JP4607568B2 - Sample surface analyzer - Google Patents

Sample surface analyzer Download PDF

Info

Publication number
JP4607568B2
JP4607568B2 JP2004362886A JP2004362886A JP4607568B2 JP 4607568 B2 JP4607568 B2 JP 4607568B2 JP 2004362886 A JP2004362886 A JP 2004362886A JP 2004362886 A JP2004362886 A JP 2004362886A JP 4607568 B2 JP4607568 B2 JP 4607568B2
Authority
JP
Japan
Prior art keywords
ray
sample
vacuum
aperture
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004362886A
Other languages
Japanese (ja)
Other versions
JP2006170771A (en
Inventor
豊彦 田澤
一徳 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2004362886A priority Critical patent/JP4607568B2/en
Publication of JP2006170771A publication Critical patent/JP2006170771A/en
Application granted granted Critical
Publication of JP4607568B2 publication Critical patent/JP4607568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は電子線、イオンビーム又はX線等の一次ビームを試料に照射し、試料から発生したX線等の二次ビームにより試料の表面近傍に存在する元素を検出及び化学状態の解析を行う蛍光X線分析装置、X線マイクロアナライザ等の試料表面分析装置に関するものである。   The present invention irradiates a sample with a primary beam such as an electron beam, an ion beam, or an X-ray, detects an element existing near the surface of the sample by a secondary beam such as an X-ray generated from the sample, and analyzes a chemical state. The present invention relates to a sample surface analyzer such as a fluorescent X-ray analyzer and an X-ray microanalyzer.

試料表面の組成や化学状態等を分析する装置としてX線分析装置がある。このようなX線分析装置は、試料表面に細く絞った電子を照射し、照射により試料極薄層から発生したX線をX線集光素子により集束して、半導体検出器を用いたエネルギー分散型X線検出器又は比例計数管を用いた波長分散型X線検出器に導き、ここでエネルギー分光し、分光されたX線を検出器で検出し、検出されたX線のエネルギースペクトルを得、スペクトルを解析して試料の微小領域(ナノオーダレベル)の組成や化学状態等を分析している。すなわち、エネルギースペクトルに現れるピークの位置から所定元素の量を演算することにより、試料表面の所定元素の量が分かる。   There is an X-ray analyzer as an apparatus for analyzing the composition, chemical state, etc. of the sample surface. Such an X-ray analyzer irradiates the sample surface with finely focused electrons, focuses the X-rays generated from the sample ultra-thin layer by irradiation with an X-ray focusing element, and disperses energy using a semiconductor detector. To a wavelength dispersive X-ray detector using a type X-ray detector or a proportional counter, where energy spectroscopy is performed, and the X-ray that has been dispersed is detected by the detector, and an energy spectrum of the detected X-ray is obtained. The spectrum is analyzed to analyze the composition, chemical state, etc. of the micro area (nano-order level) of the sample. That is, the amount of the predetermined element on the sample surface can be determined by calculating the amount of the predetermined element from the position of the peak appearing in the energy spectrum.

試料が収容された分析室にカーボンのパーティクル等が存在すると、試料表面のパーティクルに電子線が当たった場合パーティクルが成長して良好な観察を行うことができない。このため、分析室は超高真空を保持する必要がある。   If carbon particles or the like are present in the analysis chamber in which the sample is accommodated, when the electron beam hits the particle on the sample surface, the particle grows and good observation cannot be performed. For this reason, the analysis chamber needs to maintain an ultra-high vacuum.

しかしながら、超高真空下に配置された試料から発生するX線の分析が困難であった。すなわち、エネルギー分散型X線検出器内部は超高真空にすることができず、超高真空より真空度が低い高真空であるため、分析室の超高真空を保持するためにエネルギー分散型X線検出器の先端にベリリウム等で構成された真空隔壁を設けている。真空隔壁としてベリリウム・ウインドウを用いた場合、ベリリウム・ウインドウによるX線の吸収が大きく、試料中のボロンやリチウム等の軽元素から発生する低エネルギーのX線(軟X線)の検出を行うことが困難であった。   However, it has been difficult to analyze X-rays generated from a sample placed in an ultrahigh vacuum. That is, the inside of the energy dispersive X-ray detector cannot be made into an ultra-high vacuum and is a high vacuum whose degree of vacuum is lower than that of the ultra-high vacuum. A vacuum partition made of beryllium or the like is provided at the tip of the line detector. When a beryllium window is used as a vacuum barrier, X-ray absorption by the beryllium window is large, and low-energy X-rays (soft X-rays) generated from light elements such as boron and lithium in the sample must be detected. It was difficult.

また、波長分散型X線分析器の場合は真空隔壁としてポリマー系の超薄膜を用いたられるが、分析室内に付着した気体等を除去して超高真空状態を得るために行う分析室のベーキング時に、熱によるポリマー膜の損傷を伴い、超高真空を実現できない。   In the case of wavelength dispersive X-ray analyzers, polymer-based ultra-thin films are used as vacuum barriers, but analysis chamber baking is performed in order to obtain an ultra-high vacuum state by removing gases attached to the analysis chamber. Sometimes the polymer film is damaged by heat, and ultra high vacuum cannot be realized.

なお、従来技術としては、試料へのガス照射を行っても、そのガスは視野制限絞りによって食い止められて、アナライザ内部へのガス流入を防止する電子分光装置がある(例えば、特許文献1)。   As a conventional technique, there is an electron spectroscopic device that prevents gas from flowing into the analyzer even if the sample is irradiated with gas by the field-limiting aperture (for example, Patent Document 1).

特開2003−187738JP2003-187738

本発明が解決しようとする問題点は、分析器の真空系と分析室の真空系を隔壁を用いて遮断した場合、低エネルギーのX線の検出が困難であったという点である。   The problem to be solved by the present invention is that it is difficult to detect low energy X-rays when the vacuum system of the analyzer and the vacuum system of the analysis chamber are shut off using a partition wall.

請求項1の発明は、試料を収容する真空に保持された分析室と、1次ビームを前記試料に照射する1次ビーム照射手段と、前記1次ビームの照射により前記試料から発生するX線を分光・検出するための真空に保持された分光手段と、前記分光手段の集光口の軸上に配置されたポリキャピラリからなるX線集光手段と、前記軸上に配置され、前記X線集光手段により集光された前記試料からのX線の集束点に位置するアパーチャと、を備える表面分析装置であって、前記分光手段には前記軸上に位置するX線分光器が配置されており、前記アパーチャの開口部は円形又はスリット形状とされ、これにより前記アパーチャを通過し前記X線分光器に到達するX線束のビーム形状が整えられるとともに、前記アパーチャが差動排気アパーチャとして機能し、これによって前記分光手段内の真空度よりも高真空となる前記分析室内の真空度を保持することを特徴とする表面分析装置である。 According to the first aspect of the present invention, there is provided an analysis chamber for holding a sample in a vacuum, a primary beam irradiation means for irradiating the sample with a primary beam, and an X-ray generated from the sample by the irradiation of the primary beam. A spectroscopic means held in a vacuum for spectroscopic / detection of light, an X-ray condensing means composed of a polycapillary disposed on the axis of the condensing port of the spectroscopic means, and the X An aperture positioned at a focal point of X-rays from the sample collected by the line focusing means , wherein the spectroscopic means is provided with an X-ray spectrometer located on the axis The aperture of the aperture is circular or slit-shaped, thereby adjusting the beam shape of the X-ray bundle passing through the aperture and reaching the X-ray spectrometer, and the aperture serves as a differential exhaust aperture. Functioning, whereby a surface analysis apparatus characterized by holding the degree of vacuum in the analysis chamber at a high vacuum than the vacuum degree in the spectroscopic unit.

請求項2の発明は、前記アパーチャの開口部は、直径0.5mm〜1mmの範囲に設定された円形であることを特徴とする請求項1に記載した表面分析装置である。 The invention according to claim 2 is the surface analysis apparatus according to claim 1, wherein the opening of the aperture has a circular shape set in a range of 0.5 mm to 1 mm in diameter .

請求項3の発明は、前記分光手段内の真空度は10 −6 Paオーダーであり、前記分析室内の真空度は10 −8 Paオーダーであることを特徴とした請求項1又は2に記載した表面分析装置である。 The invention according to claim 3 is characterized in that the degree of vacuum in the spectroscopic means is on the order of 10 −6 Pa and the degree of vacuum in the analysis chamber is on the order of 10 −8 Pa . This is a surface analyzer.

請求項4の発明は、前記1次ビームが電子線であることを特徴とした請求項1乃至3のいずれかに記載した表面分析装置である。
The invention according to claim 4 is the surface analysis apparatus according to any one of claims 1 to 3, wherein the primary beam is an electron beam .

本発明によりX線分光器の真空系と分析室の真空系をアパーチャを用いて遮断するため、低エネルギーX線の検出が可能となる。このため、試料中の軽元素の分析が可能となる。   According to the present invention, the vacuum system of the X-ray spectrometer and the vacuum system of the analysis chamber are shut off using an aperture, so that low energy X-rays can be detected. For this reason, the analysis of the light element in a sample is attained.

本発明の構成を図1を用いて説明する。分析室1内には試料ステージ3に置載された試料2が配置されており、試料ステージ3により試料2の目的部位を観察点に移動する。分析室1内は図示しないターボ分子ポンプ又はスパッタイオンポンプ等によって排気され10−8Pa以上の超高真空が保持されている。このため、分析室中のパーティクルは非常に少なく、試料表面はカーボンのパーティクル等の汚染がない状態である。分析室1上面には電子銃4が設置され、試料2に照射する電子線14を発生する。 The configuration of the present invention will be described with reference to FIG. A sample 2 placed on the sample stage 3 is disposed in the analysis chamber 1, and the target portion of the sample 2 is moved to the observation point by the sample stage 3. The analysis chamber 1 is evacuated by a turbo molecular pump, a sputter ion pump, or the like (not shown) and an ultrahigh vacuum of 10 −8 Pa or higher is maintained. For this reason, there are very few particles in the analysis chamber, and the sample surface is not contaminated with carbon particles or the like. An electron gun 4 is installed on the upper surface of the analysis chamber 1 to generate an electron beam 14 that irradiates the sample 2.

電子銃4先端には電磁レンズから構成される対物レンズ5が設置されており、電子銃4で発生した1次ビームである電子線14を試料2上に合焦する。分析室1側面には試料2を分析室1に導入するためのエアロック室である試料交換室12及び、試料交換室12に導入した被測定試料を分析室1に搬送するための手段である試料搬送棒13が設置されている。   An objective lens 5 composed of an electromagnetic lens is installed at the tip of the electron gun 4, and an electron beam 14 that is a primary beam generated by the electron gun 4 is focused on the sample 2. On the side of the analysis chamber 1 are a sample exchange chamber 12 that is an air lock chamber for introducing the sample 2 into the analysis chamber 1 and a means for transporting the sample to be measured introduced into the sample exchange chamber 12 to the analysis chamber 1. A sample transport bar 13 is installed.

また、分析室1斜め上面にはエネルギー分散型X線分光器室6が設置されており、図示しない真空ポンプにより10−7乃至10―6Paの高真空に保持されている。X線分光器室6の集光口の軸上にはX線集光素子7、アパーチャ8及びX線分光器10が配置される。ポリキャピラリ等で構成されたX線集光素子7は試料2上で発生したX線15をアパーチャ8近傍に集束する。アパーチャ8はX線集光素子7で集光されたX線15束をX線分光器10の入射条件に応じた大きさにするための円形の微小口またはスリット形状を有する。また、アパーチャ8はX線束のビーム形状を整えるほか、差動排気アパーチャとして機能する。X線分光器10はX線分光器室6に設置されており、アパーチャ8によってビーム成形されたX線15束をエネルギー分光し、X線検出器11に投影(結像)するための分光器(回折格子等)である。X線分光器室6端面にはX線検出器11が設置されており、X線のエネルギーに比例した電子、正孔対が生成されることを利用してX線の強度を電気信号に変換して検出する。X線検出器11は2次元検出器が望ましい。 An energy dispersive X-ray spectrometer chamber 6 is installed on the oblique upper surface of the analysis chamber 1, and is maintained at a high vacuum of 10 −7 to 10 −6 Pa by a vacuum pump (not shown). An X-ray condensing element 7, an aperture 8, and an X-ray spectrometer 10 are arranged on the axis of the condensing port of the X-ray spectrometer chamber 6. The X-ray condensing element 7 composed of a polycapillary or the like focuses the X-ray 15 generated on the sample 2 in the vicinity of the aperture 8. The aperture 8 has a circular minute mouth or slit shape for sizing the X-ray 15 bundle collected by the X-ray focusing element 7 in accordance with the incident condition of the X-ray spectrometer 10. The aperture 8 adjusts the beam shape of the X-ray beam and functions as a differential exhaust aperture. The X-ray spectrometer 10 is installed in the X-ray spectrometer chamber 6, and energy spectrometers the X-ray 15 bundle formed by beam shaping by the aperture 8 and projects (images) it onto the X-ray detector 11. (Diffraction grating, etc.). An X-ray detector 11 is installed on the end face of the X-ray spectrometer chamber 6 and converts the intensity of X-rays into an electrical signal by utilizing the generation of electron-hole pairs proportional to the energy of the X-rays. To detect. The X-ray detector 11 is preferably a two-dimensional detector.

以上、図1における各部の構成について説明したが、次に動作について説明する。図1において、分析室1の真空度は図示しない制御装置で常に監視されており、図示しない真空ポンプにより超高真空が保持されている。制御装置は真空度適正であると、試料2に電子線14照射を行うための電子線照射信号を図示しない電子線源電源に送る。   The configuration of each unit in FIG. 1 has been described above. Next, the operation will be described. In FIG. 1, the degree of vacuum in the analysis chamber 1 is constantly monitored by a control device (not shown), and an ultrahigh vacuum is maintained by a vacuum pump (not shown). If the degree of vacuum is appropriate, the control device sends an electron beam irradiation signal for irradiating the sample 2 with the electron beam 14 to an electron beam source power source (not shown).

電子線照射信号を受けた電子線源電源は、その電子線照射信号に基づいて電子線源を制御する。この結果、電子銃4から電子線14が発生し、試料2に電子線14が照射される。電子線14は対物レンズ5により試料2に適切に集束するよう制御される。   The electron beam source power supply that has received the electron beam irradiation signal controls the electron beam source based on the electron beam irradiation signal. As a result, an electron beam 14 is generated from the electron gun 4 and the sample 2 is irradiated with the electron beam 14. The electron beam 14 is controlled to be appropriately focused on the sample 2 by the objective lens 5.

一方、図2に示すように、電子線14が試料2に照射されることにより発生したX線15はX線集光素子7によりアパーチャ8の位置に焦点を結ぶ。このときアパーチャ8の開口部はX線分光器10の角度、サイズ等の入力条件に応じた大きさであるため、不要なX線15は遮断されてX線のビーム形状が整えられる。このとき、アパーチャ8は入力条件に応じて交換してもよく、また、シャッタのように自在に口径を調整するよう構成してもよい。アパーチャ8によりビーム形成されたX線15は、X線分光器10によりエネルギー分光され、X線検出器11に投影(結像)される。結像されたX線は、X線検出器11により電気信号に変換される。検出された電気信号は図示しないコンピュータによりエネルギースペクトルに展開される。エネルギースペクトルを解析して試料2の微小領域(ナノオーダレベル)の組成や化学状態等を分析する。すなわち、エネルギースペクトルに現れるピークの位置から所定元素の量を演算することにより、試料2表面の所定元素の量が分かる。   On the other hand, as shown in FIG. 2, the X-ray 15 generated by irradiating the sample 2 with the electron beam 14 is focused on the position of the aperture 8 by the X-ray condensing element 7. At this time, since the opening of the aperture 8 is sized according to the input conditions such as the angle and size of the X-ray spectrometer 10, unnecessary X-rays 15 are blocked and the X-ray beam shape is adjusted. At this time, the aperture 8 may be exchanged according to the input conditions, or the aperture may be freely adjusted like a shutter. The X-ray 15 formed by the aperture 8 is subjected to energy spectroscopy by the X-ray spectrometer 10 and projected (imaged) on the X-ray detector 11. The imaged X-ray is converted into an electric signal by the X-ray detector 11. The detected electrical signal is developed into an energy spectrum by a computer (not shown). The energy spectrum is analyzed to analyze the composition, chemical state, and the like of the minute region (nano-order level) of the sample 2. That is, the amount of the predetermined element on the surface of the sample 2 can be determined by calculating the amount of the predetermined element from the position of the peak appearing in the energy spectrum.

このとき、試料2を配置する超高真空に保たれた分析室1の圧力をP0、高真空に保たれたX線分光器室6の圧力をP1とし、分析室1の排気ポンプの排気速度をS、アパーチャ8の排気コンダクタンスをCとすると、高真空のX線分光器室6から超高真空の分析室1に流入する気体の流量Qは次式によって表される。
Q=C*(P1-P0)
また、圧力P1に排気されたX線分光器室6を接続した場合の分析室1の圧力は、次式で表される。
P=Q/S+P0
数値例として、P0=5x10-8Pa、P1=5x10-6Pa、C=2.8x10-5m3/s、S=0.1m3/s、排気される気体の主成分が水(分子量:18)とする。この条件下ではP=5.0x10-8Paとなり、分析室1は超高真空に保たれる。この排気コンダクタンスを満足するアパーチャ8の開口部は直径0.5mmであり、高分解能なX線分光を行う回折格子等の分光器10に最適な条件である。
At this time, the pressure of the analysis chamber 1 where the sample 2 is placed is maintained at P0, the pressure of the X-ray spectrometer chamber 6 maintained at the high vacuum is P1, and the exhaust speed of the exhaust pump of the analysis chamber 1 is exhausted. Is S and the exhaust conductance of the aperture 8 is C, the flow rate Q of the gas flowing from the high vacuum X-ray spectrometer chamber 6 into the ultrahigh vacuum analysis chamber 1 is expressed by the following equation.
Q = C * (P1-P0)
The pressure in the analysis chamber 1 when the X-ray spectrometer chamber 6 evacuated to the pressure P1 is connected is expressed by the following equation.
P = Q / S + P0
As a numerical example, P0 = 5x10 -8 Pa, P1 = 5x10 -6 Pa, C = 2.8x10 -5 m 3 /s,S=0.1m 3 / s, the main component of the gas is exhausted water (molecular weight: 18 ). Under this condition, P = 5.0 × 10 −8 Pa, and the analysis chamber 1 is kept in an ultrahigh vacuum. The opening of the aperture 8 that satisfies this exhaust conductance has a diameter of 0.5 mm, which is an optimum condition for the spectroscope 10 such as a diffraction grating that performs high-resolution X-ray spectroscopy.

また、直径を1mmとしてX線分光の分解能を落とし、高感度な条件にした場合でもP=5.1x10-8 Paであり、十分超高真空雰囲気を維持できる。 Moreover, even when the diameter is set to 1 mm and the resolution of X-ray spectroscopy is lowered and the sensitivity is high, P = 5.1 × 10 −8 Pa, and a sufficiently ultrahigh vacuum atmosphere can be maintained.

以上の数値計算からX線検出器11として高温でベーキングできないCCD素子を使用した場合でも、X線分光器室6をベーキングせずにP1=5x10-6Pa程度に排気すれば試料2を配置する分析室1を10-8Paオーダに維持でき、超高真空条件下におけるX線分析が可能である。 Even if a CCD element that cannot be baked at high temperature is used as the X-ray detector 11 from the above numerical calculation, the sample 2 is arranged if the X-ray spectrometer chamber 6 is evacuated to about P1 = 5 × 10 −6 Pa without baking. The analysis chamber 1 can be maintained on the order of 10 −8 Pa, and X-ray analysis under ultrahigh vacuum conditions is possible.

以上、動作について説明したが、本発明によりX線分光器室6にベリリウム・ウインドウ等の真空隔壁が用いられないため、試料2中のボロンやリチウム等の軽元素から発生する低エネルギーのX線(軟X線)の検出を行うことことができるという効果が得られる。また、アパーチャ8は作動排気手段として機能するため、分析室1の真空系とX線分光器室6の真空系を遮断し、分析室1を超高真空に、X線分光器10を高真空に保持することができる。すなわち、X線集光素子により大きな取り込み角でX線を取り込み集光させることにより、アパーチャの開口部を小さくし、気圧差がある領域の仕切に用い、特に低エネルギー領域のX線を高い透過率で透過させることができる。集光素子によりX線の取り込み角が大きくなった分に比例して、多くのX線を透過させることができる。   Although the operation has been described above, since a vacuum partition such as a beryllium window is not used in the X-ray spectrometer chamber 6 according to the present invention, low energy X-rays generated from light elements such as boron and lithium in the sample 2 are used. The effect that (soft X-ray) can be detected is obtained. Since the aperture 8 functions as an operating exhaust means, the vacuum system of the analysis chamber 1 and the vacuum system of the X-ray spectrometer chamber 6 are shut off, the analysis chamber 1 is set to an ultrahigh vacuum, and the X-ray spectrometer 10 is set to a high vacuum. Can be held in. In other words, the X-ray condensing element captures and collects X-rays with a large capturing angle, thereby reducing the aperture opening and partitioning the region where there is a difference in atmospheric pressure. Can be transmitted at a rate. Many X-rays can be transmitted in proportion to the increase in the X-ray capture angle by the light collecting element.

また、集光素子により開口部で一度集光させるため、発散光に対しても平行光に対しても適用することができる。   Further, since the light is condensed once at the opening by the light condensing element, it can be applied to both divergent light and parallel light.

さらに、アパーチャの開口部は薄い絞りであるため、パーティクル等が付着し難い。   Furthermore, since the aperture opening is a thin aperture, particles and the like are difficult to adhere.

なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば、一次線は電子線の代わりにイオンビーム又はX線でもよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, the primary beam may be an ion beam or an X-ray instead of an electron beam.

本発明による装置概要である。1 is an overview of an apparatus according to the present invention. 本発明によるアパーチャ部の詳細である。4 is a detail of an aperture according to the present invention. 従来技術による装置概要である。It is an outline | summary of the apparatus by a prior art.

符号の説明Explanation of symbols

1 分析室
2 試料
3 試料ステージ
4 電子銃
5 対物レンズ
6 X線分光器室
7 X線集光素子
8 アパーチャ
9 仕切バルブ
10 X線分光器
11 X線検出器
12 試料交換室
13 試料搬送棒
14 電子線
15 X線
16 ベリリウム・ウインドウ
DESCRIPTION OF SYMBOLS 1 Analysis chamber 2 Sample 3 Sample stage 4 Electron gun 5 Objective lens 6 X-ray spectrometer chamber 7 X-ray condensing element 8 Aperture 9 Partition valve 10 X-ray spectrometer 11 X-ray detector 12 Sample exchange chamber 13 Sample conveyance rod 14 Electron beam 15 X-ray 16 Beryllium window

Claims (4)

試料を収容する真空に保持された分析室と、
1次ビームを前記試料に照射する1次ビーム照射手段と、
前記1次ビームの照射により前記試料から発生するX線を分光・検出するための真空に保持された分光手段と、
前記分光手段の集光口の軸上に配置されたポリキャピラリからなるX線集光手段と、
前記軸上に配置され、前記X線集光手段により集光された前記試料からのX線の集束点に位置するアパーチャと、を備える表面分析装置であって、
前記分光手段には前記軸上に位置するX線分光器が配置されており、
前記アパーチャの開口部は円形又はスリット形状とされ、これにより前記アパーチャを通過し前記X線分光器に到達するX線束のビーム形状が整えられるとともに、前記アパーチャが差動排気アパーチャとして機能し、
これによって前記分光手段内の真空度よりも高真空となる前記分析室内の真空度を保持することを特徴とする表面分析装置。
An analysis chamber held in a vacuum containing the sample;
Primary beam irradiation means for irradiating the sample with a primary beam;
Spectroscopic means held in a vacuum for spectrally detecting and detecting X-rays generated from the sample by irradiation of the primary beam ,
X-ray condensing means comprising a polycapillary disposed on the axis of the condensing port of the spectroscopic means;
An aperture disposed on the axis and positioned at a focusing point of X-rays from the sample collected by the X-ray focusing means,
The spectroscopic means is provided with an X-ray spectrometer located on the axis,
The opening of the aperture is circular or slit-shaped, thereby adjusting the beam shape of the X-ray bundle passing through the aperture and reaching the X-ray spectrometer, and the aperture functions as a differential exhaust aperture,
Thus, the surface analysis apparatus is characterized in that the degree of vacuum in the analysis chamber is higher than the degree of vacuum in the spectroscopic means.
前記アパーチャの開口部は、直径0.5mm〜1mmの範囲に設定された円形であることを特徴とする請求項1に記載した表面分析装置。 The surface analysis apparatus according to claim 1, wherein the opening of the aperture has a circular shape set in a range of 0.5 mm to 1 mm in diameter . 前記分光手段内の真空度は10 −6 Paオーダーであり、前記分析室内の真空度は10 −8 Paオーダーであることを特徴とした請求項1又は2に記載した表面分析装置。 The surface analysis apparatus according to claim 1 or 2 , wherein the degree of vacuum in the spectroscopic means is on the order of 10 -6 Pa and the degree of vacuum in the analysis chamber is on the order of 10 -8 Pa . 前記1次ビームが電子線であることを特徴とした請求項1乃至3のいずれかに記載した表面分析装置。 The surface analysis apparatus according to claim 1, wherein the primary beam is an electron beam .
JP2004362886A 2004-12-15 2004-12-15 Sample surface analyzer Active JP4607568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362886A JP4607568B2 (en) 2004-12-15 2004-12-15 Sample surface analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362886A JP4607568B2 (en) 2004-12-15 2004-12-15 Sample surface analyzer

Publications (2)

Publication Number Publication Date
JP2006170771A JP2006170771A (en) 2006-06-29
JP4607568B2 true JP4607568B2 (en) 2011-01-05

Family

ID=36671693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362886A Active JP4607568B2 (en) 2004-12-15 2004-12-15 Sample surface analyzer

Country Status (1)

Country Link
JP (1) JP4607568B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419550A (en) * 1990-05-14 1992-01-23 Hitachi Ltd Method and apparatus for surface analysis
JPH0611466A (en) * 1991-08-01 1994-01-21 Nippon Telegr & Teleph Corp <Ntt> Method and device for fluorescent x-ray spectrometry
JPH10132765A (en) * 1996-10-30 1998-05-22 Kawasaki Steel Corp Carbon analyzing apparatus using electron beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419550A (en) * 1990-05-14 1992-01-23 Hitachi Ltd Method and apparatus for surface analysis
JPH0611466A (en) * 1991-08-01 1994-01-21 Nippon Telegr & Teleph Corp <Ntt> Method and device for fluorescent x-ray spectrometry
JPH10132765A (en) * 1996-10-30 1998-05-22 Kawasaki Steel Corp Carbon analyzing apparatus using electron beam

Also Published As

Publication number Publication date
JP2006170771A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US10620142B2 (en) X-ray spectroscopy in a charged-particle microscope
Gann et al. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis
JP2009245944A (en) Environmental cell for particle-optical apparatus
CN107316793B (en) Three-dimensional imaging in charged particle microscopy
CN103026215B (en) Method of X-ray diffraction and the Portable X-ray diffraction instrument of use the method
JP5069540B2 (en) Electron spectroscopic analysis apparatus and electron spectroscopic analysis method
JP2004184314A (en) X-ray fluorescence analytical device
WO2023165148A1 (en) High throughput xps equipment, detection method, and application
JPH06186157A (en) Device and method for fine particle analysis
Farooq et al. Spectroscopic studies of laser produced plasma of doped nano-structured material by laser induced breakdown spectroscopy
WO2024131873A1 (en) Wafer surface measurement device, detection method, and application
JP4607568B2 (en) Sample surface analyzer
Allain et al. IMPACT: A facility to study the interaction of low-energy intense particle beams with dynamic heterogeneous surfaces
JPWO2006135021A1 (en) Charged particle beam apparatus and charged particle beam image generation method
JP2009300167A (en) Outgas collector and outgas collecting method
Tarrio et al. Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing
JP6790691B2 (en) Particle analysis method
Maniguet et al. X-ray microanalysis: the state of the art of SDD detectors and WDS systems on scanning electron microscopes (SEM)
JP2011185739A (en) Device, system and method for detection of sodium leakage
JP2010197229A (en) Fluorescent x-ray analyzer
WO2022163143A1 (en) Analysis device and analysis method
CN108962716A (en) A kind of detection device and its detection method of high-precision mass spectrum detection limit
JP2002365182A5 (en)
Pepper et al. Quantitative characterization of an x-ray source in an x-ray photoelectron spectroscopy system
JP2991253B2 (en) X-ray fluorescence spectroscopy method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Ref document number: 4607568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3