JP4606633B2 - Method for producing austenitic stainless steel sheet - Google Patents

Method for producing austenitic stainless steel sheet Download PDF

Info

Publication number
JP4606633B2
JP4606633B2 JP2001095869A JP2001095869A JP4606633B2 JP 4606633 B2 JP4606633 B2 JP 4606633B2 JP 2001095869 A JP2001095869 A JP 2001095869A JP 2001095869 A JP2001095869 A JP 2001095869A JP 4606633 B2 JP4606633 B2 JP 4606633B2
Authority
JP
Japan
Prior art keywords
pickling
annealing
steel sheet
rolling
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001095869A
Other languages
Japanese (ja)
Other versions
JP2002292407A (en
Inventor
孝一 武内
透 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2001095869A priority Critical patent/JP4606633B2/en
Publication of JP2002292407A publication Critical patent/JP2002292407A/en
Application granted granted Critical
Publication of JP4606633B2 publication Critical patent/JP4606633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、オーステナイト系ステンレス鋼板の製造方法に関する。
【0002】
【従来の技術】
オーステナイト系ステンレス鋼からなる熱延鋼板は、スラブなどの素材を熱間圧延し、その後、1100℃程度で焼鈍した後、硝酸とふっ酸の混合水溶液などによる酸洗により脱スケールして製造される。また、光沢や研磨性が要求される冷延鋼板は、前記の熱延鋼板の表面をコイルグラインダーなどにより研削した後、冷間圧延、焼鈍および酸洗により製造される。
【0003】
上記の冷延鋼板を製造する際に行われるコイルグラインダーによる研削は、焼鈍および酸洗により熱延鋼板の表面に生じた粒界腐食部などを除去するためにおこなわれる。しかし、このような処理は、冷延鋼板の製造工程が長くなるばかりでなく、製造コストが大幅に増加する。
【0004】
そのため、熱延鋼板に施される酸洗の際に酸濃度の高い酸洗液を用いて、熱延鋼板の表面の粒界腐食部を溶解し、前記コイルグラインダーによる研削を省略した冷延鋼板の製造方法が多数提案されている(例えば、特公平3−60920号公報、特開平4−61048号公報、特開平11−131271号公報参照)。
【0005】
しかし、酸洗液は、使用中に劣化して酸濃度が低くなる。特に、酸濃度の高い酸洗液ほど、低下の程度が大きい。一方、鋼板表面の酸による溶解速度は、酸濃度によって大きく変化する。そのため、上記の方法では、使用中に酸濃度が低下することによって、溶解量が少なくなるため、酸洗後の熱延鋼板の表面に粒界腐食部が残るおそれがある。したがって、通常は、酸濃度が低下しても鋼板の表面の所定量が十分に溶解されるような酸洗時間を設定して酸洗がおこなわれる。そのため、酸濃度が高い場合は、鋼板の表面が過剰に溶解されることになり、歩留まりが低下し、酸洗コストが高くなる。。
【0006】
また、熱延鋼板の表面に生じた粒界腐食部を、冷間圧延の条件により改善することも試みられているが、酸洗後の熱延鋼板の表面に残存した粒界腐食部の深さに差があると、均一に改善されず、表面の光沢や表面の研磨性にムラや不良部分が残存することになる。
【0007】
【発明が解決しようとする課題】
この発明の課題は、熱延鋼板を過剰に溶解することなく、表面の光沢や研磨性に優れた冷延鋼板を製造することのできるオーステナイト系ステンレス鋼板の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
この発明の要旨は、次のオーステナイト系ステンレス鋼板の製造方法にある。
【0009】
すなわち、その製造方法は、焼鈍酸洗ラインで中間焼鈍後中間酸洗されたオーステナイト系ステンレス鋼からなる熱延鋼板を、圧延率X(%)で冷間圧延する際に、下記(1)式で規定される圧延率定数RN(%)が前記圧延率X(%)以下となる条件で中間焼鈍、中間酸洗および冷間圧延することを特徴としている。
【0010】
RN=A・(a・exp(−Q/R・T)/V)n+B・(b・S・L/V)m+C ・・・(1)
ここで、A、B、C:定数(%)
n、m:定数
a:次元調整用定数(=1min/m)
b:次元調整用定数(=1min/μm)
Q:鋼中における酸素の拡散の活性化エネルギー(J/mol)
T:中間焼鈍における焼鈍温度(K)
R:気体定数(=8.31mol・K/J)
V:焼鈍酸洗ラインの熱延鋼板の搬送速度(m/min)
S:中間酸洗時の酸による溶解速度(μm/min)
L:酸洗槽の有効総長さ(m)
【0011】
なお、以下の説明では、熱延鋼板に施される焼鈍および酸洗を中間焼鈍および中間酸洗と表し、冷延鋼板に施される焼鈍および酸洗を仕上焼鈍および仕上酸洗と表す。
【0012】
本発明者らは、オーステナイト系ステンレス鋼からなる熱延鋼板の表面に生じる粒界腐食について検討した結果、つぎの▲1▼〜▲3▼の知見を得た。
【0013】
▲1▼熱延鋼板を中間焼鈍する際に、焼鈍雰囲気中の酸素が粒界に侵入して鋼中のCrと反応して、粒界近傍にCr欠乏層が形成される。このCr欠乏層の存在する粒界が、中間酸洗時に選択的に腐食されることにより、粒界腐食が生じるものと推定される。
【0014】
▲2▼Cr欠乏層の深さは、熱延鋼板に施される中間焼鈍の条件、具体的には、焼鈍温度と焼鈍時間に依存する。
【0015】
▲3▼一方、中間酸洗で溶解される熱延鋼板の表面層の厚さは、酸洗時の酸による溶解速度と酸洗時間に依存し、酸による溶解速度は、酸洗液の組成と酸洗温度によりほぼ一義的に決まる。
【0016】
前記(1)式は以上のような知見に基づいて求めた式である。すなわち、(1)式における第1項は、▲2▼の中間焼鈍時に生じるCr欠乏層の深さに関する項であり、第2項は、▲3▼の中間酸洗で溶解される熱延鋼板の表面層の厚さに関する項である。そして、これらの第1項および第2項に、補正値を加味したのが上記の(1)式である。
【0017】
一方、冷間圧延では、圧延率が大きいほど、熱延鋼板の表面に残存する粒界腐食の影響が小さくなることは知られている。したがって、(1)式で求めた圧延率定数RN(%)と、冷間圧延における圧延率X(%)とを適正に設定した条件で中間焼鈍、中間酸洗および冷間圧延すれば、中間酸洗における溶解量を極力抑えて、表面の光沢や研磨性に優れた冷延鋼板を製造することができる。
【0018】
【発明の実施の形態】
まず、この発明のオーステナイト系ステンレス鋼板の製造工程の一例を図1に基づいて説明する。
【0019】
同図に示すように、素材であるオーステナイト系ステンレス鋼からなるスラブは、熱間圧延に適した温度、例えば1100〜1250℃に加熱された後、通常は90%以上の圧延率で熱間圧延により板状に圧延され、その後、中間焼鈍、ショットブラストおよび中間酸洗とにより熱延鋼板とされる。この中間焼鈍、ショットブラストおよび中間酸洗は、つぎに述べるような焼鈍酸洗ラインでおこなわれる。すなわち、この焼鈍酸洗ラインは、連続焼鈍炉に続いてショットブラスト装置および複数の槽を備えた連続酸洗装置が設けられ、連続焼鈍炉から連続酸洗装置までを通過する際の鋼板の速度が同じ速度になるように構成された装置である。
【0020】
この焼鈍酸洗ラインでおこなわれる中間焼鈍は、熱延鋼板に所定の組織と強度とを付与することおよびクロム炭化物の溶解等のために必要な処理で、オーステナイト系ステンレス鋼からなる熱延鋼板の場合は、例えば、950〜1250℃の温度範囲で、保持時間が10秒程度以上となる搬送速度でおこなわれる。
【0021】
また、ショトブラストおよび中間酸洗は、熱間圧延および前記中間焼鈍で生じたスケールを除去するための処理であり、そのうちの中間酸洗は、通常、ふっ酸と硝酸との混合水溶液で行われるが、さらに塩酸を混合した水溶液を用いておこなわれる場合もある。また、この中間酸洗中に、研磨ブラシ等でスケールを除去する場合もある。
【0022】
上記のようにして製造されたオーステナイト系ステンレス鋼からなる熱延鋼板は、40〜80%程度の圧延率による冷間圧延により更に圧延された後、仕上焼鈍、仕上酸洗および調質圧延により製品としての冷延鋼板とされる。この仕上焼鈍と仕上酸洗も、上記の中間焼鈍および中間酸洗と同様に焼鈍酸洗ラインでおこなわれる。
【0023】
仕上焼鈍は、冷延鋼板に所定の組織と強度とを付与するための処理で、オーステナイト系ステンレス鋼からなる冷延鋼板の場合は、例えば、950〜1250℃の温度範囲で、保持時間が数秒以上となる搬送速度でおこなわれる。また、仕上酸洗は、前記中間酸洗と同様に、仕上焼鈍で生じたスケールを除去するための処理で、NaSO等の中性塩水溶液による電解または溶融塩によるスケール改質をおこなった後に、硝酸水溶液に浸漬するか、または硝酸水溶液により電解して酸洗をおこなう方法や、ふっ酸と硝酸のとの混合水溶液に浸漬する方法等によりおこなわれる。
【0024】
また、調質圧延は、仕上焼鈍および仕上酸洗された冷延鋼板に、さらに0.5〜2%程度の圧延率で冷間圧延して、冷延鋼板の表面性状を調整するためのものであり、省略されることもある。
【0025】
上記の工程でオーステナイト系ステンレス鋼からなる冷延鋼板を製造する際に、中間焼鈍の条件、中間酸洗の条件、および冷間圧延の圧延率を、下記の(1)式で規定される圧延率定数RN(%)が、冷間圧延における圧延率X(%)以下となるように設定する。
【0026】
RN=A・(a・exp(−Q/R・T)/V)+B・(b・S・L/V) +C ・・・(1)
ここで、A、B、C:定数(%)
n、m:定数、
a:次元調整用定数(=1min/m)
b:次元調整用定数(=1min/μm)
Q:活性化エネルギー(J/mol)
T:中間焼鈍における焼鈍温度(K)
R:気体定数(=8.31mol・K/J)
V:焼鈍酸洗ラインの熱延鋼板の搬送速度(m/min)
S:中間酸洗時の酸による溶解速度(μm/min)
L:酸洗槽の有効総長さ(m)。
【0027】
上記(1)式は、先に述べた知見▲2▼および▲3▼に基づき、中間焼鈍の焼鈍温度T(K)、中間酸洗時の酸による溶解速度S(μm/min)および焼鈍酸洗ラインの鋼板搬送速度V(m/min)を種々変化させてオーステナイトステンレス鋼からなる熱延鋼板を製造してその表面状況を評価し、この評価した表面状況から冷間圧延における最低圧延率(限界圧延率)を求め、この結果から回帰計算により、各定数A、B、C、n、mを決定して求めた式である。
【0028】
上記(1)式において、活性化エネルギーQは、鋼中を拡散する酸素の活性化エネルギーと等しいと考えられ、その値は鋼種により若干異なり、文献に記載された値も若干異なるが、本発明では73,500(J/mol)とした。気体定数Rは、8.31(mol・K/J)の一定値である。また、中間酸洗時の酸による溶解速度Sは、次のようにして予め求めておく。
【0029】
図2は、酸洗液の組成と酸による溶解速度との関係の一例を示す図であり、酸洗液として硝酸(HNO )とふっ酸(HF)の水溶液を用いて、60℃の温度でSUS304の熱延鋼板を酸洗した場合の、酸濃度と溶解速度との関係を示す。図3は、酸洗温度と酸による溶解速度との関係の一例を示す図であり、酸洗液として5%硝酸(HNO )とふっ酸(HF)の水溶液を用いて、SUS304の熱延鋼板を酸洗した場合の、酸洗温度と溶解速度との関係を示す。
【0030】
図2および図3示すように、溶解速度は、酸濃度によって異なり、また、酸洗温度により異なる。また、図2および図3に示す傾向は、用いる酸洗液の種類により異なる。したがって、中間酸洗をおこなう焼鈍酸洗ラインで用いられる酸洗液の種類に応じて、上記図2および図3に示す関係を予め求めておく。
【0031】
なお、中間酸洗で用いられる酸洗液の組成は、特に、限定しないが、ふっ酸10〜400g/リットルおよび硝酸10〜400g/リットルの水溶液、または塩酸10〜300g/リットル、ふっ酸10〜400g/リットルおよび硝酸20〜500g/リットルの水溶液が好ましい。
【0032】
上記(1)式において、焼鈍酸洗ラインの鋼板搬送速度V(m/min)は、中間焼鈍における焼鈍時間の逆数に比例した値であり、かつ中間酸洗における酸洗時間の逆数に比例した値である。また、酸洗槽長さLは、酸洗焼鈍ラインに設けられた酸洗槽の酸洗に寄与する有効総長さで表す。
【0033】
定数Aは、焼鈍酸洗ラインの連続焼鈍炉の仕様、焼鈍雰囲気およびヒートパターンにより異なるが、その範囲は10〜1000(%)である。例えば、長さが39mの連続焼鈍炉を用い、燃焼雰囲気で通常のヒートパターンで焼鈍する場合は、820(%)である。
【0034】
定数Bは、焼鈍酸洗ラインの酸洗槽の有効長さ、槽の個数、酸組成およびショットブラストや研磨ブラシによるスケールの除去程度により異なるが、その範囲は20〜200(%)である。例えば、有効長さが12mの2槽構造の酸洗槽で、ふっ酸150g/リットルと硝酸50g/リットルの水溶液を用いる場合は、98(%)である。
【0035】
定数Cは、補正値である。この値は冷延鋼板の表面性状や研磨性等の要求される品質により異なるが、その範囲は−200〜0(%)である。例えば、通常の研磨性が要求される用途であれば、−146(%)である。
【0036】
定数nは、常数Aと同様に連続焼鈍炉の仕様、焼鈍雰囲気およびヒートパターンにより異なるが、その範囲は0を超え1以下である。例えば、長さが39mの連続焼鈍炉を用い、燃焼雰囲気で通常のヒートパターンで焼鈍する場合は、0.18である。
【0037】
定数mは、常数Bと同様に焼鈍酸洗ラインの酸洗槽の有効長さ、槽の個数、酸組成およびショットブラストや研磨ブラシによるスケールの除去程度により異なるが、その範囲は−1以上0未満である。例えば、有効長さが12mの2槽構造の酸洗槽で、ふっ酸150g/リットルと硝酸50g/リットルの水溶液を用いる場合は、−0.45である。
【0038】
本発明では、上記の(1)式で規定される圧延率定数RN(%)を、冷間圧延における圧延率X(%)以下とする。圧延率定数RN(%)が圧延率X(%)を超えると、熱延鋼板を中間酸洗した時に生じる粒界腐食部分の影響が残り、表面光沢や研磨性が悪化する。ここで、圧延率X(%)は、圧延前の板の厚みをta、圧延後の板の厚みをtbとしたとき、100・(ta−tb)/ta(%)で表わされる。
【0039】
中間焼鈍、中間酸洗および冷間圧延における圧延率の条件は、例えば、次のようにして設定する。
【0040】
まず中間焼鈍の条件を設定する。中間焼鈍は、前記のようにオーステナイト系ステンレス鋼からなる熱延鋼板に、所定の組織と強度を付与する処理であり、製造する熱延鋼板の鋼種および寸法に基づいて、中間焼鈍における焼鈍温度Tおよび焼鈍酸洗ラインの鋼板搬送速度Vを設定する。
【0041】
一方、中間酸洗で用いられる酸洗液の組成と酸による溶解速度との関係を、酸洗温度毎に例えば図2、図3のように予め求めておく。そして、中間酸洗時における酸洗液の酸濃度と酸洗温度とから酸による溶解速度Sを求める。
【0042】
このようにして、中間焼鈍における焼鈍温度Tおよび焼鈍酸洗ラインの鋼板搬送速度Vを設定し、また酸による溶解速度Sを求めた後、焼鈍炉、酸洗槽の各仕様等により設定された各定数A、B、C、m、nを用い、(1)式により圧延率定数RNを求める。
【0043】
このようにして求めた圧延率定数RNが、冷間圧延で通常採用されている圧延率(例えば40〜80%)の範囲内であれば、冷間圧延の圧延率Xを、前記のようにして求めた圧延率定数RN以上となるように設定する。この場合、設定する冷間圧延における圧延率Xは、前記圧延率定数RN以上で、かつ圧延率定数RN+10(%)以下とするのが好ましい。
【0044】
また、求めた圧延率定数RNが、通常採用されている圧延率の範囲を外れる場合は、鋼板搬送速度Vと酸による溶解速度Sのいずれか一方または両方を再設定する。この再設定では、中間酸洗時の酸洗液の温度を変えて酸による溶解速度Sを再設定する方法が最も簡便である。
【0045】
また、製造条件などにより冷間圧延における圧延率Xが、予め決められている場合は、中間焼鈍における焼鈍温度Tおよび焼鈍酸洗ラインの鋼板搬送速度Vを前記のようにして設定し、これらの設定条件と圧延率Xとから、(1)式で求められる圧延率定数RNが圧延率X以下となるように、中間酸洗における溶解速度Sを設定する。この場合も、圧延率定数RNを圧延率X以下で、かつ圧延率X−10(%)以上とするのが好ましい。
【0046】
そして、設定した溶解速度Sとなるように、酸洗液の酸濃度と温度のいずれか一方または両方の条件を設定する。この場合も、酸洗液の温度を変えるのが簡便である。
【0047】
なお、焼鈍酸洗ラインには、複数の酸洗槽が設けられ、酸洗槽により酸組成や酸濃度が異なる酸洗液を用いる場合がある。このときは、前記(1)式のSとして複数の酸洗液の平均の溶解速度とするか、または前記(1)式の(S・L/V)を各酸洗槽毎に求め、これらの合計としてもよい。各酸洗槽毎に(S・L/V)を求める場合、Sは各酸洗槽内の酸洗液毎の酸による溶解速度を、Lは各酸洗槽の有効長さを用いる。
【0048】
また、冷間圧延が複数回おこなわれる場合には、前記圧延率Xは、複数回の冷間圧延におけるトータルの圧延率をいう。
【0049】
【実施例】
常法により製造したSUS304からなるスラブを1250℃に加熱した後圧延率98%で熱間圧延し、続いて搬送速度を15m/minに設定した焼鈍酸洗ラインにより、1000℃または1050℃の焼鈍温度での中間焼鈍と、酸洗液の組成および酸洗液の温度を変えた中間酸洗とにより、幅1,000mm、厚さ3.5mmの熱延鋼板を製造した。
【0050】
この熱延鋼板を圧延率50%または60%で冷間圧延した後、搬送速度を20m/minに設定した焼鈍酸洗ラインにより、焼鈍温度1000℃で仕上焼鈍し、中性塩による電解と、硝酸15%を含む60℃の水溶液を用いた電解酸洗による仕上酸洗により冷延鋼板を製造した。
【0051】
中間焼鈍における焼鈍温度、中間酸洗における酸洗液の組成、酸洗温度、酸による溶解速度、圧延率定数RNおよび冷間圧延における圧延率Xを表1に示す。なお、上記の製造工程では、(1)式における各定数は、A:820、B:98、C:−146、n:0.18、m:−0.45であり、活性化エネルギーQは、73,500(J/mol)とした。
【0052】
上記のようにして製造した冷延鋼板の表面の光沢および研磨性を評価した。なお、光沢は、冷延鋼板の表面を目視観察して、光沢が極めて良好な場合を5、光沢が著しく不良の場合を1とする5段階の評価をおこない、評価3以上を合格とした。また、研磨性は、冷延鋼板の表面を1パスのバフ研磨後目視観察して、上記光沢と同様な評価を行い、評価3以上を合格とした。結果を表1に併せて示す。
【0053】
【表1】

Figure 0004606633
表1において、No.1およびNo.2は、中間焼鈍の焼鈍温度および中間酸洗における酸組成と酸洗温度を同じ条件とし、冷間圧延の圧延率Xを変えた例である。圧延率定数RNが圧延率X以下のNo.1の本発明例は、光沢および研磨性ともに合格であるが、圧延率定数RNが圧延率Xより大きいNo.2の比較例では、光沢は合格であるが、研磨性が不合格である。
【0054】
No.3の比較例は、中間焼鈍の焼鈍温度、中間酸洗における酸組成および冷間圧延における圧延率Xを上記No.2の比較例と同じ条件とし、酸洗温度を低くした例である。この場合は、酸洗温度を低くしたため圧延率定数RNが圧延率Xを上回り、光沢、研磨性ともに不合格である。
【0055】
No.4〜7の本発明例は、中間焼鈍の焼鈍温度および中間酸洗における酸組成と酸洗温度を変え、圧延率Xを圧延率定数RN以上として圧延した例であり、いずれも、光沢、研磨性ともに合格である。
【0056】
【発明の効果】
この発明のオーステナイト系ステンレス鋼板の製造方法によれば、熱延鋼板を過剰に溶解することなく、表面の光沢や研磨性に優れた冷延鋼板を製造することができる。
【図面の簡単な説明】
【図1】本発明のオーステナイト系ステンレス鋼板の製造工程の一例を示す図である。
【図2】酸洗液の組成と酸による溶解速度との関係の一例を示す図である。
【図3】酸洗温度と酸による溶解速度との関係の一例を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an austenitic stainless steel sheet.
[0002]
[Prior art]
A hot rolled steel sheet made of austenitic stainless steel is manufactured by hot rolling a material such as a slab and then annealing at about 1100 ° C. and then descaling by pickling with a mixed aqueous solution of nitric acid and hydrofluoric acid. . A cold-rolled steel sheet that requires gloss and polishability is manufactured by cold rolling, annealing, and pickling after the surface of the hot-rolled steel sheet is ground by a coil grinder or the like.
[0003]
Grinding by the coil grinder performed when manufacturing the above-mentioned cold-rolled steel sheet is performed to remove intergranular corrosion portions and the like generated on the surface of the hot-rolled steel sheet by annealing and pickling. However, such treatment not only lengthens the manufacturing process of the cold-rolled steel sheet, but also significantly increases the manufacturing cost.
[0004]
Therefore, a cold-rolled steel sheet in which the grain boundary corroded portion of the surface of the hot-rolled steel sheet is dissolved by using a pickling solution having a high acid concentration at the time of pickling applied to the hot-rolled steel sheet, and grinding by the coil grinder is omitted. (See, for example, Japanese Patent Publication No. 3-60920, Japanese Patent Laid-Open No. 4-61048, and Japanese Patent Laid-Open No. 11-131271).
[0005]
However, the pickling solution deteriorates during use and the acid concentration becomes low. In particular, the pickling solution having a higher acid concentration has a greater degree of decrease. On the other hand, the dissolution rate by the acid on the steel sheet surface varies greatly depending on the acid concentration. For this reason, in the above method, the acid concentration decreases during use, so that the amount of dissolution decreases, and there is a possibility that intergranular corrosion portions remain on the surface of the hot-rolled steel sheet after pickling. Therefore, pickling is usually performed by setting a pickling time such that a predetermined amount on the surface of the steel sheet is sufficiently dissolved even if the acid concentration is lowered. Therefore, when the acid concentration is high, the surface of the steel sheet is excessively dissolved, the yield is lowered, and the pickling cost is increased. .
[0006]
In addition, attempts have been made to improve the intergranular corrosion part generated on the surface of the hot-rolled steel sheet by cold rolling conditions, but the depth of the intergranular corrosion part remaining on the surface of the hot-rolled steel sheet after pickling has been attempted. If there is a difference in thickness, it will not be improved uniformly, and unevenness and defective parts will remain in the surface gloss and surface polishability.
[0007]
[Problems to be solved by the invention]
The subject of this invention is providing the manufacturing method of the austenitic stainless steel plate which can manufacture the cold-rolled steel plate excellent in surface glossiness and polishability, without melt | dissolving a hot-rolled steel plate excessively.
[0008]
[Means for Solving the Problems]
The gist of the present invention resides in the following method for producing an austenitic stainless steel sheet.
[0009]
That is, the manufacturing method is the following (1) formula, when cold-rolling the hot-rolled steel plate which consists of an austenitic stainless steel intermediate-washed after an intermediate annealing with an annealing pickling line with the rolling rate X (%). Is characterized in that intermediate annealing, intermediate pickling and cold rolling are performed under the condition that the rolling rate constant RN (%) defined in (1) is not more than the rolling rate X (%).
[0010]
RN = A · (a · exp (−Q / R · T) / V) n + B · (b · S · L / V) m + C (1)
Where A, B, C: constant (%)
n, m: constant
a: Constant for dimension adjustment (= 1 min / m)
b: Constant for dimension adjustment (= 1 min / μm)
Q: Activation energy of oxygen diffusion in steel (J / mol)
T: Annealing temperature in intermediate annealing (K)
R: Gas constant (= 8.31 mol · K / J)
V: Conveying speed (m / min) of hot-rolled steel sheet in annealing pickling line
S: Dissolution rate by acid during intermediate pickling (μm / min)
L: Effective total length of pickling tank (m)
[0011]
In the following description, annealing and pickling performed on a hot-rolled steel sheet are represented as intermediate annealing and intermediate pickling, and annealing and pickling performed on a cold-rolled steel sheet are represented as finish annealing and finish pickling.
[0012]
As a result of studying intergranular corrosion occurring on the surface of a hot-rolled steel sheet made of austenitic stainless steel, the present inventors have obtained the following findings (1) to (3).
[0013]
(1) When the hot-rolled steel sheet is subjected to intermediate annealing, oxygen in the annealing atmosphere enters the grain boundary and reacts with Cr in the steel to form a Cr-deficient layer in the vicinity of the grain boundary. It is presumed that intergranular corrosion occurs when the grain boundary where the Cr-deficient layer exists is selectively corroded during intermediate pickling.
[0014]
(2) The depth of the Cr-deficient layer depends on the conditions of intermediate annealing applied to the hot-rolled steel sheet, specifically, the annealing temperature and the annealing time.
[0015]
(3) On the other hand, the thickness of the surface layer of the hot-rolled steel sheet dissolved by the intermediate pickling depends on the dissolution rate by the acid and the pickling time during the pickling, and the dissolution rate by the acid depends on the composition of the pickling solution. It is almost uniquely determined by the pickling temperature.
[0016]
The expression (1) is an expression obtained based on the above knowledge. That is, the first term in the formula (1) is a term related to the depth of the Cr-deficient layer generated during the intermediate annealing of (2), and the second term is a hot-rolled steel sheet melted by the intermediate pickling of (3). This is a term relating to the thickness of the surface layer. The above equation (1) is obtained by adding a correction value to the first and second terms.
[0017]
On the other hand, in cold rolling, it is known that the effect of intergranular corrosion remaining on the surface of a hot-rolled steel sheet decreases as the rolling rate increases. Therefore, if intermediate rolling, intermediate pickling and cold rolling are performed under the conditions in which the rolling rate constant RN (%) obtained by the equation (1) and the rolling rate X (%) in cold rolling are set appropriately, intermediate It is possible to produce a cold-rolled steel sheet with excellent surface gloss and polishability by suppressing the amount of dissolution in pickling as much as possible.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
First, an example of the manufacturing process of the austenitic stainless steel sheet of this invention is demonstrated based on FIG.
[0019]
As shown in the figure, a slab made of austenitic stainless steel as a raw material is hot rolled at a temperature suitable for hot rolling, for example, 1100 to 1250 ° C., and usually at a rolling rate of 90% or more. Then, it is rolled into a plate shape and then made into a hot-rolled steel sheet by intermediate annealing, shot blasting and intermediate pickling. This intermediate annealing, shot blasting and intermediate pickling are performed in an annealing pickling line as described below. That is, this annealing pickling line is provided with a continuous pickling device and a continuous pickling device having a plurality of tanks following the continuous annealing furnace, and the speed of the steel sheet when passing from the continuous annealing furnace to the continuous pickling device Are configured to have the same speed.
[0020]
The intermediate annealing performed in this annealing pickling line is a treatment necessary for imparting a predetermined structure and strength to the hot-rolled steel sheet and for melting chromium carbide, etc., and for the hot-rolled steel sheet made of austenitic stainless steel. In this case, for example, it is carried out in a temperature range of 950 to 1250 ° C. and at a conveyance speed at which the holding time is about 10 seconds or more.
[0021]
Shot blasting and intermediate pickling are treatments for removing scales produced by hot rolling and intermediate annealing, and the intermediate pickling is usually performed with a mixed aqueous solution of hydrofluoric acid and nitric acid. However, it may be performed using an aqueous solution in which hydrochloric acid is further mixed. Further, the scale may be removed with a polishing brush or the like during the intermediate pickling.
[0022]
The hot rolled steel sheet made of austenitic stainless steel manufactured as described above is further rolled by cold rolling at a rolling rate of about 40 to 80%, and then finished by finishing annealing, finishing pickling and temper rolling. As a cold-rolled steel sheet. This finishing annealing and finishing pickling are also performed in the annealing pickling line in the same manner as the above-described intermediate annealing and intermediate pickling.
[0023]
Finish annealing is a process for imparting a predetermined structure and strength to a cold-rolled steel sheet. In the case of a cold-rolled steel sheet made of austenitic stainless steel, for example, a temperature range of 950 to 1250 ° C. and a holding time of several seconds. It is carried out at the above conveying speed. The finish pickling is a treatment for removing the scale generated by the finish annealing similarly to the intermediate pickling. The finish pickling is performed by electrolysis with a neutral salt aqueous solution such as Na 2 SO 4 or scale modification by molten salt. Thereafter, the substrate is immersed in an aqueous nitric acid solution, or electrolyzed with an aqueous nitric acid solution and pickled, or immersed in a mixed aqueous solution of hydrofluoric acid and nitric acid.
[0024]
Further, temper rolling is for adjusting the surface properties of the cold-rolled steel sheet by further cold-rolling the cold-rolled steel sheet, which has been annealed and pickled, at a rolling rate of about 0.5 to 2%. And may be omitted.
[0025]
When manufacturing a cold-rolled steel sheet made of austenitic stainless steel in the above-described process, the conditions for intermediate annealing, intermediate pickling conditions, and the rolling rate of cold rolling are defined by the following formula (1). The rate constant RN (%) is set to be equal to or less than the rolling rate X (%) in cold rolling.
[0026]
RN = A · (a · exp (−Q / R · T) / V) n + B · (b · S · L / V) m + C (1)
Where A, B, C: constant (%)
n, m: constants
a: Constant for dimension adjustment (= 1 min / m)
b: Constant for dimension adjustment (= 1 min / μm)
Q: Activation energy (J / mol)
T: Annealing temperature in intermediate annealing (K)
R: Gas constant (= 8.31 mol · K / J)
V: Conveying speed (m / min) of hot-rolled steel sheet in annealing pickling line
S: Dissolution rate by acid during intermediate pickling (μm / min)
L: Effective total length (m) of the pickling tank.
[0027]
The above formula (1) is based on the findings {circle around (2)} and {circle around (3)} described above, annealing temperature T (K) of intermediate annealing, dissolution rate S (μm / min) due to acid during intermediate pickling, and annealing acid. A hot-rolled steel plate made of austenitic stainless steel was manufactured by changing the steel plate conveying speed V (m / min) of the washing line in various ways, and its surface condition was evaluated. From this evaluated surface condition, the minimum rolling rate in cold rolling ( It is an equation obtained by determining each constant A, B, C, n, m by regression calculation from this result.
[0028]
In the above formula (1), the activation energy Q is considered to be equal to the activation energy of oxygen diffusing in the steel, and its value is slightly different depending on the steel type, and the value described in the literature is also slightly different. Then, it was 73,500 (J / mol). The gas constant R is a constant value of 8.31 (mol · K / J). Further, the dissolution rate S due to the acid during the intermediate pickling is obtained in advance as follows.
[0029]
FIG. 2 is a diagram showing an example of the relationship between the composition of the pickling solution and the dissolution rate by the acid, using an aqueous solution of nitric acid (HNO 3 ) and hydrofluoric acid (HF) as the pickling solution, and a temperature of 60 ° C. Shows the relationship between the acid concentration and the dissolution rate when the SUS304 hot-rolled steel sheet is pickled. FIG. 3 is a diagram showing an example of the relationship between the pickling temperature and the dissolution rate by acid, and using SUS304 hot rolling using an aqueous solution of 5% nitric acid (HNO 3 ) and hydrofluoric acid (HF) as the pickling solution. The relationship between the pickling temperature and the dissolution rate when the steel plate is pickled is shown.
[0030]
As shown in FIGS. 2 and 3, the dissolution rate varies depending on the acid concentration and also varies depending on the pickling temperature. Moreover, the tendency shown in FIG. 2 and FIG. 3 changes with kinds of the pickling liquid to be used. Therefore, the relationship shown in FIG. 2 and FIG. 3 is obtained in advance in accordance with the type of pickling solution used in the annealing pickling line that performs intermediate pickling.
[0031]
The composition of the pickling solution used in the intermediate pickling is not particularly limited, but an aqueous solution of 10 to 400 g / liter of hydrofluoric acid and 10 to 400 g / liter of nitric acid, or 10 to 300 g / liter of hydrochloric acid and 10 to 10 hydrofluoric acid. An aqueous solution of 400 g / liter and nitric acid 20-500 g / liter is preferred.
[0032]
In the above formula (1), the steel plate conveyance speed V (m / min) of the annealing pickling line is a value proportional to the reciprocal of the annealing time in the intermediate annealing and proportional to the reciprocal of the pickling time in the intermediate pickling. Value. Moreover, the pickling tank length L is represented by the effective total length which contributes to the pickling of the pickling tank provided in the pickling annealing line.
[0033]
The constant A varies depending on the specifications of the continuous annealing furnace of the annealing pickling line, the annealing atmosphere, and the heat pattern, but the range is 10 to 1000 (%). For example, when a continuous annealing furnace having a length of 39 m is used and annealing is performed with a normal heat pattern in a combustion atmosphere, it is 820 (%).
[0034]
The constant B varies depending on the effective length of the pickling tank of the annealing pickling line, the number of tanks, the acid composition, and the degree of scale removal by shot blasting or polishing brush, but the range is 20 to 200 (%). For example, it is 98 (%) when an aqueous solution of 150 g / liter hydrofluoric acid and 50 g / liter nitric acid is used in a two-tank pickling tank having an effective length of 12 m.
[0035]
The constant C is a correction value. This value varies depending on the required quality such as surface properties and polishing properties of the cold-rolled steel sheet, but the range is -200 to 0 (%). For example, in an application that requires normal polishing properties, it is −146 (%).
[0036]
The constant n varies depending on the specifications of the continuous annealing furnace, the annealing atmosphere, and the heat pattern as in the case of the constant A, but the range is more than 0 and 1 or less. For example, when using a continuous annealing furnace having a length of 39 m and annealing with a normal heat pattern in a combustion atmosphere, the value is 0.18.
[0037]
The constant m varies depending on the effective length of the pickling tank of the annealing pickling line, the number of tanks, the acid composition, and the degree of scale removal by shot blasting or polishing brush, as in the case of the constant B, but the range is −1 or more and 0. Is less than. For example, in an acid wash tank having a two-tank structure with an effective length of 12 m, an aqueous solution of 150 g / liter hydrofluoric acid and 50 g / liter nitric acid is -0.45.
[0038]
In the present invention, the rolling rate constant RN (%) defined by the above equation (1) is set to a rolling rate X (%) or less in cold rolling. If the rolling rate constant RN (%) exceeds the rolling rate X (%), the influence of the intergranular corrosion portion that occurs when the hot-rolled steel sheet is subjected to intermediate pickling remains, and the surface gloss and polishing properties deteriorate. Here, the rolling rate X (%) is represented by 100 · (ta−tb) / ta (%), where ta is the thickness of the plate before rolling and tb is the thickness of the plate after rolling.
[0039]
The conditions of the rolling rate in intermediate annealing, intermediate pickling, and cold rolling are set as follows, for example.
[0040]
First, conditions for intermediate annealing are set. Intermediate annealing is a treatment for imparting a predetermined structure and strength to a hot-rolled steel sheet made of austenitic stainless steel as described above, and based on the steel type and dimensions of the hot-rolled steel sheet to be manufactured, the annealing temperature T in the intermediate annealing. And the steel plate conveyance speed V of an annealing pickling line is set.
[0041]
On the other hand, the relationship between the composition of the pickling solution used in the intermediate pickling and the dissolution rate by the acid is obtained in advance for each pickling temperature, for example, as shown in FIGS. And the dissolution rate S by an acid is calculated | required from the acid concentration and pickling temperature of the pickling liquid at the time of intermediate pickling.
[0042]
Thus, after setting the annealing temperature T in the intermediate annealing and the steel plate conveyance speed V of the annealing pickling line, and determining the dissolution rate S by acid, it was set according to the specifications of the annealing furnace, pickling tank, etc. Using each of constants A, B, C, m, and n, a rolling rate constant RN is obtained by equation (1).
[0043]
If the rolling rate constant RN thus determined is within the range of the rolling rate normally employed in cold rolling (for example, 40 to 80%), the rolling rate X of cold rolling is set as described above. Is set so as to be equal to or greater than the rolling rate constant RN determined in the above. In this case, the rolling rate X in the cold rolling to be set is preferably not less than the rolling rate constant RN and not more than the rolling rate constant RN + 10 (%).
[0044]
In addition, when the calculated rolling rate constant RN is out of the range of the rolling rate normally employed, either one or both of the steel plate conveyance speed V and the acid dissolution rate S is reset. In this resetting, the simplest method is to change the acid dissolution rate S by changing the temperature of the pickling solution during the intermediate pickling.
[0045]
In addition, when the rolling rate X in the cold rolling is determined in advance depending on the manufacturing conditions, the annealing temperature T in the intermediate annealing and the steel plate conveyance speed V in the annealing pickling line are set as described above, and these From the setting condition and the rolling rate X, the dissolution rate S in the intermediate pickling is set so that the rolling rate constant RN obtained by the equation (1) is not more than the rolling rate X. Also in this case, it is preferable that the rolling rate constant RN is not more than the rolling rate X and not less than the rolling rate X-10 (%).
[0046]
Then, either one or both of the acid concentration and temperature of the pickling solution are set so that the set dissolution rate S is obtained. In this case also, it is easy to change the temperature of the pickling solution.
[0047]
The annealing pickling line is provided with a plurality of pickling tanks, and pickling liquids having different acid compositions and acid concentrations may be used depending on the pickling tank. At this time, it is set as the average dissolution rate of a plurality of pickling liquids as S in the formula (1), or (S · L / V) in the formula (1) is obtained for each pickling tank, It is good also as the sum of. When obtaining (S · L / V) for each pickling tank, S uses the acid dissolution rate for each pickling liquid in each pickling tank, and L uses the effective length of each pickling tank.
[0048]
Moreover, when cold rolling is performed a plurality of times, the rolling rate X refers to the total rolling rate in a plurality of cold rollings.
[0049]
【Example】
A slab made of SUS304 manufactured by a conventional method is heated to 1250 ° C., then hot-rolled at a rolling rate of 98%, and subsequently annealed at 1000 ° C. or 1050 ° C. by an annealing pickling line set at a conveyance speed of 15 m / min. A hot rolled steel sheet having a width of 1,000 mm and a thickness of 3.5 mm was manufactured by intermediate annealing at a temperature and intermediate pickling in which the composition of the pickling solution and the temperature of the pickling solution were changed.
[0050]
After cold rolling this hot-rolled steel sheet at a rolling rate of 50% or 60%, it is subjected to finish annealing at an annealing temperature of 1000 ° C. by an annealing pickling line set at a conveyance speed of 20 m / min, and electrolysis with a neutral salt, A cold-rolled steel sheet was manufactured by finishing pickling by electrolytic pickling using an aqueous solution at 60 ° C. containing 15% nitric acid.
[0051]
Table 1 shows the annealing temperature in the intermediate annealing, the composition of the pickling solution in the intermediate pickling, the pickling temperature, the dissolution rate with the acid, the rolling rate constant RN, and the rolling rate X in the cold rolling. In the above manufacturing process, each constant in the formula (1) is A: 820, B: 98, C: -146, n: 0.18, m: -0.45, and the activation energy Q is 73,500 (J / mol).
[0052]
The surface gloss and grindability of the cold-rolled steel sheets produced as described above were evaluated. The gloss was evaluated by visualizing the surface of the cold-rolled steel sheet and evaluated in 5 steps, with 5 being a very good gloss and 1 being a very poor gloss. In addition, the abrasiveness was evaluated by visually observing the surface of the cold-rolled steel sheet after one pass of buffing, and the same evaluation as the above gloss was made. The results are also shown in Table 1.
[0053]
[Table 1]
Figure 0004606633
In Table 1, no. 1 and no. No. 2 is an example in which the annealing temperature of the intermediate annealing and the acid composition and the pickling temperature in the intermediate pickling are the same, and the rolling ratio X of the cold rolling is changed. A rolling rate constant RN of No. with a rolling rate X or less. In the inventive example of No. 1, both gloss and abrasiveness are acceptable, but the rolling rate constant RN is larger than the rolling rate X. In Comparative Example 2, the gloss is acceptable, but the abrasiveness is unacceptable.
[0054]
No. In Comparative Example 3, the annealing temperature of the intermediate annealing, the acid composition in the intermediate pickling, and the rolling rate X in the cold rolling are the same as those in No. 3 above. This is an example in which the same conditions as in Comparative Example 2 are used and the pickling temperature is lowered. In this case, since the pickling temperature was lowered, the rolling rate constant RN exceeded the rolling rate X, and both gloss and abrasiveness were unacceptable.
[0055]
No. Examples 4 to 7 of the present invention are examples in which the annealing temperature of the intermediate annealing and the acid composition and pickling temperature in the intermediate pickling are changed, and the rolling rate X is rolled to a rolling rate constant RN or more. Both sexes are acceptable.
[0056]
【The invention's effect】
According to the method for producing an austenitic stainless steel sheet of the present invention, a cold-rolled steel sheet having excellent surface gloss and polishability can be produced without excessively dissolving the hot-rolled steel sheet.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a manufacturing process of an austenitic stainless steel sheet according to the present invention.
FIG. 2 is a diagram showing an example of the relationship between the composition of the pickling solution and the dissolution rate by acid.
FIG. 3 is a diagram showing an example of the relationship between pickling temperature and dissolution rate by acid.

Claims (1)

焼鈍酸洗ラインで中間焼鈍後中間酸洗されたオーステナイト系ステンレス鋼からなる熱延鋼板を、圧延率X(%)で冷間圧延する際に、下記(1)式で規定される圧延率定数RN(%)が前記圧延率X(%)以下となる条件で中間焼鈍、中間酸洗および冷間圧延することを特徴とするオーステナイト系ステンレス鋼板の製造方法。
RN=A・(a・exp(−Q/R・T)/V)n+B・(b・S・L/V)m+C ・・・(1)
ここで、A、B、C:定数(%)
n、m:定数
a:次元調整用定数(=1min/m)
b:次元調整用定数(=1min/μm)
Q:鋼中における酸素の拡散の活性化エネルギー(J/mol)
T:中間焼鈍における焼鈍温度(K)
R:気体定数(=8.31mol・K/J)
V:焼鈍酸洗ラインの熱延鋼板の搬送速度(m/min)
S:中間酸洗時の酸による溶解速度(μm/min)
L:酸洗槽の有効総長さ(m)
Rolling rate constant defined by the following formula (1) when cold rolling a hot rolled steel plate made of austenitic stainless steel that has been subjected to intermediate pickling after annealing in an annealing pickling line at a rolling rate of X (%) A method for producing an austenitic stainless steel sheet, characterized in that intermediate annealing, intermediate pickling and cold rolling are performed under a condition that RN (%) is equal to or less than the rolling reduction ratio X (%).
RN = A · (a · exp (−Q / R · T) / V) n + B · (b · S · L / V) m + C (1)
Where A, B, C: constant (%)
n, m: constant
a: Constant for dimension adjustment (= 1 min / m)
b: Constant for dimension adjustment (= 1 min / μm)
Q: Activation energy of oxygen diffusion in steel (J / mol)
T: Annealing temperature in intermediate annealing (K)
R: Gas constant (= 8.31 mol · K / J)
V: Conveying speed (m / min) of hot-rolled steel sheet in annealing pickling line
S: Dissolution rate by acid during intermediate pickling (μm / min)
L: Effective total length of pickling tank (m)
JP2001095869A 2001-03-29 2001-03-29 Method for producing austenitic stainless steel sheet Expired - Lifetime JP4606633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095869A JP4606633B2 (en) 2001-03-29 2001-03-29 Method for producing austenitic stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095869A JP4606633B2 (en) 2001-03-29 2001-03-29 Method for producing austenitic stainless steel sheet

Publications (2)

Publication Number Publication Date
JP2002292407A JP2002292407A (en) 2002-10-08
JP4606633B2 true JP4606633B2 (en) 2011-01-05

Family

ID=18949862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095869A Expired - Lifetime JP4606633B2 (en) 2001-03-29 2001-03-29 Method for producing austenitic stainless steel sheet

Country Status (1)

Country Link
JP (1) JP4606633B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122604A (en) * 1987-11-05 1989-05-15 Kawasaki Steel Corp Manufacture of cold rolled stainless steel strip
JPH0471702A (en) * 1990-07-12 1992-03-06 Sumitomo Metal Ind Ltd Device and method for manufacturing cold rolled strip of stainless steel
JPH04158902A (en) * 1990-10-20 1992-06-02 Nippon Steel Corp Manufacture of austenitic stainless steel sheet excellent in surface quality
JPH1190523A (en) * 1997-09-24 1999-04-06 Kawasaki Steel Corp Manufacture of cold rolled austenitic stainless steel sheet
JP2000117307A (en) * 1998-10-14 2000-04-25 Sumitomo Metal Ind Ltd Production of austenitic stainless steel thin sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122604A (en) * 1987-11-05 1989-05-15 Kawasaki Steel Corp Manufacture of cold rolled stainless steel strip
JPH0471702A (en) * 1990-07-12 1992-03-06 Sumitomo Metal Ind Ltd Device and method for manufacturing cold rolled strip of stainless steel
JPH04158902A (en) * 1990-10-20 1992-06-02 Nippon Steel Corp Manufacture of austenitic stainless steel sheet excellent in surface quality
JPH1190523A (en) * 1997-09-24 1999-04-06 Kawasaki Steel Corp Manufacture of cold rolled austenitic stainless steel sheet
JP2000117307A (en) * 1998-10-14 2000-04-25 Sumitomo Metal Ind Ltd Production of austenitic stainless steel thin sheet

Also Published As

Publication number Publication date
JP2002292407A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
EP3181714B1 (en) Material for cold-rolled stainless steel sheets
JP4606633B2 (en) Method for producing austenitic stainless steel sheet
JP3875818B2 (en) Method for producing high-strength steel sheet with excellent fatigue resistance and chemical conversion treatment
JP3598981B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP3915235B2 (en) Method for producing austenitic stainless steel sheet without surface pattern
JP4316029B2 (en) Stainless steel pickling method and pickling solution
JP3878024B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2008266697A (en) Pickling method and manufacturing method for stainless steel material
JP4008159B2 (en) Manufacturing method of austenitic stainless steel sheet with excellent buffing ability
JP3520840B2 (en) Austenitic stainless steel sheet and manufacturing method
JP7301218B2 (en) austenitic stainless steel
JP4562901B2 (en) Method for producing austenitic stainless steel sheet
JP3491432B2 (en) Manufacturing method of austenitic stainless steel sheet
JP7465955B2 (en) Low Cr ferritic stainless steel sheet with improved pipe expansion workability and its manufacturing method
JP2008106318A (en) Method for pickling stainless steel material and manufacturing method therefor
JPH06136578A (en) Method for descaling high manganese hot rolled steel
JP3457464B2 (en) Method for smooth pickling of hot-rolled austenitic stainless steel strip
JPH0949092A (en) High efficient pickling process of austenitic stainless steel plate
JPH09296257A (en) Austenitic stainless steel excellent in corrosion resistance and glossiness
JP3059376B2 (en) Austenitic stainless steel sheet excellent in gloss and corrosion resistance and method for producing the same
JPH06257000A (en) Production of stainless steel sheet for exterior use, combining glare shielding property with corrosion resistance
JPH07216522A (en) Production of titanium sheet excellent in surface characteristic
JP2001158982A (en) Pickling method for hot rolled and annealed stainless steel sheet
JPH09143553A (en) Improvement of pickling property of high corrosion resistant steel material
KR20220079003A (en) Method for pickling austenitic stainless steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Ref document number: 4606633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term