JP4606993B2 - Demodulation method in multi-carrier code division multiplex transmission and receiver using the demodulation method - Google Patents

Demodulation method in multi-carrier code division multiplex transmission and receiver using the demodulation method Download PDF

Info

Publication number
JP4606993B2
JP4606993B2 JP2005308397A JP2005308397A JP4606993B2 JP 4606993 B2 JP4606993 B2 JP 4606993B2 JP 2005308397 A JP2005308397 A JP 2005308397A JP 2005308397 A JP2005308397 A JP 2005308397A JP 4606993 B2 JP4606993 B2 JP 4606993B2
Authority
JP
Japan
Prior art keywords
demodulation
data signal
subcarriers
predetermined threshold
demodulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005308397A
Other languages
Japanese (ja)
Other versions
JP2007116596A (en
Inventor
養幸 畑川
利則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2005308397A priority Critical patent/JP4606993B2/en
Publication of JP2007116596A publication Critical patent/JP2007116596A/en
Application granted granted Critical
Publication of JP4606993B2 publication Critical patent/JP4606993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マルチキャリア符号分割多重伝送方式における復調時の演算量を削減する方法及び受信機に関するものである。   The present invention relates to a method and a receiver for reducing the amount of calculation at the time of demodulation in a multicarrier code division multiplex transmission system.

新世代移動通信システムに採用される通信方式として、マルチキャリア伝送方式が注目されている。マルチキャリア伝送方式の代表的なものとして、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式と、MC-CDM(Multi-Carrier-Code Division Multiplexing:マルチキャリア符号分割多重)方式が挙げられる。MC-CDMによれば、変調シンボルを複数のサブキャリアに拡散し、多重化して送信することにより、周波数ダイバーシチが得られると共に、セル間干渉を均一にすることができる。   As a communication method adopted in the new generation mobile communication system, a multi-carrier transmission method has attracted attention. Representative examples of the multicarrier transmission scheme include an OFDM (Orthogonal Frequency Division Multiplexing) scheme and an MC-CDM (Multi-Carrier-Code Division Multiplexing) scheme. According to MC-CDM, modulation symbols are spread over a plurality of subcarriers, multiplexed, and transmitted, whereby frequency diversity can be obtained and inter-cell interference can be made uniform.

しかしながら、周波数選択性伝送路において符号間干渉が発生するため、逆拡散後の信号対雑音電力比および干渉エネルギー比が劣化することが報告されている(非特許文献1参照)。この対策として、逆拡散せずに信号を復調する多次元復調(Multi-Dimensional Demodulator)が検討されている(非特許文献2参照)。   However, since intersymbol interference occurs in the frequency selective transmission path, it has been reported that the signal-to-noise power ratio and the interference energy ratio after despreading deteriorate (see Non-Patent Document 1). As a countermeasure, multi-dimensional demodulator that demodulates a signal without despreading has been studied (see Non-Patent Document 2).

図6に、多次元復調方式を採用する従来のMC-CDM通信システムのブロック図を示す。同図に示すように、この通信システムは送信機5100と受信機5400とから構成される。送信機5100は、情報ビットの処理系として、伝送路符号化器5101、パンクチャ処理部5102、ビットインタリーバ5103、変調器5104、シリアル/パラレル変換器5105、拡散器5106、逆フーリエ変換器5107、パラレル/シリアル変換器5108、サイクリック・プリフィックス挿入器5109を備え、また、パイロットシンボルの処理系として、シリアル/パラレル変換器5110、逆フーリエ変換器5111、パラレル/シリアル変換器5112、サイクリック・プリフィックス挿入部5113を備え、更に、上述の情報ビット処理系の出力信号とパイロットシンボル処理系の出力信号とを時間多重する時間多重器5114を備える。この送信機5100の出力信号は、周波数選択性伝送路5200および加法性白色ガウス雑音伝送路5300を経て受信機5400に受信される。   FIG. 6 shows a block diagram of a conventional MC-CDM communication system that employs a multidimensional demodulation method. As shown in the figure, this communication system includes a transmitter 5100 and a receiver 5400. The transmitter 5100 includes a transmission line encoder 5101, a puncture processing unit 5102, a bit interleaver 5103, a modulator 5104, a serial / parallel converter 5105, a spreader 5106, an inverse Fourier transformer 5107, and a parallel processing unit for information bits. / Serial converter 5108, cyclic prefix inserter 5109, and as a pilot symbol processing system, serial / parallel converter 5110, inverse Fourier transformer 5111, parallel / serial converter 5112, cyclic prefix insertion And a time multiplexer 5114 for time-multiplexing the output signal of the information bit processing system and the output signal of the pilot symbol processing system. The output signal of the transmitter 5100 is received by the receiver 5400 through the frequency selective transmission line 5200 and the additive white Gaussian noise transmission line 5300.

受信機5400は、受信信号をデータ信号とパイロット信号とに分離する時間多重分離部5401を備え、また、データ信号の処理系として、サイクリック・プリフィックス除去部5402、シリアル/パラレル変換器5403、フーリエ変換器5404、等化器5405、パラレル/シリアル変換器5406、最尤推定用シンボル生成器5407、多次元復調器5408、復号器5409を備え、更に、パイロット信号の処理系として、サイクリック・プリフィックス除去器5410、シリアル/パラレル変換器5411、フーリエ変換器5412、伝送路推定器5413を備える。   The receiver 5400 includes a time demultiplexing unit 5401 that separates a received signal into a data signal and a pilot signal. As a data signal processing system, a cyclic prefix removing unit 5402, a serial / parallel converter 5403, a Fourier A converter 5404, an equalizer 5405, a parallel / serial converter 5406, a maximum likelihood estimation symbol generator 5407, a multidimensional demodulator 5408, and a decoder 5409, and a cyclic prefix as a pilot signal processing system A remover 5410, a serial / parallel converter 5411, a Fourier transformer 5412, and a transmission path estimator 5413 are provided.

次に、上述のMC-CDM送受信システムの動作を説明する。
ここでは、説明の簡単のため、すべての情報ビットは一つのMC-CDMシンボルで送信できるものとする。
まず、送信機5100は、送信すべき情報ビットに対し、伝送路符号化処理、パンクチャリング処理、インターリービング処理を施した後、これを変調部5104により変調し、n番目の変調シンボルM(n)を得る。その後、拡散のため、変調シンボルは拡散符号の占有帯域と等しい帯域を持つi番目の周波数バンドに割り当て、シリアル/パラレル変換器5105によりシリアル/パラレル変換する。i番目の周波数バンドに割り当てられた
Next, the operation of the above-described MC-CDM transmission / reception system will be described.
Here, for simplicity of explanation, it is assumed that all information bits can be transmitted by one MC-CDM symbol.
First, the transmitter 5100 performs transmission path encoding processing, puncturing processing, and interleaving processing on information bits to be transmitted, and then modulates the information bits by the modulation unit 5104, and the n m -th modulation symbol M t. (N m ) is obtained. Thereafter, for diffusion, modulation symbols are allocated to i d th frequency band having a bandwidth equal to the band occupied by the spread code, serial / parallel conversion by a serial / parallel converter 5105. assigned to the i d th frequency band

Figure 0004606993
Figure 0004606993

は、拡散部5106によって変調シンボルごとに異なる拡散符号を用いて拡散され、多重されてデータサブキャリアとなる。
ここで、拡散率をN、符号多重数をM、データサブキャリア数をNとすると、
Is spread by a spreading unit 5106 using a different spreading code for each modulation symbol and multiplexed to form a data subcarrier.
Here, if the spreading factor is N w , the number of code multiplexes is M w , and the number of data subcarriers is N d ,

Figure 0004606993
Figure 0004606993

との間には以下の関係が成り立つ。 The following relationship holds between

Figure 0004606993
Figure 0004606993

Figure 0004606993
Figure 0004606993

一般に、MC-CDMでは、拡散符号としてウォルシュ符号などの直交符号が用いられ、直交符号は以下のような特性を持つ。   In general, in MC-CDM, orthogonal codes such as Walsh codes are used as spreading codes, and the orthogonal codes have the following characteristics.

Figure 0004606993
Figure 0004606993

よって、同じ符号間の相関値はその系列長となり、異なる符号間の相関値は「0」となる。その後、データサブキャリアは、逆フーリエ変換器5107によって逆フーリエ変換されて時間領域の信号に変換され、パラレル/シリアル変換器5108によってパラレル/シリアル変換された後、サイクリック・プリフィックス挿入器5109によってサイクリック・プリフィックスが挿入されて時間多重器5114に与えられる。   Therefore, the correlation value between the same codes is the sequence length, and the correlation value between different codes is “0”. Thereafter, the data subcarrier is subjected to inverse Fourier transform by an inverse Fourier transformer 5107 to be converted into a time domain signal, parallel / serial converted by a parallel / serial converter 5108, and then cyclically inserted by a cyclic prefix inserter 5109. A click prefix is inserted and provided to the time multiplexer 5114.

一方、パイロットシンボルは、シリアル/パラレル変換器5110、逆フーリエ変換器5111、パラレル/シリアル変換器5112、サイクリック・プリフィックス挿入器5113による各処理が施されて時間多重器5114に与えられる。
最後に、時間多重部5114によってデータサブキャリアはパイロット信号と時間多重されて送信される。送信機5100から送信された信号は、周波数選択性伝送路5200において
On the other hand, the pilot symbol is subjected to various processes by a serial / parallel converter 5110, an inverse Fourier transformer 5111, a parallel / serial converter 5112, and a cyclic prefix inserter 5113, and is provided to a time multiplexer 5114.
Finally, the data subcarrier is time-multiplexed with the pilot signal by the time multiplexing unit 5114 and transmitted. A signal transmitted from the transmitter 5100 is transmitted through a frequency selective transmission line 5200.

Figure 0004606993
Figure 0004606993

の周波数選択性を受けると共に、加法性白色ガウス雑音伝送路5300において雑音電力密度Nの雑音が付加され、受信機5400に受信される。 In addition, noise having a noise power density N 0 is added to the additive white Gaussian noise transmission line 5300 and received by the receiver 5400.

受信機5400に受信された信号は、まず、時間多重分離部5401によりパイロット信号とデータ信号に分割され、各信号は、サイクリック・プリフィックス除去器5402,5410によりサイクリック・プリフィックスが取り除かれる。サイクリック・プリフィックスが取り除かれた信号は、シリアル/パラレル変換器5403,5411によりシリアル/パラレル変換された後、フーリエ変換器5404,5412におけるフーリエ変換により、パイロットサブキャリアとデータサブキャリアに変換される。このうち、パイロットサブキャリアからは伝送路推定器5413により伝送路変動が推定され、その推定結果に基づいて等化器5405においてデータサブキャリアを等化(位相回転補償)する。等化後のデータサブキャリアは、次式より求められる。   The signal received by the receiver 5400 is first divided into a pilot signal and a data signal by the time demultiplexing unit 5401, and the cyclic prefix is removed from each signal by the cyclic prefix removers 5402 and 5410. The signal from which the cyclic prefix has been removed is serial / parallel converted by serial / parallel converters 5403 and 5411 and then converted into pilot subcarriers and data subcarriers by Fourier transform in Fourier transformers 5404 and 5412. . Among these, the channel fluctuation is estimated from the pilot subcarrier by the channel estimator 5413, and the data subcarrier is equalized (phase rotation compensation) by the equalizer 5405 based on the estimation result. The data subcarrier after equalization is obtained from the following equation.

Figure 0004606993
Figure 0004606993

その後、等化後のデータサブキャリアはパラレル/シリアル変換器5406によりパラレル/シリアル変換され、最尤推定用シンボル生成器5407により最尤推定用のシンボルに変換される。   Thereafter, the equalized data subcarrier is parallel / serial converted by a parallel / serial converter 5406 and converted to a maximum likelihood estimation symbol by a maximum likelihood estimation symbol generator 5407.

Figure 0004606993
Figure 0004606993

最後に、式(7)の処理により、受信変調シンボルMr(nm)を得る。 Finally, the received modulation symbol M r (n m ) is obtained by the processing of equation (7).

Figure 0004606993
Figure 0004606993

図7に、上述の最尤推定用シンボル生成器5407における拡散率が2の場合の最尤推定用シンボル生成処理の原理を示す。
以上により、逆拡散することなく多次元復調を行って通信路値を得る。
N. Miyazaki and T. Suzuki, “A Study on Forward Link Capacity in MC-CDMA Cellular System with MMSEC Receiver”, IEICE Trans. Commun., Vol. E88-B, No. 2, pp. 585-593, Feb. 2005. 3GPP TSG RAN WG1#42 bis, R1-051261, ”Enhancement of Distributed Mode for Maximizing Frequency Diversity”, Oct. 2005
FIG. 7 shows the principle of maximum likelihood estimation symbol generation processing when the spreading factor is 2 in the above-described maximum likelihood estimation symbol generator 5407.
As described above, the channel value is obtained by performing multidimensional demodulation without despreading.
N. Miyazaki and T. Suzuki, “A Study on Forward Link Capacity in MC-CDMA Cellular System with MMSEC Receiver”, IEICE Trans. Commun., Vol. E88-B, No. 2, pp. 585-593, Feb. 2005. 3GPP TSG RAN WG1 # 42 bis, R1-051261, “Enhancement of Distributed Mode for Maximizing Frequency Diversity”, Oct. 2005

しかしながら、多次元復調に要する演算量は、最尤推定のために受信信号点との二乗距離を測定するための基準信号点の数が、符号多重数と変調次数を指数とする、べき乗で増大するという課題を有している。
本発明は、多次元復調の良好な特性を保ったまま演算量を削減することができる復調方法及び該方法を用いた受信機を提供することを目的とする。
However, the amount of computation required for multi-dimensional demodulation increases as the number of reference signal points for measuring the square distance from the received signal point for maximum likelihood estimation increases with the power of the number of code multiplexes and the modulation order as indices. Have the problem of doing.
An object of the present invention is to provide a demodulation method capable of reducing the amount of calculation while maintaining good characteristics of multidimensional demodulation, and a receiver using the method.

本発明に係る復調方法は、マルチキャリア符号分割多重伝送方式において、伝送路推定値を観察し逆拡散しても直交性崩れによる特性劣化が生じないサブキャリアについては、逆拡散により通信路値を求め、直交性崩れによる特性劣化が発生するサブキャリアについては、多次元復調により通信路値を求める。これにより、多次元復調の良好な特性を保ったまま、演算量を削減する。   In the demodulation method according to the present invention, in a multicarrier code division multiplex transmission system, a channel value is determined by despreading for a subcarrier that does not cause characteristic deterioration due to orthogonality loss even if the channel estimation value is observed and despread. The channel value is obtained by multi-dimensional demodulation for subcarriers whose characteristics are deteriorated due to orthogonality destruction. This reduces the amount of computation while maintaining good characteristics of multidimensional demodulation.

本発明に係る受信機は、受信信号をデータ信号とパイロット信号とに分離する分離手段(時間多重分離器5401)と、前記データ信号を周波数領域の信号に変換する変換手段(サイクリック・プリフィックス除去器5402〜フーリエ変換器5404)と、前記変換手段によって変換されたデータ信号を多次元復調するための第1復調手段(等化器5405〜多次元復調器5408))と、前記変換手段によって変換されたデータ信号を逆拡散して復調するための第2復調手段(等化器1200〜復調器1500)と、前記変換手段と前記第1及び第2復調手段との間に接続され、前記変換手段により変換されたデータ信号を前記第1復調手段および前記第2復調手段の何れかに選択的に転送するスイッチ手段(スイッチ1100)と、前記パイロット信号を周波数領域の信号に変換し、該信号から伝送路を推定する推定手段(サイクリック・プリフィックス除去器5410〜伝送路推定器5413)と、前記推定手段の推定結果に基づき伝送路を評価し、該評価の結果に基づき前記スイッチ手段を制御する評価制御手段(伝送路評価器1800)とを備え、前記評価制御手段は、拡散率(SF)に相当する個数のサブキャリアを1組とし、その1組内の各サブキャリアの受信電力の違いを求め、前記受信電力の違いが所定の閾値以下であるか否かを判断し、前記所定の閾値以下であれば、前記変換手段により変換されたデータ信号を前記第2復調手段に転送させるように前記スイッチ手段を制御し、前記所定の閾値より大きければ、前記変換手段により変換されたデータ信号を前記第1復調手段に転送させるように前記スイッチ手段を制御する。   The receiver according to the present invention includes a separating unit (time demultiplexer 5401) for separating a received signal into a data signal and a pilot signal, and a converting unit (cyclic prefix removal) for converting the data signal into a frequency domain signal. 5402 to Fourier transformer 5404), first demodulating means (equalizer 5405 to multidimensional demodulator 5408) for demodulating the data signal converted by the converting means, and converting by the converting means A second demodulating means (equalizer 1200 to demodulator 1500) for despreading and demodulating the received data signal, connected between the converting means and the first and second demodulating means; Switch means (switch 1100) for selectively transferring the data signal converted by the means to either the first demodulation means or the second demodulation means; An estimation means (cyclic prefix remover 5410 to transmission path estimator 5413) for converting the pilot signal into a frequency domain signal and estimating the transmission path from the signal, and evaluating the transmission path based on the estimation result of the estimation means And an evaluation control means (transmission path evaluator 1800) for controlling the switch means based on the result of the evaluation, wherein the evaluation control means sets the number of subcarriers corresponding to the spreading factor (SF) as one set. The difference in received power of each subcarrier in the set is obtained, and it is determined whether or not the difference in received power is less than or equal to a predetermined threshold value. The switch means is controlled so as to transfer the processed data signal to the second demodulating means, and if it is larger than the predetermined threshold value, the data signal converted by the converting means is The switch means is controlled to be transferred to the first demodulating means.

本発明によれば、マルチキャリア符号分割多重伝送方式において、演算量は少ないが直交性崩れによる特性劣化が発生する逆拡散を、直交性崩れが少ないサブキャリアに限定的に利用することで、特性劣化を抑えながら演算量を削減することが期待できる。更に、無駄な処理が減るために実装時のシステムの低消費電力化、及び処理を終えるまでのクロックサイクル数の削減により処理遅延時間の低減を行うことができる。   According to the present invention, in the multicarrier code division multiplexing transmission system, the despreading, which has a small amount of calculation but causes characteristic deterioration due to orthogonality loss, is limitedly used to subcarriers with little orthogonality loss. It can be expected to reduce the amount of calculation while suppressing deterioration. Furthermore, since wasteful processing is reduced, the processing delay time can be reduced by reducing the power consumption of the system at the time of mounting and reducing the number of clock cycles until the processing is completed.

図1に、本発明の実施形態に係るマルチキャリア符号分割多重伝送方式の通信システムの構成を示す。
同図に示すように、この通信システムは、送信機5100と受信機1000とから構成され、このうち、送信機5100は、前述の図7に示す送信機5100と同一であり、その構成および動作に関する説明は省略する。
FIG. 1 shows a configuration of a communication system of a multicarrier code division multiplex transmission system according to an embodiment of the present invention.
As shown in the figure, this communication system is composed of a transmitter 5100 and a receiver 1000. Among these, the transmitter 5100 is the same as the transmitter 5100 shown in FIG. The description regarding is omitted.

本実施形態に係る受信機1000は、前述の図7に示した受信機5400に比較して、スイッチ1100、等化器1200、逆拡散器1300、パラレル/シリアル変換器1400、復調器1500、マルチプレクサ1600、MMSE等化重み算出器1700、伝送路評価器1800を更に備える。ここで、スイッチ1100は、フーリエ変換器5404と、等化器5405,1200との間に接続され、伝送路評価器1800の制御の下に、フーリエ変換された周波数領域のデータ信号を等化器5405および等化器1200の何れかに選択的に転送するものである。伝送路評価器1800は、伝送路の推定結果に基づき伝送路を評価するためのものであり、この評価結果に基づきスイッチ1100を制御して、データ信号の転送先を切り替える。   The receiver 1000 according to the present embodiment has a switch 1100, an equalizer 1200, a despreader 1300, a parallel / serial converter 1400, a demodulator 1500, and a multiplexer as compared with the receiver 5400 shown in FIG. 1600, an MMSE equalization weight calculator 1700, and a transmission path evaluator 1800. Here, the switch 1100 is connected between the Fourier transformer 5404 and the equalizers 5405 and 1200, and the frequency domain data signal subjected to the Fourier transform is equalizer under the control of the transmission path evaluator 1800. 5405 and the equalizer 1200 are selectively transferred. The transmission path evaluator 1800 is for evaluating the transmission path based on the estimation result of the transmission path, and controls the switch 1100 based on the evaluation result to switch the transfer destination of the data signal.

マルチキャリア符号分割多重伝送における受信機1000の復調処理の流れ(復調方法)は次の通りである。
送信機5100から受信された受信信号は、時間多重分離器5401によりデータ信号とパイロット信号に分離される。このうち、データ信号は、サイクリック・プリフィックス除去器5402、シリアル/パラレル変換器5403、フーリエ変換器5404で処理され、パイロット信号は、サイクリック・プリフィックス除去器5410、シリアル/パラレル変換器5411、フーリエ変換器5412で処理される。その後、伝送路推定器5413は、フーリエ変換されたパイロット信号を用いて伝送路推定値と雑音電力密度推定値を求める。このうち、伝送路推定値は、伝送路評価器1800、等化器5405、及びMMSE等化重み算出器1700へ出力され、雑音出力密度推定値はMMSE等化重み算出器1700へ出力される。
The flow (demodulation method) of demodulation processing of the receiver 1000 in multicarrier code division multiplexing transmission is as follows.
A received signal received from transmitter 5100 is separated into a data signal and a pilot signal by time demultiplexer 5401. Among them, the data signal is processed by a cyclic prefix remover 5402, a serial / parallel converter 5403, and a Fourier transformer 5404, and the pilot signal is processed by a cyclic prefix remover 5410, a serial / parallel converter 5411, and a Fourier. Processed by the converter 5412. Thereafter, the transmission path estimator 5413 obtains a transmission path estimation value and a noise power density estimation value using the Fourier-transformed pilot signal. Among these, the channel estimation value is output to the channel evaluation unit 1800, the equalizer 5405, and the MMSE equalization weight calculator 1700, and the noise output density estimation value is output to the MMSE equalization weight calculator 1700.

伝送路評価器1800は、SF(拡散率)個のサブキャリアを一つの組として、各サブキャリアの組を逆拡散しても直交性崩れによる特性劣化が発生しないかどうかを判断する。直交性崩れによる特性劣化がないと判断されれば、スイッチ110を制御し、このスイッチ1100を介してそのサブキャリアを等化器1200へ転送させ、そうでなければ等化器5405へ転送させる。等化器5405へ転送されたデータは、前述の図6と同じ手順で、パラレル/シリアル変換器5406および最尤推定用シンボル生成器5407の各処理を経た後、多次元復調器5408により多次元復調され、その結果として得られる通信路値がマルチプレクサ1600へ入力される。   Transmission path evaluator 1800 determines whether or not characteristic degradation due to orthogonality loss will occur even if despreading each subcarrier set with SF (spreading factor) subcarriers as one set. If it is determined that there is no characteristic deterioration due to the loss of orthogonality, the switch 110 is controlled, and the subcarrier is transferred to the equalizer 1200 via the switch 1100, and is transferred to the equalizer 5405 otherwise. The data transferred to the equalizer 5405 is processed by the parallel / serial converter 5406 and the maximum likelihood estimation symbol generator 5407 in the same procedure as in FIG. Demodulated and the resulting channel value is input to multiplexer 1600.

これに対し、等化器1200へ送られたデータは、MMSE等化重み算出器1700の出力により等化された後、逆拡散器1300による逆拡散処理、パラレル/シリアル変換器1400によるパラレル/シリアル変換処理を経て、復調器1500により通信路値が求められ、この通信路値がマルチプレクサ1600へ入力される。マルチプレクサ1600は、この逆拡散により得られた通信路値と、前述の多次元復調により得られた通信路値を、伝送路評価器1800の評価情報に基づいて混ぜ合わせ、そのデータを復号器5409へ入力し、これにより元の情報ビットが復号される。   On the other hand, the data sent to the equalizer 1200 is equalized by the output of the MMSE equalization weight calculator 1700, then despreading by the despreader 1300, and parallel / serial by the parallel / serial converter 1400. After the conversion process, the channel value is obtained by the demodulator 1500, and this channel value is input to the multiplexer 1600. The multiplexer 1600 mixes the channel value obtained by the despreading and the channel value obtained by the multidimensional demodulation described above based on the evaluation information of the transmission channel evaluator 1800, and the data is decoded by the decoder 5409. To decode the original information bits.

次に、図2を参照して、上述の伝送路評価器1800の動作について詳述する。
図2は、サブキャリアの周波数と電力との関係を示す。伝送路評価器1800は、SF個のサブキャリアを一つの組とし、各組が逆拡散しても直交性崩れによる特性劣化が発生しないかどうかを、サブキャリアの受信電力の違いに基づいて判断する。このサブキャリアの受信電力の「違い」なる用語は、サブキャリアの受信電力の「差」および「比」を含む広い概念であり、各サブキャリアの受信電力の違いを数学的に表現し得る全ての概念を包含するが、本実施形態では、「差」を例として説明する。
Next, the operation of the transmission path evaluator 1800 will be described in detail with reference to FIG.
FIG. 2 shows the relationship between subcarrier frequency and power. The transmission path evaluator 1800 makes SF subcarriers as one set, and determines whether characteristic deterioration due to orthogonality loss will not occur even if each set is despread based on the difference in received power of the subcarriers. To do. The term “difference” in received power of subcarriers is a broad concept that includes “difference” and “ratio” in received power of subcarriers, and can express mathematically the difference in received power of each subcarrier. In this embodiment, “difference” will be described as an example.

上述の直交性崩れによる特性劣化が発生しないかどうかの判断基準としては、以下のものがある。
第1に、各サブキャリア間の受信電力の「差」に着目した判断基準がある。即ち、図2に示すようにサブキャリアの一つの組の中で、受信信号の電力の差が所定の閾値aよりも小さければ直交性崩れはなく、閾値aよりも大きければ直交性崩れは発生する。そこで、第1の判断基準としては、サブキャリアの一つの組の中で、受信信号の電力の差が所定の閾値aよりも小さいかどうかが挙げられる。
The criteria for determining whether or not characteristic deterioration due to the above-described orthogonality breakdown will occur are as follows.
First, there is a determination criterion that focuses on the “difference” in received power between subcarriers. That is, as shown in FIG. 2, in one set of subcarriers, there is no disruption of orthogonality if the difference in received signal power is smaller than a predetermined threshold value a, and orthogonality disruption occurs if it is greater than the threshold value a. To do. Therefore, the first criterion is whether or not the difference in received signal power is smaller than a predetermined threshold a in one set of subcarriers.

第2に、各サブキャリアの受信電力の値(振幅)そのものに着目した判断基準がある。SF個のサブキャリアを1組とし、そのサブキャリアに該当する部分のSF箇所の受信信号の電力のうち1箇所でも受信電力の値そのものが所定の閾値bを下回るものが含まれている組については逆拡散により通信路値を求めても多次元復調により通信路値を求めても、直交性崩れは発生する。そこで、第2の判断基準としては、SF個のサブキャリアを1組とし、そのサブキャリアに該当する部分のSF箇所の受信信号の電力のうち1箇所でも所定の閾値bを下回るものが含まれている組があるかどうかが挙げられる。   Second, there is a determination criterion that focuses on the value (amplitude) of the received power of each subcarrier. A set that includes SF subcarriers as one set, and the received signal power of the SF portion of the portion corresponding to the subcarrier includes a value whose received power value itself is lower than the predetermined threshold value b. If the channel value is obtained by despreading or the channel value is obtained by multidimensional demodulation, the orthogonality collapse occurs. Therefore, the second determination criterion includes a set of SF subcarriers, and one portion of the received signal power at the SF locations corresponding to the subcarriers is less than the predetermined threshold value b. Whether there is a pair.

伝送路評価器1800は、上述の第1及び第2の判断基準(条件)のいずれか又は両方を用いて、直交性崩れによる特性劣化が発生するかどうかを判断する。
上述の各閾値は、サブキャリアあたりの雑音電力との差または比に基づき適切に設定される。即ち、必要とされる通信品質に応じて適切に設定される。特に図示しないが、本受信機1000は、上記雑音電力を測定するための測定手段を備えている。
The transmission path evaluator 1800 determines whether or not characteristic degradation due to the orthogonality breakdown occurs using either or both of the first and second determination criteria (conditions) described above.
Each of the above threshold values is appropriately set based on the difference or ratio with the noise power per subcarrier. That is, it is set appropriately according to the required communication quality. Although not particularly illustrated, the receiver 1000 includes measurement means for measuring the noise power.

次に、次の測定条件下での本実施形態による効果の一例を示す。
<測定条件>
拡散率;2
変調方式;QPSK
伝送路モデル;16パス準静的マルチパスレイリーモデル
測定条件;閾値a=0.1, 0.5, 1 (閾値bは無視)
Next, an example of the effect by this embodiment on the following measurement conditions is shown.
<Measurement conditions>
Diffusion rate: 2
Modulation method: QPSK
Transmission path model; 16-path quasi-static multipath Rayleigh model measurement conditions; threshold a = 0.1, 0.5, 1 (threshold b ignored)

図3に、上記測定条件と“多次元復調”、“逆拡散”の特性を示す。同図において、横軸は信号対雑音比(Es/No)であり、縦軸はパケットエラーレート(PER)である。また、図4に、上記測定条件において、全サブキャリアのうちどのくらいの割合のサブキャリアが逆拡散により復調されているかを示す。同図において、横軸は信号対雑音比(Es/No)であり、縦軸は全サブキャリアのうち逆拡散されたサブキャリアの割合である。更に、図5に、上記測定条件と“多次元復調”、“逆拡散”の浮動小数点演算回数を示す。同図において、横軸は、信号対雑音比(Es/No)であり、縦軸は、浮動小数点演算回数である。   FIG. 3 shows the measurement conditions and the characteristics of “multidimensional demodulation” and “despread”. In the figure, the horizontal axis represents the signal-to-noise ratio (Es / No), and the vertical axis represents the packet error rate (PER). FIG. 4 shows how much of the subcarriers are demodulated by despreading under the above measurement conditions. In the figure, the horizontal axis represents the signal-to-noise ratio (Es / No), and the vertical axis represents the ratio of the despread subcarriers among all the subcarriers. Further, FIG. 5 shows the measurement conditions and the number of floating-point operations for “multidimensional demodulation” and “despread”. In the figure, the horizontal axis represents the signal-to-noise ratio (Es / No), and the vertical axis represents the number of floating point operations.

図5より、測定条件を閾値a=0.5とした場合には、およそ50%のサブキャリアが逆拡散により復調されていることがわかる。また、図6より、“逆拡散”を基準とした演算量の増加量は、“多次元復調”に比べて半分に減少していることがわかる。さらに、図4より、特性劣化は、“多次元復調”を基準として約0.05dBに抑えられているのがわかる。
従って、本実施形態によれば、多次元復調の良好な特性を保ったまま、演算量を有効に削減できる。
FIG. 5 shows that when the measurement condition is the threshold value a = 0.5, approximately 50% of the subcarriers are demodulated by despreading. Further, it can be seen from FIG. 6 that the amount of increase in the amount of calculation based on “despreading” is reduced by half compared to “multi-dimensional demodulation”. Furthermore, it can be seen from FIG. 4 that the characteristic deterioration is suppressed to about 0.05 dB on the basis of “multidimensional demodulation”.
Therefore, according to the present embodiment, it is possible to effectively reduce the amount of calculation while maintaining good characteristics of multidimensional demodulation.

なお、本発明において適用可能な誤り訂正符号は、特に限定されるものではない。
但し、繰り返し復号が可能な誤り訂正符号の適用の場合には、本発明により、演算量削減の効果が一層高まる。繰り返し復号が可能な誤り訂正符号としては、例えば、ターボ符号、低密度パリティ検査符号(Low-Density Parity-Check Codes;LDPC符号)などが挙げられる。また、ターボ符号の復号器として、ツインターボ復号器を用いる場合には、ターボ符号の復号特性の向上とともに演算量削減の効果が得られる。ツインターボ復号器に関しては、例えば文献「T. Suzuki, N. Miyazaki, Y. Hatakawa, “A Proposal of Twin Turbo Detector and Its Evaluation for M-QAM OFDM”, 信学通ソ, B-5-6, Sep. 2005」において提案されている。
Note that error correction codes applicable in the present invention are not particularly limited.
However, in the case of applying an error correction code capable of iterative decoding, the present invention further increases the effect of reducing the amount of calculation. Examples of error correction codes that can be iteratively decoded include turbo codes and low-density parity-check codes (LDPC codes). In addition, when a twin turbo decoder is used as a turbo code decoder, the turbo code decoding characteristics can be improved and the amount of calculation can be reduced. Regarding the twin-turbo decoder, for example, “T. Suzuki, N. Miyazaki, Y. Hatakawa,“ A Proposal of Twin Turbo Detector and Its Evaluation for M-QAM OFDM ”, Shingakutsuso, B-5-6, Sep. 2005 ".

本発明の実施形態に係るMC-CDM通信システムのブロック図である。1 is a block diagram of an MC-CDM communication system according to an embodiment of the present invention. 本発明の実施形態に係る直交性崩れが起きる場合と起きない場合の受信電力−周波数特性を示す特性図である。It is a characteristic view which shows the reception power-frequency characteristic when the orthogonality collapse according to the embodiment of the present invention occurs and when it does not occur. 本発明の実施形態による演算量削減によるパケットエラーレートの変化を示す特性図である。It is a characteristic view which shows the change of the packet error rate by the calculation amount reduction by embodiment of this invention. 本発明の実施形態に係る各測定条件において全サブキャリアのうち逆拡散されたサブキャリアの割合を示す図である。It is a figure which shows the ratio of the subcarrier despread among all the subcarriers in each measurement condition which concerns on embodiment of this invention. 本発明の実施形態に係る各測定条件における演算量の違いを示す特性図である。It is a characteristic view which shows the difference in the amount of calculations in each measurement condition which concerns on embodiment of this invention. 多次元復調を用いた従来のMC−CDM通信システムのブロック図である。It is a block diagram of the conventional MC-CDM communication system using multidimensional demodulation. 拡散率が2の場合の最尤推定用シンボル生成処理の原理図である。FIG. 5 is a principle diagram of maximum likelihood estimation symbol generation processing when the spreading factor is 2.

符号の説明Explanation of symbols

1000 受信機
1100 スイッチ
1200 等化器
1300 逆拡散器
1400 パラレル/シリアル変換器
1500 復調器
1600 マルチプレクサ
1700 MMSE等化重み算出器
1800 伝送路評価器
5100 送信機
5200 周波数選択性伝送路
5300 加法性白色ガウス雑音伝送路
5401 時間多重分離器
5402,5409 サイクリック・プリフィックス除去器
5403,5410 シリアル/パラレル変換器
5404,5411 フーリエ変換器
5405 等化器
5406 パラレル/シリアル変換器
5407 最尤推定用シンボル生成器
5408 多次元復調器
5409 復号器
5412伝送路推定器

1000 receiver 1100 switch 1200 equalizer 1300 despreader 1400 parallel / serial converter 1500 demodulator 1600 multiplexer 1700 MMSE equalization weight calculator 1800 transmission line evaluator 5100 transmitter 5200 frequency selective transmission line 5300 additive white Gauss Noise transmission path 5401 Time demultiplexer 5402, 5409 Cyclic prefix remover 5403, 5410 Serial / parallel converter 5404, 5411 Fourier transformer 5405 Equalizer 5406 Parallel / serial converter 5407 Maximum likelihood estimation symbol generator 5408 Multidimensional demodulator 5409 Decoder 5412 Transmission path estimator

Claims (3)

マルチキャリア符号分割多重伝送における復調方法であって、
SF個のサブキャリアを1組とし、そのサブキャリアの受信電力の違いを求め、前記受信電力の違いが所定の閾値以下であるか否かを判断し、前記所定の閾値以下であれば逆拡散により通信路値を求め、前記所定の閾値より大きければ多次元復調により通信路値を求めることを特徴とする復調方法。
A demodulation method in multicarrier code division multiplexing transmission,
A set of SF subcarriers is set, a difference in received power of the subcarriers is obtained, and it is determined whether the difference in received power is equal to or less than a predetermined threshold. And a channel value is obtained by multi-dimensional demodulation if the channel value is greater than the predetermined threshold value.
マルチキャリア符号分割多重伝送における復調方法であって、SF個のサブキャリアを1組とし、そのサブキャリアに該当するSF箇所の受信電力のうち1箇所でも所定の閾値を下回るものが含まれている組については逆拡散により通信路値を求め、それ以外の組については多次元復調して通信路値を求めることを特徴とする復調方法。   A demodulation method in multicarrier code division multiplexing transmission, in which SF subcarriers are set as one set, and one of the received powers of SF locations corresponding to the subcarriers is less than a predetermined threshold. A demodulation method characterized in that a channel value is obtained by despreading for a set, and a channel value is obtained by multidimensional demodulation for the other sets. 受信信号をデータ信号とパイロット信号とに分離する分離手段と、
前記データ信号を周波数領域のデータ信号に変換する変換手段と、
前記変換手段によって変換されたデータ信号を多次元復調するための第1復調手段と、
前記変換手段によって変換されたデータ信号を逆拡散して復調するための第2復調手段と、
前記変換手段と前記第1及び第2復調手段との間に接続され、前記変換手段により変換されたデータ信号を前記第1復調手段および前記第2復調手段の何れかに選択的に転送するスイッチ手段と、
前記パイロット信号を周波数領域の信号に変換し、該信号から伝送路を推定する推定手段と、
前記推定手段の推定結果に基づき伝送路を評価し、該評価の結果に基づき前記スイッチ手段を制御する評価制御手段とを備え、
前記評価制御手段は、拡散率(SF)に相当する個数のサブキャリアを1組とし、その1組内の各サブキャリアの受信電力の違いを求め、前記受信電力の違いが所定の閾値以下であるか否かを判断し、前記所定の閾値以下であれば、前記変換手段により変換されたデータ信号を前記第2復調手段に転送させるように前記スイッチ手段を制御し、前記所定の閾値より大きければ、前記変換手段により変換されたデータ信号を前記第1復調手段に転送させるように前記スイッチ手段を制御する受信機。
Separating means for separating the received signal into a data signal and a pilot signal;
Conversion means for converting the data signal into a frequency domain data signal;
First demodulation means for multidimensionally demodulating the data signal converted by the conversion means;
Second demodulation means for despreading and demodulating the data signal converted by the conversion means;
A switch connected between the converting means and the first and second demodulating means for selectively transferring a data signal converted by the converting means to either the first demodulating means or the second demodulating means. Means,
An estimation means for converting the pilot signal into a frequency domain signal and estimating a transmission path from the signal;
An evaluation control means for evaluating a transmission path based on the estimation result of the estimation means, and controlling the switch means based on the evaluation result;
The evaluation control means sets a number of subcarriers corresponding to the spreading factor (SF) as one set, obtains a difference in received power of each subcarrier in the set, and the difference in received power is less than a predetermined threshold value. If it is less than or equal to the predetermined threshold value, the switch means is controlled to transfer the data signal converted by the converting means to the second demodulating means, and is greater than the predetermined threshold value. For example, a receiver that controls the switch means so that the data signal converted by the conversion means is transferred to the first demodulation means.
JP2005308397A 2005-10-24 2005-10-24 Demodulation method in multi-carrier code division multiplex transmission and receiver using the demodulation method Expired - Fee Related JP4606993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005308397A JP4606993B2 (en) 2005-10-24 2005-10-24 Demodulation method in multi-carrier code division multiplex transmission and receiver using the demodulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005308397A JP4606993B2 (en) 2005-10-24 2005-10-24 Demodulation method in multi-carrier code division multiplex transmission and receiver using the demodulation method

Publications (2)

Publication Number Publication Date
JP2007116596A JP2007116596A (en) 2007-05-10
JP4606993B2 true JP4606993B2 (en) 2011-01-05

Family

ID=38098352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005308397A Expired - Fee Related JP4606993B2 (en) 2005-10-24 2005-10-24 Demodulation method in multi-carrier code division multiplex transmission and receiver using the demodulation method

Country Status (1)

Country Link
JP (1) JP4606993B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176510A (en) * 2010-02-23 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> Radio ack transmission/reception system, destination station device, source station device, and radio ack transceiver method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086093A (en) * 1999-09-17 2001-03-30 Matsushita Electric Ind Co Ltd Ofdm-cdma system receiving device
JP2003348044A (en) * 2002-05-23 2003-12-05 Fujitsu Ltd Receiver in orthogonal frequency division multiplexing- code division multiple access transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086093A (en) * 1999-09-17 2001-03-30 Matsushita Electric Ind Co Ltd Ofdm-cdma system receiving device
JP2003348044A (en) * 2002-05-23 2003-12-05 Fujitsu Ltd Receiver in orthogonal frequency division multiplexing- code division multiple access transmission system

Also Published As

Publication number Publication date
JP2007116596A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4319665B2 (en) Method and apparatus for multiplexing data and control information in a radio communication system based on frequency division multiple access
US9473332B2 (en) Methods and devices for communications systems using multiplied rate transmission
KR100755937B1 (en) Apparatus and method for improved performance in MC-CDMA radio telecommunication systems that use pulse-shaping filters
JP4960438B2 (en) OFDMA tone interference cancellation method
KR100712606B1 (en) Method of determining a variable quantization step size for improving channel decoding, method and apparatus of performing channel decoding operation based on a variable quantization step size
TW201012145A (en) Peak-to-average power ratio (PAPR) reduction scheme for wireless communication
JP2010011264A (en) Wireless communication method and apparatus in single carrier transmission system
KR101260836B1 (en) Pre-coding method for providing diversity gain in an orthogonal frequency division multiplexing system and transmitting apparatus and method using the same
US20070133393A1 (en) Multi-carrier receiving method and multi-carrier receiving apparatus
JP2005519551A (en) Receiving multicarrier spread spectrum signals
KR101043698B1 (en) Apparatus and Method for detecting signal in spatial multiplexing system
KR100816032B1 (en) Method of data transmission with iterative multi-user detection, and aparatus using the same
JPWO2009001853A1 (en) Receiver and receiving method
Kaur et al. Bit error rate evaluation of IEEE 802.16 (WiMAX) in OFDM system
Yahiaoui et al. Simulating the long term evolution (LTE) downlink physical layer
JP4606993B2 (en) Demodulation method in multi-carrier code division multiplex transmission and receiver using the demodulation method
KR20060072096A (en) Apparatus and method for calculation of llr in a orthogonal frequency division multiplexing communication system using linear equalizer
KR102217030B1 (en) Modulation/demodulation apparatus and method for tranceiving signal in a wireless communication system
JP2007074224A (en) Multicarrier transmission system and multicarrier transmission method
JP2010199729A (en) Communication system, communication method, receiver, and receiving method
KR100705444B1 (en) The method and apparatus of ici signals cancellation of hpi systems
JP2004104775A (en) Radio communication device and radio communication method
JP2012070196A (en) Wireless system
JP4649601B2 (en) TRANSMISSION DEVICE, RECEPTION DEVICE, TRANSMISSION METHOD, RECEPTION METHOD, INFORMATION RECORDING MEDIUM, AND PROGRAM
KR101225649B1 (en) Apparatus and method for channel estimation in multiple antenna communication system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071015

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees