JP4605899B2 - Circuit board using polyimide photosensitive resin as base film - Google Patents

Circuit board using polyimide photosensitive resin as base film Download PDF

Info

Publication number
JP4605899B2
JP4605899B2 JP2000393503A JP2000393503A JP4605899B2 JP 4605899 B2 JP4605899 B2 JP 4605899B2 JP 2000393503 A JP2000393503 A JP 2000393503A JP 2000393503 A JP2000393503 A JP 2000393503A JP 4605899 B2 JP4605899 B2 JP 4605899B2
Authority
JP
Japan
Prior art keywords
photosensitive
circuit board
film
mass
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000393503A
Other languages
Japanese (ja)
Other versions
JP2002198623A (en
Inventor
重夫 金山
守次 森田
悦夫 大川戸
繁男 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2000393503A priority Critical patent/JP4605899B2/en
Publication of JP2002198623A publication Critical patent/JP2002198623A/en
Application granted granted Critical
Publication of JP4605899B2 publication Critical patent/JP4605899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリアミド酸樹脂を含有してなるアルカリ可溶性の感光性樹脂組成物から得られるポリイミド樹脂をベースフィルムとする回路基板であって、該ポリイミド樹脂の平均厚み19μm以上21μm以下、幅10mmの試験片のJIS C 2151で測定した伸び率が15%以上、ガラス転移温度が300℃以下のポリイミド樹脂である回路基板に関する。
【0002】
【従来の技術】
ポリイミドをベースフィルムとする回路基板は小型化、薄型化を要求される機器の半導体パッケージ、回路基板などとして広く利用されている。こうした回路基板の加工にあたっては、通常、ポリイミド(以下、PIと略する)部分にデバイスホールやビアホールなどの開口を行うが、従来、開口形成は(A)金型打ち抜きによる方法、(B)フォトマスクを形成させた後にPI層をケミカルエッチングする方法、ないしは(C)レーザー照射によりPIを昇華ないし燃焼させる方法により行われてきた。しかしながら、(A)の方法には加工精度や微小な開口の形成の点で、(B)の方法には工程数の増大や薬液の安全性の点で、(C)の方法には設備費、ランニングコストや加工効率の点で各々問題があるのが実状である。
こうした問題点を解決する手段として、感光性をもつPI系樹脂(以下、感光性をもち、加熱によりPI系樹脂ないし樹脂組成物に転化するポリアミド酸系樹脂ないし樹脂組成物を「感光性PI前駆体」、これを加熱して得られるPI系の樹脂ないし樹脂組成物を「感光性PI」と称する)をベースフィルムとして用いる方法が特開昭63−34937号や特開平7−235569号(特許第2900785号)に開示されている。この方法を用いれば、典型的には▲1▼銅箔上に感光性PI前駆体ワニスを塗布(ドライフィルム状に加工した感光性PI前駆体を用いる場合にはラミネート)し、▲2▼これを80℃前後で乾燥し、▲3▼所望のパターンで露光し、▲4▼アルカリ、溶剤、ないしは有機添加剤を添加したアルカリにより未露光部を溶除し、▲5▼熱処理により露光部の感光性PI前駆体をイミド化するとともに残留溶媒・水を蒸発除去して感光性PIからなるベースフィルムを形成した後、▲6▼銅箔面をフォトレジスト法によって回路化する、という工程によって、ベースフィルムに微小な開口を高精度で形成する操作が前述の従来手法と比べて極めて簡単に実施できる。とりわけ、特開平7−235569号のように、感光性PI前駆体として有機添加剤のないアルカリ液による現像が可能なタイプのものを用いると、広範囲で使用されているエッチング用フォトレジストの現像装置と同様の装置で現像ができること、現像液が安価であること、廃液処理が容易であることなどの利点があり好ましい。
しかしながら、従来の一般的な感光性PIをベースフィルムとして用いる場合には2つの大きな問題点がある。その第1は、感光性PI前駆体をイミド化する際の熱処理温度が高いことである。特開昭63−34937号の実施例では、使用した感光性PI前駆体の銘柄等の詳細は記載されていないが、溶剤現像型の感光性PI前駆体を窒素気流中400℃で熱処理している。また、特開平7−235569号の実施例ではアルカリ現像型である日立化成(株)製の感光性PI前駆体「PL−3000」を使用し、100℃、200℃、350℃で各1時間という長時間の熱処理を行っている。
一般にPI前駆体に熱処理を施してPIに転化させる場合の熱処理温度は、相当するPIのガラス転移温度よりも幾分高めとするのが良い。これが困難な場合には次善の策としてガラス転移温度を若干下回る温度で熱処理を行うこともあるが、この場合には長時間の処理が必要である上に溶剤や水が残留し、製品の信頼性に悪影響を及ぼしがちである。従来の一般的な感光性PI前駆体、とりわけアルカリ現像型のものは、その硬化膜のガラス転移温度がいずれも300℃超(通常は350℃以上)であり、このため一般には350℃前後ないしそれ以上の高温での熱処理が行われている。
300℃以上、とりわけ350℃以上の高温での熱処理を空気中で行うこと、特にこれを銅が露出した状態で行うことは、銅(たいていの場合に以後の工程で配線とされる)のベース材からの剥がれなど、製品信頼性の確保の上で深刻な問題を引き起こしがちである。この高温処理による製品信頼性の低下は加熱装置内を十分に窒素雰囲気化すればある程度までは避けることができる。しかしながら、この方法は小スケールの実験的な回路基板製造では比較的容易に実施可能であるものの、工業的スケールでの生産においては窒素雰囲気化に時間がかかる、一般的なトンネル型加熱炉の使用による自動ライン化が困難であるという問題があり、現実的とは言い難い。また、現在の一般的な回路基板製造所においては350℃以上まで昇温できる乾燥装置を所有していることは少なく、高温での熱処理を行うためには、多くの場合、それに見合う装置を新たに購入する必要がある。この点でも、高温での熱処理が必要なことは実用基板の製造上好ましくない。
従来技術の第2の問題点は、感光性PIの可とう性が低いことである。一般に回路基板の工業的製造においては、設備・コスト・廃液処理・安全性などの問題のため現像工程で有機系の溶剤や添加剤を用いることは実質的に困難であり、アルカリ水溶液で現像できる感光性PI前駆体を使用する必要がある。しかるに、従来のアルカリ現像タイプの感光性PI前駆体は硬化膜の伸び率が小さい。たとえば、特開平7−235569号の実施例で使用されている日立化成(株)製「PL−3000」は硬化膜特性が良好なアルカリ現像型の感光性PI前駆体とされるものであるが、このイミド化された20μm厚のフィルムの伸び率は8%であり、汎用的な非感光性PIフィルム、たとえば東レデュポン社製カプトンE(25μm厚)の伸び率50%と比較して脆く弱い。
特開昭63−34937号や特開平7−235569号では、これらの実施例において、感光性PIが連続支持体のないベースフィルムとなっていて、この上に銅配線が形成された回路基板を例示している。しかしながら、上述の伸び率から考えると、実際にこのような方法で得られるテープ状基板は基板の欠け、破れなどに関して実用上十分な信頼性を得ることは難しいと思われる。実際、特許第2900785号においては、その実施例の全てにおいて感光性PIの裏面側(銅回路と反対の側)に銅薄膜層を形成し、これが連続支持体となっている。こうした工法が採用された理由の1つには、従来技術においては、銅箔などの連続支持体層がない感光性PI単独のフィルムでは実用的な機械強度が得られないことがあるものと推察される。
【0003】
【発明が解決しようとする課題】
本発明の目的は、感光性PIをベースとする回路基板に関わる前記の問題点を解決し、感光性PIが他の連続支持体のないベースフィルムでありながら十分な実用強度を持ち、感光性PI前駆体を現像する工程において有機系の溶剤ないし添加剤を用いる必要がなく、かつ、低い加工温度で製造できて銅部分が酸化等のダメージを受けていない回路基板を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは上記の目的を達成するために鋭意検討した結果、本発明を完成させたものである。
すなわち、本発明は、
(1) ポリアミド酸樹脂を含有してなるアルカリ可溶性の感光性樹脂組成物から得られるポリイミド樹脂をベースフィルムとした回路基板であって、該ポリイミド樹脂の平均厚み19μm以上21μm以下、幅10mmの試験片のJIS C 2151で測定した伸び率が15%以上であり、ガラス転移温度が300℃以下のポリイミド樹脂であることを特徴とする回路基板。
(2)感光性樹脂組成物が
(A)一般式(1)
【0005】
【化4】

Figure 0004605899
【0006】
及び/又は一般式(2)
【0007】
【化5】
Figure 0004605899
【0008】
(式(1),(2)中、Rは構造式(3)
【0009】
【化6】
Figure 0004605899
【0010】
からなる群より選ばれる4価の基である。)で表される繰り返し単位を有するポリアミド酸100質量部、
(B)少なくとも1種以上の光重合可能なC−C不飽和2重結合を有する化合物15質量部以上100質量部以下と、
(C)光重合開始剤0.1質量部以上20質量部以下、
を含有してなることを特徴とする(1)に記載の回路基板。
(3) ベースフィルムの90%以上の面積をもつ連続支持体がないことを特徴とする(1)又は(2)に記載の回路基板。
(4) (1)乃至(3)いずれかに記載のテープ状回路基板。
に関する。
【0011】
【発明の実施の形態】
本発明のポリイミド系感光性樹脂ないし樹脂組成物(感光性PI)とは、感光性をもち、熱処理によりPI系の樹脂ないし樹脂組成物に転化するポリアミド酸系樹脂ないし樹脂組成物(感光性PI前駆体)を熱処理してイミド化することにより得られるものである。感光性PI前駆体としては、ポリアミド酸にエステル結合やイオン結合等により感光基を付加したものやポリアミド酸に光架橋性の成分を配合したものなどが考えられるが、(A)一般式(1)及び/又は一般式(2)で表される繰り返し単位を有するポリアミド酸100質量部、
(B)光重合可能なC−C不飽和2重結合を有する化合物15質量部以上100質量部以下と、
(C)光重合開始剤0.1質量部以上20質量部以下、
を含有してなる感光性樹脂組成物は本発明の用途に好適である。
本発明でいう伸び率とは平均厚みが19〜21μm、厚みの最大値と最小値との差が3μm以下、幅が10mmである試験片を用いて、JIS C2151で規定された方法(引張速度は5mm/分とする)により測定されたもののことをいう。本発明の回路基板にベースフィルムとして用いるポリイミド系感光性樹脂ないし樹脂組成物は、これをフィルム化したときの伸び率が15%以上であり、20%以上であることがより好ましい。
また、本発明でいうガラス転移温度はDMA法により測定されるものであり、300℃以下、好ましくは270℃以下である。
【0012】
本発明で用いる感光性PI前駆体の溶媒は、含窒素系有機溶剤である。溶剤の具体例としては、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどが挙げられる。また、溶剤としてグリコールエーテル系有機溶剤を併用すると、感光性PI前駆体現像時のクラックが発生しにくくなり好ましい。感光性PI前駆体ワニスの固形分比率は塗膜形成が行いやすいように調整するが、通常、20〜60質量パーセントとするのがよい。本発明でいう光重合可能なC−C不飽和2重結合を有する化合物(以下、光架橋成分と称する)は、ポリアミド酸との相溶化が可能なものであれば特に種類は問わず、単一組成であっても混合物であってもよい。光架橋成分がポリアミド酸と単純混合で相溶しない場合には、各種の相溶化剤を添加して相溶させてもよい。この場合の相溶化剤は、たとえばモノエタノールアミンなど、光架橋成分とポリアミド酸との両方に親和性をもつ化合物をポリアミド酸100質量部に対して0.1〜10質量部添加すると効果的である。
【0013】
一例を挙げると、全ポリアミド酸を100質量部に対して、アルコール性水酸基を含有し3つ以上のC−C不飽和2重結合を有するアクリレート化合物10〜95質量部と、ポリエチレングリコールジアクリレート化合物5〜90質量部との混合物を光架橋成分として用い、光架橋成分の合計が15〜100質量部となるようにすると、ポリアミド酸との相溶性が良好であり、かつアルカリ水溶液による現像で十分な未露光部溶解性、解像性が得られる。
本発明でいう光重合開始剤は、公知のものを単独で、または2種以上混合して用いる。一例としては、ベンゾフェノン、ミヒラーケトン、ベンゾインおよびベンゾインエーテル類、アセトフェノン置換体、プロピオフェノン置換体、アントラキノン置換体などが挙げられる。また、エタノールアミン類、プロパノールアミン類、4−ジメチルアミノ安息香酸置換体などの光重合開始助剤を1種または2種以上混合して使用しても良い。これら光重合開始剤の添加量は、樹脂固形分総質量に対して0.1〜20質量%が良く、1〜10質量%がより好ましい。本発明の感光性PI前駆体には、誘電率の調整、熱膨張係数の低減、応力緩和性の付与、ないしPIと配線材料との密着性向上などの目的で、フィラーを配合してもよい。この場合のフィラー配合量は、感光性PI前駆体固形分100質量部に対して5〜60質量部が良い。フィラーとしては、通常、シリカなど無機系のものを用いるが、場合によってはゴム系などの有機フィラーを用いることもできる。
また、フィラーには樹脂との密着性を向上するためにシランカップリング剤等による各種の表面処理を施してもよい。
【0014】
本発明において、感光性PI前駆体を原料として用いて回路基板を製造するにあたり、まず、銅箔や銅板などのベース上に感光性PI前駆体層が形成された中間製品を製造する。この際、感光性PI前駆体はワニスの状態でベースに塗布してもよいし、ポリエステルやポリプロピレン等の樹脂に感光性PI前駆体のワニスを塗布してドライフィルムを作製し、これをベースに圧着してもよい。ここで、ワニスの塗布厚みは、乾燥後の感光性PI前駆体層の膜厚が5〜100μm、好ましくは5〜40μmとなるようにする。
ワニスをベースに塗布した後、ないしはドライフィルム作製の段階で、有機溶剤の大部分を揮発させる。この際の乾燥温度は50〜120℃、より好ましくは60〜100℃、乾燥時間は10〜60分間である。ドライフィルム化した場合のベースへの圧着は、平型プレスやロールプレスを用いて、40〜120℃に加熱しながら98〜490kPaの圧力で行う。
つづいて、感光性PI前駆体層(加工後、ベースフィルムとなる)にビアホール等の開口を行うため、露光、現像の操作を行う。露光操作では、紫外線やX線ないしは電子線、好ましくは紫外線を用いて所望のネガ型パターンを形成する。現像は水酸化ナトリウム水溶液や炭酸ナトリウム水溶液等を用いて、スプレー法ないし浸漬法で行う。現像後は希硫酸などの酸性液によるリンスを行うのが望ましい。
【0015】
次に、感光性PI前駆体のアミド酸部分を脱水縮合によりイミド化させること、および感光性PI層に残存する溶媒や前記の脱水縮合により生成する水を揮発させることを目的として熱処理を行う。熱処理温度は感光性PI硬化膜のガラス転移温度よりも0〜50℃高い温度とするのがよい。この熱処理温度は使用する感光性PI前駆体中のポリアミド酸の構造により異なるが、200〜300℃が好ましい。300℃超での熱処理は、前述の如く銅にダメージを与えるので好ましくない。熱処理の際の昇温は連続昇温でもよいが、階段状のパターンで昇温することがより好ましい。なお、所有装置の能力などの問題で前記条件の熱処理が不可能な場合には、硬化膜のガラス転移温度よりも0〜50℃程度低い温度で1時間程度ないしこれ以上の時間熱処理を行う方法もある。ただし、この場合には溶媒や水が硬化膜内に残存しがちとなるので、なるべく避けたほうがよい。
イミド化の後、銅箔面のフォト加工で回路パターンを形成することにより、感光性PIを連続支持体のないベースフィルムとする回路基板の概形が得られる。なお、本発明でいう連続支持体とは、感光性PIフィルムを支持するための支持体で、十分な強度をもつ2次元的に連続な材料が感光性PIと平行な面に形成されたもので、感光性PIフィルムの90%以上の面積をもつもののことをいい、典型的にはベタ形成された銅箔や銅のメッキ層など、あるいはこれに感光性PIフィルム面積の10%未満の開口を形成したものが挙げられる。なお、回路パターン上に形成されるカバー層や多層積層する場合の層間絶縁層は、機械強度確保のために特別な工夫をされたものを除き、その面積が感光性PIフィルム面積の90%以上であっても本発明の連続支持体には該当しない。
回路パターン形成は、感光性PI層形成の際にベースとした銅箔などに行うのが普通であるが、感光性PI層の裏面(感光性PIが露出している側の面)にメッキや蒸着により新たな銅薄膜を形成し、裏面側に形成しても良い。また、表裏両面に回路を形成することもできる。さらに、裏面側にアディティブ法で回路を形成する方法も考えられる。このほか、回路が形成された面に前記と同様の方法で新たな感光性PI層を形成し、ここに前記のプロセスにより必要な開口を設けた後、新たな銅薄膜を形成してパターン加工を施し回路を形成する、という操作を反復することにより、多層板を作製することもできる。この場合の新たな回路の形成はアディティブ法で行ってもよい。この多層化の工法においては、上記の如く本発明の感光性樹脂を層間絶縁材として用いるのが好適であるが、無論、他の感光性樹脂や場合によっては非感光性樹脂を代わりに用いることも可能である。表面に露出した回路パターンで貴金属メッキが施されない部分には、通常、配線等の保護のためカバーコート層を設ける。このカバー層としては、本発明の感光性PIを用いるのが望ましいが、エポキシ系など他のカバー材を用いることもできる。
【0016】
【実施例】
以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
実施例1
[感光性PI前駆体ワニスの製造]
1,3−ビス(3−アミノフェノキシベンゼン)と3,3’−4,4’−ビフェニルテトラカルボン酸二無水物とを原料として、下記式(4)に示す単位構造のポリアミド酸PA−1A(樹脂固形分30重量%、N,N−ジメチルアセトアミド溶媒)を合成した。このポリアミド酸0.5gを100mLのN,Nジメチルアセトアミドに溶解した液について、35℃での対数粘度を測定したところ、対数粘度1.31であった。
PA−1A100質量部にペンタエリスリトールトリアクリレート30質量部、ポリエチレングリコールジアクリレート20質量部、チバガイギー社製IRUGACURE907(以下、IGCと略称する)3質量部、および日本化薬社製カヤキュアーDETX(以下、DETXと略称する)1質量部を混合し相溶させることにより感光性PI前駆体ワニスを得た。
【0017】
【化7】
Figure 0004605899
【0018】
[評価用フィルムの製造・評価]
市販の表面処理をしていない18μm銅箔の片面に塩酸−ギ酸系処理液による表面粗化処理を施し、この処理面上に上記で製造したワニスを、バーコーターを用いて乾燥後膜厚が約20μmとなるように塗工した。これを80℃で30分間乾燥した後、さらに140℃−10分、180℃−10分、230℃−10分の熱処理を施して感光性PI前駆体をイミド化させた。こうして得られた感光性PIと銅箔との積層体を一部切りとり、JIS−C6481の方法でPIフィルムの引き剥がし強さを測定したところ、1.3kN/mであった。
次に、ベースの銅箔を全面エッチング除去し、感光性PIフィルムを得た。こうして得られたフィルムの伸び率をJIS−K7161の方法で測定したところ、25〜29%であった(有効測定数7)。また、熱機械分析法によりこのフィルムのガラス転移温度を測定したところ、200℃であった。
[テスト製品の製造]
市販の35μm銅箔の片面に塩酸−ギ酸系処理液による表面粗化処理を施し、この処理面上に前記の感光性PI前駆体ワニスを、バーコーターを用いて乾燥後膜厚が約12μmとなるように塗工した。これを80℃で30分間乾燥してタック性をなくした後、感光性PI前駆体塗膜側の面に波長365nmのUV光、露光量1500mJ/cm2でビアホール型テストパターンのネガ露光を施した。このテストパターンは、直径0.05mmの円形ビアホールが縦横ともに3mm間隔で並ぶように設計されたものである。その後、スプレー型の現像機を用いて、30℃の0.5%水酸化ナトリウム水溶液により、滞留時間40秒、スプレー圧0.05MPaの条件で現像を行い、未露光部、すなわちビアホール部分を溶除した。さらに、この塗膜付き銅箔を0.5%硫酸に30秒間浸漬し、水洗、水切りを行った後、熱風循環式乾燥機を用いて140℃で10分、180℃で10分、250℃で10分のホールドタイムをもつ階段状の昇温パターンで熱処理を行った。ここで、昇温速度は毎分5℃、最終温度は250℃である。
次に、上記で得られた感光性PI/銅箔積層体の銅箔面側にフォトプロセスによる回路加工を施し、3mmピッチ、線幅0.4mmの碁盤目状の配線パターンを形成した。この際、前述のビアホール部が配線の交点部に重なるようにした。最後に、上記で得られた配線付きフィルムの銅部分に4μmのニッケルメッキおよび1μmの金メッキを施した。
なお、このテスト製品において、銅回路はその面積の総計が感光性PIフィルムの約25%であり、したがって本発明でいう連続支持体は存在しない。
[テスト製品の評価]
上記の方法により50mm×50mmサイズのテスト製品5枚を作成し、−25℃〜125℃、500サイクルの冷熱サイクル試験を行ったところ、銅−感光性PIフィルム間の剥がれは全く発生しなかった。また、加工工程および製品のハンドリングに際して感光性PIフィルムの欠け、破れは全く発生しなかった。
実施例2
1,3−ビス(3−アミノフェノキシベンゼン)の代わりに4,4’−ビス(3−アミノフェノキシ)ビフェニルを用いて合成した下記式(5)に示す単位構造のポリアミド酸PA−1B(樹脂固形分30重量%、N,N−ジメチルアセトアミド溶媒、対数粘度1.42)を用いたほかは実施例1と同様の方法で感光性PI/銅箔積層体および評価用フィルムを製造した。実施例1と同様の評価を行ったところ、上記積層体の引き剥がし強さは1.3kN/m、感光性PIフィルムの伸び率は24〜30%(有効測定数9)、ガラス転移温度は230℃であった。
【0019】
【化8】
Figure 0004605899
【0020】
また、ニッケルメッキ、金メッキを施していないテスト製品の製造を実施例1と同様の工程(配線パターンの形成まで)で行った。この加工に際して、フィルムの欠け、破れは全く発生しなかった。
実施例3
3,3’−4,4’−ビフェニルテトラカルボン酸二無水物の代わりに3,3’−4,4’−ベンゾフェノンテトラカルボン酸二無水物を用いて合成した下記式(6)に示す単位構造のポリアミド酸PA−2A(樹脂固形分30質量%、N,N−ジメチルアセトアミド溶媒、対数粘度1.21)を用いたほかは実施例2と同様の加工および評価を行った。感光性PI/銅箔積層体の引き剥がし強さは1.5kN/m、感光性PIフィルムの伸び率は13〜16%(有効測定数6)、ガラス転移温度は200℃であった。また、配線パターン形成までのテスト製品製造を行った際、フィルムの欠け、破れは全く発生しなかった。
【0021】
【化9】
Figure 0004605899
【0022】
実施例4
1,3−ビス(3−アミノフェノキシベンゼン)の代わりに4,4’−ビス(3−アミノフェノキシ)ビフェニルを用いて合成した下記式(7)に示す単位構造のポリアミド酸PA−2B(樹脂固形分30重量%、N,N−ジメチルアセトアミド溶媒、対数粘度1.48)を用いたほかは実施例3と同様の加工および評価を行った。感光性PI/銅箔積層体の引き剥がし強さは1.5kN/m、感光性PIフィルムの伸び率は12〜16%(有効測定数6)、ガラス転移温度は240℃であった。また、配線パターン形成までのテスト製品製造を行った際、フィルムの欠け、破れは全く発生しなかった。
【0023】
【化10】
Figure 0004605899
【0024】
【発明の効果】
本発明の回路基板は、アルカリ現像型の感光性PIをベースフィルムとするものでありながら、高くとも300℃以下の低い加工温度で製造することができる。このため、感光性PIをベースフィルムとする従来の製品(以下、従来製品という)で問題となりがちであった銅配線部のダメージが実質的になく、高い信頼性を有している。このほか、低温加工が可能であるために加工装置の制約が小さく、多くの場合に現有の設備をそのまま利用して製造することができる。
本発明の回路基板のもう1つの利点は、従来製品と比べてベースフィルムである感光性PI膜の可とう性が大きいことである。このため、銅薄膜などの連続支持体層がなくても、感光性PIフィルム単独で、非感光性のPIフィルムに近い、実用上十分な機械強度を持っている。このような利点を活かして、たとえば、感光性PIをベースフィルムとして基板の両側に回路が形成されたテープ状基板を作製することができるし、また、支持体層がない分、いっそうの薄型化が可能である。
このように、本発明の回路基板は従来製品が持っていた問題点を解決し、感光性PIベースのテープ状回路基板が可能とした基板の薄型化、高精度で微小なビアホール形成、および効率のよい加工をより現実的にするものである。本発明の基板は携帯機器用など小型化を要求される電気製品向けの半導体パッケージ、回路基板として広く利用できると考えられる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a circuit board using a polyimide resin obtained from an alkali-soluble photosensitive resin composition containing a polyamic acid resin as a base film, and the test has an average thickness of 19 μm to 21 μm and a width of 10 mm. The circuit board is a polyimide resin having an elongation measured by JIS C 2151 of 15% or more and a glass transition temperature of 300 ° C. or less.
[0002]
[Prior art]
Circuit boards using polyimide as a base film are widely used as semiconductor packages, circuit boards and the like for devices that are required to be smaller and thinner. In processing such a circuit board, device holes and via holes are usually formed in a polyimide (hereinafter abbreviated as PI) portion. Conventionally, openings are formed by (A) a method of punching a die, and (B) photo. It has been performed by a method of chemically etching the PI layer after forming a mask, or (C) a method of sublimating or burning PI by laser irradiation. However, the method (A) is in terms of processing accuracy and the formation of minute openings, the method (B) is in terms of an increase in the number of steps and the safety of the chemical solution, and the method (C) is a facility cost. Actually, there are problems in terms of running cost and processing efficiency.
As a means for solving these problems, a PI resin having photosensitivity (hereinafter referred to as “photosensitive PI precursor” is referred to as “polysensitive acid precursor or resin composition having photosensitivity and converted to a PI resin or resin composition by heating”). Japanese Patent Application Laid-Open No. 63-34937 and Japanese Patent Application Laid-Open No. 7-235569 (patents) use a “base” and a PI-based resin or resin composition obtained by heating the same as a “photosensitive PI” as a base film. No. 2900785). If this method is used, typically (1) a photosensitive PI precursor varnish is coated on a copper foil (in the case of using a photosensitive PI precursor processed into a dry film, lamination), and (2) this (3) Exposed in a desired pattern, (4) Unexposed area is dissolved by alkali added with alkali, solvent or organic additive, and (5) The exposed area is exposed by heat treatment. After imidizing the photosensitive PI precursor and evaporating and removing the residual solvent / water to form a base film made of photosensitive PI, (6) by forming a circuit on the copper foil surface by the photoresist method, The operation of forming a minute opening in the base film with high accuracy can be carried out very easily as compared with the conventional method described above. In particular, when a photosensitive PI precursor that can be developed with an alkali solution without an organic additive is used, a photoresist developing apparatus for etching that is widely used can be used. It is preferable because it can be developed with the same apparatus as the above, the developer is inexpensive, and the waste liquid treatment is easy.
However, when a conventional general photosensitive PI is used as a base film, there are two major problems. The 1st is that the heat processing temperature at the time of imidizing the photosensitive PI precursor is high. In the examples of JP-A-63-34937, the details of the brand and the like of the photosensitive PI precursor used are not described, but the solvent development type photosensitive PI precursor is heat-treated at 400 ° C. in a nitrogen stream. Yes. In Examples of JP-A-7-23569, a photosensitive PI precursor “PL-3000” manufactured by Hitachi Chemical Co., Ltd., which is an alkali developing type, is used, and each of them is 100 ° C., 200 ° C., 350 ° C. for 1 hour. This is a long-time heat treatment.
In general, the heat treatment temperature in the case where the PI precursor is subjected to heat treatment to be converted to PI is preferably slightly higher than the glass transition temperature of the corresponding PI. If this is difficult, heat treatment may be performed at a temperature slightly below the glass transition temperature as the next best measure. In this case, however, treatment for a long time is required and solvent and water remain, which Tends to adversely affect reliability. Conventional general photosensitive PI precursors, especially those of the alkali development type, all have a glass transition temperature of more than 300 ° C. (usually 350 ° C. or higher). Heat treatment at a higher temperature than that is performed.
Performing heat treatment at a high temperature of 300 ° C. or higher, particularly 350 ° C. or higher, in the air, particularly in a state where the copper is exposed, is based on copper (which is usually used as a wiring in subsequent steps). It tends to cause serious problems in ensuring product reliability, such as peeling from the material. This reduction in product reliability due to the high-temperature treatment can be avoided to some extent if the inside of the heating apparatus is sufficiently nitrogen atmosphere. However, although this method can be implemented relatively easily in small-scale experimental circuit board production, it takes time to create a nitrogen atmosphere in production on an industrial scale. There is a problem that it is difficult to make an automatic line by, and it is difficult to say that it is realistic. In addition, current general circuit board manufacturers rarely have a drying device that can raise the temperature to 350 ° C. or higher, and in order to perform heat treatment at a high temperature, in many cases, a new device suitable for it is newly added. Need to buy. Also in this respect, the necessity of heat treatment at a high temperature is not preferable in the production of a practical substrate.
The second problem of the prior art is that the flexibility of the photosensitive PI is low. In general, in the industrial production of circuit boards, it is practically difficult to use organic solvents and additives in the development process due to problems such as equipment, cost, waste liquid treatment, and safety, and development is possible with an aqueous alkaline solution. It is necessary to use a photosensitive PI precursor. However, the conventional alkali development type photosensitive PI precursor has a small elongation percentage of the cured film. For example, “PL-3000” manufactured by Hitachi Chemical Co., Ltd. used in the examples of JP-A-7-235569 is an alkali development type photosensitive PI precursor having good cured film characteristics. The elongation of the imidized 20 μm-thick film is 8%, which is weaker and weaker than the general-purpose non-photosensitive PI film such as Kapton E (25 μm thick) manufactured by Toray DuPont .
In JP-A-63-34937 and JP-A-7-235469, in these examples, a circuit board in which a photosensitive PI is a base film without a continuous support and a copper wiring is formed thereon is described. Illustrated. However, in view of the above-mentioned elongation rate, it seems difficult for a tape-like substrate actually obtained by such a method to obtain practically sufficient reliability with respect to chipping, tearing, etc. of the substrate. In fact, in Japanese Patent No. 2900785, in all of the examples, a copper thin film layer is formed on the back side of the photosensitive PI (the side opposite to the copper circuit), which is a continuous support. One of the reasons for adopting such a method is that, in the prior art, a practical mechanical strength may not be obtained with a film of a photosensitive PI alone without a continuous support layer such as copper foil. Is done.
[0003]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems associated with circuit boards based on photosensitive PI, and the photosensitive PI has a sufficient practical strength while being a base film having no other continuous support. An object of the present invention is to provide a circuit board which does not require the use of an organic solvent or additive in the process of developing a PI precursor, can be produced at a low processing temperature, and the copper portion is not damaged by oxidation or the like.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have completed the present invention as a result of intensive studies to achieve the above object.
That is, the present invention
(1) A circuit board using a polyimide resin obtained from an alkali-soluble photosensitive resin composition containing a polyamic acid resin as a base film, and having an average thickness of 19 μm to 21 μm and a width of 10 mm A circuit board comprising a piece of polyimide resin having an elongation measured by JIS C 2151 of 15% or more and a glass transition temperature of 300 ° C. or less.
(2) The photosensitive resin composition is (A) General formula (1)
[0005]
[Formula 4]
Figure 0004605899
[0006]
And / or general formula (2)
[0007]
[Chemical formula 5]
Figure 0004605899
[0008]
(In the formulas (1) and (2), R represents the structural formula (3)
[0009]
[Chemical 6]
Figure 0004605899
[0010]
A tetravalent group selected from the group consisting of 100 parts by mass of a polyamic acid having a repeating unit represented by:
(B) 15 parts by mass or more and 100 parts by mass or less of a compound having at least one photopolymerizable C—C unsaturated double bond;
(C) 0.1 to 20 parts by mass of a photopolymerization initiator,
The circuit board according to (1), comprising:
(3) The circuit board according to (1) or (2), wherein there is no continuous support having an area of 90% or more of the base film.
(4) The tape-shaped circuit board according to any one of (1) to (3).
About.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The polyimide-based photosensitive resin or resin composition (photosensitive PI) of the present invention has photosensitivity and is converted to a PI-based resin or resin composition by heat treatment, and is converted to a polyamic acid-based resin or resin composition (photosensitive PI). The precursor is obtained by heat-treating and imidizing. Examples of the photosensitive PI precursor include those obtained by adding a photosensitive group to a polyamic acid by an ester bond or an ionic bond, and those obtained by blending a polyamic acid with a photocrosslinkable component. ) And / or 100 parts by mass of a polyamic acid having a repeating unit represented by the general formula (2),
(B) 15 parts by mass or more and 100 parts by mass or less of a compound having a photopolymerizable C—C unsaturated double bond;
(C) 0.1 to 20 parts by mass of a photopolymerization initiator,
The photosensitive resin composition containing this is suitable for the use of the present invention.
The elongation referred to in the present invention is a method defined by JIS C2151 (tensile speed) using a test piece having an average thickness of 19 to 21 μm, a difference between a maximum value and a minimum value of 3 μm or less, and a width of 10 mm. Means 5 mm / min). The polyimide-based photosensitive resin or resin composition used as the base film for the circuit board of the present invention has an elongation percentage of 15% or more and more preferably 20% or more when formed into a film.
Moreover, the glass transition temperature as used in the field of this invention is measured by DMA method, and is 300 degrees C or less, Preferably it is 270 degrees C or less.
[0012]
The solvent of the photosensitive PI precursor used in the present invention is a nitrogen-containing organic solvent. Specific examples of the solvent include N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like. Moreover, it is preferable to use a glycol ether organic solvent in combination as the solvent because cracks during development of the photosensitive PI precursor hardly occur. The solid content ratio of the photosensitive PI precursor varnish is adjusted so as to facilitate the formation of a coating film, but is usually preferably 20 to 60 mass percent. The compound having a C—C unsaturated double bond that can be photopolymerized in the present invention (hereinafter referred to as “photocrosslinking component”) is not particularly limited as long as it can be compatibilized with polyamic acid. It may be a single composition or a mixture. When the photocrosslinking component is not compatible with the polyamic acid by simple mixing, various compatibilizers may be added for compatibility. The compatibilizer in this case is effective when 0.1 to 10 parts by mass of a compound having an affinity for both the photocrosslinking component and the polyamic acid, such as monoethanolamine, is added to 100 parts by mass of the polyamic acid. is there.
[0013]
As an example, 10 to 95 parts by mass of an acrylate compound containing three or more C—C unsaturated double bonds and a polyethylene glycol diacrylate compound with respect to 100 parts by mass of all polyamic acids. When a mixture of 5 to 90 parts by mass is used as the photocrosslinking component and the total of the photocrosslinking components is 15 to 100 parts by mass, the compatibility with the polyamic acid is good, and development with an alkaline aqueous solution is sufficient. Unexposed area solubility and resolution can be obtained.
As the photopolymerization initiator in the present invention, known ones are used alone or in combination of two or more. Examples include benzophenone, Michler's ketone, benzoin and benzoin ethers, acetophenone substituted products, propiophenone substituted products, anthraquinone substituted products, and the like. Further, photopolymerization initiation assistants such as ethanolamines, propanolamines, and 4-dimethylaminobenzoic acid-substituted products may be used alone or in combination. The addition amount of these photopolymerization initiators is preferably 0.1 to 20% by mass and more preferably 1 to 10% by mass with respect to the total mass of the resin solid content. The photosensitive PI precursor of the present invention may contain a filler for the purpose of adjusting the dielectric constant, reducing the thermal expansion coefficient, imparting stress relaxation properties, or improving the adhesion between the PI and the wiring material. . In this case, the filler content is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the photosensitive PI precursor solid content. As the filler, an inorganic material such as silica is usually used, but in some cases, an organic filler such as a rubber material can also be used.
The filler may be subjected to various surface treatments with a silane coupling agent or the like in order to improve the adhesion with the resin.
[0014]
In the present invention, in manufacturing a circuit board using a photosensitive PI precursor as a raw material, first, an intermediate product in which a photosensitive PI precursor layer is formed on a base such as a copper foil or a copper plate is manufactured. At this time, the photosensitive PI precursor may be applied to the base in a varnish state, or a dry film is prepared by applying the photosensitive PI precursor varnish to a resin such as polyester or polypropylene. You may crimp. Here, the coating thickness of the varnish is such that the thickness of the photosensitive PI precursor layer after drying is 5 to 100 μm, preferably 5 to 40 μm.
After the varnish is applied to the base, most of the organic solvent is volatilized at the stage of producing the dry film. The drying temperature at this time is 50 to 120 ° C., more preferably 60 to 100 ° C., and the drying time is 10 to 60 minutes. The pressure bonding to the base in the case of forming a dry film is performed at a pressure of 98 to 490 kPa while heating to 40 to 120 ° C. using a flat press or a roll press.
Subsequently, exposure and development operations are performed in order to open a via hole or the like in the photosensitive PI precursor layer (after processing, which becomes a base film). In the exposure operation, a desired negative pattern is formed using ultraviolet rays, X-rays or electron beams, preferably ultraviolet rays. Development is performed by spraying or dipping using a sodium hydroxide aqueous solution or a sodium carbonate aqueous solution. After development, it is desirable to perform rinsing with an acidic solution such as dilute sulfuric acid.
[0015]
Next, heat treatment is performed for the purpose of imidizing the amic acid portion of the photosensitive PI precursor by dehydration condensation and volatilizing the solvent remaining in the photosensitive PI layer and the water generated by the dehydration condensation. The heat treatment temperature is preferably 0 to 50 ° C. higher than the glass transition temperature of the photosensitive PI cured film. Although this heat processing temperature changes with structures of the polyamic acid in the photosensitive PI precursor to be used, 200-300 degreeC is preferable. Heat treatment above 300 ° C. is not preferable because it damages copper as described above. The temperature increase during the heat treatment may be a continuous temperature increase, but it is more preferable to increase the temperature in a stepped pattern. When heat treatment under the above conditions is impossible due to problems such as the capability of the owned equipment, a method of performing heat treatment for about 1 hour or more at a temperature lower by about 0 to 50 ° C. than the glass transition temperature of the cured film. There is also. However, in this case, the solvent and water tend to remain in the cured film, and should be avoided as much as possible.
After imidation, a circuit pattern is formed by photo-processing of the copper foil surface, whereby a schematic shape of a circuit board having a photosensitive PI as a base film without a continuous support is obtained. The continuous support referred to in the present invention is a support for supporting a photosensitive PI film, in which a two-dimensional continuous material having sufficient strength is formed on a plane parallel to the photosensitive PI. This refers to those having an area of 90% or more of the photosensitive PI film, typically a solid copper foil or copper plating layer, or an opening of less than 10% of the photosensitive PI film area. Is formed. Note that the cover layer formed on the circuit pattern and the interlayer insulating layer in the case of multi-layer lamination have an area of 90% or more of the photosensitive PI film area except those specially devised for ensuring mechanical strength. However, it does not fall under the continuous support of the present invention.
The circuit pattern is usually formed on a copper foil or the like used as a base when forming the photosensitive PI layer, but the back surface of the photosensitive PI layer (the surface on which the photosensitive PI is exposed) is plated. A new copper thin film may be formed by vapor deposition and formed on the back side. Also, circuits can be formed on both the front and back surfaces. Furthermore, a method of forming a circuit on the back side by an additive method is also conceivable. In addition, a new photosensitive PI layer is formed on the surface on which the circuit is formed by the same method as described above, a necessary opening is formed by the above process, and then a new copper thin film is formed to perform pattern processing. It is also possible to produce a multilayer board by repeating the operation of forming a circuit by applying the above. In this case, a new circuit may be formed by an additive method. In this multi-layer construction method, it is preferable to use the photosensitive resin of the present invention as an interlayer insulating material as described above. Of course, other photosensitive resins and, in some cases, non-photosensitive resins may be used instead. Is also possible. A cover coat layer is usually provided on a portion of the circuit pattern exposed on the surface where no noble metal plating is applied to protect the wiring and the like. As this cover layer, it is desirable to use the photosensitive PI of the present invention, but other cover materials such as an epoxy type can also be used.
[0016]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited only to these.
Example 1
[Production of photosensitive PI precursor varnish]
Polyamic acid PA-1A having a unit structure represented by the following formula (4) using 1,3-bis (3-aminophenoxybenzene) and 3,3′-4,4′-biphenyltetracarboxylic dianhydride as raw materials (Resin solid content 30% by weight, N, N-dimethylacetamide solvent) was synthesized. The logarithmic viscosity at 35 ° C. of a liquid obtained by dissolving 0.5 g of this polyamic acid in 100 mL of N, N dimethylacetamide was 1.31.
PA-1A 100 parts by mass, pentaerythritol triacrylate 30 parts by mass, polyethylene glycol diacrylate 20 parts by mass, Ciba-Geigy IRUGACURE907 (hereinafter abbreviated as IGC) 3 parts by mass, Nippon Kayaku Co., Ltd. Kayacure DETX (hereinafter DETX) The photosensitive PI precursor varnish was obtained by mixing 1 part by mass and dissolving them.
[0017]
[Chemical 7]
Figure 0004605899
[0018]
[Manufacture and evaluation of evaluation film]
The surface of the 18 μm copper foil that has not been surface-treated is subjected to surface roughening treatment with a hydrochloric acid-formic acid-based treatment solution, and the varnish produced above is dried on the treated surface using a bar coater. The coating was performed to have a thickness of about 20 μm. This was dried at 80 ° C. for 30 minutes, and further subjected to heat treatment at 140 ° C. for 10 minutes, 180 ° C. for 10 minutes, and 230 ° C. for 10 minutes to imidize the photosensitive PI precursor. A part of the laminate of the photosensitive PI and the copper foil thus obtained was cut out and the peel strength of the PI film was measured by the method of JIS-C6481, resulting in 1.3 kN / m.
Next, the entire surface of the base copper foil was removed by etching to obtain a photosensitive PI film. When the elongation percentage of the film thus obtained was measured by the method of JIS-K7161, it was 25 to 29% (effective measurement number 7). Moreover, it was 200 degreeC when the glass transition temperature of this film was measured by the thermomechanical analysis method.
[Manufacture of test products]
A surface of a commercially available 35 μm copper foil is subjected to a surface roughening treatment with a hydrochloric acid-formic acid-based treatment solution, and the photosensitive PI precursor varnish is dried on the treated surface using a bar coater to a film thickness of about 12 μm. Coated so that. After this was dried at 80 ° C. for 30 minutes to eliminate tackiness, negative exposure of a via hole type test pattern was performed on the surface of the photosensitive PI precursor coating film side with UV light having a wavelength of 365 nm and an exposure amount of 1500 mJ / cm 2. did. This test pattern is designed so that circular via holes having a diameter of 0.05 mm are arranged at intervals of 3 mm both vertically and horizontally. Then, using a spray type developing machine, development is performed with a 0.5% aqueous sodium hydroxide solution at 30 ° C. under conditions of a residence time of 40 seconds and a spray pressure of 0.05 MPa, so that the unexposed area, that is, the via hole part is dissolved. Divided. Further, the coated copper foil was immersed in 0.5% sulfuric acid for 30 seconds, washed with water and drained, and then heated at 140 ° C. for 10 minutes, 180 ° C. for 10 minutes, 250 ° C. using a hot air circulating dryer. The heat treatment was performed in a stepwise temperature rising pattern having a hold time of 10 minutes. Here, the rate of temperature increase is 5 ° C. per minute, and the final temperature is 250 ° C.
Next, circuit processing by a photo process was performed on the copper foil surface side of the photosensitive PI / copper foil laminate obtained above to form a grid-like wiring pattern with a pitch of 3 mm and a line width of 0.4 mm. At this time, the above-described via hole portion overlaps the intersection portion of the wiring. Finally, 4 μm nickel plating and 1 μm gold plating were applied to the copper part of the film with wiring obtained above.
In this test product, the total area of the copper circuit is about 25% of the photosensitive PI film, and therefore there is no continuous support in the present invention.
[Evaluation of test product]
Five test products having a size of 50 mm × 50 mm were prepared by the above method, and a thermal cycle test of −25 ° C. to 125 ° C. and 500 cycles was performed. As a result, no peeling between the copper and the photosensitive PI film occurred. . Further, no chipping or tearing of the photosensitive PI film occurred during the processing steps and product handling.
Example 2
Polyamic acid PA-1B (resin) having a unit structure represented by the following formula (5) synthesized by using 4,4′-bis (3-aminophenoxy) biphenyl instead of 1,3-bis (3-aminophenoxybenzene) A photosensitive PI / copper foil laminate and an evaluation film were produced in the same manner as in Example 1 except that 30% by weight of solid content, N, N-dimethylacetamide solvent, logarithmic viscosity 1.42) were used. When the same evaluation as in Example 1 was performed, the peel strength of the laminate was 1.3 kN / m, the elongation of the photosensitive PI film was 24 to 30% (effective measurement number 9), and the glass transition temperature was It was 230 ° C.
[0019]
[Chemical 8]
Figure 0004605899
[0020]
Further, the manufacture of test products not subjected to nickel plating or gold plating was performed in the same process as in Example 1 (until the formation of the wiring pattern). During this processing, no chipping or tearing of the film occurred.
Example 3
Units represented by the following formula (6) synthesized by using 3,3′-4,4′-benzophenonetetracarboxylic dianhydride instead of 3,3′-4,4′-biphenyltetracarboxylic dianhydride The same processing and evaluation as in Example 2 were performed except that the polyamic acid PA-2A having a structure (resin solid content: 30% by mass, N, N-dimethylacetamide solvent, logarithmic viscosity: 1.21) was used. The peel strength of the photosensitive PI / copper foil laminate was 1.5 kN / m, the elongation of the photosensitive PI film was 13 to 16% (effective number of measurements 6), and the glass transition temperature was 200 ° C. Further, when the test product was manufactured up to the formation of the wiring pattern, no chipping or tearing of the film occurred.
[0021]
[Chemical 9]
Figure 0004605899
[0022]
Example 4
Polyamic acid PA-2B (resin) having a unit structure represented by the following formula (7) synthesized by using 4,4′-bis (3-aminophenoxy) biphenyl instead of 1,3-bis (3-aminophenoxybenzene) The same processing and evaluation as in Example 3 were carried out except that 30% by weight of solid content, N, N-dimethylacetamide solvent, logarithmic viscosity 1.48) were used. The peel strength of the photosensitive PI / copper foil laminate was 1.5 kN / m, the elongation of the photosensitive PI film was 12 to 16% (effective measurement number 6), and the glass transition temperature was 240 ° C. Further, when the test product was manufactured up to the formation of the wiring pattern, no chipping or tearing of the film occurred.
[0023]
Embedded image
Figure 0004605899
[0024]
【The invention's effect】
The circuit board of the present invention can be produced at a processing temperature as low as 300 ° C. or less at the highest, while using an alkali development type photosensitive PI as a base film. For this reason, there is substantially no damage to the copper wiring portion, which tends to be a problem in conventional products using photosensitive PI as a base film (hereinafter referred to as conventional products), and has high reliability. In addition, since the low-temperature processing is possible, the restrictions on the processing apparatus are small, and in many cases, the existing equipment can be used as it is.
Another advantage of the circuit board of the present invention is that the flexibility of the photosensitive PI film, which is the base film, is greater than that of the conventional product. For this reason, even without a continuous support layer such as a copper thin film, the photosensitive PI film alone has a practically sufficient mechanical strength close to that of the non-photosensitive PI film. Taking advantage of these advantages, for example, it is possible to produce a tape-like substrate having photosensitive PI as a base film and having circuits formed on both sides of the substrate, and further reducing the thickness because there is no support layer. Is possible.
As described above, the circuit board of the present invention solves the problems of the conventional products, and the photosensitive PI-based tape-like circuit board enables thinning of the board, formation of highly accurate and minute via holes, and efficiency. It is what makes good processing more realistic. The substrate of the present invention can be widely used as a semiconductor package and a circuit board for electric products that are required to be miniaturized such as for portable devices.

Claims (3)

ポリアミド酸樹脂を含有してなるアルカリ可溶性の感光性樹脂組成物から得られるポリイミド樹脂をベースフィルムとした回路基板であって、
該ポリイミド樹脂の平均厚みが19μm以上21μm以下、幅10mmの試験片のJIS C 2151で測定した伸び率が15%以上であり、
前記ポリイミド樹脂のガラス転移温度が300℃以下であり、
前記感光性樹脂組成物が、
(A)一般式(1)
Figure 0004605899
及び/又は一般式(2)
Figure 0004605899
(式(1),(2)中、Rは構造式(3)
Figure 0004605899
からなる群より選ばれる4価の基である。)で表される繰り返し単位を有するポリアミド酸100質量部と、
(B)アルコール性水酸基を含有し3つ以上のC−C不飽和2重結合を有するアクリレート化合物、及びポリエチレングリコールジアクリレート化合物15質量部以上100質量部以下と、
(C)光重合開始剤と、
を含有してなることを特徴とする回路基板。
A circuit board based on a polyimide resin obtained from an alkali-soluble photosensitive resin composition containing a polyamic acid resin,
The average thickness of the polyimide resin is 19 μm or more and 21 μm or less, and the elongation measured by JIS C 2151 of a test piece having a width of 10 mm is 15% or more,
The polyimide resin has a glass transition temperature of 300 ° C. or lower,
The photosensitive resin composition is
(A) General formula (1)
Figure 0004605899
And / or general formula (2)
Figure 0004605899
(In the formulas (1) and (2), R represents the structural formula (3)
Figure 0004605899
A tetravalent group selected from the group consisting of 100 parts by mass of a polyamic acid having a repeating unit represented by:
(B) an acrylate compound containing an alcoholic hydroxyl group and having three or more C—C unsaturated double bonds, and 15 to 100 parts by mass of a polyethylene glycol diacrylate compound ;
(C) a photopolymerization initiator;
A circuit board comprising:
ベースフィルムの90%以上の面積をもつ連続支持体がないことを特徴とする請求項1に記載の回路基板。  The circuit board according to claim 1, wherein there is no continuous support having an area of 90% or more of the base film. 請求項1又は2に記載のテープ状回路基板。  The tape-shaped circuit board according to claim 1 or 2.
JP2000393503A 2000-12-25 2000-12-25 Circuit board using polyimide photosensitive resin as base film Expired - Fee Related JP4605899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393503A JP4605899B2 (en) 2000-12-25 2000-12-25 Circuit board using polyimide photosensitive resin as base film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393503A JP4605899B2 (en) 2000-12-25 2000-12-25 Circuit board using polyimide photosensitive resin as base film

Publications (2)

Publication Number Publication Date
JP2002198623A JP2002198623A (en) 2002-07-12
JP4605899B2 true JP4605899B2 (en) 2011-01-05

Family

ID=18859295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393503A Expired - Fee Related JP4605899B2 (en) 2000-12-25 2000-12-25 Circuit board using polyimide photosensitive resin as base film

Country Status (1)

Country Link
JP (1) JP4605899B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781158B2 (en) * 2006-04-25 2011-09-28 三井化学株式会社 Dry film for forming protective film and processed product using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202360A (en) * 1993-12-28 1995-08-04 Nitto Denko Corp Printed circuit board and its manufacture
JPH0836264A (en) * 1995-05-22 1996-02-06 Asahi Chem Ind Co Ltd Composition for i-line exposure
JP2000044800A (en) * 1998-08-03 2000-02-15 Jsr Corp Polyimide composite, varnish, film, metal-clad laminate, and printed wiring board
JP2000131841A (en) * 1998-10-29 2000-05-12 Toray Ind Inc Photosensitive polyimide precursor composition and metal foil-polyimide composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202360A (en) * 1993-12-28 1995-08-04 Nitto Denko Corp Printed circuit board and its manufacture
JPH0836264A (en) * 1995-05-22 1996-02-06 Asahi Chem Ind Co Ltd Composition for i-line exposure
JP2000044800A (en) * 1998-08-03 2000-02-15 Jsr Corp Polyimide composite, varnish, film, metal-clad laminate, and printed wiring board
JP2000131841A (en) * 1998-10-29 2000-05-12 Toray Ind Inc Photosensitive polyimide precursor composition and metal foil-polyimide composite

Also Published As

Publication number Publication date
JP2002198623A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
JP5216179B2 (en) Negative photosensitive polyimide composition and image forming method using the same
WO2018087990A1 (en) Diamine compound, heat-resistant resin using same, and resin composition
JP4893748B2 (en) Photosensitive resin composition, insulating film, protective film and electronic device
JP2010209309A (en) Photosensitive polyimide, photosensitive polyimide ink composition and insulating film
JPWO2008126818A1 (en) Photosensitive resin composition
JPH10265571A (en) Photosensitive polyimidesiloxane, composition and insulating film
WO2018159384A1 (en) Resin composition, resin sheet, curing pattern, and semiconductor electronic component or semiconductor device
JP6961342B2 (en) Polyimide resin and positive photosensitive resin composition
JP5061435B2 (en) Heat-resistant resin precursor composition and semiconductor device using the same
CN114488690A (en) Chemical amplification type negative polyimide photoresist and preparation method and application thereof
JP4639697B2 (en) Imide group-containing diamine, imide group-containing polyimide precursor, positive photosensitive resin composition containing the precursor, method for producing positive pattern, and electronic component
JP2014106326A (en) Photosensitive resin sheet and method for manufacturing hollow structure using the same, and electronic component having hollow structure obtained by the method
TWI714703B (en) Hardened film and its manufacturing method
JP4034403B2 (en) Positive photosensitive polyimide composition and insulating film
TW201940551A (en) Alkali-soluble resin, photosensitive resin composition, photosensitive sheet, cured film, interlayer insulating film or semiconductor protective film, production method for relief pattern of cured film, and electronic component or semiconductor device
JPH0643648A (en) Positive photoresist composition, photosensitive insulating film and pattern forming method
JP4371587B2 (en) Manufacturing method of semiconductor device
JP4770672B2 (en) Method for forming polyimide pattern, article, and suspension for hard disk
JPH01221741A (en) Formation of polyimide pattern layer and rinsing solution used for said formation
JP2000147768A (en) Negative photosensitive polyimide composition and insulating film
JP3078175B2 (en) Photosensitive resin composition
JP2018165798A (en) Photosensitive resin composition
JP4605899B2 (en) Circuit board using polyimide photosensitive resin as base film
JP2008308572A (en) Polyimide varnish
JP2002322277A (en) New terminal-modified polyamic acid and photosensitive resin composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees