JP4608515B2 - Reception level estimation system - Google Patents

Reception level estimation system Download PDF

Info

Publication number
JP4608515B2
JP4608515B2 JP2007107073A JP2007107073A JP4608515B2 JP 4608515 B2 JP4608515 B2 JP 4608515B2 JP 2007107073 A JP2007107073 A JP 2007107073A JP 2007107073 A JP2007107073 A JP 2007107073A JP 4608515 B2 JP4608515 B2 JP 4608515B2
Authority
JP
Japan
Prior art keywords
reception level
base station
building
mobile station
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007107073A
Other languages
Japanese (ja)
Other versions
JP2008270875A (en
Inventor
光司郎 北尾
哲朗 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2007107073A priority Critical patent/JP4608515B2/en
Publication of JP2008270875A publication Critical patent/JP2008270875A/en
Application granted granted Critical
Publication of JP4608515B2 publication Critical patent/JP4608515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本発明は、セルラ移動通信システムにおける移動局の受信レベル推定システムに関する。   The present invention relates to a reception level estimation system for a mobile station in a cellular mobile communication system.

セルラ移動通信システムでは、無線回線設計を行う際にある場所に基地局を設置したときの、ある場所の移動局の受信レベルを推定することが必要である。その推定方法の一つとして、受信レベルを推定したいエリアに存在する構造物(建物等)の位置情報、表面情報に基づきレイトレース計算を行う方法が有効であることが知られている。また、屋内に移動局が存在している場合においても、移動局が存在する建物の構造を考慮したレイトレース計算を行う方法が有効である。   In a cellular mobile communication system, it is necessary to estimate the reception level of a mobile station at a certain location when a base station is installed at a certain location when designing a radio link. As one of the estimation methods, it is known that a method of performing ray-trace calculation based on position information and surface information of structures (buildings, etc.) existing in an area whose reception level is to be estimated is effective. In addition, even when a mobile station exists indoors, a method of performing ray trace calculation considering the structure of the building where the mobile station exists is effective.

レイトレース計算は、送信点から放射される電波をレイ(Ray)とみなして、まず、周辺構造物で反射・透過・回折を伴い受信点に到達するレイを幾何学的にトレース(Trace)する。次にトレースしたレイによる電界を幾何光学理論により求める。ここで、各レイの伝搬距離と受信点への入射角度の情報を用いることにより、移動通信システムの評価に必要な伝播損失・伝搬遅延・到来角度の特性を推定できる。このようにレイトレーシング法は、送受信間のレイを求めるだけで比較的簡易に伝搬特性を推定できる。   Ray-trace calculation regards the radio wave radiated from the transmission point as Ray, and first traces the ray that reaches the reception point with reflection, transmission and diffraction by surrounding structures. . Next, the electric field due to the traced ray is obtained by geometric optics theory. Here, by using the information of the propagation distance of each ray and the incident angle to the receiving point, it is possible to estimate the characteristics of propagation loss, propagation delay, and arrival angle necessary for the evaluation of the mobile communication system. In this way, the ray tracing method can estimate the propagation characteristics relatively simply by obtaining the ray between transmission and reception.

しかしながら、レイトレース計算は考慮する周辺構造物の数や反射回数・回折回数が増加すると基地局から移動局に到達可能なパスを探索するための時間が増大し、その結果、計算時間が増大するという課題があった。
そこで本発明は上記の課題に鑑み、計算量を増大させることなく建物内に存在する移動局の受信レベルを推定できるシステムを提供することを目的とする。
However, ray tracing calculation increases the time to search for a path that can be reached from the base station to the mobile station as the number of surrounding structures to be considered and the number of reflections / diffractions increase, resulting in an increase in calculation time. was there.
In view of the above problems, an object of the present invention is to provide a system that can estimate the reception level of a mobile station existing in a building without increasing the amount of calculation.

本発明の受信レベル推定システムは、建物データベース部と、パラメータ入力部と、見通し判定部と、第1受信レベル計算部と、第2受信レベル計算部とから構成される。
建物データベース部は、各エリアに存在する建物の情報を蓄積する。
パラメータ入力部は、基地局の位置と高さ、移動局の位置と高さ、推定対象エリア、電波の周波数、その他受信レベルの推定に必要なパラメータを入力する部位である。
見通し判定部は、上記パラメータ入力部からの入力データと上記建物データベース部の蓄積データとから基地局と移動局の間の見通しの有無を判定する。
The reception level estimation system according to the present invention includes a building database unit, a parameter input unit, a line-of-sight determination unit, a first reception level calculation unit, and a second reception level calculation unit.
The building database unit accumulates information on buildings existing in each area.
The parameter input unit is a part for inputting parameters necessary for estimating the position and height of the base station, the position and height of the mobile station, the estimation target area, the frequency of radio waves, and other reception levels.
The line-of-sight determination unit determines whether or not there is a line-of-sight between the base station and the mobile station from the input data from the parameter input unit and the accumulated data in the building database unit.

第1受信レベル計算部は、見通しが有る場合に上記パラメータ入力部からの入力データを用いて推定受信レベルを計算する。
第2受信レベル計算部は、見通しが無い場合に上記パラメータ入力部からの入力データを用いて推定受信レベルを計算する。
The first reception level calculation unit calculates the estimated reception level using the input data from the parameter input unit when there is a line of sight.
The second reception level calculation unit calculates the estimated reception level using the input data from the parameter input unit when there is no line of sight.

本発明により、少ない計算量で建物内に存在する移動局の受信レベルを推定するシステムを構成することができる。   According to the present invention, it is possible to configure a system that estimates a reception level of a mobile station existing in a building with a small amount of calculation.

以下、図面を参照しつつ、本発明の実施形態例について説明する。なお、以下の説明に用いる図面では、同一の部品には同一の符号を記してある。また、それらの名称、機能も同一であり、それらについての説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings used for the following description, the same parts are denoted by the same reference numerals. Moreover, those names and functions are also the same, and description thereof will not be repeated.

〔第1実施形態〕
図1は、本発明の受信レベル推定システム100の機能構成例である。また、図2は処理フローである。
本発明の受信レベル推定システム100は、建物データベース部101と、パラメータ入力部102と、見通し判定部103と、第1受信レベル計算部104と、第2受信レベル計算部105とから構成される。
建物データベース部101は、ある一定のエリアに存在する建物ごとの情報を記憶する。具体的には、水平面内及び垂直面内における形状、位置及び高さなどの情報を記憶する。
パラメータ入力部102は、基地局の位置と高さ、移動局の位置と高さ、推定対象エリア、電波の周波数、その他の推定受信レベルの計算に必要なパラメータを入力する(S1)。また、建物データベース部101に蓄積されていない建物の形状、位置及び高さの情報をここから入力して、建物データベース部101に蓄積してもよい。
[First Embodiment]
FIG. 1 is a functional configuration example of a reception level estimation system 100 of the present invention. FIG. 2 is a processing flow.
The reception level estimation system 100 of the present invention includes a building database unit 101, a parameter input unit 102, a line-of-sight determination unit 103, a first reception level calculation unit 104, and a second reception level calculation unit 105.
The building database unit 101 stores information for each building existing in a certain area. Specifically, information such as the shape, position, and height in the horizontal plane and the vertical plane is stored.
The parameter input unit 102 inputs parameters necessary for calculation of the position and height of the base station, the position and height of the mobile station, the estimation target area, the frequency of radio waves, and other estimated reception levels (S1). In addition, information on the shape, position, and height of the building that is not stored in the building database unit 101 may be input from here and stored in the building database unit 101.

推定対象エリアの入力は、例えば建物データベース部101に蓄積された水平面内情報を地図的に画面表示し、その画面上にて行う。
見通し判定部103は、上記パラメータ入力部102からの入力データに基づき上記建物データベース部101の蓄積データを抽出し(S2)、これを基礎データとして基地局と移動局の間の見通しの有無を判定する。
The estimation target area is input, for example, by displaying the horizontal plane information accumulated in the building database unit 101 on a map and displaying it on the screen.
The line-of-sight determination unit 103 extracts the accumulated data of the building database unit 101 based on the input data from the parameter input unit 102 (S2), and determines whether there is a line-of-sight between the base station and the mobile station using this as basic data To do.

見通し判定の方法について説明する。
まず、基地局(BS)と移動局(MS)の位置、及び選択したエリアの建物の配置(以下、プロファイルという)から、水平面において基地局と移動局の間に見通しが有るか否かを判定する(S3)。水平面のプロファイルにおいて、図3のように基地局(BS)と移動局(MS)とを結ぶ線分がどの建物とも交差していない場合、基地局と移動局間に見通しが有ると判定する。
A method for determining the outlook will be described.
First, it is determined whether or not there is a line of sight between the base station and the mobile station on the horizontal plane based on the positions of the base station (BS) and the mobile station (MS) and the arrangement of the buildings in the selected area (hereinafter referred to as a profile). (S3). In the horizontal plane profile, when the line segment connecting the base station (BS) and the mobile station (MS) does not intersect any building as shown in FIG. 3, it is determined that there is a line of sight between the base station and the mobile station.

次に、水平面のプロファイルにおいて、図4のように基地局(BS)と移動局(MS)とを結ぶ線分がいくつかの建物と交差している場合について考える。このような場合には、まず交差している各建物を抽出する。そして、データベース部101に蓄積されている交差している各建物の高さの情報を利用して図4のような垂直面のプロファイルを作成する。このとき、移動局(MS)から基地局(BS)方向へ地面と平行に引いた直線と移動局の存在する建物との交点を点Aとする。そして、基地局(BS)と点Aとを結んだ線分が、垂直面内において建物と交差するかどうかを判別する(S4)。そして、線分と建物とが交差しない場合は見通しが有り、図5のように交差する場合は、見通しが無いと判定する。   Next, consider a case where a line segment connecting a base station (BS) and a mobile station (MS) intersects several buildings in a horizontal profile as shown in FIG. In such a case, first, the intersecting buildings are extracted. Then, a profile of a vertical plane as shown in FIG. 4 is created using the information on the height of each intersecting building stored in the database unit 101. At this time, an intersection of a straight line drawn in parallel with the ground from the mobile station (MS) toward the base station (BS) and a building where the mobile station exists is defined as a point A. Then, it is determined whether or not the line segment connecting the base station (BS) and the point A intersects the building in the vertical plane (S4). If the line segment and the building do not intersect, there is a line of sight, and if it intersects as shown in FIG. 5, it is determined that there is no line of sight.

ステップS4で見通しがあると判定した場合、第1受信レベル計算部104は上記パラメータ入力部からの入力データを用いて推定受信レベルを計算する。
見通しが有る場合の推定受信レベルの計算方法の一例を説明する(S5a)。
If it is determined in step S4 that there is a line of sight, the first reception level calculation unit 104 calculates the estimated reception level using the input data from the parameter input unit.
An example of a method for calculating the estimated reception level when there is a line of sight is described (S5a).

まず、伝搬損失LLOSを求める。伝搬損失は自由空間損失Lと建物侵入損失Lとから求める。
自由空間損失Lは、基地局及び点Aの位置と高さから求められる基地局と点Aとの間の距離dと、受信レベルを推定する電波の周波数fとから、(1)式により算出する。ここで、λ=3・10/f である。
=20log(4πd/λ) (1)
建物侵入損失Lは、移動局と点Aとの間の距離dと移動局の地面からの高さhとから(2)式により算出する(S6)。
=0.6d−0.6h+10 (2)
そして、伝搬損失LLOSを(3)式により算出する(S7a)。
LOS=L+L (3)
最後に、推定受信レベルPを(4)式により算出する(S8)。ここで、Pは基地局の送信電力、GBSは基地局のアンテナ利得、GMSは移動局のアンテナ利得である。
P=P+GBS+GMS−LLOS (4)
ステップS4で見通しが無いと判定した場合、第2受信レベル計算部105は上記パラメータ入力部からの入力データを用いて推定受信レベルを計算する。
First, the propagation loss L LOS is obtained. The propagation loss is obtained from the free space loss L f and the building entry loss L i .
The free space loss L f is calculated from the distance d between the base station and the point A obtained from the position and height of the base station and the point A and the frequency f of the radio wave for estimating the reception level by the equation (1). calculate. Here, λ = 3 · 10 8 / f.
L f = 20 log (4πd / λ) (1)
Building entry loss L i is calculated by the distance d i from the height h m of the ground of the mobile station (2) between the mobile station and the point A (S6).
L i = 0.6 d i −0.6 h m +10 (2)
Then, the propagation loss L LOS is calculated by the equation (3) (S7a).
L LOS = L f + L i (3)
Finally, the estimated reception level P is calculated by the equation (4) (S8). Here, the transmission power of P t is the base station, G BS antenna gain of the base station, G MS is an antenna gain of the mobile station.
P = P t + G BS + G MS -L LOS (4)
When it is determined in step S4 that there is no line of sight, the second reception level calculation unit 105 calculates the estimated reception level using the input data from the parameter input unit.

見通しが無い場合の推定受信レベルの計算方法の一例を説明する(S5b)。
まず、伝搬損失LNLOSを求める。伝搬損失は空間損失Lと建物侵入損失Lとから求める。
空間損失Lは、基地局と点Aとの間の距離dと受信レベルを推定する電波の周波数fと基地局の地面からの高さhとから(5)式により算出する。
=40log(d)−30log(h)+21log(f)+54 (5)
建物侵入損失Lは、上記(3)式により算出する(S6)。
そして、伝搬損失LNLOSを(6)式により算出する(S7b)。
NLOS=L+L (6)
最後に、推定受信レベルPを(7)式により算出する(S8)。ここで、Pは基地局の送信電力、GBSは基地局のアンテナ利得、GMSは移動局のアンテナ利得である。
P=P+GBS+GMS−LNLOS (7)
An example of a method for calculating the estimated reception level when there is no line of sight is described (S5b).
First, the propagation loss LNLOS is obtained. The propagation loss is obtained from the space loss L n and the building entry loss L i .
The space loss L n is calculated by the equation (5) from the distance d between the base station and the point A, the frequency f of the radio wave for estimating the reception level, and the height h b of the base station from the ground.
L n = 40 log (d) -30 log (h b ) +21 log (f) +54 (5)
The building entry loss L i is calculated by the above equation (3) (S6).
Then, the propagation loss L NLOS (6) is calculated by equation (S7b).
L NLOS = L n + L i (6)
Finally, the estimated reception level P is calculated by the equation (7) (S8). Here, the transmission power of P t is the base station, G BS antenna gain of the base station, G MS is an antenna gain of the mobile station.
P = P t + G BS + G MS -L NLOS (7)

以上のように、本実施形態によればレイトレース法のように複雑なパス探索や、反射及び回折損失を求める複雑な計算を行わないため、少ない計算量で建物内に存在する移動局の受信レベルを推定できる。
また、精度面ではレイトレース法に劣るものの、無線回線設計用としては必要十分な精度を得ることができる。
As described above, according to the present embodiment, a complicated path search and a complicated calculation for obtaining reflection and diffraction loss are not performed as in the ray tracing method, so that a mobile station existing in a building can be received with a small amount of calculation. The level can be estimated.
Moreover, although it is inferior to the ray trace method in terms of accuracy, a necessary and sufficient accuracy can be obtained for designing a radio channel.

〔第2実施形態〕
本発明の受信レベル推定システム200の機能構成例も図1に示す。
本発明の受信レベル推定システム200は、建物データベース部101と、パラメータ入力部102と、見通し判定部103と、第1受信レベル計算部204と、第2受信レベル計算部105とから構成される。つまり、見通しが有る時の推定受信レベルを計算する第1受信レベル計算部204以外は第1実施形態と同様の構成であり、見通し判定の方法や見通しが無い時の推定受信レベルの計算方法は第1実施形態と同様である。
[Second Embodiment]
A functional configuration example of the reception level estimation system 200 of the present invention is also shown in FIG.
The reception level estimation system 200 according to the present invention includes a building database unit 101, a parameter input unit 102, a line-of-sight determination unit 103, a first reception level calculation unit 204, and a second reception level calculation unit 105. That is, except for the first reception level calculation unit 204 that calculates the estimated reception level when there is a line of sight, the configuration is the same as in the first embodiment, and the method for determining the line of sight and the method for calculating the estimated reception level when there is no line of sight are as follows. This is the same as in the first embodiment.

第1受信レベル計算部204は、見通しが有る場合に上記パラメータ入力部202からの入力データを用いて幾何光学計算により受信レベルの推定値を求める。以下、幾何光学計算方法の一例を説明する。
図6に示すように、移動局(MS)の上下に窓枠をモデリングしたウェッジを考えて、これらのウェッジで回折する2パスと、基地局(BS)と移動局(MS)とを結ぶ直接パスとの合計3パスを合成して推定受信レベルPを求める。また、図7に示すように、直接パスが窓枠で遮蔽される場合は、2つの回折パスのみを合成して推定受信レベルPを求める。
The first reception level calculation unit 204 obtains an estimation value of the reception level by geometric optical calculation using the input data from the parameter input unit 202 when there is a line of sight. Hereinafter, an example of the geometric optical calculation method will be described.
As shown in FIG. 6, considering the wedges with window frames modeled above and below the mobile station (MS), the two paths diffracted by these wedges are directly connected to the base station (BS) and the mobile station (MS). The estimated reception level P is obtained by synthesizing a total of three paths with the paths. As shown in FIG. 7, when the direct path is shielded by the window frame, the estimated reception level P is obtained by combining only two diffraction paths.

直接パスの推定受信電界強度ELOSは、基地局からの送信電界強度Eと、基地局(BS)と移動局(MS)との間の距離dと、推定する電波の周波数fとから、(8)式により算出する。ここで、λ=3・10/f、k=2π/λである。
LOS=E(λ/4πd)e−jkd (8)
2つの回折パスの合成推定受信電界強度EDLOSは、第1回折パスの推定受信電界強度Ed1と第2回折パスの推定受信電界強度Ed2との和として求められる。
DLOS=Ed1+Ed2 (9)
The estimated reception field strength E LOS of the direct path is calculated from the transmission field strength E 0 from the base station, the distance d between the base station (BS) and the mobile station (MS), and the frequency f of the radio wave to be estimated. Calculated using equation (8). Here, λ = 3 · 10 8 / f and k = 2π / λ.
E LOS = E 0 (λ / 4πd) e −jkd (8)
The combined estimated received field strength E DLOS of the two diffraction paths is obtained as the sum of the estimated received field strength E d1 of the first diffraction path and the estimated received field strength E d2 of the second diffraction path.
E DLOS = E d1 + E d2 (9)

d1とEd2は次のように求める。
まず、s1を窓枠上部(A)と移動局(MS)との間のベクトル、s1´を基地局(BS)と窓枠上部(A)との間のベクトル、s2を窓枠下部(A)と移動局(MS)との間のベクトル、s2´を基地局(BS)と窓枠下部(A)との間のベクトルとして定義する。垂直面で見た回折パスのイメージを図8に、水平面で見た回折パスのイメージを図9に示す。また、図8、図9を合わせて立体的に見たイメージを図10に示す。
E d1 and E d2 are obtained as follows.
First, s1 is a vector between the window frame upper part (A 1 ) and the mobile station (MS), s1 ′ is a vector between the base station (BS) and the window frame upper part (A 1 ), and s2 is a window frame lower part A vector between (A 2 ) and the mobile station (MS), s2 ′, is defined as a vector between the base station (BS) and the lower part of the window frame (A 2 ). FIG. 8 shows an image of the diffraction path viewed in the vertical plane, and FIG. 9 shows an image of the diffraction path viewed in the horizontal plane. FIG. 10 shows a three-dimensional image of FIGS.

そして、計算は次の各式により行う。なお、Ed1は、sにベクトルs1の単位ベクトル、s´にs1´の単位ベクトル、sにs1の距離、s´にs1´の距離を代入して得られるEdであり、Ed2は、sに図6のベクトルs2の単位ベクトル、s´=ベクトルs2´の単位ベクトル、sにs2の距離、s´にs2´の距離を代入して得られるEである。また、eは各窓枠の接線方向の単位ベクトルである。 The calculation is performed according to the following equations. Incidentally, E d1 is the unit vector of the vector s1 to s u, s u unit vector s1' the 'distance s1 to s, a E d obtained by substituting the distance s1' in s', E d2 is the unit vector of the vector s2 of Figure 6 in s u, a s u '= distance of the unit vector of the vector s2', the s s2, E d obtained by substituting the distance s2 'in s'. Also, eu is a unit vector in the tangential direction of each window frame.

Figure 0004608515
ここで、(18)式のD、Dは以下の各式から求められる。
Figure 0004608515
Here, D s and D h in the equation (18) are obtained from the following equations.

Figure 0004608515
※εは壁面の誘電率
Figure 0004608515
* Ε 0 is the dielectric constant of the wall

以上より、図6の場合(直接パスを含む3パスの場合)の受信レベルの推定値Pは、P=(ELOS+EDLOSにより求めることができ、図7の場合(直接パスを含まない2パスの場合)の受信レベルの推定値Pは、P=EDLOS により求めることができる。
幾何光学計算を適用することにより、第1実施形態よりも測定精度を高めつつ、多くとも3パスしか考慮しないため、少ない計算量で建物内に存在する移動局の受信レベルを推定できる。
From the above, the estimated value P of the reception level in the case of FIG. 6 (in the case of three paths including the direct path) can be obtained by P = (E LOS + E DLOS ) 2 , and in the case of FIG. 7 (including the direct path) The estimated value P of the reception level in the case of no two paths) can be obtained by P = E DLOS 2 .
By applying geometric optical calculation, since only three paths are taken into consideration while improving measurement accuracy as compared with the first embodiment, it is possible to estimate the reception level of a mobile station existing in a building with a small amount of calculation.

〔第3実施形態〕
本発明の受信レベル推定システム300の機能構成例も図1に示す。
本発明の受信レベル推定システム300は、建物データベース部101と、パラメータ入力部102と、見通し判定部103と、第1受信レベル計算部304と、第2受信レベル計算部105とから構成される。つまり、見通しが有る時の推定受信レベルを計算する第1受信レベル計算部304以外は第1実施形態と同様の構成であり、見通し判定の方法や見通しが無い時の推定受信レベルの計算方法は第1実施形態と同様である。
[Third Embodiment]
A functional configuration example of the reception level estimation system 300 of the present invention is also shown in FIG.
The reception level estimation system 300 according to the present invention includes a building database unit 101, a parameter input unit 102, a line-of-sight determination unit 103, a first reception level calculation unit 304, and a second reception level calculation unit 105. In other words, except for the first reception level calculation unit 304 that calculates the estimated reception level when there is a line of sight, the configuration is the same as in the first embodiment, and the method for determining the line of sight and the method for calculating the estimated reception level when there is no line of sight are as follows. This is the same as in the first embodiment.

第1受信レベル計算部304は、見通しが有る場合に上記パラメータ入力部302からの入力データを用いて幾何光学計算により受信レベルの推定値を求める。以下、幾何光学計算方法の一例を説明する。
第3実施形態は、移動局(MS)の上下に窓枠をモデリングしたウェッジを考えて、これらのウェッジで回折する2パスと、基地局(BS)と移動局(MS)とを結ぶ直接パスとの合計3パスを合成して求めるというところまでは第2実施形態と同様である。
The first reception level calculation unit 304 obtains an estimation value of the reception level by geometric optical calculation using the input data from the parameter input unit 302 when there is a line of sight. Hereinafter, an example of the geometric optical calculation method will be described.
In the third embodiment, considering the wedges with window frames modeled above and below the mobile station (MS), two paths diffracted by these wedges and a direct path connecting the base station (BS) and the mobile station (MS) The process is the same as in the second embodiment up to the point of obtaining a total of three paths.

しかし第3実施形態では、更に屋内での壁面による反射を考慮して直接パス及び回折パスの推定受信電界強度を求める。屋内での反射のイメージを図11に示す。
直接パスの推定受信電界強度は、基地局からの送信電界強度Eと、トータルの伝搬距離d(基地局(BS)と移動局(MS)との間の距離と、屋内伝搬距離との和)、推定する電波の周波数fとから、(8)式により算出されたELOSを垂直成分と水平成分とに分け、それぞれに(25)式により算出された反射係数R、Rを反射回数分掛け合わせることにより求める。なお、ここでθは壁面への入射角度(図12参照)、εは壁面の誘電率である。
However, in the third embodiment, the estimated received electric field strengths of the direct path and the diffraction path are further obtained in consideration of reflection by the wall surface in the room. FIG. 11 shows an image of reflection indoors.
The estimated reception field strength of the direct path is the sum of the transmission field strength E 0 from the base station, the total propagation distance d (the distance between the base station (BS) and the mobile station (MS), and the indoor propagation distance. ), reflected from a radio wave of frequency f that estimates, (8) divided into a vertical component and a horizontal component E LOS calculated by equation reflection coefficient calculated by respectively (25) R v, R h Calculate by multiplying by the number of times. Here, θ is the incident angle on the wall surface (see FIG. 12), and ε 0 is the dielectric constant of the wall surface.

Figure 0004608515
回折パスの推定受信電界強度についても(10)〜(24)式により算出されたEd1(及びEd2)を垂直成分と水平成分とに分け、それぞれに反射係数R、Rを反射回数分掛け合わせることにより求める。ただし、Ed1(及びEd2)を算出する際には、sには回折後の伝搬路長を代入する。
Figure 0004608515
For the estimated received field strength of the diffraction path, E d1 (and E d2 ) calculated by the equations (10) to (24) is divided into a vertical component and a horizontal component, and the reflection coefficients R v and R h are respectively calculated as the number of reflections. Calculate by multiplying. However, when calculating E d1 (and E d2 ), the propagation path length after diffraction is substituted for s.

屋内での壁面での反射を考慮することにより、第2実施形態よりも更に測定精度を高めつつ、第2実施形態同様多くとも3パスしか考慮しないため、少ない計算量で建物内に存在する移動局の受信レベルを推定できる。   Considering reflection on the wall surface indoors, the measurement accuracy is further improved than in the second embodiment, but only three paths are considered as in the second embodiment. The reception level of the station can be estimated.

〔第4実施形態〕
本発明の受信レベル推定システム400の機能構成例も図1に示す。
本発明の受信レベル推定システム400は、建物データベース部101と、パラメータ入力部102と、見通し判定部103と、第1受信レベル計算部404と、第2受信レベル計算部105とから構成される。つまり、見通しが有る時の推定受信レベルを計算する第1受信レベル計算部404以外は第1実施形態と同様の構成であり、見通し判定の方法や見通しが無い時の推定受信レベルの計算方法は第1実施形態と同様である。
[Fourth Embodiment]
A functional configuration example of the reception level estimation system 400 of the present invention is also shown in FIG.
The reception level estimation system 400 of the present invention includes a building database unit 101, a parameter input unit 102, a line-of-sight determination unit 103, a first reception level calculation unit 404, and a second reception level calculation unit 105. That is, except for the first reception level calculation unit 404 that calculates the estimated reception level when there is a line of sight, the configuration is the same as that of the first embodiment. This is the same as in the first embodiment.

第1受信レベル計算部404は、見通しが有る場合に上記パラメータ入力部302からの入力データを用いて物理光学計算により受信レベルの推定値を求める。以下、物理光学計算方法の一例を説明する。
第4実施形態は、移動局(MS)の上下に窓枠(横幅a×縦幅b)をモデリングしたウェッジを考えて、これらのウェッジで回折する2パスと、基地局(BS)と移動局(MS)とを結ぶ直接パスとの合計3パスを合成して求めるというところまでは第2、第3実施形態と同様である。
The first reception level calculation unit 404 obtains an estimation value of the reception level by physical optical calculation using the input data from the parameter input unit 302 when there is a line of sight. Hereinafter, an example of a physical optical calculation method will be described.
In the fourth embodiment, considering wedges in which window frames (width a × length b) are modeled above and below a mobile station (MS), two paths diffracted by these wedges, a base station (BS), and a mobile station The process is the same as in the second and third embodiments until a total of three paths including the direct path connecting (MS) are obtained.

しかし第4実施形態では、第1回折パスの推定受信電界強度Ed1と第2回折パスの推定受信電界強度Ed2を(10)〜(24)式ではなく、(26)〜(32)式により求める。なおEd1は、sにs1の距離、s´にs1´の距離を代入して得られるEdであり、Ed2は、sにs2の距離、s´にs2´の距離を代入して得られるEである。また、θ、θは窓枠への入射、出射角度(図9参照)である。 However, in the fourth embodiment, the estimated received electric field strength E d1 of the first diffraction path and the estimated received electric field strength E d2 of the second diffraction path are not the expressions (10) to (24), but the expressions (26) to (32). Ask for. E d1 is E d obtained by substituting the distance of s1 for s and the distance of s1 ′ for s ′, and E d2 is the distance of s2 for s and the distance of s2 ′ for s ′. E d obtained. Further, θ 1 and θ 2 are the incident and exit angles to the window frame (see FIG. 9).

Figure 0004608515
第4実施形態は、幾何光学計算ではなく物理光学計算を用いることにより、フレネルゾーンの影響をより正確に考慮した計算結果が得られる。
Figure 0004608515
In the fourth embodiment, by using physical optical calculation instead of geometric optical calculation, a calculation result in which the influence of the Fresnel zone is more accurately taken into consideration can be obtained.

なお、第4実施形態においても第3実施形態と同様な手段により、屋内の壁面による反射を考慮することができる。これにより、第4実施形態よりも更に測定精度を高めることができる。   In the fourth embodiment, reflection by an indoor wall surface can be taken into consideration by the same means as in the third embodiment. Thereby, the measurement accuracy can be further increased as compared with the fourth embodiment.

本発明は、セルラ移動通信における無線回線設計を行う際に、ある場所に基地局を設置した時のある場所の移動局の受信レベルを推定する際に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for estimating the reception level of a mobile station at a certain location when a base station is installed at a certain location when designing a radio link in cellular mobile communication.

本発明の受信レベル推定システムの構成Configuration of reception level estimation system of the present invention 本発明の受信レベル推定システムの処理フローProcessing flow of reception level estimation system of the present invention 水平面内のセグメントのプロファイル(水平面交差が無いケース)Profile of the segment in the horizontal plane (case where there is no horizontal plane intersection) 水平面内のセグメントのプロファイル(水平面交差が有るケース)Profile of the segment in the horizontal plane (case with horizontal plane crossing) 垂直面内のセグメントのプロファイル(垂直面交差が有るケース)Profile of segment in vertical plane (case with vertical plane crossing) 垂直面内のセグメントのプロファイル(直接パス遮蔽無し)Profile of segment in vertical plane (no direct path occlusion) 垂直面内のセグメントのプロファイル(直接パス遮蔽有り)Profile of segment in vertical plane (with direct path shielding) 垂直面で見た回折パスのイメージImage of diffraction path viewed from vertical plane 水平面で見た回折パスのイメージImage of diffraction path seen in horizontal plane 立体的に見た回折パスのイメージThree-dimensional diffraction path image 屋内壁面での反射のイメージImage of reflection on indoor wall 壁面での反射のイメージImage of reflection on the wall

Claims (3)

移動通信システムにおける受信レベル推定システムであり、
各エリアに存在する建物の情報を蓄積する建物データベース部と、
基地局の位置と高さ、移動局の位置と高さ、推定対象エリア、電波の周波数、その他の推定受信レベルの計算に必要なパラメータを入力するパラメータ入力部と、
上記パラメータ入力部からの入力データと上記建物データベース部の蓄積データとから基地局と移動局の間の見通しの有無を判定する見通し判定部と、
見通しが有る場合に、上記パラメータ入力部からの入力データを用いて推定受信レベルを計算する第1受信レベル計算部と、
見通しが無い場合に、上記パラメータ入力部からの入力データを用いて推定受信レベルを計算する第2受信レベル計算部とを具備し、
上記第1受信レベル計算部は、
基地局と移動局が存在する建物の間の距離dと電波の周波数fとから基地局と移動局の間の自由空間損失L を求め、
移動局と建物との間の距離d と移動局の地面からの高さh とから建物侵入損失L を求め、
更に、上記自由空間損失L と、上記建物侵入損失L と、基地局の送信電力P と、上記基地局のアンテナ利得G BS と、上記基地局の送信電力P と、上記移動局のアンテナ利得G MS とから建物内における移動局の受信レベルPを求め、
上記第2受信レベル計算部は、
移動局と建物の間の距離d と移動局の地面からの高さh とから建物侵入損失L を求め、
基地局と建物の間の距離dと基地局の地面からの高さh と電波周波数fとから基地局と建物との間の空間損失L を求め、
上記建物侵入損失L と、上記空間損失L と、上記基地局の送信電力P と、上記基地局のアンテナ利得G BS と、上記移動局のアンテナ利得G MS とから建物内における移動局の推定受信レベルPを求める
ことを特徴とする受信レベル推定システム。
A reception level estimation system in a mobile communication system,
A building database section that accumulates information on buildings existing in each area;
A parameter input unit for inputting parameters necessary for calculation of the position and height of the base station, the position and height of the mobile station, the estimation target area, the radio frequency, and other estimated reception levels;
A line of sight determination unit for determining the presence or absence of line of sight between the base station and the mobile station from the input data from the parameter input unit and the accumulated data of the building database unit;
A first reception level calculation unit that calculates an estimated reception level using input data from the parameter input unit when there is a line of sight;
A second reception level calculation unit that calculates an estimated reception level using input data from the parameter input unit when there is no prospect ,
The first reception level calculator is
A free space loss L f between the base station and the mobile station is obtained from the distance d between the building where the base station and the mobile station exist and the frequency f of the radio wave ,
Seeking building entry loss L i from the distance d i between the mobile station and the building height h m of the ground of the mobile station,
Further, the free space loss L f , the building penetration loss L i , the transmission power P t of the base station, the antenna gain GBS of the base station, the transmission power P t of the base station, and the mobile station obtains the reception level P of a mobile station in a building from the antenna gain G MS,
The second reception level calculator is
Seeking building entry loss L i from the distance d i between the mobile station and the building height h m of the ground of the mobile station,
The space loss L n between the base station and the building is determined from the distance d between the base station and the building, the height h b from the ground of the base station and the radio frequency f ,
And the building entry loss L i, and the space loss L n, the mobile station in the building from the transmission power P t of the base station, the antenna gain G BS of the base station, the antenna gain G MS of the mobile station A reception level estimation system characterized by obtaining an estimated reception level P.
上記第1受信レベル計算部は、The first reception level calculator is
上記自由空間損失LFree space loss L f を、The
L f =20log(4πd/(3・10= 20 log (4πd / (3 · 10 8 /f))/ F))
により求め、Sought by
上記建物侵入損失LThe above building entry loss L i を、The
L i =0.6・d= 0.6 · d i −0.6・h-0.6 · h m +10+10
により求めることで、By asking for
上記移動局の推定受信レベルPを、Estimated reception level P of the mobile station is
P=PP = P t +G+ G BSBS +G+ G MSMS −(L-(L f +L+ L i )
により求め、Sought by
上記第2受信レベル計算部は、The second reception level calculator is
更に上記空間損失LFurthermore, the space loss L n The
L n =40log(d)−30log(h= 40log (d) -30log (h b )+21log(f)+54) +21 log (f) +54
により求めることで、By asking for
上記移動局の推定受信レベルPを、Estimated reception level P of the mobile station is
P=PP = P t +G+ G BSBS +G+ G MSMS −(L-(L n +L+ L i )
により求めことを特徴とする請求項1記載の受信レベル推定システム。2. The reception level estimation system according to claim 1, wherein the reception level estimation system is obtained by:
移動通信システムにおける受信レベル推定システムであり、
各エリアに存在する建物の情報を蓄積する建物データベース部と、
基地局の位置と高さ、移動局の位置と高さ、推定対象エリア、電波の周波数、その他の推定受信レベルの計算に必要なパラメータを入力するパラメータ入力部と、
上記パラメータ入力部からの入力データと上記建物データベース部の蓄積データとから基地局と移動局の間又は基地局と建物の窓枠の間の見通しの有無を判定する見通し判定部と、
見通しが有る場合に、上記パラメータ入力部からの入力データを用いて推定受信レベルを計算する第1受信レベル計算部と、
見通しが無い場合に、上記パラメータ入力部からの入力データを用いて推定受信レベルを計算する第2受信レベル計算部とを具備し、
上記第1受信レベル計算部は、
上記窓枠を通して直接受信する直接パスがあった場合の直接パス受信電界と、上記窓枠の上下のウェッジを回折する2つの回折パス受信電界を求め、求めた直接パス受信電界と回折パス受信電界とから移動局の推定受信レベルを求め、
上記直接パス受信電界を、基地局の送信電界と、基地局と移動局間の距離と、電波の周波数とから求め、
上記回折パス受信電界を、基地局の送信電界と、基地局と上記上下のウェッジ間のベクトルと、上記上下のウェッジと移動局間のベクトルと、基地局と上記窓枠間の距離と、電波の周波数とから求め、
上記直接パス受信電界と上記回折パス受信電界とから推定受信レベルを計算し、
上記第2受信レベル計算部は、
上記移動局と上記建物の間の距離d と上記移動局の地面からの高さh とから建物侵入損失L を求め、
上記基地局と上記建物の間の距離dと上記基地局の地面からの高さh と電波周波数fとから上記基地局と上記建物との間の空間損失L を求め、
上記建物侵入損失L と、上記空間損失L と、上記基地局の送信電力P と、上記基地局のアンテナ利得G BS と、上記移動局のアンテナ利得G MS とから上記建物内における上記移動局の推定受信レベルPを求める
ことを特徴とする受信レベル推定システム。
A reception level estimation system in a mobile communication system,
A building database section that accumulates information on buildings existing in each area;
A parameter input unit for inputting parameters necessary for calculation of the position and height of the base station, the position and height of the mobile station, the estimation target area, the radio frequency, and other estimated reception levels;
A line-of-sight determination unit that determines the presence or absence of line-of-sight between the base station and the mobile station or between the base station and the window frame of the building from the input data from the parameter input unit and the accumulated data of the building database unit;
A first reception level calculation unit that calculates an estimated reception level using input data from the parameter input unit when there is a line of sight;
A second reception level calculation unit that calculates an estimated reception level using input data from the parameter input unit when there is no prospect ,
The first reception level calculator is
A direct path reception electric field when there is a direct path directly received through the window frame and two diffraction path reception electric fields diffracting the upper and lower wedges of the window frame are obtained, and the obtained direct path reception electric field and diffraction path reception electric field are obtained. The estimated reception level of the mobile station is obtained from
The direct path reception electric field is obtained from the transmission electric field of the base station, the distance between the base station and the mobile station, and the frequency of the radio wave,
The diffraction path receiving electric field includes a base station transmitting electric field, a vector between the base station and the upper and lower wedges, a vector between the upper and lower wedges and the mobile station, a distance between the base station and the window frame, and radio waves. From the frequency of
Calculate the estimated reception level from the direct path received electric field and the diffraction path received electric field,
The second reception level calculator is
Seeking building entry loss L i from the height h m of the ground distance d i and the mobile station between the mobile station and the building,
The space loss L n between the base station and the building is determined from the distance d between the base station and the building, the height h b from the ground of the base station and the radio frequency f ,
And the building entry loss L i, and the space loss L n, the transmission power P t of the base station, the antenna gain G BS of the base station, the within the building from the antenna gain G MS of the mobile station Obtain the estimated reception level P of the mobile station
A reception level estimation system.
JP2007107073A 2007-04-16 2007-04-16 Reception level estimation system Expired - Fee Related JP4608515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107073A JP4608515B2 (en) 2007-04-16 2007-04-16 Reception level estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107073A JP4608515B2 (en) 2007-04-16 2007-04-16 Reception level estimation system

Publications (2)

Publication Number Publication Date
JP2008270875A JP2008270875A (en) 2008-11-06
JP4608515B2 true JP4608515B2 (en) 2011-01-12

Family

ID=40049860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107073A Expired - Fee Related JP4608515B2 (en) 2007-04-16 2007-04-16 Reception level estimation system

Country Status (1)

Country Link
JP (1) JP4608515B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755752B2 (en) 2009-02-03 2014-06-17 Nec Corporation Radio wave propagation characteristic estimation system, radio wave propagation characteristic estimation method, and radio wave propagation characteristic estimation program
JP2010219918A (en) * 2009-03-17 2010-09-30 Nec Corp Radio base station, radio base station monitoring system, transmission power setting method of radio base station, program, and recording medium
JP5797984B2 (en) * 2011-09-08 2015-10-21 西日本旅客鉄道株式会社 Loss amount estimation method and program for radio wave propagation, and loss estimation simulation apparatus for radio wave propagation
JP6229337B2 (en) * 2013-07-09 2017-11-15 富士通株式会社 POSITION ESTIMATION METHOD, POSITION ESTIMATION DEVICE, AND POSITION ESTIMATION SYSTEM
JP2017529720A (en) * 2014-07-14 2017-10-05 アイポジ インコーポレイテッドIposi,Inc. Tomographic loss factor estimation
JP6466147B2 (en) * 2014-11-19 2019-02-06 株式会社国際電気通信基礎技術研究所 Calculation device, calculation method, and program
JP2016123015A (en) * 2014-12-25 2016-07-07 日本放送協会 Transmission support system, method and program
JP6897425B2 (en) 2017-08-25 2021-06-30 富士通株式会社 Received power estimation device, received power estimation method and received power estimation program
JP7100526B2 (en) * 2018-08-03 2022-07-13 株式会社Nttドコモ Radio wave propagation estimation device and radio wave propagation estimation method
JP7132505B2 (en) * 2018-12-26 2022-09-07 日本電信電話株式会社 Station placement design method, station placement design device, and station placement design program
JP2022108025A (en) * 2021-01-12 2022-07-25 電気興業株式会社 Reflection array, design method for reflection array, and reflection array system
WO2022215135A1 (en) * 2021-04-05 2022-10-13 日本電信電話株式会社 Information processing system, ray tracing method, and program
US20240135631A1 (en) * 2021-04-05 2024-04-25 Nippon Telegraph And Telephone Corporation Information processing system, radio wave propagation simulation method, and program
WO2023042724A1 (en) * 2021-09-16 2023-03-23 日本電気株式会社 Diffraction loss analysis device, diffraction loss analysis method, and recording medium
WO2024069965A1 (en) * 2022-09-30 2024-04-04 日本電信電話株式会社 Propagation environment fabricating device, propagation environment fabricating method, and propagation environment estimation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318842A (en) * 2002-04-26 2003-11-07 Nippon Telegr & Teleph Corp <Ntt> Device and method for estimating and calculating reception electric field intensity, and program and recording medium
JP2006287685A (en) * 2005-04-01 2006-10-19 Hitachi Ltd Radio wave propagation estimation program, radio wave propagation estimation method and device for implementing the method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117626B2 (en) * 1995-10-25 2000-12-18 株式会社エヌ・ティ・ティ・ドコモ Field strength calculation apparatus and field strength estimation method
JPH09153867A (en) * 1995-11-30 1997-06-10 Fujitsu Ltd Radio wave transmission simulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318842A (en) * 2002-04-26 2003-11-07 Nippon Telegr & Teleph Corp <Ntt> Device and method for estimating and calculating reception electric field intensity, and program and recording medium
JP2006287685A (en) * 2005-04-01 2006-10-19 Hitachi Ltd Radio wave propagation estimation program, radio wave propagation estimation method and device for implementing the method

Also Published As

Publication number Publication date
JP2008270875A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4608515B2 (en) Reception level estimation system
JP4207081B2 (en) Radio wave propagation characteristic estimation system, method and program
Otim et al. Towards sub-meter level UWB indoor localization using body wearable sensors
JP5493447B2 (en) Radio wave propagation characteristic estimation apparatus and method, and computer program
JP4530898B2 (en) Radio wave propagation estimation program, radio wave propagation estimation method, and apparatus for executing the method
WO2019107388A1 (en) Location estimation system, location estimation method, and program
Wei et al. Urban background noise mapping: the general model
CN107087286B (en) Indoor electromagnetic radiation prediction method of window facing communication base station
JP5029796B2 (en) Radio wave arrival state estimation system, radio wave arrival state estimation method, and program
Piwowarczyk et al. Analysis of the influence of radio beacon placement on the accuracy of indoor positioning system
JP2021150870A (en) Electromagnetic wave detection device, electromagnetic wave detection method, and program
Lai et al. On the use of an intelligent ray launching for indoor scenarios
JP4691656B2 (en) Object search method in structure, computer program, and recording medium
JP5826546B2 (en) Target identification system
JP2005072667A (en) Apparatus and method of estimating reception characteristic
JPWO2009069507A1 (en) Radio wave propagation simulator, radio wave propagation characteristic estimation method used therefor, and program thereof
JP7279801B2 (en) Radio wave transmission source position estimation system and radio wave transmission source position estimation method
CN111492602B (en) Method and apparatus for communication environment analysis and network design considering radio wave incident unit of building
Miekk-oja Static beacons based indoor positioning method for improving room-level accuracy
JP6466147B2 (en) Calculation device, calculation method, and program
KR101090447B1 (en) Method for Determination of Propagation Model Coefficients Using Linear Regression and 3 Dimension Ray Tracing
JP2007309709A (en) Radio wave propagation characteristic estimation system, its method, and program
JP2014123885A (en) Radio wave propagation characteristic estimation device, radio wave propagation characteristic estimation method, and computer program
KR100580086B1 (en) Modeling method for the propagation environments in satellite mobile communications by the ray tracing technique
JP7241993B2 (en) Radio wave source position estimation device, radio wave source position estimation system, and radio wave source position estimation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Ref document number: 4608515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees