JP4608678B2 - Porous material having multidimensional pore structure and manufacturing method thereof - Google Patents

Porous material having multidimensional pore structure and manufacturing method thereof Download PDF

Info

Publication number
JP4608678B2
JP4608678B2 JP2004266051A JP2004266051A JP4608678B2 JP 4608678 B2 JP4608678 B2 JP 4608678B2 JP 2004266051 A JP2004266051 A JP 2004266051A JP 2004266051 A JP2004266051 A JP 2004266051A JP 4608678 B2 JP4608678 B2 JP 4608678B2
Authority
JP
Japan
Prior art keywords
pores
several
microns
porous
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004266051A
Other languages
Japanese (ja)
Other versions
JP2006076867A (en
Inventor
善之 横川
且也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004266051A priority Critical patent/JP4608678B2/en
Publication of JP2006076867A publication Critical patent/JP2006076867A/en
Application granted granted Critical
Publication of JP4608678B2 publication Critical patent/JP4608678B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、多次元気孔構造を有する多孔質材料に関するものであり、更に詳しくは、ミリメートルあるいはサブミリメートルの気孔中に、数ミクロンから数十ミクロンの気孔、更に数ナノメートルからサブミクロンの気孔を同時に有する多次元気孔構造を有する多孔質材料に関するものである。本発明の多次元気孔構造を有する多孔質材料は、例えば、数十ミクロンの微生物、細胞、それが産出する生理活性物質、生体触媒等を好適に吸着するため、多様な固定化担体、薬物担体、あるいはろ過材等に好適に利用しうるものである。   The present invention relates to a porous material having a multidimensional pore structure, and more particularly, a pore of several microns to several tens of microns, and further, a pore of several nanometers to submicron is provided in a millimeter or submillimeter pore. The present invention relates to a porous material having a multidimensional pore structure at the same time. The porous material having a multi-dimensional pore structure of the present invention is suitable for various microorganisms, cells, bioactive substances produced by the porous materials, biocatalysts, etc. Alternatively, it can be suitably used for filter media and the like.

様々な多孔質体が、酵素担体、薬物担体などに広く活用されている。固定する対象物の保持力を高めるには、共有結合を利用する方法が知られているが、結合力は改善されるが、固定したものの機能の失活が避けられない。そこで、生化学的な特異結合を利用する場合があるが、調製が難しい。イオン結合や物理的吸着では、失活の程度は押さえられるものの結合力が弱い。その他、格子型、マイクロカプセル型、リポソーム型といった包括法や架橋法が知られているが、固定化は対象物によって様々であり、選択的に特定の対象物を固定化する構造体は見あたらない(特許文献1、2参照)。   Various porous bodies are widely used for enzyme carriers, drug carriers and the like. In order to increase the holding power of the object to be fixed, a method using a covalent bond is known. However, although the binding power is improved, the function of the fixed object cannot be avoided. Therefore, biochemical specific binding may be used, but preparation is difficult. In ionic bonds and physical adsorption, the degree of deactivation is suppressed, but the binding force is weak. In addition, the inclusion method and the cross-linking method such as lattice type, microcapsule type, and liposome type are known, but immobilization varies depending on the object, and there is no structure that selectively immobilizes a specific object. (See Patent Documents 1 and 2).

特開2003−146625号公報JP 2003-146625 A 特開2002−40501号公報Japanese Patent Laid-Open No. 2002-40501

本発明は、前述した背景を鑑みて、特定の対象物を固定化する構造を多様な基材に構築する技術ならびに多次元気孔構造を有する多孔質体を提供することを目的としてなされたものである。   In view of the background described above, the present invention has been made for the purpose of providing a technique for constructing a structure for immobilizing a specific object on various base materials and a porous body having a multidimensional pore structure. is there.

上記課題を解決するための本発明は、ミリメートル又はサブミリメートルの気孔を有する多孔質基材中に、数ミクロンから数十ミクロンの気孔、更に数ナノメートルからサブミクロンの気孔を同時に有する多次元気孔構造を有することを特徴とする多孔質材料である。本発明の多孔質材料は、多孔質基材中に、メソ構造を形成させて多次元気孔構造としたこと、粘土の層間化合物により数ナノメートルからサブミクロンの気孔を形成したこと、分子鋳型により数ナノメートルからサブミクロンの気孔を形成したこと、を特徴としている。本発明では、上記多孔質材料からなることを特徴とする選択的吸着、固定化作用を有する担体、生体分子の選択的吸着、固定化担体である担体、が提供される。また、本発明では、第1段階として、数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔を有する多孔質基材を調製し、第2段階として、ナノメートルからサブミクロンの気孔を、上記の数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔の中に形成させることを特徴とする多次元気孔構造を有する多孔質材料の製造方法が提供される。この方法は、基材が、第2段階の処理に耐える多孔質基材であることを特徴としている。 To solve the above problems, the present invention provides a multi-dimensional structure having pores of several microns to tens of microns, and pores of several nanometers to submicrons simultaneously in a porous substrate having pores of several millimeters or submillimeters. It is a porous material characterized by having a pore structure. The porous material of the present invention, in the multi-porous substrate, to form a meso structure that was multidimensional pore structure, to the formation of the pores of submicron a few nanometers by intercalation compound clay, molecular template It is characterized in that pores of several nanometers to submicrons were formed. The present invention provides a carrier having a selective adsorption and immobilization action, a selective adsorption of a biomolecule, and a carrier that is an immobilization carrier, characterized by comprising the above porous material. In the present invention, a porous substrate having pores of several millimeters or submillimeters and pores of several microns to several tens of microns is prepared as the first step, and pores of nanometers to submicrons are prepared as the second step. Is formed in the above-mentioned pores of several millimeters or submillimeters, and pores of several microns to several tens of microns, and a method for producing a porous material having a multidimensional pore structure is provided. This method is characterized in that the substrate is a porous substrate that can withstand the second stage treatment.

以下、本発明を更に詳しく説明する。
本発明では、第1段階として、数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔を有する基材を調製する。次に、第2段階として、ナノメートルからサブミクロンの気孔を、上記の数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔の中に形成させる。本発明に使用する基材は、上述の第2段階の処理条件に耐えるもので、シリカを主成分とする土壌からなる多孔性の既知の基材を用いることができる。
Hereinafter, the present invention will be described in more detail.
In the present invention, as a first step, a substrate having pores of several millimeters or submillimeters and pores of several to several tens of microns is prepared. Next, as a second step, nanometer to submicron pores are formed in the above-described several millimeters or submillimeter pores, as well as several to several tens of microns. The substrate used in the present invention can withstand the above-mentioned second stage treatment conditions, and a known porous substrate made of silica-based soil can be used.

本発明では、第1段階として、数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔を有する基材を調製する。上記の基材は、溶剤、熱等で分解除去できる添加物あるいは多孔性のフォーム等にセラミックスの微細粉末を分散した泥しょうを加え、必要に応じて所定の形状に成形し、その後、溶剤、熱等で添加物あるいはフォームを除去することで得られるが、多孔質材料を作製する手法、作製法は特に限定されるものではない。これらを具体的な事例で説明すると発泡剤を用いて多孔体を作製する公知の手法など多くの方法が知られている。次に、第2段階として、ナノメートルからサブミクロンの気孔を、上記の数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔の中に形成させる。これらを具体的な事例で説明するとブロックコポリマーやゾルゲル法により、基材の表面あるいは内部に上記のサイズの気孔を形成できる。   In the present invention, as a first step, a substrate having pores of several millimeters or submillimeters and pores of several to several tens of microns is prepared. The above-mentioned base material is added with a slurry in which a fine powder of ceramic is dispersed in a solvent, heat or the like that can be decomposed and removed by heat, etc., and molded into a predetermined shape as necessary. Although it can be obtained by removing the additive or foam by heat or the like, the technique and production method for producing the porous material are not particularly limited. When these are explained with specific examples, many methods are known, such as a known method for producing a porous body using a foaming agent. Next, as a second step, nanometer to submicron pores are formed in the above-described several millimeters or submillimeter pores, as well as several to several tens of microns. When these are explained by specific examples, pores having the above-mentioned size can be formed on the surface or inside of the substrate by a block copolymer or a sol-gel method.

ナノメートルからサブミクロンの気孔を、数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔を有する基材に形成させる、形成方法は特に限定されるものではないが、好適には、例えば、分子鋳型、あるいは結晶構造の周期性を活用することで形成させる。所定温度以上で焼成することで、分子集合体の有機成分を完全に除去し、メソ構造を形成させる。熱分解以外の方法では、有機物の残存を避けることは、ほとんど不可能である。有機物が残存することで、不要な官能基がメソ気孔等に残るため、特定物質の吸着能、保持能が低下するおそれがある。メソサイズの気孔は、例えば、アルカリ等による選択溶解法等の手段で形成させることもできる。   The method of forming nanometer to submicron pores on a substrate having pores of several millimeters or submillimeters, as well as pores of several microns to several tens of microns is not particularly limited. For example, it is formed by utilizing the periodicity of the molecular template or crystal structure. By baking at a predetermined temperature or higher, the organic components of the molecular assembly are completely removed and a mesostructure is formed. By methods other than pyrolysis, it is almost impossible to avoid the remaining organic matter. When the organic substance remains, unnecessary functional groups remain in the mesopores and the like, which may reduce the adsorption ability and retention ability of the specific substance. The meso-sized pores can also be formed by means such as a selective dissolution method using an alkali or the like.

メソ構造を形成する手法は特に限定されるものではないが、好適には、例えば、分子鋳型を用いる場合は、界面活性剤、複数の界面活性剤、ブロックコポリマー、あるいは複数のブロックコポリマーによる分子集合体に、金属アルコキシド、水、酸等を用いて作製した溶液に浸漬し、その後、焼成することでメソ構造が作製される。結晶構造の周期性を活用する場合は、粘土等の層間化合物を、数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔内に形成することでメソ構造が作製される。   The method for forming the mesostructure is not particularly limited, but preferably, for example, when a molecular template is used, a molecular assembly using a surfactant, a plurality of surfactants, a block copolymer, or a plurality of block copolymers A mesostructure is produced by immersing the body in a solution produced using metal alkoxide, water, acid, etc., and then firing. When utilizing the periodicity of the crystal structure, a mesostructure is produced by forming intercalation compounds such as clay in pores of several millimeters or submillimeters and pores of several to several tens of microns.

本発明では、数ミリメートルあるいはサブミリメートルの気孔中に、数ミクロンから数十ミクロンの気孔、更に数ナノメートルからサブミクロンの気孔を同時に有する多次元気孔構造を有することを特徴とする多孔質材料を得ることができる。この多次元気孔構造を有する多孔質材料は、2段階で作製されるが、基材は第2段階の処理に耐えるものでシリカを主成分とする土壌を使用でき、形状、大きさに制約されないため、多様な対象物の固定に有用である。また、第1段階により得られる基材で、材料の機械的特性が制御でき、第2段階のメソ構造で機能の高度化を図ることが可能であるため、特定物質の固定法に最適な設計手段も提供できる。 In the present invention, there is provided a porous material characterized by having a multidimensional pore structure having pores of several microns to several tens of microns and pores of several nanometers to submicrons simultaneously in pores of several millimeters or submillimeters. Obtainable. The porous material having this multi-dimensional pore structure is produced in two stages, but the base material can withstand the second stage treatment and can use soil mainly composed of silica, and is not restricted by shape and size. Therefore, it is useful for fixing various objects. In addition, the base material obtained by the first stage can control the mechanical properties of the material, and the second stage mesostructure can enhance the function. Means can also be provided.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は、これらによって何らら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these.

シリカを主成分とする土壌を乾燥、粉砕し、混練、造粒、整粒後、乾燥、1000℃で焼成することで、比重1.4g/cm3 、平均気孔径200ミクロン、比表面積150m2 /gの多孔質セラミックスを調製した。調製した多孔質セラミックスを、ブロックコポリマー(E020P070E020)を塩酸水溶液に溶解し、テトラエトキシオルソシリケート(TEOS)を加えた溶液に加え、水熱条件下100℃で48時間反応させ、80℃で10時間乾燥後、550℃で1時間焼成した。 Silica-based soil is dried, pulverized, kneaded, granulated, sized, dried, and fired at 1000 ° C., with a specific gravity of 1.4 g / cm 3 , an average pore diameter of 200 microns, and a specific surface area of 150 m 2. / G of porous ceramics was prepared. The prepared porous ceramic was dissolved in a hydrochloric acid aqueous solution of a block copolymer (E020P070E020), added to a solution containing tetraethoxyorthosilicate (TEOS), reacted at 100 ° C. for 48 hours under hydrothermal conditions, and at 80 ° C. for 10 hours. After drying, it was calcined at 550 ° C. for 1 hour.

得られた生成物は、10.1nmのメソポア、2−5ミクロン、200ミクロンの気孔を有する多次元気孔質体であった。図1に、多孔質セラミックスの破断面のSEM像を示す。数十ミロン以上の気孔のほか、数ミクロン程度以下の小さな気孔があることがわかる。これにブロックコポリマーなどで処理したSEM像を図2に示す。全面、被膜で覆われていることがわかる。図3に、被膜のTEM像を示す。ナノサイズの気孔はランダムに配置していることがわかる。   The resulting product was a multidimensional porous material with 10.1 nm mesopores, 2-5 micron and 200 micron pores. FIG. 1 shows an SEM image of the fracture surface of the porous ceramic. It can be seen that there are small pores of several microns or less in addition to pores of several tens of milon or more. An SEM image treated with a block copolymer or the like is shown in FIG. It can be seen that the entire surface is covered with a coating. FIG. 3 shows a TEM image of the coating. It can be seen that the nano-sized pores are randomly arranged.

実施例1で用いた多孔質セラミックスを、TEOSとトリエタノールアミンを含む水溶液にテトラエチルアンモニウム水酸化物(TEOH)を加え、更に実施例1と同様にして多孔質セラミックスを添加し、室温で24時間反応させた。その後、乾燥し、600℃で6時間焼成した。得られた生成物は、11.4nmのメソポア、2−5ミクロン、200ミクロンの気孔を有する多次元気孔質体であった。図4に、生成物の破断面のSEM像を示す。図2と同様、全面、被膜で覆われていることがわかる。   To the porous ceramic used in Example 1, tetraethylammonium hydroxide (TEOH) was added to an aqueous solution containing TEOS and triethanolamine. Further, the porous ceramic was added in the same manner as in Example 1, and the room temperature was 24 hours. Reacted. Then, it dried and baked at 600 degreeC for 6 hours. The resulting product was a multidimensional porous material with 11.4 nm mesopores, 2-5 micron, 200 micron pores. FIG. 4 shows an SEM image of the fracture surface of the product. As in FIG. 2, it can be seen that the entire surface is covered with a coating.

ブロックコポリマーE020P070E020を塩酸水溶液に溶解し、テトラエトキシオルソシリケート(TEOS)を加えた溶液に加え、実施例1で得られた多孔質セラミックスを添加し、40−60℃で反応させた。トリメチルベンゼンとTEOSを所定の割合で加え、水熱条件下100℃で48時間反応させ、80℃で10時間乾燥後、550℃で1時間焼成した。   The block copolymer E020P070E020 was dissolved in an aqueous hydrochloric acid solution, added to a solution to which tetraethoxyorthosilicate (TEOS) was added, the porous ceramic obtained in Example 1 was added, and reacted at 40-60 ° C. Trimethylbenzene and TEOS were added at a predetermined ratio, reacted at 100 ° C. for 48 hours under hydrothermal conditions, dried at 80 ° C. for 10 hours, and calcined at 550 ° C. for 1 hour.

得られた生成物は、メソポア、2−5ミクロン、200ミクロンの気孔を有する多次元気孔質体であり、ブロックコポリマーとトリメチルベンゼンの割合に応じて、6.0nmから45.2nmまでメソポアの気孔径を変化させることができた(表1)。図5、6に、粉末X線回折図を示す。格子間隔より、トリメチルベンゼンを加えないと、図5に示すように、気孔径は6.0nmであるが、トリメチルベンゼンの割合を増加させると、図6の場合は、28.7nmとなる。生成物の被覆厚さは約1ミクロン程度であった。   The resulting product is a mesopore, a multi-dimensional porous material with pores of 2-5 microns and 200 microns, with mesopore pore sizes ranging from 6.0 nm to 45.2 nm, depending on the ratio of block copolymer to trimethylbenzene. The pore diameter could be changed (Table 1). 5 and 6 show powder X-ray diffraction patterns. From the lattice spacing, when no trimethylbenzene is added, the pore diameter is 6.0 nm as shown in FIG. 5, but when the proportion of trimethylbenzene is increased, in the case of FIG. 6, it becomes 28.7 nm. The coating thickness of the product was about 1 micron.

実施例1で用いた多孔質セラミックスを、1.0Nの水酸化ナトリウム溶液に浸漬し、密封して150℃で所定の時間処理した。ガス吸着による気孔分布を図7に示す。曲線にはいくつかの肩が見られ、アルカリ処理により数nmの気孔が生成している。2.0Nの水酸化ナトリウム溶液では、更に気孔が生成したことがわかった。水銀ポロシメーターによる分析では、図8に示すように、アルカリ処理により全体的にピークが大きくなり、気孔体積が大きくなったことがわかる。   The porous ceramic used in Example 1 was immersed in a 1.0 N sodium hydroxide solution, sealed, and treated at 150 ° C. for a predetermined time. The pore distribution due to gas adsorption is shown in FIG. Several shoulders are seen in the curve, and pores of several nm are generated by the alkali treatment. It was found that more pores were generated in the 2.0N sodium hydroxide solution. In the analysis by the mercury porosimeter, as shown in FIG. 8, it is understood that the peak is increased as a whole by the alkali treatment, and the pore volume is increased.

以上詳述したように、本発明は、多次元気孔構造を有する多孔質材料に係るものであり、本発明のミリメートルあるいはサブミリメートルの気孔中に、数ミクロンから数十ミクロンの気孔、更に数ナノメートルからサブミクロンの気孔を同時に有する多次元気孔構造を有することを特徴とする多孔質材料は、酵素、生理活性物質等、様々な分子量を有する機能性ナノ生体分子を選択的に吸着、固定でき、それらを産出する細胞、微生物を吸着、固定化することができるため、微生物、細胞による機能性ナノ生体分子の生産、固定の2段階をあわせて効率的に行うことができる。固定化する機能性ナノ生体分子の機能に応じ、生体材料、薬物担体、水処理、環境保全等、各種の材料に好適に利用し得る。   As described above in detail, the present invention relates to a porous material having a multidimensional pore structure, and in the millimeter or submillimeter pores of the present invention, pores of several to several tens of microns, and several nanometers. A porous material characterized by having a multidimensional pore structure with pores from meter to submicron simultaneously can selectively adsorb and immobilize functional nanobiomolecules with various molecular weights such as enzymes and bioactive substances. Since the cells and microorganisms that produce them can be adsorbed and immobilized, the production of the functional nanobiomolecules by the microorganisms and cells and the immobilization can be efficiently performed. Depending on the function of the functional nanobiomolecule to be immobilized, it can be suitably used for various materials such as biomaterials, drug carriers, water treatment, and environmental conservation.

未処理の多孔体破断面である。It is an untreated porous body fracture surface. ブロックコポリマー、TEOSで処理後の多孔体破断面である。It is the porous body fracture surface after processing with a block copolymer and TEOS. メソポア領域のTEM写真、数nmの気孔がランダムにある。TEM photograph of mesopore region, pores of several nm are randomly present. TEOS、トリエタノールアミン、TEOHで処理した多孔質セラミックスの断面図である。It is sectional drawing of the porous ceramics processed with TEOS, triethanolamine, and TEOH. ブロックコポリマー、TEOSで多孔質セラミックスの粉末X線回折図、気孔径6.0nmである。It is a powder X-ray diffraction pattern of porous ceramics made of block copolymer, TEOS, and the pore diameter is 6.0 nm. ブロックコポリマー、トリメチルベンゼン(両者比2:4)、TEOSで多孔質セラミックスの粉末X線回折図、気孔径28.7nmである。Block copolymer, trimethylbenzene (ratio of 2: 4), TEOS, powder X-ray diffraction pattern of porous ceramics, pore size 28.7 nm. 1.0N NaOH溶液中、150℃で16日間浸漬した多孔質セラミックスのガス吸着法による気孔分布、数nmと10nm近傍に曲線の変化が見られ、メソポアが、その領域に生成したことを示している。Porosity distribution of porous ceramics immersed in 1.0N NaOH solution at 150 ° C. for 16 days by gas adsorption method, curves changed in the vicinity of several nm and 10 nm, indicating that mesopores were generated in that region Yes. 1.0N NaOH溶液中、150℃で1週間浸漬した多孔質セラミックスの水銀ポロシメーターによる気孔分布(上:処理前、下:処理後)であるIt is a pore distribution (upper: before treatment, lower: after treatment) of a porous ceramic immersed in a 1.0 N NaOH solution at 150 ° C. for 1 week.

Claims (9)

シリカを主成分とする土壌を用いて、第1段階として、数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔を有する多孔質基材を調製し、第2段階として、分子鋳型を用いて、あるいは結晶構造の周期性を活用することで、水熱条件下で、反応させ、その後、焼成することにより、メソ構造を形成させるか、アルカリによる選択的溶解法によりメソサイズの気孔を形成させ、ナノメートルからサブミクロンの気孔を、上記の数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔の中に形成させることを特徴とする多次元気孔構造を有する多孔質材料の製造方法。 Using a soil mainly composed of silica, as a first step, a porous substrate having pores of several millimeters or submillimeters and pores of several to several tens of microns is prepared, and as a second step, a molecular template is prepared. Or by utilizing the periodicity of the crystal structure to react under hydrothermal conditions, and then calcining to form a mesostructure or to form mesosized pores by selective dissolution with alkali. A porous material having a multi-dimensional pore structure characterized by forming nanometer to submicron pores in the above-mentioned pores of several millimeters or submillimeters, and pores of several to several tens of microns Manufacturing method. 基材が、シリカを主成分とする土壌から調製した多孔質セラミックスであり、第2段階の処理に耐える多孔質基材である請求項1に記載の方法。   The method according to claim 1, wherein the substrate is a porous ceramic prepared from soil containing silica as a main component, and is a porous substrate that can withstand the second stage treatment. 分子鋳型として、テトラエトキシオルソシリケート(TEOS)を含む分子集合体を用いる、請求項1に記載の方法。   The method according to claim 1, wherein a molecular assembly containing tetraethoxyorthosilicate (TEOS) is used as a molecular template. 第2段階として、アルカリ処理により気孔を形成させる、請求項1に記載の方法。   The method according to claim 1, wherein pores are formed by alkali treatment as the second step. 請求項1から4のいずれかに記載の方法により作製した、数ミリメートル又はサブミリメートルの気孔を有する多孔質基材中に、数ミクロンから数十ミクロンの気孔、更に数ナノメートルからサブミクロンの気孔を同時に有する多次元気孔構造を有する多孔質材料であって、
シリカを主成分とする土壌からなり、数ミリメートルあるいはサブミリメートルの気孔、ならびに数ミクロンから数十ミクロンの気孔を有する多孔質基材中に、数ナノメートルからサブミクロンの気孔を形成した構造を有することを特徴とする多孔質材料。
A porous substrate having pores of several millimeters or submillimeters produced by the method according to any one of claims 1 to 4, and pores of several microns to several tens of microns, and pores of several nanometers to submicrons A porous material having a multi-dimensional pore structure having at the same time,
It has a structure in which pores of several nanometers to submicron are formed in a porous base material composed of silica-based soil and having pores of several millimeters or submillimeters and pores of several microns to tens of microns. A porous material characterized by that.
多孔質基材中に、メソ構造を形成させて多次元気孔構造とした請求項5に記載の多孔質材料。   The porous material according to claim 5, wherein a mesostructure is formed in the porous substrate to form a multidimensional pore structure. 分子鋳型により数ナノメートルからサブミクロンの気孔を形成した請求項5に記載の多孔質材料。   The porous material according to claim 5, wherein pores of several nanometers to submicrons are formed by a molecular template. 請求項5からのいずれかに記載の多孔質材料からなることを特徴とする選択的吸着、固定化作用を有する担体。 A carrier having selective adsorption and immobilization action, comprising the porous material according to any one of claims 5 to 7 . 生体分子の選択的吸着、固定化担体である請求項に記載の担体。 9. The carrier according to claim 8 , which is a selective adsorption / immobilization carrier for biomolecules.
JP2004266051A 2004-09-13 2004-09-13 Porous material having multidimensional pore structure and manufacturing method thereof Expired - Fee Related JP4608678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266051A JP4608678B2 (en) 2004-09-13 2004-09-13 Porous material having multidimensional pore structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266051A JP4608678B2 (en) 2004-09-13 2004-09-13 Porous material having multidimensional pore structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006076867A JP2006076867A (en) 2006-03-23
JP4608678B2 true JP4608678B2 (en) 2011-01-12

Family

ID=36156637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266051A Expired - Fee Related JP4608678B2 (en) 2004-09-13 2004-09-13 Porous material having multidimensional pore structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4608678B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295811A (en) * 1996-04-30 1997-11-18 Lion Corp Amorphous porous body and its production
JP2003073182A (en) * 2001-09-04 2003-03-12 Pentax Corp Production method for calcium phosphate-based porous ceramic sintered compact and calcium phosphate-based porous ceramic sintered compact

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873685B1 (en) * 2004-07-28 2007-06-22 Saint Gobain Ct Recherches PROCESS FOR OBTAINING POROUS CERAMICS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295811A (en) * 1996-04-30 1997-11-18 Lion Corp Amorphous porous body and its production
JP2003073182A (en) * 2001-09-04 2003-03-12 Pentax Corp Production method for calcium phosphate-based porous ceramic sintered compact and calcium phosphate-based porous ceramic sintered compact

Also Published As

Publication number Publication date
JP2006076867A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
Tokudome et al. Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol− gel process accompanied by phase separation
Prasad et al. Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview
US7666380B2 (en) Imprinted mesoporous carbons and a method of manufacture thereof
KR101868682B1 (en) Method for preparing metal oxide-silica complex aerogel and metal oxide-silica complex aerogel prepared by using the same
Guo et al. Synthesis and surface functional group modifications of ordered mesoporous carbons for resorcinol removal
US8865618B2 (en) Method for preparing a cellular carbon monolith comprising a hierarchised porous network
CN102584329B (en) Preparation method of high-porosity porous ceramic
EP1885653A1 (en) Porous silicon particles
JP2006290680A (en) Spherical nanoparticle porous body and method for synthesizing the same
Xie et al. Periodic Mesoporous Hydridosilica− Synthesis of an “Impossible” Material and Its Thermal Transformation into Brightly Photoluminescent Periodic Mesoporous Nanocrystal Silicon-Silica Composite
Galotta et al. Cold sintering of diatomaceous earth
KR101087260B1 (en) Hollow mesoporous silica capsule and method for preparing the same
JP4641813B2 (en) Binary pore silica and method for producing the same
Das et al. Biogenic silver nanoparticle impregnated hollow mesoporous silicalite-1: an efficient catalyst for p-nitrophenol reduction
KR101558240B1 (en) Method for preparation of mesoporous oxides supraparticles and mesoporous oxides supraparticles prepared thereby
JP4608678B2 (en) Porous material having multidimensional pore structure and manufacturing method thereof
Babić et al. Synthesis and characterization of the SBA-15/carbon cryogel nanocomposites
JP4154483B2 (en) Photocatalyst carrier and method for producing the same
JPH11292651A (en) Zeolite-forming porous body and its production
KR20020011561A (en) A mesoporus zeolite honeycomb and a method for producing thereof
Shikata et al. Preparation of silicalite-1 within macroporous silica glass
Huerta et al. Silica-based macrocellular foam monoliths with hierarchical trimodal pore systems
JP2019214505A (en) Connected mesoporous silica particles and production method thereof
CN115465875B (en) Heavy-petal hollow flower spherical gamma-alumina microsphere and preparation method thereof
KR20150105754A (en) Method for producing granular meso-porous silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees