JP4154483B2 - Photocatalyst carrier and method for producing the same - Google Patents

Photocatalyst carrier and method for producing the same Download PDF

Info

Publication number
JP4154483B2
JP4154483B2 JP2003174954A JP2003174954A JP4154483B2 JP 4154483 B2 JP4154483 B2 JP 4154483B2 JP 2003174954 A JP2003174954 A JP 2003174954A JP 2003174954 A JP2003174954 A JP 2003174954A JP 4154483 B2 JP4154483 B2 JP 4154483B2
Authority
JP
Japan
Prior art keywords
acid
solid particles
porous
photocatalyst carrier
siliceous solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003174954A
Other languages
Japanese (ja)
Other versions
JP2005007308A (en
Inventor
修二 恒松
邦夫 木村
絹江 恒松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003174954A priority Critical patent/JP4154483B2/en
Publication of JP2005007308A publication Critical patent/JP2005007308A/en
Application granted granted Critical
Publication of JP4154483B2 publication Critical patent/JP4154483B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光触媒、例えば酸化チタンを担持して使用するのに好適な非多孔ケイ酸質固体粒子からなる担体、さらに詳しくいえば、表面が多孔質シリカ層で一体的に被覆された非多孔ケイ酸質固体粒子からなる光触媒用担体及びその製造方法に関するものである。
【0002】
【従来の技術】
酸化チタンのような光触媒は、その機能を向上させるために、通常、多孔質基材又は表面を多孔質膜で被覆した基材に担持させて使用されている。
すなわち、これまでにシリカゲルのもつ吸着力を利用し、粒状又は粉末状のシリカゲルに二酸化チタンを担持させて水処理やガス処理に用いること(特許文献1参照)や、シリカ原料と石灰原料とを水の存在下で水熱反応させて得られるケイ酸カルシウムの硬化体に銅化合物を担持させた光触媒材料(特許文献2参照)、シラス発泡体に酸化チタンを担持させた光触媒材料(特許文献3参照)などが知られている。
【0003】
しかしながら、シリカゲルは水に対する親和力が非常に大きく、粒子間空隙が小さいために、水中では毛細管現象によって水を吸収し、シリカゲル中に粒子間の結合力以上の不均一な歪みを生じて崩壊するという致命的な欠陥を抱えている上に、細孔が小さく、酸化チタン粒子が表層だけに吸着するにすぎないため、酸化チタンの担持率が低く、分解効率が劣るのを免れない。
【0004】
また、ケイ酸カルシウム硬化体やシラスバルーンのような非多孔ケイ酸質固体粒子は比表面積が小さく、銅化合物や酸化チタンの吸着が十分に行われないため、分解効率の高い光触媒材料を得ることが困難である。
【0005】
そのほか、アルコキシシランを加水分解し、焼成してシリカ被覆を表面に形成させたのち、スルホン酸基のような親水性官能基を導入した高比表面積の非晶質シリカ粒子を担体として用いることも考えられるが、このものを製造するには基材から被覆が剥離するのを防止するために、基材上へのコーティング、乾燥、焼成を複数回繰り返さなければならず、操作が煩雑である上に、アルコキシシランを用いるためコスト高になるのを避けられないので実用的ではない。
【0006】
【特許文献1】
特開平11−138017号公報(特許請求の範囲その他)
【特許文献2】
特開平8−294628号公報(特許請求の範囲その他)
【特許文献3】
特開2000−86292号公報(特許請求の範囲その他)
【0007】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、従来の光触媒担体における欠点を克服し、安定供給可能な原料を用い、水中での崩壊や基材と被覆層との間の剥離を起こすことのない、光触媒粒子の吸着率の高い光触媒用担体を、簡単な操作でかつ安価に提供することを目的としてなされたものである。
【0008】
【課題を解決するための手段】
本発明者らは、光触媒用担体として適した材料を開発するために鋭意研究を重ねた結果、容易に入手し得る非多孔ケイ酸質固体粒子上に慣用の石灰原料を用い、水熱反応によりケイ酸カルシウム層を形成させ、さらに酸処理することにより、非多孔ケイ酸質固体粒子と多孔質シリカ被覆層とが一体的に結合した光触媒吸着性の高い担体が得られることを見出し、この知見に基づいて本発明をなすに至った。
【0009】
すなわち、本発明は、非多孔ケイ酸質固体粒子と、その表面に一体的に結合した多孔質シリカ被覆層からなる光触媒用担体、及び水又はアルカリ水溶液中において、非多孔ケイ酸質固体粒子と石灰原料とを水熱反応させて、ケイ酸カルシウム層で被覆された非多孔ケイ酸質固体粒子を含むスラリーを調製し、次いでこのスラリーを必要に応じ炭酸化処理したのち、酸処理することを特徴とする多孔質シリカ層で表面が一体的に被覆された非多孔ケイ酸質固体粒子からなる光触媒用担体の製造方法を提供するものである。
【0010】
【発明の実施の形態】
本発明の光触媒用担体は、非多孔ケイ酸質固体粒子とその上に一体的に被覆された多孔質シリカ層から構成されている。この非多孔ケイ酸質固体粒子とは、その組成中にSiO2を含む物質、例えば石英、ガラス、ケイ砂、長石、フライアッシュ、陶石、スラグ、晶質ケイ酸などのシリカ含有物質の非多孔質固体粒子である。
【0011】
本発明においては、これらの固体粒子を単独で用いてもよいし、また2種以上を組み合わせて用いてもよい。これらの固体粒子としては平均粒子径20〜2000μmの範囲をもつものが好ましい。
【0012】
また、この非多孔ケイ酸質固体粒子表面を被覆する多孔質シリカ層は、本質的にシリカから構成された孔径1〜100μmのミクロ細孔からマクロ細孔に至る細孔を有する多孔質体であり、BET比表面積5〜100m2/g、好ましくは50m2/gをもつ層として層厚1〜10μm、好ましくは3〜8μmで非多孔ケイ酸質固体粒子の表面を被覆している。
【0013】
このような構成をもつ本発明の光触媒用担体は、基材が非多孔ケイ酸質固体粒子であり、その被覆が多孔質シリカ層であるため、両者が一体化しており、基材と被覆とが剥離しにくいという特徴を有している。
【0014】
この光触媒用担体を製造するには、先ず基材となる非多孔ケイ酸質固体粒子と石灰原料とを、水又はアルカリ水溶液に懸濁し、水熱反応させて、非多孔ケイ酸質固体粒子表面にケイ酸カルシウム層を形成させる。
【0015】
この際の石灰原料としては、生石灰すなわち酸化カルシウム又は消石灰すなわち水酸化カルシウムが用いられるが、これは単独で用いても両者を混合して用いてもよい。
【0016】
この方法において、非多孔ケイ酸質固体粒子と石灰原料とは、それぞれの主成分であるSiO2とCaOに基づき、SiO2とCaOとのモル比が1000:1ないし10:3、好ましくは100:1ないし10:1になる割合で用いられる。これよりもCaOの割合が少ないとケイ酸カルシウム層の形成が不十分で、光触媒の担持率が低くなるし、またこれよりもCaOの割合が多くなるとケイ酸カルシウムの層厚が大きくなりすぎ光触媒による層厚当りの分解率が低下する。
【0017】
水熱反応を行うには、これらの非多孔ケイ酸質固体粒子と石灰原料とを水又はアルカリ水溶液中に懸濁して水性スラリーを調製する。このアルカリ水溶液とは、アルカリ性化合物を水に溶解して得られるアルカリ性を示す水溶液である。このアルカリ性化合物としては水酸化アルカリ、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが好ましいが、それ以外のアルカリ性化合物例えば水溶性アルカリ金属塩を用いることもできる。これらは単独で用いてもよいし、2種以上混合して用いてもよい。
【0018】
この場合のアルカリ濃度としては、0.01〜1.0モル濃度が好ましい。この濃度が0.01モル未満では、生成するケイ酸カルシウム層の結晶形態を変化させたり、水熱反応を促進させるアルカリ添加効果が十分に発揮されない。また、1.0モルよりも高くしても、アルカリ添加効果の向上はそれほどみられず、むしろ好ましくない作用が発生する。
【0019】
一方、シリカ原料と石灰原料を含む水又は水酸化アルカリ水溶液スラリーの濃度については特に制限はないが、水熱反応性及び容積効率などを考慮すると、非多孔ケイ酸質固体粒子と石灰原料との合計量に対し、水又は水酸化アルカリ水溶液を2〜20倍質量の割合で用いるのが有利である。
【0020】
本発明における水熱反応は、例えばオートクレーブを用いて、100〜250℃の範囲の温度で行われる。この水熱反応は自生圧力下で進行するが、必要に応じ適当に加圧して反応を行ってもよい。また、反応中は特に撹拌を行う必要はないが、反応速度を促進させるために、所望に応じて撹拌を行うこともできる。
【0021】
水熱反応温度が100℃未満では反応速度が遅すぎて長時間を要し実用的ではないし、また250℃を超えると自生圧力が高くなりすぎ、装置面などにおいて経済的に不利となる。反応時間は、スラリー濃度、原料の種類や粒度、反応温度などに左右され、一概に定めることはできないが、通常は0.5〜20時間程度で十分である。
【0022】
このようにして調製されたケイ酸カルシウム層で被覆された非多孔ケイ酸質固体粒子を含むスラリーは、次に酸処理される。この酸処理は、塩酸、硫酸、硝酸、リン酸、炭酸のような無機酸、又は酢酸、プロピオン酸、マレイン酸、乳酸、酸性陽イオン交換剤のような有機酸を添加することによって行われる。
【0023】
この場合、塩酸、硝酸などの無機酸は、電離度が大きく、急激にpHを降下させる。電離度の大きい塩酸、硝酸などで非多孔ケイ酸質固体粒子表面のケイ酸カルシウム層を処理する場合は、pHが急激に降下しないように希釈した酸を徐々に添加すると、ケイ酸カルシウムの形態を変化させることなく、酸化カルシウムが除去され、非多孔ケイ酸質固体粒子表面に多孔質シリカ層が形成される。なお、ケイ酸カルシウム層の結晶性に応じては、ケイ酸カルシウムスラリーを室温〜100℃の範囲で加熱することによって、より効率的に酸化カルシウムを除去することができる。
【0024】
これに対し、電離度が小さい酢酸、炭酸(スラリーに炭酸ガスを吹き込むと炭酸となる)などの場合は、高濃度の酸で直接ケイ酸カルシウムを処理しても、酸が急激にイオンに解離せず、イオンの消費に伴って、徐々にイオンに解離するため、酸化カルシウムの除去も徐々に進行し、ケイ酸カルシウムの形態が維持された多孔質シリカ層となる。
【0025】
また、非多孔ケイ酸質固体粒子をケイ酸カルシウム層で被覆したケイ酸カルシウムスラリーを室温〜100℃の範囲で加熱すると電離度が大きくなり、酸化カルシウムの除去が促進される。なお、炭酸で処理したケイ酸カルシウムは、スラリー中に多孔質シリカと水に難溶性の炭酸カルシウムが生成するため、炭酸カルシウムを塩酸などで溶解除去する必要がある。
【0026】
この酸処理に必要な時間は、非多孔ケイ酸質固体粒子表面に形成されるケイ酸カルシウム層の厚さ、使用する酸の種類、濃度、処理条件などにより左右されるが、通常1〜120分間の範囲である。
【0027】
このようにして調製した多孔質シリカ層で被覆された非多孔ケイ酸質固体粒子をふくむスラリーは、次に水で洗浄したのち100〜160℃において乾燥すれば、光触媒用担体を得ることができる。
【0028】
本発明においては、非多孔ケイ酸質固体粒子と石灰原料との使用割合(モル比 CaO/SiO2)や水熱反応条件を選ぶことにより、非多孔ケイ酸質固体粒子表面に形成される多孔質シリカ層の厚さを自由に制御することができる。
また、非多孔ケイ酸質固体粒子、石灰原料及びアルカリ水溶液を選択することにより、多孔質シリカ層の形態や比表面積を制御することができる。
【0029】
本発明の光触媒用担体は、例えば適当な溶剤中に無機チタン化合物を溶解して調製した溶液を含浸させ、乾燥後、加熱焼成することにより、平均層厚0.5〜1.5μmの酸化チタン層を形成させることにより、光触媒材料とすることができる。
【0030】
このようにして得られる光触媒材料は、種々の光源、例えば太陽光、蛍光灯、白熱灯、ブラックライト、紫外線ランプ、キセノンランプ、ハロゲンランプ、メタルハライドランプなどからの放射線を照射することにより、空気中の悪臭源、有害物質を効率よく分解除去することができる。
【0031】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
なお、本発明の光触媒担体の性能は、以下に示す方法に従って評価した。
【0032】
(1)光触媒担体の膜厚
走査型電子顕微鏡(SEM)を用いて測定した。
【0033】
(2)BET比表面積
BET比表面積測定装置を用い、250℃で十分に加熱脱気した試料について、窒素ガスを吸着させる多点法による比表面積を求めた。
【0034】
(3)加熱処理試料のBET比表面積
室温から500℃まで10℃/minで昇温して30分間保持した後、300℃まで電気炉中で放冷したものを取り出し、(2)の方法で比表面積を求めた。
【0035】
(4)加熱処理試料のSEMによる基材からの剥離の判定
室温から500℃まで10℃/minで昇温して30分間保持した後、300℃まで電気炉中で放冷したものを取り出し、SEMを用いて基材からの剥離の判定を行った。
【0036】
実施例1
粒子径75〜125μmの結晶質シリカ粒子と、生石灰原料をCaO/SiO2モル比が1/100になるように混合し、原料全量に対して、質量比で5倍の水を加えてオートクレーブの中に入れ、撹拌しながら180℃で4時間水熱反応を行い、結晶質シリカ粒子をケイ酸カルシウム層で被覆したケイ酸カルシウムスラリーを得た。このスラリーを70℃に加熱し、濃度80質量%の酢酸を添加し、10分間撹拌しながら保持した後、洗浄濾過して120℃で乾燥処理することにより、光触媒用担体を得た。
この担体の層厚は1μm、BET比表面積は5.7m2/g、加熱処理後のBET比表面積は4.8m2/gであり、加熱処理後の層の基材からの層の剥離は認められなかった。
【0037】
実施例2
粒子径が75〜125μmの結晶質シリカ粒子と、生石灰原料をCaO/SiO2モル比が1/10になるように混合し、原料全量に対して、質量比で5倍の水を加えてオートクレーブの中に入れ、撹拌しながら180℃で4時間水熱反応を行い、結晶質シリカ粒子をケイ酸カルシウム層で被覆したケイ酸カルシウムスラリーを得た。このスラリーを70℃に加熱し、濃度80質量%の酢酸を添加し、10分間撹拌しながら保持した後、洗浄濾過して120℃で乾燥処理することにより、光触媒用担体を得た。
この担体の層厚は5μm、BET比表面積は35.4m2/g、加熱処理後のBET比表面積は32.5m2/gであり、加熱処理後の層の基材からの層の剥離は認められなかった。
【0038】
実施例3
粒子径が75〜125μmの結晶質シリカ粒子と、生石灰原料をCaO/SiO2モル比が1/10になるように混合し、原料全量に対して、質量比で5倍の0.05モル濃度の水酸化ナトリウム水溶液を加えてオートクレーブの中に入れ、撹拌しながら180℃で4時間水熱反応を行い、結晶質シリカ粒子をケイ酸カルシウム層で被覆したケイ酸カルシウムスラリーを得た。このスラリーを70℃に加熱し、濃度80質量%の酢酸を添加し、10分間撹拌した後、洗浄濾過して120℃で乾燥処理することにより、光触媒用担体を得た。
この担体の層厚は8μm、BET比表面積は85.0m2/g、加熱処理後のBET比表面積は73.2m2/gであり、加熱処理後の基材からの層の剥離は認められなかった。
【0039】
実施例4
粒子径が20〜75μmの結晶質シリカ粒子と、生石灰原料をCaO/SiO2モル比が3/100になるように混合し、原料全量に対して、質量比で5倍の水を加えてオートクレーブの中に入れ、撹拌しながら180℃で4時間水熱反応を行い、ケイ酸カルシウム層で被覆した結晶質シリカ粒子のスラリーを得た。このスラリーを70℃に加熱し、濃度80質量%の酢酸を添加し、10分間撹拌しながら保持した後、洗浄濾過して120℃で乾燥処理することにより、光触媒用担体を得た。
この担体の層厚は3μm、BET比表面積は29.2m2/g、加熱処理後のBET比表面積は27.7m2/gであり、加熱処理後の基材からの層の剥離は認められなかった。
【0040】
実施例5
粒子径が75〜125μmの結晶質シリカ粒子と、生石灰原料をCaO/SiO2モル比が1/10になるように混合し、原料全量に対して、質量比で5倍の水を加えてオートクレーブの中に入れ、撹拌しながら180℃で4時間水熱反応を行い、ケイ酸カルシウム層で被覆した結晶質シリカ粒子のスラリーを得た。このスラリーに、二酸化炭素ガスをオートクレーブの内圧が2kg/cm2になるように調整して2時間吹き込んだ後、2モル濃度塩酸で処理し、洗浄濾過して120℃で乾燥処理することにより、光触媒用担体を得た。
この担体の層厚は5μm、BET比表面積は32.7m2/g、加熱処理後のBET比表面積は27.9m2/gであり、加熱処理後の基材からの層の剥離は認められなかった。
【0041】
実施例6
粒子径が105〜125μmのガラスビーズと、生石灰原料をCaO/SiO2モル比が3/100になるように混合し、原料全量に対して、質量比で5倍の水を加えてオートクレーブの中に入れ、撹拌しながら180℃で4時間水熱反応を行い、シリカ原料粒子をケイ酸カルシウム層で被覆したガラスビーズ粒子のスラリーを得た。このスラリーを70℃に加熱し、濃度80重量%の酢酸を添加し、10分間撹拌しながら保持した後、洗浄濾過して120℃で乾燥処理することにより、光触媒用担体を得た。
この担体の層厚は3μmで、BET比表面積は39.4m2/g、加熱処理後のBET比表面積は28.8m2/gであり、加熱処理後の基材からの層の剥離は認められなかった。
【0042】
実施例7
粒子径が75〜125μmの結晶質シリカ粒子と、生石灰原料をCaO/SiO2モル比が1/10になるように混合し、原料全量に対して、質量比で5倍の水を加えてオートクレーブの中に入れ、撹拌しながら180℃で4時間水熱反応を行い、ケイ酸カルシウム層で被覆した結晶質シリカ粒子のスラリーを得た。このスラリーを0.2モル濃度の塩酸水溶液を用い、室温においてpH3.5で10分間保持し、さらにpH1.5に10分間保持した後、洗浄濾過して120℃で乾燥処理することにより、光触媒用担体を得た。
この担体の層厚は5μm、BET比表面積は42.7m2/g、加熱処理後のBET比表面積は40.9m2/gであり、加熱処理後の基材からの層の剥離は認められなかった。
【0043】
【発明の効果】
本発明の光触媒用担体は以下に示す長所を有している。
(1)安定供給可能な非多孔ケイ酸質固体粒子と石灰原料から短時間で簡単に、しかも安価に製造することができる。
(2)従来の担体は粒子間空隙が小さいために表層のみの吸着で、水に入れると毛細管現象によって水を吸収して崩壊するが、本発明の担体は、ミクロ孔とマクロ孔から構成されており、水に入れても崩壊せず、層厚も分解効率を考慮して適時に制御できる。
(3)アルコキシドを加水分解してシリカ被覆を基材表面に形成させる方法では、十分な被覆の厚さは得られず、被覆を厚くしようとすると基材から被覆が剥離するが、本発明の担体は、非多孔ケイ酸質固体粒子が基材となっているため、多孔質シリカ層と非多孔ケイ酸質固体粒子の基材とが一体的に結合しており、基材から多孔質シリカ層が剥離することはない。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a photocatalyst, such as carriers consisting of suitable non-porous siliceous solid particles for use titanium oxide by supporting, more particularly, non-porous silicon surface is integrally coated with a porous silica layer The present invention relates to a photocatalyst carrier comprising acid solid particles and a method for producing the same.
[0002]
[Prior art]
In order to improve the function, a photocatalyst such as titanium oxide is usually used by being supported on a porous substrate or a substrate whose surface is covered with a porous film.
That is, by utilizing the adsorption power of silica gel so far, titanium dioxide is supported on granular or powdered silica gel and used for water treatment or gas treatment (see Patent Document 1), silica raw material and lime raw material A photocatalytic material in which a copper compound is supported on a hardened calcium silicate obtained by hydrothermal reaction in the presence of water (see Patent Document 2), and a photocatalytic material in which titanium oxide is supported on a shirasu foam (Patent Document 3) For example).
[0003]
However, since silica gel has a very high affinity for water and the inter-particle voids are small, it absorbs water by capillarity in water, resulting in non-uniform distortion in the silica gel that exceeds the binding force between the particles. In addition to having fatal defects, the pores are small and the titanium oxide particles are only adsorbed only on the surface layer, so that the titanium oxide loading rate is low and the decomposition efficiency is unavoidable.
[0004]
In addition, non-porous siliceous solid particles such as hardened calcium silicate and Shirasu balloons have a small specific surface area and do not sufficiently adsorb copper compounds and titanium oxide, so that a photocatalytic material with high decomposition efficiency can be obtained. Is difficult.
[0005]
In addition, after hydrolyzing alkoxysilane and baking to form a silica coating on the surface, amorphous silica particles having a high specific surface area into which a hydrophilic functional group such as a sulfonic acid group is introduced may be used as a carrier. Although it is conceivable, in order to prevent the coating from peeling off from the base material, it is necessary to repeat coating, drying and firing on the base material a plurality of times, and the operation is complicated. In addition, since the use of alkoxysilane is unavoidable, it is not practical.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-138017 (claims and others)
[Patent Document 2]
JP-A-8-294628 (Claims and others)
[Patent Document 3]
JP 2000-86292 A (Claims and others)
[0007]
[Problems to be solved by the invention]
Under such circumstances, the present invention overcomes the drawbacks of conventional photocatalyst carriers, uses raw materials that can be stably supplied, and causes disintegration in water and separation between the substrate and the coating layer. The present invention has been made for the purpose of providing a photocatalyst carrier having a high adsorption rate of photocatalyst particles with a simple operation and at a low cost.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to develop a material suitable as a support for a photocatalyst, the present inventors have used a conventional lime raw material on readily available non-porous siliceous solid particles, and hydrothermal reaction. to form a calcium silicate layer, further by acid treatment, non-porous siliceous solid particles and the porous silica coating layer found that the resulting high carrier photocatalytic absorptive coupled integrally, this finding The present invention has been made based on the above.
[0009]
That is, the present invention relates to a nonporous siliceous solid particle, a support for a photocatalyst comprising a porous silica coating layer integrally bonded to the surface thereof , and a nonporous siliceous solid particle in water or an alkaline aqueous solution. A slurry containing non-porous siliceous solid particles coated with a calcium silicate layer is prepared by hydrothermal reaction with a lime raw material, and then the slurry is carbonized as necessary, and then acid-treated. The present invention provides a method for producing a photocatalyst carrier comprising nonporous siliceous solid particles whose surfaces are integrally coated with a porous silica layer.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The photocatalyst carrier of the present invention is composed of non-porous siliceous solid particles and a porous silica layer integrally coated thereon. And the non-porous siliceous solid particles, substances containing SiO 2 in the composition thereof, for example, quartz, glass, silica sand, feldspar, fly ash, pottery stone, slag, silica-containing materials such as sintered crystalline silicate Non-porous solid particles.
[0011]
In the present invention, these solid particles may be used alone or in combination of two or more. As these solid particles, those having an average particle diameter of 20 to 2000 μm are preferable.
[0012]
Further, the porous silica layer covering the surface of the non-porous siliceous solid particles is a porous body having pores ranging from micropores having a pore diameter of 1 to 100 μm essentially composed of silica to macropores. Yes, as a layer having a BET specific surface area of 5 to 100 m 2 / g, preferably 50 m 2 / g, the surface of the nonporous siliceous solid particles is coated with a layer thickness of 1 to 10 μm, preferably 3 to 8 μm.
[0013]
In the photocatalyst carrier of the present invention having such a configuration, since the base material is non-porous siliceous solid particles and the coating is a porous silica layer, both are integrated, and the base material and the coating Is difficult to peel off.
[0014]
In order to produce this photocatalyst carrier, first, the non-porous siliceous solid particles and the lime raw material that are the base material are suspended in water or an aqueous alkali solution and hydrothermally reacted to obtain a surface of the non-porous siliceous solid particles. To form a calcium silicate layer.
[0015]
As the lime raw material in this case, quick lime, that is, calcium oxide, or slaked lime, that is, calcium hydroxide, is used, but these may be used alone or in combination.
[0016]
In this method, the non-porous siliceous solid particles and the lime raw material are based on SiO 2 and CaO as main components, respectively, and the molar ratio of SiO 2 and CaO is 1000: 1 to 10: 3, preferably 100. 1 to 10: 1. If the CaO ratio is less than this, the formation of the calcium silicate layer is insufficient, and the photocatalyst loading rate is low, and if the CaO ratio is higher than this, the calcium silicate layer thickness becomes too large and the photocatalyst becomes too thick. Decomposition rate per layer thickness due to decrease.
[0017]
In order to carry out the hydrothermal reaction, these non-porous siliceous solid particles and lime raw material are suspended in water or an aqueous alkali solution to prepare an aqueous slurry. This alkaline aqueous solution is an aqueous solution showing alkalinity obtained by dissolving an alkaline compound in water. The alkaline compound is preferably an alkali hydroxide such as lithium hydroxide, sodium hydroxide or potassium hydroxide, but other alkaline compounds such as water-soluble alkali metal salts can also be used. These may be used alone or in combination of two or more.
[0018]
In this case, the alkali concentration is preferably 0.01 to 1.0 molar. If this concentration is less than 0.01 mol, the effect of alkali addition that changes the crystal form of the generated calcium silicate layer or promotes the hydrothermal reaction is not sufficiently exhibited. Moreover, even if it is made higher than 1.0 mol, the alkali addition effect is not so much improved, but an undesirable action occurs.
[0019]
On the other hand, there is no particular limitation on the concentration of water or alkali hydroxide aqueous slurry containing silica raw material and lime raw material, but considering hydrothermal reactivity and volumetric efficiency, the nonporous siliceous solid particles and lime raw material It is advantageous to use water or an aqueous alkali hydroxide solution in a proportion of 2 to 20 times the mass of the total amount.
[0020]
The hydrothermal reaction in this invention is performed at the temperature of the range of 100-250 degreeC, for example using an autoclave. This hydrothermal reaction proceeds under an autogenous pressure, but the reaction may be carried out by appropriately applying pressure as necessary. Further, stirring is not particularly required during the reaction, but stirring may be performed as desired in order to accelerate the reaction rate.
[0021]
If the hydrothermal reaction temperature is less than 100 ° C., the reaction rate is too slow and takes a long time, which is not practical, and if it exceeds 250 ° C., the self-generated pressure becomes too high, which is economically disadvantageous in terms of equipment. The reaction time depends on the slurry concentration, the type and particle size of the raw material, the reaction temperature, and the like, and cannot be determined in general, but usually about 0.5 to 20 hours is sufficient.
[0022]
The slurry containing non-porous siliceous solid particles coated with the calcium silicate layer thus prepared is then acid treated. This acid treatment is carried out by adding an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or carbonic acid, or an organic acid such as acetic acid, propionic acid, maleic acid, lactic acid or acidic cation exchanger.
[0023]
In this case, inorganic acids such as hydrochloric acid and nitric acid have a high degree of ionization, and the pH is rapidly lowered. When treating the calcium silicate layer on the surface of non-porous siliceous solid particles with hydrochloric acid, nitric acid, etc. with a high degree of ionization, gradually add diluted acid so that the pH does not drop rapidly. without changing the calcium oxide is removed, a porous silica layer is formed on the nonporous siliceous solid particle surface. Depending on the crystallinity of the calcium silicate layer, calcium oxide can be more efficiently removed by heating the calcium silicate slurry in the range of room temperature to 100 ° C.
[0024]
On the other hand, in the case of acetic acid or carbonic acid with a low ionization degree (carbonic acid is generated when carbon dioxide is blown into the slurry), the acid is rapidly dissolved into ions even if calcium silicate is directly treated with a high concentration of acid. Since it is dissociated gradually into ions as the ions are consumed, the removal of calcium oxide also proceeds gradually, resulting in a porous silica layer in which the form of calcium silicate is maintained.
[0025]
Moreover, when the calcium silicate slurry which coat | covered the nonporous siliceous solid particle | grains with the calcium silicate layer is heated in the range of room temperature-100 degreeC, an ionization degree will become large and removal of a calcium oxide will be accelerated | stimulated. In addition, since calcium silicate treated with carbonic acid forms poorly soluble calcium carbonate in porous silica and water in the slurry, it is necessary to dissolve and remove the calcium carbonate with hydrochloric acid or the like.
[0026]
The time required for the acid treatment depends on the thickness of the calcium silicate layer formed on the surface of the non-porous siliceous solid particles, the type of acid used, the concentration, the treatment conditions, etc., but usually 1 to 120. The range of minutes.
[0027]
The slurry containing the non-porous siliceous solid particles coated with the porous silica layer thus prepared can be washed with water and then dried at 100 to 160 ° C. to obtain a photocatalyst support. .
[0028]
In the present invention, by selecting the use ratio (molar ratio CaO / SiO 2 ) of the nonporous siliceous solid particles and the lime raw material and the hydrothermal reaction conditions, the porous formed on the surface of the nonporous siliceous solid particles. The thickness of the porous silica layer can be freely controlled.
Moreover, the form and specific surface area of a porous silica layer are controllable by selecting a non-porous siliceous solid particle, a lime raw material, and aqueous alkali solution.
[0029]
The photocatalyst carrier of the present invention is, for example, impregnated with a solution prepared by dissolving an inorganic titanium compound in a suitable solvent, dried and then heated and fired to obtain an average layer thickness of 0.5 to 1.5 μm of titanium oxide. A photocatalytic material can be obtained by forming a layer.
[0030]
The photocatalyst material thus obtained is irradiated with radiation from various light sources such as sunlight, fluorescent lamp, incandescent lamp, black light, ultraviolet lamp, xenon lamp, halogen lamp, metal halide lamp, etc. It can efficiently decompose and remove odor sources and harmful substances.
[0031]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
The performance of the photocatalyst carrier of the present invention was evaluated according to the method shown below.
[0032]
(1) Film thickness of photocatalyst carrier It measured using the scanning electron microscope (SEM).
[0033]
(2) BET specific surface area Using a BET specific surface area measuring apparatus, a specific surface area was determined by a multipoint method in which nitrogen gas was adsorbed on a sample sufficiently heated and degassed at 250 ° C.
[0034]
(3) BET specific surface area of heat-treated sample After raising the temperature from room temperature to 500 ° C. at 10 ° C./min and holding it for 30 minutes, take out the one that was allowed to cool in an electric furnace to 300 ° C., and use the method of (2) The specific surface area was determined.
[0035]
(4) Judgment of peeling from base material by SEM of heat-treated sample After raising the temperature from room temperature to 500 ° C. at 10 ° C./min and holding for 30 minutes, the one cooled in an electric furnace to 300 ° C. was taken out, Determination of peeling from the base material was performed using SEM.
[0036]
Example 1
Crystalline silica particles having a particle diameter of 75 to 125 μm and quick lime raw material are mixed so that the CaO / SiO 2 molar ratio is 1/100, and water is added 5 times by mass with respect to the total amount of the raw material. The mixture was put in and subjected to hydrothermal reaction at 180 ° C. for 4 hours with stirring to obtain a calcium silicate slurry in which crystalline silica particles were coated with a calcium silicate layer. This slurry was heated to 70 ° C., 80% by weight of acetic acid was added, and the mixture was held for 10 minutes with stirring, washed and filtered, and dried at 120 ° C. to obtain a photocatalyst carrier.
This carrier has a layer thickness of 1 μm, a BET specific surface area of 5.7 m 2 / g, and a BET specific surface area after heat treatment of 4.8 m 2 / g. I was not able to admit.
[0037]
Example 2
The autoclave is prepared by mixing crystalline silica particles having a particle diameter of 75 to 125 μm and quick lime raw material so that the CaO / SiO 2 molar ratio becomes 1/10, and adding 5 times the mass ratio of water to the total amount of the raw material. Then, hydrothermal reaction was carried out at 180 ° C. for 4 hours with stirring to obtain a calcium silicate slurry in which crystalline silica particles were coated with a calcium silicate layer. This slurry was heated to 70 ° C., 80% by weight of acetic acid was added, and the mixture was held for 10 minutes with stirring, washed and filtered, and dried at 120 ° C. to obtain a photocatalyst carrier.
The carrier has a layer thickness of 5 μm, a BET specific surface area of 35.4 m 2 / g, and a BET specific surface area after heat treatment of 32.5 m 2 / g. I was not able to admit.
[0038]
Example 3
Crystalline silica particles having a particle diameter of 75 to 125 μm and quick lime raw material are mixed so that the CaO / SiO 2 molar ratio is 1/10, and the molar ratio of 0.05 molar is 5 times the total amount of the raw material. An aqueous sodium hydroxide solution was added and placed in an autoclave, and a hydrothermal reaction was performed at 180 ° C. for 4 hours with stirring to obtain a calcium silicate slurry in which crystalline silica particles were coated with a calcium silicate layer. This slurry was heated to 70 ° C., 80% by mass of acetic acid was added, stirred for 10 minutes, washed, filtered and dried at 120 ° C. to obtain a photocatalyst support.
The carrier has a layer thickness of 8 μm, a BET specific surface area of 85.0 m 2 / g, a BET specific surface area after heat treatment of 73.2 m 2 / g, and peeling of the layer from the substrate after heat treatment is observed. There wasn't.
[0039]
Example 4
The autoclave is prepared by mixing crystalline silica particles having a particle size of 20 to 75 μm and quicklime raw material so that the CaO / SiO 2 molar ratio is 3/100, and adding 5 times the mass ratio of water to the total amount of the raw material. And a hydrothermal reaction at 180 ° C. for 4 hours with stirring to obtain a slurry of crystalline silica particles coated with a calcium silicate layer. This slurry was heated to 70 ° C., 80% by weight of acetic acid was added, and the mixture was held for 10 minutes with stirring, washed and filtered, and dried at 120 ° C. to obtain a photocatalyst carrier.
The thickness of the carrier is 3 [mu] m, BET specific surface area of 29.2m 2 / g, BET specific surface area after heat treatment was 27.7m 2 / g, delamination is observed from the substrate after the heat treatment There wasn't.
[0040]
Example 5
The autoclave is prepared by mixing crystalline silica particles having a particle diameter of 75 to 125 μm and quick lime raw material so that the CaO / SiO 2 molar ratio becomes 1/10, and adding 5 times the mass ratio of water to the total amount of the raw material. And a hydrothermal reaction at 180 ° C. for 4 hours with stirring to obtain a slurry of crystalline silica particles coated with a calcium silicate layer. Carbon dioxide gas was adjusted to the slurry so that the internal pressure of the autoclave was adjusted to 2 kg / cm 2 and then blown for 2 hours, then treated with 2 molar hydrochloric acid, washed, filtered and dried at 120 ° C. A photocatalyst support was obtained.
The thickness of the support is 5 [mu] m, BET specific surface area of 32.7m 2 / g, BET specific surface area after heat treatment was 27.9 m 2 / g, delamination is observed from the substrate after the heat treatment There wasn't.
[0041]
Example 6
Mixing glass beads with a particle size of 105 to 125 μm and quicklime raw material so that the CaO / SiO 2 molar ratio is 3/100, and adding 5 times the mass ratio of water to the total amount of raw material in the autoclave And a hydrothermal reaction at 180 ° C. for 4 hours with stirring to obtain a slurry of glass bead particles in which silica raw material particles were coated with a calcium silicate layer. This slurry was heated to 70 ° C., 80% by weight of acetic acid was added and held for 10 minutes with stirring, then washed and filtered and dried at 120 ° C. to obtain a photocatalyst carrier.
This thickness of the support is 3 [mu] m, BET specific surface area of 39.4m 2 / g, BET specific surface area after heat treatment was 28.8 m 2 / g, observed delamination from the substrate after the heat treatment I couldn't.
[0042]
Example 7
The autoclave is prepared by mixing crystalline silica particles having a particle diameter of 75 to 125 μm and quick lime raw material so that the CaO / SiO 2 molar ratio becomes 1/10, and adding 5 times the mass ratio of water to the total amount of the raw material. And a hydrothermal reaction at 180 ° C. for 4 hours with stirring to obtain a slurry of crystalline silica particles coated with a calcium silicate layer. This slurry was maintained at pH 3.5 at room temperature for 10 minutes using a 0.2 molar hydrochloric acid aqueous solution, further maintained at pH 1.5 for 10 minutes, washed, filtered, and dried at 120 ° C. to obtain a photocatalyst. A carrier was obtained.
The thickness of the support is 5 [mu] m, BET specific surface area of 42.7m 2 / g, BET specific surface area after heat treatment was 40.9m 2 / g, delamination is observed from the substrate after the heat treatment There wasn't.
[0043]
【The invention's effect】
The photocatalyst carrier of the present invention has the following advantages.
(1) It can be produced easily and inexpensively in a short time from non-porous siliceous solid particles and lime raw material that can be stably supplied.
(2) Since the conventional carrier has a small interparticle void, it is adsorbed only on the surface layer, and when it is put into water, it absorbs water and collapses by capillary action. However, the carrier of the present invention is composed of micropores and macropores. It does not disintegrate even when placed in water, and the layer thickness can be controlled in a timely manner in consideration of decomposition efficiency.
(3) In the method of hydrolyzing alkoxide to form a silica coating on the surface of the substrate, a sufficient coating thickness cannot be obtained. Since the support is made of non-porous silicate solid particles, the porous silica layer and the non-porous silicate solid particles are integrally bonded to each other. The layers do not delaminate.

Claims (9)

非多孔ケイ酸質固体粒子と、その表面に一体的に結合した多孔質シリカ被覆層からなる光触媒用担体。 A photocatalyst carrier comprising non-porous siliceous solid particles and a porous silica coating layer integrally bonded to the surface thereof . 非多孔ケイ酸質固体粒子がガラス及び結晶質ケイ酸の中から選ばれた少なくとも1種の粒子である請求項1記載の光触媒用担体。 Nonporous siliceous solid particles, glass and at least one particle photocatalyst carrier according to claim 1, wherein selected from among sintered crystalline silicate. 水又はアルカリ水溶液中において、非多孔ケイ酸質固体粒子と石灰原料とを水熱反応させて、ケイ酸カルシウム層で被覆された非多孔ケイ酸質固体粒子を含むスラリーを調製し、次いでこのスラリーを酸処理することを特徴とする多孔質シリカ層で表面が一体的に被覆された非多孔ケイ酸質固体粒子からなる光触媒用担体の製造方法。A slurry containing non-porous siliceous solid particles coated with a calcium silicate layer is prepared by hydrothermal reaction of non-porous siliceous solid particles and lime raw material in water or an aqueous alkali solution, and then the slurry. A method for producing a photocatalyst carrier comprising non-porous siliceous solid particles whose surfaces are integrally coated with a porous silica layer, characterized by subjecting to acid treatment. 水又はアルカリ水溶液中において、非多孔ケイ酸質固体粒子と石灰原料とを水熱反応させて、ケイ酸カルシウム層で被覆された非多孔ケイ酸質固体粒子を含むスラリーを調製し、次いでこのスラリーを炭酸化処理したのち酸処理することを特徴とする多孔質シリカ層で表面が一体的に被覆された非多孔ケイ酸質固体粒子からなる光触媒用担体の製造方法。A slurry containing non-porous siliceous solid particles coated with a calcium silicate layer is prepared by hydrothermal reaction of non-porous siliceous solid particles and lime raw material in water or an aqueous alkali solution, and then the slurry. A method for producing a photocatalyst carrier comprising non-porous siliceous solid particles whose surfaces are integrally coated with a porous silica layer, characterized by subjecting carbonic acid to carbonic acid treatment. 石灰原料が生石灰又は消石灰である請求項3又は4記載の光触媒用担体の製造方法。  The method for producing a photocatalyst carrier according to claim 3 or 4, wherein the lime raw material is quick lime or slaked lime. 酸処理を無機酸を用いて行う請求項3、4又は5記載の光触媒用担体の製造方法。  The method for producing a photocatalyst carrier according to claim 3, 4 or 5, wherein the acid treatment is performed using an inorganic acid. 無機酸が、塩酸、硫酸、硝酸又はリン酸である請求項6記載の光触媒用担体の製造方法。  The method for producing a photocatalyst carrier according to claim 6, wherein the inorganic acid is hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid. 酸処理を有機酸を用いて行う請求項3、4又は5記載の光触媒用担体の製造方法。  The method for producing a photocatalyst carrier according to claim 3, 4 or 5, wherein the acid treatment is performed using an organic acid. 有機酸が、酢酸、プロピオン酸、マレイン酸、乳酸又は酸性陽イオン交換剤である請求項8記載の光触媒用担体の製造方法。  The method for producing a photocatalyst carrier according to claim 8, wherein the organic acid is acetic acid, propionic acid, maleic acid, lactic acid, or an acidic cation exchanger.
JP2003174954A 2003-06-19 2003-06-19 Photocatalyst carrier and method for producing the same Expired - Lifetime JP4154483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174954A JP4154483B2 (en) 2003-06-19 2003-06-19 Photocatalyst carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174954A JP4154483B2 (en) 2003-06-19 2003-06-19 Photocatalyst carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005007308A JP2005007308A (en) 2005-01-13
JP4154483B2 true JP4154483B2 (en) 2008-09-24

Family

ID=34098290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174954A Expired - Lifetime JP4154483B2 (en) 2003-06-19 2003-06-19 Photocatalyst carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP4154483B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544515B2 (en) * 2008-12-25 2014-07-09 独立行政法人産業技術総合研究所 Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JP5476537B2 (en) * 2009-08-19 2014-04-23 独立行政法人産業技術総合研究所 Method for producing porous structure
CN111613455B (en) * 2020-06-01 2021-06-25 兰州理工大学 Reinforced NiCo2O4Method for material specific capacitance of super capacitor material
CN112661162B (en) * 2020-12-16 2023-04-28 青岛惠城环保科技集团股份有限公司 Treatment method of petroleum coke hydrogen production ash slag and mesoporous silicon material
CN112705185A (en) * 2020-12-29 2021-04-27 四川建筑职业技术学院 Preparation method of quartz sand/titanium dioxide composite catalyst
CN113398980B (en) * 2021-06-15 2022-07-15 东北大学 Coal ash based X zeolite-TiO2Preparation method of composite photocatalyst
CN114377705B (en) * 2022-03-09 2023-07-18 成都工业学院 Fly ash-based phosphorus-doped carbon dot photocatalytic material and preparation method and application thereof
JP7193192B1 (en) * 2022-06-21 2022-12-20 株式会社宇宙環境保全センター METHOD FOR MANUFACTURING METAL ION-MIXED SILICATE-COATED PHOTOCATALYTIC COMPOSITION

Also Published As

Publication number Publication date
JP2005007308A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
KR101868682B1 (en) Method for preparing metal oxide-silica complex aerogel and metal oxide-silica complex aerogel prepared by using the same
JP4154483B2 (en) Photocatalyst carrier and method for producing the same
RU2004111299A (en) METHOD FOR PRODUCING MICROPOROUS MATERIALS COATED FROM RARE-EARTH METAL OXIDE
JPS63233008A (en) Production of non-sintered cristobalited silica
CN112321270A (en) Photocatalytic anion ceramic tile containing modified porous material and preparation process thereof
JP2008137859A (en) Ultrafine particle porous silica
JP2001146416A (en) Zeolite, method of producing the same, and method of separating gases by utilizing the zeolite
JP4613348B2 (en) Method for producing thin plate-like porous silica
JP4920007B2 (en) Method for producing glass foam, glass foam and method for regenerating glass foam
JP2001114510A (en) Control of morphology of mesoporous aluminosilicate or pure silica molecular sieve by effect of alcohol
JP4096055B2 (en) Plate-like calcium silicate and method for producing the same, plate-like silica porous material obtained from plate-like calcium silicate and method for producing the same
JP4729725B2 (en) Silica-based highly active adsorbent material and method for producing the same
JP4859221B2 (en) Method for producing porous material
JP2005179086A (en) Planar silica porous body, fibrous silica porous body and their manufacturing method
JP4436209B2 (en) Foamed silica gel and method for producing the same
JP2006232594A (en) Mesoporous inorganic body and method for manufacturing the same
KR101155928B1 (en) Ultra fine lightweighting foamed glass porous ceramics and manufacturing method of the same
JP4145156B2 (en) Glass manufacturing method
JP2002080216A (en) Porous material and its making method
CN110483009A (en) Porous catalytic purifies pottery material, multifunctional porous catalytic purification pottery material and preparation method thereof
JP2006282446A (en) Hydroxyapatite-coated silica porous body and its manufacturing method
JP2002113361A (en) Absorbing agent for desulfurization and method of manufacturing desulfurizing agent
JP2010235363A (en) Porous body, gas cleaning material and methods for producing them
Shikata et al. Preparation of silicalite-1 within macroporous silica glass
JP4889108B2 (en) Method for producing antibacterial and antifungal deodorant inorganic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4154483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term