. The top plate 22 and the floor plate 23 each have an opening at the center and serve as processing gas entrances 24 and 25. A container 4 made of fiber reinforced resin is installed in the housing 2. Both the fiber and the resin in the fiber reinforced resin have microwave permeability, and a preferred example of the resin is PEEK. A frame-like space serving as the cooling chamber 9 is provided between the inner peripheral surface of the outer wall 21 and the outer peripheral surface of the container 4. A cooling gas outlet 26 is provided near the upper end on one side of the outer wall 21.

容器4は、天板22から床板23まで達する四面の側壁41と、天板22より低い位置で側壁41に固定された上板42と、床板23より高い位置で側壁41に固定された下板43とからなり、側壁41、上板42及び下板43で囲まれる空間は直方体状をなす。側壁41の肉厚は、処理する排ガスの量によって異なり、処理ガス量が5m3/分であれば5〜20mm、50m3/分であれば10〜50mmである。天板22、床板23、上板42及び下板43と側壁41とは、気密性を保持して接合されている。 The container 4 includes four side walls 41 extending from the top plate 22 to the floor plate 23, an upper plate 42 fixed to the side wall 41 at a position lower than the top plate 22, and a lower plate fixed to the side wall 41 at a position higher than the floor plate 23. The space surrounded by the side wall 41, the upper plate 42, and the lower plate 43 has a rectangular parallelepiped shape. The thickness of the side wall 41 varies depending on the amount of exhaust gas to be treated, and is 5 to 20 mm when the amount of treated gas is 5 m 3 / min, and 10 to 50 mm when 50 m 3 / min. The top plate 22, the floor plate 23, the upper plate 42, the lower plate 43, and the side wall 41 are joined while maintaining airtightness.

容器4内にはホウ酸ガラスからなる多数(図示では64本)の円筒5が8行×8列となるよう配列して収納されている。各筒5の内径Dは通常20〜50mm、好ましくは30〜40mmで、各筒5の外周面はマイクロ波透過性ガラスウール製の厚さ1〜10mmのシート6で巻かれて互いに断熱されている。シート6は隣接する筒5との衝撃を吸収する機能も果たす。筒5とシート6との肉厚の合計は、5〜20mmである。各筒5は、図3に示すように上端及び下端がそれぞれ上板42及び下板43を気密に貫通している。そして、更に64本の筒5配列全体が10mmのシート7で覆われ、側壁41と断熱されている。   A large number (64 in the figure) of cylinders 5 made of borate glass are accommodated in the container 4 so as to be arranged in 8 rows × 8 columns. The inner diameter D of each cylinder 5 is usually 20 to 50 mm, preferably 30 to 40 mm. The outer peripheral surface of each cylinder 5 is wound around a sheet 6 made of microwave permeable glass wool and having a thickness of 1 to 10 mm to be insulated from each other. Yes. The sheet 6 also functions to absorb an impact with the adjacent cylinder 5. The total thickness of the cylinder 5 and the sheet 6 is 5 to 20 mm. As shown in FIG. 3, the upper and lower ends of each cylinder 5 penetrate the upper plate 42 and the lower plate 43 in an airtight manner, respectively. Further, the entire array of 64 cylinders 5 is covered with a 10 mm sheet 7 and insulated from the side wall 41.

ハウジング2の外には図略の冷却ガス源が配置され、その冷却ガス源に冷却管8が連結されている。冷却管8は、外壁21を気密に貫通して下板43内を蛇行して冷却室9に至り、冷却ガスが下板43の熱を吸収した後、冷却室9に入れられるようになっている。
各筒5内には活性炭からなる多数のペレット10が充填されている。ペレット10は、図5に示すように円筒の中央に仕切り板を一体的に有する所謂レッシングリング形状をなし、粉末活性炭とバインダとの混合物を押し出し成形後に焼成することにより得られる。ペレット10の直径は6〜8mmである。
A cooling gas source (not shown) is disposed outside the housing 2, and a cooling pipe 8 is connected to the cooling gas source. The cooling pipe 8 passes through the outer wall 21 in an airtight manner, meanders in the lower plate 43 to reach the cooling chamber 9, and the cooling gas absorbs the heat of the lower plate 43, and then enters the cooling chamber 9. Yes.
Each cylinder 5 is filled with a large number of pellets 10 made of activated carbon. As shown in FIG. 5, the pellet 10 has a so-called Lessing ring shape having a partition plate integrally in the center of a cylinder, and is obtained by extruding and firing a mixture of powdered activated carbon and a binder. The diameter of the pellet 10 is 6-8 mm.

回収ユニット1を用いてVOCを排ガスから除去する場合は、排ガスを回収ユニット1の入口24から出口25に流す。同時に冷却ガスを冷却管8に流す。排ガス中のVOCは、筒5内を通過中にペレット10の表面に吸着される。その結果、浄化ガスが回収ユニット1から排出される。ペレット10がレッシングリング形状をなしているので、圧損が少なく、変形もしにくい。また、冷却ガスが下板43及び側壁41を冷却しているので、吸着熱が筒5内に蓄積されることはなく、安全であり、下板43が変形することはない。尚、冷却ガスとして冷めた浄化ガスを利用しても良い。   When the VOC is removed from the exhaust gas using the recovery unit 1, the exhaust gas flows from the inlet 24 to the outlet 25 of the recovery unit 1. At the same time, a cooling gas is passed through the cooling pipe 8. VOC in the exhaust gas is adsorbed on the surface of the pellet 10 while passing through the cylinder 5. As a result, the purified gas is discharged from the recovery unit 1. Since the pellet 10 is in the shape of a recessing ring, there is little pressure loss and deformation is difficult. Further, since the cooling gas cools the lower plate 43 and the side wall 41, the heat of adsorption is not accumulated in the cylinder 5, and it is safe and the lower plate 43 is not deformed. A cooled purified gas may be used as the cooling gas.

次に、吸着したVOCを回収する場合は、排ガスの送気を停止し、窒素などの活性炭及びVOCのいずれに対しても不活性で乾燥したキャリアガスを排ガスと逆方向即ち出口25から入口24の方向に流しながら、導波管3より容器4に2.45GHzのマイクロ波を照射する。同時に冷却管8に冷却ガスを流す。マイクロ波は側壁41、シート6、シート7及び筒5を透過し、ペレット10に吸収される。このマイクロ波の活性炭に対する浸入深さは20mmであり、各筒5の内径Dが20〜50mmであることから、筒5の周囲から浸入したマイクロ波によって筒5内の全てのペレット10が加熱される。その熱を受けて蒸発したVOCを、キャリアガスとともに回収ユニット1から収集する。このときも冷却ガスが下板43及び側壁41を冷却しているので、活性炭の発した熱が筒5内に蓄積されることはなく、安全である。   Next, when recovering the adsorbed VOC, the supply of the exhaust gas is stopped, and the carrier gas that is inert and dry with respect to both the activated carbon such as nitrogen and the VOC is opposite to the exhaust gas, that is, from the outlet 25 to the inlet 24. The microwave of 2.45 GHz is irradiated from the waveguide 3 to the container 4 while flowing in the direction of. At the same time, a cooling gas is caused to flow through the cooling pipe 8. The microwave passes through the side wall 41, the sheet 6, the sheet 7, and the cylinder 5 and is absorbed by the pellet 10. Since the penetration depth of this microwave into the activated carbon is 20 mm and the inner diameter D of each cylinder 5 is 20 to 50 mm, all the pellets 10 in the cylinder 5 are heated by the microwave that has entered from the periphery of the cylinder 5. The The VOC evaporated by receiving the heat is collected from the recovery unit 1 together with the carrier gas. Also at this time, since the cooling gas cools the lower plate 43 and the side wall 41, the heat generated by the activated carbon is not accumulated in the cylinder 5 and is safe.

実施形態に係る回収ユニットの鉛直方向断面図である。It is a vertical direction sectional view of the recovery unit concerning an embodiment. 同じく水平方向断面図である。It is a horizontal direction sectional view similarly. 図1の一部拡大図である。FIG. 2 is a partially enlarged view of FIG. 1. 同回収ユニットの要部を示す斜視図である。It is a perspective view which shows the principal part of the collection unit. (a)は回収ユニットの筒内に充填されるペレットを示す平面図、(b)は同じく斜視図である。(A) is a top view which shows the pellet with which the cylinder of a collection | recovery unit is filled, (b) is a perspective view similarly.

符号の説明Explanation of symbols

1 回収ユニット
2 ハウジング
3 マイクロ波導波管
4 容器
5 筒
6、7 シート
8 冷却管
9 冷却室
10 ペレット
DESCRIPTION OF SYMBOLS 1 Recovery unit 2 Housing 3 Microwave waveguide 4 Container 5 Cylinder 6, 7 Sheet 8 Cooling tube 9 Cooling chamber 10 Pellet

Claims (7)

マイクロ波透過性の緻密なガラスもしくはセラミックからなり径方向に配列させられた複数の筒と、
マイクロ波透過性のガラスウールもしくはセラミックウールからなり前記各筒の外周面を覆うシートと、
活性炭からなり前記筒内に充填された多数のペレットと、
マイクロ波透過性且つ気体不透過性の材料からなり、前記複数の筒を収納するとともに、各筒の周囲の空間を気密に封じる一方、筒の内部が外部と通じることを許容する定形の容器と
を備えることを特徴とする揮発性有機化合物の回収ユニット。
A plurality of tubes made of dense glass or ceramics that are transparent to microwaves and arranged in the radial direction;
A sheet made of microwave-permeable glass wool or ceramic wool and covering the outer peripheral surface of each cylinder;
A large number of pellets made of activated carbon and filled in the cylinder;
A shaped container made of a microwave permeable and gas impermeable material, containing the plurality of tubes and hermetically sealing the space around each tube, while allowing the inside of the tube to communicate with the outside A volatile organic compound recovery unit comprising:
前記筒の内径が、前記マイクロ波の浸入可能な深さよりも大きく且つ当該深さの2倍以下である請求項1に記載の回収ユニット。   2. The recovery unit according to claim 1, wherein an inner diameter of the cylinder is larger than a depth at which the microwave can enter and is not more than twice the depth. 前記容器を構成するマイクロ波透過性且つ気体不透過性の材料が繊維強化樹脂である請求項1又は2に記載の回収ユニット。   The collection unit according to claim 1 or 2, wherein the microwave permeable and gas impermeable material constituting the container is a fiber reinforced resin. 前記ペレットがレッシングリング形状をなす請求項1〜3のいずれかに記載の回収ユニット。   The collection unit according to any one of claims 1 to 3, wherein the pellet has a shape of a ringing ring. 更に、前記容器を気密に保持するとともに、容器外周面との間に容器を包囲する冷却室を形成するハウジングと、
冷却室を間にして容器外周面と対向するハウジングの部分に固定されたマイクロ波導波管とを備える請求項1〜4のいずれかに記載の回収ユニット。
And a housing that holds the container in an airtight manner and forms a cooling chamber that surrounds the container with the outer peripheral surface of the container;
The recovery unit according to claim 1, further comprising: a microwave waveguide fixed to a portion of the housing facing the outer peripheral surface of the container with the cooling chamber interposed therebetween.
更に、外部の冷却ガス源より前記ハウジング及び前記容器の下部を貫通し、冷却室に至る冷却管を備える請求項5に記載の回収ユニット。   Furthermore, the collection | recovery unit of Claim 5 provided with the cooling pipe which penetrates the lower part of the said housing and the said container from an external cooling gas source, and reaches a cooling chamber. 前記冷却ガスが、前記筒を通過した浄化ガスである請求項6に記載の回収ユニット。   The recovery unit according to claim 6, wherein the cooling gas is a purified gas that has passed through the cylinder.
JP2007212700A 2007-08-17 2007-08-17 Volatile organic compound recovery unit Expired - Fee Related JP4608685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212700A JP4608685B2 (en) 2007-08-17 2007-08-17 Volatile organic compound recovery unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212700A JP4608685B2 (en) 2007-08-17 2007-08-17 Volatile organic compound recovery unit

Publications (2)

Publication Number Publication Date
JP2009045535A JP2009045535A (en) 2009-03-05
JP4608685B2 true JP4608685B2 (en) 2011-01-12

Family

ID=40498266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212700A Expired - Fee Related JP4608685B2 (en) 2007-08-17 2007-08-17 Volatile organic compound recovery unit

Country Status (1)

Country Link
JP (1) JP4608685B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101987275B (en) * 2009-08-05 2015-04-08 湖北锡鹏科技开发有限公司 Method and device for recovering volatile organic compound through adsorption-electric heat desorption
CN110646251A (en) * 2019-09-03 2020-01-03 上海市松江一中 Atmospheric VOCs gas sampling device and preparation method thereof
CN111054180A (en) * 2019-11-26 2020-04-24 南通联振重工机械有限公司 Square corner drawer type unit lattice adsorption tower
CN112516739A (en) * 2020-10-26 2021-03-19 南京京科新材料研究院有限公司 VOC gas purification treatment system and treatment method
JP2023166687A (en) * 2022-05-10 2023-11-22 愛三工業株式会社 gas adsorption device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260289A (en) * 1975-11-13 1977-05-18 Daiichi Tanso Kougiyou Kk Apparatus for regenerating deteriorated active carbon
JPH07227420A (en) * 1994-02-18 1995-08-29 Sharp Corp Deodorizing element and deodorizing device using this deodorizing element
JP2004243279A (en) * 2003-02-17 2004-09-02 National Institute Of Advanced Industrial & Technology Method and device for cleaning gas containing organic contaminant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260289A (en) * 1975-11-13 1977-05-18 Daiichi Tanso Kougiyou Kk Apparatus for regenerating deteriorated active carbon
JPH07227420A (en) * 1994-02-18 1995-08-29 Sharp Corp Deodorizing element and deodorizing device using this deodorizing element
JP2004243279A (en) * 2003-02-17 2004-09-02 National Institute Of Advanced Industrial & Technology Method and device for cleaning gas containing organic contaminant

Also Published As

Publication number Publication date
JP2009045535A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4608685B2 (en) Volatile organic compound recovery unit
JP5058964B2 (en) Adsorption / desorption apparatus and adsorption / desorption method for air containing volatile organic compound gas
US20220193598A1 (en) Adsorber structure for gas separation processes
US9144766B2 (en) Method and apparatus for rapid adsorption-desorption CO2 capture
JP2016522742A (en) Soil box for evaporative desorption process
ES2325113T3 (en) DEVICES FOR FILTERING FLUIDS, AND PRODUCTION PROCEDURE.
JP2023129516A (en) heat storage unit
KR102157439B1 (en) Circular activated carbon cartridge for elimination of air pollutants and regeneration system thereof
KR101266920B1 (en) Combustion apparatus for green house gases
JP2010127080A (en) Evaporated fuel treating device
JP7057852B2 (en) Static reactor containment heat removal system and nuclear plant
KR20140037809A (en) Device for trapping flammable gases produced by radiolysis or thermolysis in a containment
JP2014008476A (en) Exhaust gas treatment device, activated carbon absorption tower and filtration type dust collector
JP4682330B2 (en) Volatile organic compound recovery unit
KR101361002B1 (en) Indirect heating type volatile organic compounds reactor
CN108939794A (en) A kind of recovery method of trichloroethane gas
US3498024A (en) Method and apparatus for gas decontamination
KR101495546B1 (en) Processing Method of Radwaste Spent Activated Carbon
KR102331408B1 (en) Carbon dioxide removal and regeneration device in the air and a method of using the same
Nwokedi et al. Chemical process absorption column design for CO2 sequestration
CN209060863U (en) The adsorption-decomposition function device of volatile organic compounds
KR101480056B1 (en) Closed capturing device for carbon dioxide
CN220495975U (en) Carbon dioxide trapping device
JP2005325707A (en) Canister
JP3241010U (en) Adsorption unit, adsorption treatment device, and treatment system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees