JP4605856B2 - Simplified calculation method of lattice spacing to prevent liquefaction in lattice improved ground by deep mixing method. - Google Patents

Simplified calculation method of lattice spacing to prevent liquefaction in lattice improved ground by deep mixing method. Download PDF

Info

Publication number
JP4605856B2
JP4605856B2 JP2000176354A JP2000176354A JP4605856B2 JP 4605856 B2 JP4605856 B2 JP 4605856B2 JP 2000176354 A JP2000176354 A JP 2000176354A JP 2000176354 A JP2000176354 A JP 2000176354A JP 4605856 B2 JP4605856 B2 JP 4605856B2
Authority
JP
Japan
Prior art keywords
liquefaction
lattice
ground
lattice spacing
influence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000176354A
Other languages
Japanese (ja)
Other versions
JP2001355229A (en
Inventor
亮一 馬場崎
明彦 内田
清 山下
忠彦 塩見
睦博 吉澤
貞友 鬼丸
正一 津國
裕司 田屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Takenaka Civil Engineering and Construction Co Ltd
Original Assignee
Takenaka Corp
Takenaka Civil Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Takenaka Civil Engineering and Construction Co Ltd filed Critical Takenaka Corp
Priority to JP2000176354A priority Critical patent/JP4605856B2/en
Publication of JP2001355229A publication Critical patent/JP2001355229A/en
Application granted granted Critical
Publication of JP4605856B2 publication Critical patent/JP4605856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、地震時に液状化し易い地盤(砂質地盤)の液状化防止のため、深層混合処理工法を用いて格子状に地盤改良する場合に適正な格子間隔を簡易に算定する格子間隔簡易算定法の技術分野に属する。
【0002】
【従来の技術】
地震時に液状化し易い地盤(砂質地盤)中に固化改良壁を格子状に形成して地盤の液状化を防止する技術は、例えば、特許第1930164号、特許第2131070号公報等に種々開示されている。
【0003】
しかし、寸法的にどのような格子が有効かつ経済的であるかについて研究、開発された技術は、特許第2568115号に開示されている程度である。
【0004】
ところで、地盤の液状化簡易判定法については、液状化発生に対する安全率としてFι値を用いたものが既に公知である(建築基礎構造設計指針)。
【0005】
【本発明が解決しようとする課題】
前記Fι値を用いた液状化簡易判定法をベースにして適正な格子間隔を算定する技術は、前記従来の算定方法より精度的に更なる飛躍が期待できるものの、未だ開発されていないのが実状である。
【0006】
本発明の目的は、Fι値を用いた液状化簡易判定法をベースに、改良体の剛性、液状化層厚を加味して適正な格子間隔を簡易に精度良く算定することができる、深層混合処理工法による格子状改良地盤における液状化防止のための格子間隔簡易算定法を提供することにある。
【0007】
【課題を解決するための手段】
上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係る、深層混合処理工法による格子状改良地盤における液状化防止のための格子間隔を簡易算定法は、
地震時に液状化し易い地盤に深層混合処理工法により格子状改良地盤を造成する場合に液状化防止に適正な格子間隔簡易算定する方法であって、
盤内の検討深さの液状化抵抗比(τl/σz’)を求めると共に地震時に加わる繰返しせん断応力比(τd/σz’)を求め、両者の比(τl/σz’)/(τd/σz’)をとって液状化に対する安全率Fι値を求める液状化簡易判定法において、
前記繰返しせん断応力比(τd/σz’)について、地震応答解析に基づく格子間隔(L)の影響度を表す補正係数F(L)、改良体剛性(G)の影響度を表す補正係数F(G)、及び液状化層厚(H)の影響度を表す補正係数F(H)をそれぞれ乗じて補正する式を変形し格子間隔(L)について解くことより、前記格子状改良地盤の適正な格子間隔(L)を算定することを特徴とする。
【0008】
【発明の実施の形態、及び実施例】
請求項1に記載した発明は、地震時に液状化し易い地盤に深層混合処理工法により格子状改良地盤を造成する場合に液状化防止に適正な格子間隔を簡易に算定する方法である。
盤内の検討深さの液状化抵抗比(τl/σz’)を求めると共に地震時に加わる繰返しせん断応力比(τd/σz’)を求め、両者の比(τl/σz’)/(τd/σz’)をとって液状化に対する安全率Fι値を求める液状化簡易判定法において、
前記繰返しせん断応力比について、地震応答解析に基づく格子間隔(L)の影響度を表す補正係数F(L)、改良体剛性(G)の影響度を表す補正係数F(G)、及び液状化層厚(H)の影響度を表す補正係数F(H)を乗じて補正する式を変形し格子間隔(L)について解くことより、前記格子状改良地盤の適正な格子間隔(L)を算定する。
【0009
前記建築基礎構造設計指針によれば、Fι値を用いた液状化簡易判定の概要は以下に説明する通りである。
【0010
(1)繰返しせん断応力比(τd/σz’)を下記の[数1]のように求める
[数1]
τd/σz’=γn・αmax/g・σz/σz’・γd
上記[数1]について、各符号の意味は下記の通り。
τd:水平面に生じる等価な一定繰返しせん断応力振幅(t/m2
σz’:検討深さにおける有効土被り圧(鉛直有効応力)(t/m2
γn:等価な繰返し回数に関する補正係数で、γn=0.1(M−1)。
但し、Mは地震のマグニチュード
αmax:地表面における設計用水平加速度(Gal)
g:重力加速度(980Gal)
σz:検討深さにおける全土被り圧(鉛直全応力)(t/m2
γd:地盤が剛体でないことによる低減係数で(1−0.015z)。
zはメートル単位で表した地表面からの深さを表す。
【0011
(2)液状化抵抗比(τl/σz’)を求める。
但し、上記のτlは、水平断面における液状化抵抗である。
この液状化抵抗比(τl/σz’)は、下記[数2]と、図1A、Bに基づいて求められる。
[数2]
=N+ΔN
=C・N
=√10/σz’
上記[数2]における各符号の意味は以下の通り。
:補正N値
:換算N値
ΔN:細粒土含有率に応じた補正N値増分で、図1Aによる。
:換算N値の係数
N:とんび法または自動落下法による実測N値
【0012
図1B中のせん断ひずみ振幅5%曲線を用いて、補正N値(N)に対する液状化抵抗比(τl/σz’)を求める。
そして、安全率(Fι)を、液状化抵抗比(τl/σz’)/繰返しせん断応力比(τd/σz’)で求め、この安全率(Fι)の値が1以下であれば液状化し、1より大きければ液状化しないと判定する(以上Fι値を用いた液状化簡易判定の概要である。)。
【0013
ところで、本発明者は、請求項1に記載した発明において、地震時に液状化し易い地盤に深層混合処理工法によ格子状改良地盤を造成する場合に、格子間原地盤内に発生する等価な繰返しせん断応力比は、格子間隔(L)、改良体の剛性(G)、液状化層厚(H)、および入力地震波により影響を受けると考え、これらを解析パラメータとして地震応答解析(動的解析パラメトリックスタディ)を行った(図2A、B、C参照)。
【0014
その結果、格子間原地盤内に発生する等価な繰返しせん断応力比(τd/σz’)は、建築基礎構造設計指針の外力評価式に基づく算定式に、格子間隔(L)の影響度、改良体の剛性(G)の影響度、液状化層厚(H)の影響度をそれぞれ、前記図2A〜Cに基づき計算され補正係数として乗じた式[数3]で表されることが明らかになった。
[数3]
等価な繰返しせん断応力比(τd/σz’)
=γn・αmax/g・σz/σz’・γd・F(L)・F(G)・F(H)
【0015
上記[数3]について、各符号のγn、αmax、g、σz、σz’は上述の[数1]と同じであるが、γdは地盤が剛体でないことによる低減係数ではあるものの、その低減係数は、上記地震応答解析により(1−0.033Z)(Z:深度)となる。そして、 F(L)図2Aに基づき、格子間隔(L)の影響度を表した補正係数を表す。
F(G)図2Bに基づき、改良体の剛性(G)の影響度を表した補正係数を表す。
F(H)図2Cに基づき、液状化層厚(H)の影響度を表した補正係数を表す。
【0016
図3Aは、液状化層厚(H)=10mについて、前記[数3]により求めた格子間原地盤に発生する最大せん断応力(τXY(max))の深度方向分布と、地震応答解析により求めた格子間原地盤に発生する最大せん断応力(τXY(max))の深度方向分布とを比較したグラフを示している。
【0017
図3Bは、液状化層厚(H)=15mについて、前記[数3]により求めた格子間原地盤に発生する最大せん断応力(τXY(max))の深度方向分布と、地震応答解析により求めた格子間原地盤に発生する最大せん断応力(τXY(max))の深度方向分布とを比較したグラフを示している。
【0018
図3A、Bから分かるとおり、両者はほど良い一致を示している。よって、格子間隔(L)の影響度、改良体の剛性(G)の影響度、液状化層厚(H)の影響度を考慮した記[数3]は、格子間原地盤に発生する最大せん断応力(τXY(max))を精度良く算出していることが分かる。
【0019
即ち、請求項1に記載した発明に係る、深層混合処理工法による格子状改良地盤における液状化防止のための適正な格子間隔簡易算定法によれば、N値、細粒土含有率(%)など、上述した建築基礎構造設計指針による液状化発生に対する安全率Fι値を用いた液状化簡易判定法に必要な定数として、図2B、Cで明らかにされた改良体の剛性の補正係数F(G)と、液状化層厚の補正係数F(H)、及び格子間隔の補正係数F(L)を乗じて補正する上記[数3]を変形して、格子間隔(L)について解くことにより、格子状改良地盤の適正な格子間隔(L)を簡易に算定することができる。
【0020
以上のように、液状化防止のための格子状改良地盤の格子間隔(L)は、既知の建築基礎構造設計指針のFι値を用いた液状化簡易判定法をベースに、地震応答解析結果より求めた改良体の格子間隔(L)と剛性(G)及び液状化層厚(H)の補正係数F(L)、F(G)及びF(H)を乗じて得られる上記[数3]を変形し、格子間隔(L)について解いた式により簡易に求めることができる。
【0021
ちなみに、格子状改良地盤の適正な格子間隔(L)mを求める際に必要な定数は、以下の9つである。
1)地震動のマグニチュード
2)地表面水平加速度
3)土の単位体積重量
4)N値
5)地下水位
6)細粒土含有率
7)液状化発生に対する安全率
8)改良体の剛性
9)液状化層厚
【0022
図4A、Bはそれぞれ、液状化防止のために格子状改良地盤が適用された2つの建物について、請求項1の発明に係る格子間隔簡易算定法を用いた試算結果を示している。設計上の安全性を考慮して試算結果の最小値に着目すると、格子間隔は略8mである。動的解析基づいた実施工もやはり8mであり、請求項1の発明による格子間隔簡易算定法の妥当性は明らかである。
【0023
【本発明の奏する効果】
請求項1に記載した発明に係る、深層混合処理工法による格子状改良地盤における液状化防止のための格子間隔簡易算定法によれば、建築基礎構造設計指針の安全率Fι値を用いた液状化簡易判定法をベースに、改良体の剛性(G)、液状化層厚(H)を加味した式を変形し、格子間隔(L)について解くことにより、液状化防止に適正な格子間隔(L)を簡易に精度良く算定することができる。
【0024
すなわち、本発明の格子間隔簡易算定法によれば、既知のFι値を用いた液状化簡易判定法に必要な定数と、図2B、Cから今般明らかになった補正係数F(G),F(H)及びF(L)を乗ずる上記[数3]を変形し、格子間隔(L)について解くことにより、液状化防止に適正な格子間隔(L)を簡易に求めることができるので、特別の土質試験を行う必要は一切無く、高精度に格子間隔を求めることができる。
【図面の簡単な説明】
【図1】 Aは細粒土含有率と補正N値増分ΔNfとの関係を表したグラフであり、Bは補正N値(N)と飽和土層の液状化抵抗比(τl/σz’)との関係を表したグラフである。
【図2】 Aは格子間隔(L)とその補正係数F(L)との関係を表したグラフであり、Bは改良体の剛性(G)とその補正係数F(G)との関係を表したグラフであり、Cは液状化層厚(H)とその補正係数F(H)との関係を表したグラフである。
【図3】 Aは液状化層厚(H)=10mについて、本発明に係る格子間隔簡易算定法により求めた格子間原地盤に発生する最大せん断応力(τXY(max))の深度方向分布と、地震応答解析により求めた格子間原地盤に発生する最大せん断応力(τXY(max))の深度方向分布とを比較したグラフを示している。
Bは液状化層厚(H)=15mについて、本発明に係る格子間隔簡易算定法により求めた格子間原地盤に発生する最大せん断応力(τXY(max))の深度方向分布と、地震応答解析により求めた格子間原地盤に発生する最大せん断応力(τXY(max))の深度方向分布とを比較したグラフを示している。
【図4】 A、Bはそれぞれ、液状化防止のために格子状改良地盤が適用された2つの建物について、本発明に係る格子間隔簡易算定法を用いた試算結果を示している。
[0001]
BACKGROUND OF THE INVENTION
In order to prevent liquefaction of ground (sandy ground) that is easily liquefied during an earthquake, this invention is a simple calculation of the lattice spacing that is used to easily calculate the appropriate lattice spacing when the ground is improved into a lattice using the deep mixing method. It belongs to the technical field of law.
[0002]
[Prior art]
Various techniques for preventing the liquefaction of the ground by forming solidified improvement walls in a grid shape in the ground (sandy ground) that easily liquefies during an earthquake are disclosed in, for example, Japanese Patent No. 1930164, Japanese Patent No. 2131070, etc. ing.
[0003]
However, the technology that has been researched and developed on what kind of lattice is effective and economical in size is disclosed in Japanese Patent No. 2568115.
[0004]
By the way, as a method for easily determining the liquefaction of the ground, a method using an Fι value as a safety factor against occurrence of liquefaction is already known (Guideline for Designing Building Foundations).
[0005]
[Problems to be solved by the present invention]
Although the technology for calculating the appropriate lattice spacing based on the simple liquefaction determination method using the Fι value can be expected to make a further leap forward with higher accuracy than the conventional calculation method, it has not been developed yet. It is.
[0006]
The object of the present invention is to provide a deep mixing method that can easily and accurately calculate the appropriate lattice spacing based on the liquefaction simple determination method using the Fι value and taking into account the rigidity of the improved body and the liquefied layer thickness. The object is to provide a simple method for calculating the lattice spacing to prevent liquefaction in the improved ground with a treatment method.
[0007]
[Means for Solving the Problems]
As a means for solving the problems of the prior art, according to the invention described in claim 1, a simple calculation method of a lattice interval for preventing liquefaction in a lattice improved ground by a deep mixing treatment method is as follows:
A method for simple calculate the proper lattice spacing liquefaction prevention when construct a lattice-like ground improved by Deep Mixing Method liquefaction easily ground during an earthquake,
Study depth liquefaction resistance ratio in the earth board (τl / σz ') a cyclic shear stress ratio applied during an earthquake along with the finding (τd / σz') the determined, the ratio of the two (τl / σz ') / ( τd / in liquefaction simple determination method for determining a safety factor Fι values for liquefaction taking σz '),
The repeated shear stress ratio for (τd / σz '), the correction factor F representing the degree of influence of the correction coefficient representing the degree of influence of the lattice interval based on the seismic response analysis (L) F (L), the rigidity of the improvement body (G) (G), and from solving a modified lattice distance correction coefficient F (H) to correct by multiplying each equation representing the degree of influence of the liquid layer thickness (H) (L), appropriateness of the lattice-shaped improved ground It is characterized in that a simple lattice interval (L) is calculated.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention described in claim 1 is a method to calculate the proper lattice spacing liquefaction prevention when construct a more grid improved ground in Deep Mixing Method liquefaction easily ground during an earthquake easily.
Study depth liquefaction resistance ratio in the earth board (τl / σz ') a cyclic shear stress ratio applied during an earthquake along with the finding (τd / σz') the determined, the ratio of the two (τl / σz ') / ( τd / In the simple liquefaction determination method for obtaining the safety factor Fι value for liquefaction by taking σz ′)
Regarding the repeated shear stress ratio, a correction coefficient F (L) representing the influence of the lattice spacing (L) based on the seismic response analysis, a correction coefficient F (G) representing the influence of the rigidity (G) of the improved body, and liquid The appropriate lattice interval (L) of the grid-like improved ground is obtained by modifying the equation for correction by multiplying the correction coefficient F (H) representing the influence of the layer thickness (H) and solving for the lattice interval (L) . Calculate.
[00 09 ]
According to the architectural foundation structure design guideline, the outline of the liquefaction simple determination using the Fι value is as described below.
[00 10 ]
(1) The repeated shear stress ratio (τd / σz ′) is obtained as in the following [ Equation 1] .
[Equation 1]
τd / σz ′ = γn · αmax / g · σz / σz ′ · γd
Regarding the above [Equation 1], the meaning of each symbol is as follows.
τd: Equivalent constant cyclic shear stress amplitude (t / m 2 ) generated in the horizontal plane
σz ': Effective earth cover pressure at the examination depth (vertical effective stress) (t / m 2 )
γn: correction coefficient for the equivalent number of repetitions, γn = 0.1 (M−1).
Where M is the magnitude of the earthquake αmax: horizontal acceleration for design on the ground surface (Gal)
g: Gravity acceleration (980Gal)
σz: Total soil covering pressure (vertical total stress) at study depth (t / m 2 )
γd: a reduction factor due to the fact that the ground is not rigid (1-0.015z).
z represents the depth from the ground surface expressed in meters .
[00 11 ]
(2) The liquefaction resistance ratio (τl / σz ′) is obtained.
Where τl is the liquefaction resistance in the horizontal section.
The liquefaction resistance ratio (τl / σz ′) is obtained based on the following [ Equation 2] and FIGS. 1A and 1B.
[Equation 2]
N a = N 1 + ΔN f
N 1 = C N · N
C N = √10 / σz ′
Each code meanings are as follows for definitive in the [Equation 2].
N a : Correction N value N 1 : Conversion N value ΔN f : Correction N value increment according to fine grain soil content, according to FIG. 1A.
C N : Coefficient of converted N value N: Measured N value by the tomb method or automatic drop method [00 12 ]
The liquefaction resistance ratio (τl / σz ′) with respect to the corrected N value (N a ) is obtained using the 5% shear strain amplitude curve in FIG. 1B.
Then, the safety factor (Fι) is obtained by the liquefaction resistance ratio (τl / σz ′) / repeated shear stress ratio (τd / σz ′). If the value of the safety factor (Fι) is 1 or less, it is liquefied. determines not to liquefaction greater than 1 (above is the outline of the liquefaction simple determination using the Fι value.).
[00 13 ]
Incidentally, the present inventors, in the invention described in claim 1, when construct a liquefaction easily ground Ri by the Deep Mixing Method lattice improved ground during an earthquake, occur in the original ground interstitial The equivalent cyclic shear stress ratio is considered to be affected by the lattice spacing (L), the rigidity of the improved body (G), the liquefaction layer thickness (H), and the input seismic wave. Analysis parametric study) (see FIGS. 2A, B, C).
[00 14 ]
As a result, the equivalent cyclic shear stress ratio (τd / σz ′) generated in the original ground between the lattices is calculated based on the external force evaluation formula of the building foundation structure design guideline. It is clear that the degree of influence of the improved body rigidity (G) and the degree of influence of the liquefied layer thickness (H) are expressed by the formula [Equation 3] calculated based on FIGS. Became.
[Equation 3]
Equivalent cyclic shear stress ratio (τd / σz ′)
= Γn · αmax / g · σz / σz '· γd · F (L) · F (G) · F (H)
[00 15 ]
For the equation (3), each code of γn, αmax, g, σz, σz ' is the same as Expression 1 described above, although γd is the reduction factor due to ground is not rigid, the reduction factor Is (1-0.033Z) (Z: depth) by the earthquake response analysis. Then, F (L) is based on FIG. 2A, represents the correction coefficient representing the degree of influence of the lattice spacing (L).
F (G) is based on Figure 2B, it represents a correction coefficient representing the degree of influence of the stiffness of the improved body (G).
F (H) is based on Figure 2C, represents a correction coefficient representing the influence of the liquid layer thickness (H).
[00 16 ]
FIG. 3A shows the depth direction distribution of the maximum shear stress (τ XY (max) ) generated in the original ground between the lattices obtained by [Equation 3] and the seismic response analysis for the liquefied layer thickness (H) = 10 m. The graph which compared with the depth direction distribution of the maximum shear stress ((tau ) XY (max) ) which generate | occur | produces in the raw ground between the grating | lattices calculated | required by (3) is shown.
[00 17 ]
3B shows the depth direction distribution of the maximum shear stress (τ XY (max) ) generated in the original ground between the lattices obtained by [Equation 3] and the seismic response analysis for the liquefied layer thickness (H) = 15 m. The graph which compared with the depth direction distribution of the maximum shear stress ((tau ) XY (max) ) which generate | occur | produces in the raw ground between the grating | lattices calculated | required by (3) is shown.
[00 18 ]
As can be seen from FIGS. 3A and 3B, both show a good match . Thus, the influence of the lattice spacing (L), the influence of the stiffness of the improved body (G), SL on considering the influence of the liquid layer thickness (H) [Equation 3] is generated in the original ground interstitial It can be seen that the maximum shear stress (τ XY (max) ) to be calculated is accurately calculated.
[00 19 ]
That is, according to the invention described in claim 1, according to the appropriate simple lattice spacing calculation method for preventing liquefaction in the lattice improved ground by the deep mixing method, N value, fine soil content (%) etc., as a constant necessary for the liquefaction simplified determination method using the safety factor Fι values for liquefaction caused by building infrastructure design guidelines described above, FIG. 2B, the correction coefficient of stiffness of the revealed improved body C F ( G) is multiplied by the correction coefficient F (H) of the liquefied layer thickness and the correction coefficient F (L) of the lattice spacing, and the above [Equation 3] is modified to solve the lattice spacing (L). It is possible to easily calculate an appropriate lattice interval ( L) of the lattice-shaped improved ground.
[00 20 ]
As described above, the lattice spacing of the lattice-shaped improved ground for liquefaction prevention (L) is liquefaction simplified determination method using Fι values of known building substructure design guideline to base, the seismic response analysis results The above-mentioned [Equation 3] obtained by multiplying the correction factor F (L) , F (G), and F (H) of the lattice spacing (L), rigidity (G), and liquefied layer thickness (H) of the improved body obtained more. ] Can be easily obtained by the equation solved for the lattice spacing (L) .
[00 21 ]
By the way, the following nine constants are necessary for obtaining an appropriate lattice interval (L) m of the lattice-shaped improved ground.
1) Magnitude of ground motion 2) Ground surface acceleration 3) Unit volume weight of soil 4) N value 5) Groundwater level 6) Fine soil content 7) Safety factor against liquefaction occurrence 8) Stiffness of improved body 9) Liquid Layer thickness [00 22 ]
4A and 4B respectively show the trial calculation results using the lattice interval simple calculation method according to the invention of claim 1 for two buildings to which a grid-like improved ground is applied to prevent liquefaction. When attention is paid to the minimum value of the trial calculation result in consideration of design safety, the lattice spacing is about 8 m. Actual construction based on dynamic analysis is also still 8m, it is clear the validity of the lattice spacing Simple Calculation Method according to the invention of claim 1.
[00 23 ]
[Effects of the present invention]
According to the invention described in claim 1, liquefaction using the safety factor Fι value of the building foundation structure design guideline according to the grid interval simple calculation method for preventing liquefaction in the grid improvement ground by the deep mixed processing method based on simple determination method, a modification of the rigidity of the improvement body (G), in consideration liquefied layer thickness a (H) wherein, by solving the lattice spacing (L), the proper lattice spacing liquefaction prevention ( L) can be easily and accurately calculated.
[00 24 ]
That is, according to the simple lattice spacing calculation method of the present invention, the constants necessary for the simple liquefaction determination method using the known Fι value and the correction coefficients F (G), F that have now been clarified from FIGS. Since the above [Equation 3] multiplied by (H) and F (L) is modified and the lattice spacing (L) is solved , an appropriate lattice spacing (L) for preventing liquefaction can be easily obtained. There is no need to perform any soil tests, and the lattice spacing can be obtained with high accuracy.
[Brief description of the drawings]
FIG. 1A is a graph showing the relationship between fine grain content and corrected N value increment ΔN f, and B is corrected N value (N a ) and liquefaction resistance ratio of saturated soil layer (τl / σz). It is a graph showing the relationship with ').
FIG. 2A is a graph showing the relationship between the lattice spacing (L) and its correction coefficient F (L), and B is the relationship between the rigidity (G) of the improved body and its correction coefficient F (G). C is a graph showing the relationship between the liquefied layer thickness (H) and its correction coefficient F (H).
FIG. 3A shows the depth distribution of the maximum shear stress (τ XY (max) ) generated in the interstitial ground obtained by the simple method for calculating the lattice spacing according to the present invention for liquefaction layer thickness (H) = 10 m. And a graph comparing the depth direction distribution of the maximum shear stress (τ XY (max) ) generated in the interstitial ground obtained by seismic response analysis.
B shows the depth direction distribution of the maximum shear stress (τ XY (max) ) generated in the interstitial ground obtained by the simple method for calculating the lattice spacing according to the present invention and the seismic response for the liquefied layer thickness (H) = 15 m. The graph which compared with the depth direction distribution of the maximum shear stress (τXY (max) ) which generate | occur | produces in the interstitial raw ground calculated | required by analysis is shown.
FIGS. 4A and 4B show the results of trial calculations using the grid interval simple calculation method according to the present invention for two buildings to which a grid-like improved ground is applied in order to prevent liquefaction.

Claims (1)

地震時に液状化し易い地盤に深層混合処理工法により格子状改良地盤を造成する場合に液状化防止に適正な格子間隔簡易算定する方法であって、
盤内の検討深さの液状化抵抗比(τl/σz’)を求めると共に地震時に加わる繰返しせん断応力比(τd/σz’)を求め、両者の比(τl/σz’)/(τd/σz’)をとって液状化に対する安全率Fι値を求める液状化簡易判定法において、
前記繰返しせん断応力比(τd/σz’)について、地震応答解析に基づく格子間隔(L)の影響度を表す補正係数F(L)、改良体剛性(G)の影響度を表す補正係数F(G)、及び液状化層厚(H)の影響度を表す補正係数F(H)をそれぞれ乗じて補正する式を変形し格子間隔(L)について解くことより、前記格子状改良地盤の適正な格子間隔(L)を算定することを特徴とする、深層混合処理工法による格子状改良地盤における液状化防止のための格子間隔簡易算定法。
A method for simple calculate the proper lattice spacing liquefaction prevention when construct a lattice-like ground improved by Deep Mixing Method liquefaction easily ground during an earthquake,
Study depth liquefaction resistance ratio in the earth board (τl / σz ') a cyclic shear stress ratio applied during an earthquake along with the finding (τd / σz') the determined, the ratio of the two (τl / σz ') / ( τd / in liquefaction simple determination method for determining a safety factor Fι values for liquefaction taking σz '),
The repeated shear stress ratio for (τd / σz '), the correction factor F representing the degree of influence of the correction coefficient representing the degree of influence of the lattice interval based on the seismic response analysis (L) F (L), the rigidity of the improvement body (G) (G), and from solving a modified lattice distance correction coefficient F (H) to correct by multiplying each equation representing the degree of influence of the liquid layer thickness (H) (L), appropriateness of the lattice-shaped improved ground A simple lattice spacing calculation method for preventing liquefaction in a grid-like improved ground by a deep mixing treatment method, characterized by calculating a simple lattice spacing (L) .
JP2000176354A 2000-06-13 2000-06-13 Simplified calculation method of lattice spacing to prevent liquefaction in lattice improved ground by deep mixing method. Expired - Lifetime JP4605856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176354A JP4605856B2 (en) 2000-06-13 2000-06-13 Simplified calculation method of lattice spacing to prevent liquefaction in lattice improved ground by deep mixing method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000176354A JP4605856B2 (en) 2000-06-13 2000-06-13 Simplified calculation method of lattice spacing to prevent liquefaction in lattice improved ground by deep mixing method.

Publications (2)

Publication Number Publication Date
JP2001355229A JP2001355229A (en) 2001-12-26
JP4605856B2 true JP4605856B2 (en) 2011-01-05

Family

ID=18678087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176354A Expired - Lifetime JP4605856B2 (en) 2000-06-13 2000-06-13 Simplified calculation method of lattice spacing to prevent liquefaction in lattice improved ground by deep mixing method.

Country Status (1)

Country Link
JP (1) JP4605856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221370A (en) * 2012-04-19 2013-10-28 Taisei Corp Method for evaluating grid-like ground improvement and method for setting specification of grid-like ground improvement

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592430B2 (en) * 2005-01-21 2010-12-01 東京電力株式会社 Calculation method of maximum shear stress degree generated in improved ground.
JP4928094B2 (en) * 2005-07-06 2012-05-09 積水化学工業株式会社 Ground survey method, ground survey system and ground survey sheet
JP5382900B2 (en) * 2006-03-29 2014-01-08 公益財団法人鉄道総合技術研究所 How to prevent underground structures from floating due to liquefaction
JP6211281B2 (en) * 2013-03-21 2017-10-11 大和ハウス工業株式会社 Design method of ground reinforcement depth considering liquefaction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132220A (en) * 1988-11-09 1990-05-21 Pub Works Res Inst Ministry Of Constr Grating wall for preventing ground from liquidizing
JPH11323894A (en) * 1998-05-20 1999-11-26 Shimizu Corp Method for soil improvement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390610A (en) * 1977-01-21 1978-08-09 Penta Ocean Construction Method and device for improving deep weak ground
JPS5996320A (en) * 1982-11-19 1984-06-02 Onoda Cement Co Ltd Improvement of soft ground
JPS615114A (en) * 1984-06-20 1986-01-10 Takenaka Komuten Co Ltd Ground improvement work for preventing liquefaction
JP2791100B2 (en) * 1989-05-24 1998-08-27 住友大阪セメント株式会社 Liquefaction prevention method for sand ground
JPH0786225B2 (en) * 1990-09-17 1995-09-20 鹿島建設株式会社 Building foundation ground improvement method
JP3219372B2 (en) * 1996-06-28 2001-10-15 一成 青山 Construction method of wall-shaped improved body
JP3856585B2 (en) * 1999-03-15 2006-12-13 株式会社竹中工務店 Construction method of grid-like ground improvement body
JP3714395B2 (en) * 2000-01-27 2005-11-09 鹿島建設株式会社 Reinforcement method for the ground below existing structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132220A (en) * 1988-11-09 1990-05-21 Pub Works Res Inst Ministry Of Constr Grating wall for preventing ground from liquidizing
JPH11323894A (en) * 1998-05-20 1999-11-26 Shimizu Corp Method for soil improvement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221370A (en) * 2012-04-19 2013-10-28 Taisei Corp Method for evaluating grid-like ground improvement and method for setting specification of grid-like ground improvement

Also Published As

Publication number Publication date
JP2001355229A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
Kadas et al. Spectral ground motion intensity based on capacity and period elongation
JP7373616B2 (en) Diagnostic evaluation method for structures based on constant microtremors of structures
Qaftan et al. Validation of a finite element modelling approach on soil-foundation-structure interaction of a multi-storey wall-frame structure under dynamic loadings
Kostadinov et al. Assessment of liquefaction-inducing peak ground velocity and frequency of horizontal ground shaking at onset of phenomenon
JP4605856B2 (en) Simplified calculation method of lattice spacing to prevent liquefaction in lattice improved ground by deep mixing method.
JP2002250027A (en) Ground investigation method, construction method for base isolation building, and design method for building
Jiang et al. Soil damping calculation of the offshore wind turbine supported by wide-shallow bucket foundation
Shao et al. Seismic fragility of approach backfill differential settlement for statewide bridges in California
Gicev et al. Energy and power of nonlinear waves in a seven story reinforced concrete building
Taiebat et al. Seismic design of basement walls: evaluation of current practice in British Columbia
JP5418038B2 (en) Seismic risk assessment method
JP4035744B2 (en) Ground improvement method
Pender Earthquake resistant design of foundations
Shadlou et al. A 1D-modelling approach for simulating the soil-pile interaction mechanism in the liquefiable ground
CN112748233A (en) Device and method for simulating field stability of disposal site under earthquake action
Li et al. Parameter identification and analysis of shaking table tests on SSI system
Phillips et al. A simplified constitutive model to simultaneously match modulus reduction and damping soil curves for nonlinear site response analysis
CN116611132B (en) Method and system for calculating longitudinal internal force of segmental lining based on stratum deformation
Khaaloo et al. A new lateral load pattern for optimum design of concrete structures using the wave propagation theory
Nguyen et al. Effect of soil-building interaction on dynamic earth pressure of basement walls using numerical analysis
Watanabe et al. Dynamic behavior of liquefiable ground reinforced by in-situ cement-mixing lattice wall
JP7355680B2 (en) Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method
Nguyen Effects of foundation characteristics and building separation gap on seismic performance of mid-rise structures incorporating soil-foundation-structure-interaction
Qaftan Response of soil–foundation–structure interaction of tall building (frame-wall) structural system under seismic effect
Zanjanchi et al. Assessment of MIDA method for mid-rise steel structures with non-symmetrical plan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Ref document number: 4605856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term