JP4603477B2 - Method of spraying irregular refractories and spraying materials used therefor - Google Patents

Method of spraying irregular refractories and spraying materials used therefor Download PDF

Info

Publication number
JP4603477B2
JP4603477B2 JP2005351165A JP2005351165A JP4603477B2 JP 4603477 B2 JP4603477 B2 JP 4603477B2 JP 2005351165 A JP2005351165 A JP 2005351165A JP 2005351165 A JP2005351165 A JP 2005351165A JP 4603477 B2 JP4603477 B2 JP 4603477B2
Authority
JP
Japan
Prior art keywords
water
construction
less
spraying
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005351165A
Other languages
Japanese (ja)
Other versions
JP2007155215A (en
Inventor
好博 水摩
宏樹 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2005351165A priority Critical patent/JP4603477B2/en
Publication of JP2007155215A publication Critical patent/JP2007155215A/en
Application granted granted Critical
Publication of JP4603477B2 publication Critical patent/JP4603477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Description

本発明は、高炉、樋、混銑車、転炉、取鍋、2次精錬炉、タンディッシュ、セメントロータリーキルン、廃棄物溶融炉、焼却炉、あるいは非鉄金属容器等の各種金属容器や窯炉の築炉または補修に際しての不定形耐火物の吹付け施工方法とそれに使用する吹付け材料関する。   The present invention relates to the construction of various metal containers and kilns such as blast furnaces, firewood, kneading cars, converters, ladle, secondary smelting furnaces, tundish, cement rotary kilns, waste melting furnaces, incinerators, and non-ferrous metal containers. The present invention relates to a method for spraying an irregular refractory in a furnace or repair and a spraying material used for the method.

不定形耐火物の吹付け施工方法は湿式施工方法と乾式施工方法とに大別できる。   The method of spraying irregular refractories can be broadly divided into wet construction methods and dry construction methods.

湿式施工方法は施工水を予め材料へ添加して混練しスラリー状とした吹付け材料(不定形耐火物)を圧送して先端ノズル部において急結剤等を添加して吹付ける工法である。他方、乾式施工方法は吹付け材料(不定形耐火物)を乾燥状態で空気搬送し、先端のノズル部で施工水を注水して吹付ける工法である。   The wet construction method is a construction method in which construction water is added to a material in advance and kneaded to form a slurry-like spraying material (unshaped refractory), and a quick setting agent or the like is added and sprayed at the tip nozzle portion. On the other hand, the dry construction method is a construction method in which a spray material (irregular refractory) is pneumatically transported in a dry state, and the construction water is injected and sprayed with a nozzle portion at the tip.

湿式施工方法は乾式施工方法に比べて付着性に優れた緻密質の耐火物の吹付け施工体を形成することができ、施工に際しての発塵量が少ない等の効果がある。反面、吹付けに際して混練装置やスラリー圧送装置が必要で、その上、装置の構造が複雑で高価であり、また、吹付け作業後はスラリー状不定形耐火物が混練装置や材料搬送管内に付着し、その洗浄作業に手間取るという欠点がある。   The wet construction method is capable of forming a dense refractory spray construction body having better adhesion than the dry construction method, and has the effect of reducing the amount of dust generated during construction. On the other hand, a kneading device and a slurry pumping device are required for spraying. In addition, the structure of the device is complicated and expensive, and after the spraying operation, the slurry-like amorphous refractory adheres to the kneading device and the material transport pipe. However, there is a drawback that it takes time for the cleaning operation.

これに対して、乾式施工方法は、基本的には乾燥状態で空気搬送される吹付け材料に先端ノズル部で、施工水を注水するのみであるので、吹付け装置は簡単で作業性に優れているが、吹付け材料には水分が十分に混合されない状態での吹付けであるため、吹付けに際して、粉塵が多く発生し、吹付け施工体の耐火物組織も不均一となる傾向があり、付着率、接着強度及び耐食性も劣ったものとなる。湿式施工方法と比較すると混練効果が低く水分使用量が多いため緻密な施工体が得られにくいという欠点もある。   On the other hand, the dry construction method basically only injects construction water into the spray material that is conveyed in air in the dry state at the tip nozzle part, so the spray device is simple and excellent in workability However, since the spray material is sprayed in a state where moisture is not sufficiently mixed, a lot of dust is generated during spraying, and the refractory structure of the sprayed body tends to be uneven. Also, the adhesion rate, adhesive strength and corrosion resistance are inferior. Compared with the wet construction method, there is also a drawback that it is difficult to obtain a dense construction body because the kneading effect is low and the amount of water used is large.

通常、先端ノズル部で施工水を注水するには、ノズルの外周面に設けた複数の貫通孔からノズル中心あるいはその前方に向かって加圧水を注水することが一般的である(特許文献1)。この注水される水は、材料搬送管内で材料を湿潤させるために分散させ霧状にした方が良いと考えられている。   Usually, in order to inject construction water at the tip nozzle portion, it is common to inject pressurized water from a plurality of through holes provided on the outer peripheral surface of the nozzle toward the center of the nozzle or in front of the nozzle (Patent Document 1). It is considered that the water to be poured should be dispersed and atomized in order to wet the material in the material transport pipe.

例えば、特許文献2では、マテリアルホースに連通する管体に直径方向に開けられた水噴出口に水を圧送し、管体内に霧状水を噴出させてカーテンウォールを形成し、この管体に吹付け材料(耐火原料)をマテリアルホースから圧送して霧状水と吹付け材料とを圧送空気を利用して管体内で混合する方法が記載されている。そして水噴出口の開口端の直径を0.01mm〜1mmとし、30〜50kg/cmの水圧を掛けると水は霧状になって、カーテンウォールを形成することも記載されている。 For example, in Patent Document 2, water is pumped to a water jet port that is opened in a diametrical direction to a pipe body that communicates with a material hose, and mist-like water is jetted into the pipe body to form a curtain wall. A method is described in which a spraying material (refractory raw material) is pumped from a material hose and mist water and the spraying material are mixed in a tubular body using pumped air. It is also described that when the diameter of the opening end of the water outlet is 0.01 mm to 1 mm and a water pressure of 30 to 50 kg / cm 2 is applied, the water becomes mist and forms a curtain wall.

しかしながら、この方法では先端ノズル部で水が霧状として供給されるため、実際には吹付け材料を圧送する空気の流れに逆らって吹付け材料の中心部まで均一に湿潤することは難しく十分な混練効果が得られにくい問題がある。また、吹付け材料の搬送量が例えば70kg/min等のように多くなった場合には、多量の水を添加する必要が出てくるが、霧状の水では多量の水の添加が難しい。さらに、添加水分を増やそうとすると大きな水滴状態で噴霧しなければならず、混練状態が悪くなる。   However, in this method, since water is supplied in the form of a mist at the tip nozzle part, it is actually difficult and sufficient to wet the spray material uniformly to the center against the air flow that pumps the spray material. There is a problem that the kneading effect is difficult to obtain. Further, when the amount of sprayed material is increased, for example, 70 kg / min, it is necessary to add a large amount of water. However, it is difficult to add a large amount of water in the case of atomized water. Furthermore, if it is attempted to increase the amount of water added, it must be sprayed in a large water droplet state, and the kneading state becomes worse.

また、混練効果を高めるために、複数個所から注水する方法やノズルを長くしてノズル内での混練効果を狙ったものも過去提案されているが、期待する程低水分で混練することができず、またいずれの場合にも人がノズルを持って作業するには重くなりすぎる問題があった。   In addition, in order to enhance the kneading effect, a method of pouring water from a plurality of locations and a method aiming at the kneading effect in the nozzle by lengthening the nozzle have been proposed in the past, but it can be kneaded with low moisture as expected. In both cases, there is a problem that a person is too heavy to work with a nozzle.

そこで、吹付け施工方法において水と吹付け材料との混練効果を向上させるために、吹付け材料を搬送する材料搬送管の搬送経路内で注水して材料搬送管内での吹付け材料同士あるいは吹付け材料と材料搬送管内面との衝突による混練効果を狙った施工方法が過去検討されている。   Therefore, in order to improve the kneading effect of water and the spray material in the spray construction method, water is injected in the transport path of the material transport pipe for transporting the spray material, and the spray materials in the material transport pipe or between the spray materials are sprayed. The construction method aiming at the kneading effect by the collision between the adhesive material and the inner surface of the material conveying pipe has been studied in the past.

例えば、特許文献3には、吹付け材料搬送用の圧縮エアーの配管と吹付けノズルの2ヶ所で水を添加する吹付け施工方法が開示されている。そして、吹付け材料搬送用の圧縮エアー中には予備混練として水を噴霧することが記載されている。このように水をエアー中に均一に分散させて添加することで、混練不足を解消し短いノズルの使用を可能とし、局部的な水分の不均一に起因する材料搬送管内の材料付着を防止することができると記載されている。確かにこの方法では、水のみを吹付けノズルのみで添加する場合と比較すると発塵が少なくなり、材料搬送管内の材料付着の防止には効果があると考えられるが、単に噴霧しただけでは、吹付け材料を均一に湿潤することが難しく良好な混練効果が得られない。このため、従来の乾式施工方法と比較して低水分で緻密な施工をすることができなかった。   For example, Patent Document 3 discloses a spray construction method in which water is added at two locations, a compressed air pipe for spray material transport and a spray nozzle. In addition, it is described that water is sprayed as pre-kneading in the compressed air for conveying the spray material. By adding water dispersed uniformly in the air in this way, the shortage of kneading can be eliminated and the use of short nozzles can be achieved, and material adhesion in the material transport pipe due to local non-uniformity of water is prevented. It is described that it can. Certainly, this method reduces dust generation compared to adding only water with a spray nozzle alone, and is thought to be effective in preventing material adhesion in the material transport pipe. It is difficult to wet the spray material uniformly and a good kneading effect cannot be obtained. For this reason, compared with the conventional dry construction method, it was not possible to perform precise construction with low moisture.

また、特許文献4には、空気搬送された不定形耐火組成物に吹付けノズル手前でウォーターリングを通して流し込み軟度の作業性が得られる施工水分量と圧搾空気を添加し、さらに吹付けノズル部で凝集剤又は保形性付与剤を添加して吹付け施工する2段階注水方法が開示されている。そして、この方法においては、施工水分を高圧の圧搾空気を用いて添加すれば、その強力な攪拌作用によって不定形耐火物と水との均一混合が短時間でできることが記載されている。その結果、リバウンドロスによる環境悪化や水分増加による施工体の品質劣化等の従来の乾式法や半乾式施工法が有する問題点や、吹付け装置が複雑になるとか、掃除が面倒であるとか、残剤廃棄量が多い等の従来の湿式法が有する問題点が解決されると記載されている。   Further, Patent Document 4 adds a working water amount and compressed air that can be poured into an amorphous refractory composition conveyed by air through a water ring before the spray nozzle to obtain soft workability, and further includes a spray nozzle section. Discloses a two-stage water injection method in which a flocculant or a shape retention agent is added and sprayed. And in this method, if construction water is added using high-pressure compressed air, it is described that the uniform mixing of the amorphous refractory and water can be performed in a short time due to its powerful stirring action. As a result, problems with conventional dry methods and semi-dry construction methods such as environmental deterioration due to rebound loss and deterioration of construction quality due to moisture increase, complicated spray equipment, troublesome cleaning, It is described that the problems of the conventional wet method such as a large amount of residual agent disposal are solved.

しかしながら、この特許文献4の方法では、施工に必要な全ての水分を添加するためには多量の高圧圧搾空気が必要となり、ウォーターリングから高圧の圧搾空気を多量に吹き込むと、吹付け材料が均一に混練されにくくなり、しかも脈動を起こすことがある。このため緻密な施工体が得られ難い問題がある。   However, in the method of Patent Document 4, a large amount of high-pressure compressed air is required to add all the water necessary for the construction. When a large amount of high-pressure compressed air is blown from the water ring, the spray material is uniform. Kneading, and may cause pulsation. For this reason, there is a problem that it is difficult to obtain a dense construction body.

さらに、特許文献5には、耐火材料骨材、耐火性粉末、結合剤、分散剤及び急結剤を含む吹付け材料を粉末の状態で気流にのせて材料搬送管内に送り込み、材料搬送管の途中で施工水を全量注水し、その後も気流(空気)搬送し、吹付けノズルを通じて吹付ける吹付け施工方法が開示されている。そして、材料搬送管の途中で施工水を全量注水して湿潤状態になった後でも不定形耐火物組成は材料搬送管に付着するような粘性にはならず、従来の湿式吹付け施工方法と同程度の添加水分量と施工体の品質が得られるとされている。   Furthermore, in Patent Document 5, a spray material containing a refractory material aggregate, a refractory powder, a binder, a dispersant, and a quick setting agent is put in an air stream in a powder state and sent into a material transport pipe. A spraying construction method is disclosed in which the entire amount of construction water is injected in the middle, and then airflow (air) is conveyed and sprayed through a spray nozzle. And even after the entire amount of construction water is poured in the middle of the material transport pipe and becomes wet, the amorphous refractory composition does not become viscous to adhere to the material transport pipe, and the conventional wet spraying method and It is said that the same amount of added water and quality of the construction body can be obtained.

しかしながら、この方法でテストを行ったところ、単に材料搬送管の途中で施工水を全量注水しただけでは、粉末材料とくに吹付け材料中の超微粉原料に対する水のなじみが悪く、混練状態が不十分となり、リバウンドロスと発塵が多く作業性に劣ったものとなり、安定した品質の吹付け施工体が得られなくなるという欠点があることが分かった。   However, when this method was used for testing, simply irrigating the entire construction water in the middle of the material transport pipe did not allow water to become familiar to the powder material, particularly the ultrafine powder material in the spray material, and the kneading state was insufficient. As a result, the rebound loss and dust generation were large and the workability was inferior, and it was found that there was a disadvantage that a stable quality sprayed body could not be obtained.

そのため、作業性を満足させるためには、どうしても水分量を増すことになり、場所により水分量のバラツキが生じ、水分が多すぎる部位は高気孔率になり、逆に少なすぎる部位においては結合不十分となり、いずれの部位も所定の耐用性が得られなくなる問題がある。また、先端のノズル孔から離れた位置から水分を添加すると急結剤の溶解によって材料が凝集し始めるため添加水分量が増え、しかも材料搬送管の洗浄という煩雑な作業が増える問題がある。   For this reason, in order to satisfy workability, the amount of moisture is inevitably increased, and the amount of moisture varies depending on the location, where the portion having too much moisture has a high porosity, and conversely, the portion having too little moisture is not bonded. There is a problem that the sufficient durability is not obtained and the predetermined durability cannot be obtained at any part. In addition, when water is added from a position away from the nozzle hole at the tip, the material starts to aggregate due to dissolution of the quick setting agent, so that the amount of added water increases, and there is a problem that complicated work of cleaning the material transport pipe increases.

また、この特許文献5にはプレモイストとして水分を添加することも開示されているが、これは発塵防止効果を目的としたものであり、この程度の水分を添加しただけでは予備混練効果が得られない。   In addition, Patent Document 5 discloses that water is added as a premoist, but this is for the purpose of preventing dust generation. I can't get it.

そこで、上記課題を解決するために本発明者等は、PCT/JP2005/10431において、材料搬送管内を搬送される吹付け材料に2ヶ所から注水する施工方法であって、注水器から平均粒径100μm以下の微粒化水を圧縮空気とともに注水する不定形耐火物の吹付け施工方法を提案した。この方法によれば、水を平気粒径100μm以下の微粒化水として注水することで、低水分で吹付け材料を均一に湿潤化できるため、緻密な施工体が得られるという作用効果が得られる。しかしながら、例えば70kg/min程度の吹付け材料供給速度で一度に大量の吹付け施工をしようとすると、微粒化水を吹き込むための圧縮空気の量が多くなりすぎるために、リバウンドロス等が多くなりしかも緻密な施工体が得られにくくなる問題があることがわかった。
特公昭59−4194号公報 特開昭62−129166号公報 特開昭63−31562号公報 特開平10−316478号公報 特開2002−220288号公報
Therefore, in order to solve the above-mentioned problems, the present inventors, in PCT / JP2005 / 10431, are a construction method in which water is injected from two locations into a spray material transported in a material transport pipe, and the average particle size is measured from the water injector. A spraying method for an irregular refractory was proposed in which atomized water of 100 μm or less was injected together with compressed air. According to this method, by spraying water as atomized water having a plain particle size of 100 μm or less, the spray material can be uniformly moistened with low moisture, so that an effect of obtaining a dense construction body can be obtained. . However, if a large amount of spraying is attempted at a time, for example, at a spraying material supply speed of about 70 kg / min, the amount of compressed air for blowing atomized water becomes too large, resulting in an increase in rebound loss and the like. Moreover, it has been found that there is a problem that it is difficult to obtain a dense construction body.
Japanese Patent Publication No.59-4194 JP 62-129166 A JP-A-63-31562 JP-A-10-316478 JP 2002-220288 A

本発明の課題は、水分と吹付け材料との混練効果を高め、低水分で緻密な施工体を得ることができ、しかも作業性に優れた吹付け施工方法とそれに使用する吹付け材料を提供することにある。   An object of the present invention is to provide a spraying method that improves the kneading effect of moisture and spraying material, can obtain a dense construction body with low moisture content, and is excellent in workability, and a spraying material used therefor There is to do.

本発明は、材料搬送管内を搬送される吹付け材料に対して注水器から施工水を注水して吹付ける不定形耐火物の吹付け施工方法であって、材料搬送管内へ注水器から平均粒径100μm以下の気泡を0.1〜30体積%含有する施工水を、材料搬送方向に対して30〜70度傾斜し、材料搬送管内のほぼ中心で衝突するように注水し、平均粒径100μm以下の微粒化水を発生させることを特徴とする不定形耐火物の吹付け施工方法である。   The present invention is a method for spraying an irregular refractory material in which construction water is injected from a water injector and sprayed onto a spray material transported in a material transport pipe, and the average particle from the water injector is injected into the material transport pipe. The construction water containing 0.1 to 30% by volume of bubbles having a diameter of 100 μm or less is poured so as to incline at 30 to 70 degrees with respect to the material transport direction and collide almost at the center in the material transport pipe, and the average particle size is 100 μm. It is a spray construction method for an amorphous refractory characterized by generating the following atomized water.

本発明では、空気を平均粒径100μm以下の気泡として含有する施工水を材料搬送管内に注水することで、従来の水のみを添加する場合と比較して低水分で緻密な施工体が得られることがわかった。この理由は、水流が衝突して微粒化水になる場合に、水中に微細な気泡を多く均一に含んでいるために衝突時に水が小さな粒子に分離しやすく、より微細な微粒化水が発生することで吹付け材料をより均一湿潤することができるためではないかと推定する。   In the present invention, the construction water containing air as air bubbles having an average particle size of 100 μm or less is poured into the material transport pipe, so that a dense construction body with low moisture can be obtained as compared with the case of adding only conventional water. I understood it. The reason for this is that when the water stream collides to become atomized water, the water contains many fine bubbles uniformly in the water, so that the water can be easily separated into small particles at the time of collision, and finer atomized water is generated. It is estimated that the spray material can be moistened more uniformly.

また、圧縮空気によって微粒化水を注水する場合と比較すると、大量の吹付け施工をしても、リバウンドロス等が少なくしかも緻密な施工体が得られる効果も得られる。これは、注水するために圧縮空気を必要としないにもかかわらず、微粒化水を吹き込む場合と同等な大きさの微粒化水が発生するためと考える。   Moreover, compared with the case where the atomized water is injected with compressed air, even when a large amount of spraying is performed, the effect of obtaining a dense construction body with little rebound loss and the like can be obtained. This is considered to be because atomized water having the same size as that in the case of blowing in atomized water is generated even though compressed air is not required for water injection.

気泡の大きさは、平均粒径が100μm以下と小さいため水中に均一に分散した状態で含有することができ、しかも水流どうしあるいは吹付け材料と衝突した時に微細な微粒化水を発生しやすい。気泡の大きさが、平均粒径が100μmより大きな場合には、混練効果が悪く良好な施工体とするために多くの施工水が必要となる。気泡のより好ましい大きさは、平均粒径が50μm以下である。   Since the average particle diameter is as small as 100 μm or less, the size of the bubbles can be contained in a state of being uniformly dispersed in water, and it is easy to generate fine atomized water when colliding with water streams or spraying materials. When the size of the bubbles is larger than the average particle size of 100 μm, a large amount of construction water is required to obtain a good construction body with a poor kneading effect. A more preferable size of the bubbles is an average particle size of 50 μm or less.

そして気泡の施工水への含有率は、低水分で均一な混練効果を得るために0.1〜30体積%とする。好ましくは1〜20体積%である。0.1体積%未満では低水分で均一に混練されにくく、30体積%を超えると吹付け施工時に脈動が発生しやすくなったり、発塵が多くなったりする。   And the content rate to the construction water of a bubble shall be 0.1-30 volume% in order to acquire the uniform kneading | mixing effect with low moisture. Preferably it is 1-20 volume%. If it is less than 0.1% by volume, it is difficult to knead uniformly with low moisture, and if it exceeds 30% by volume, pulsation is likely to occur during spraying, and dust generation increases.

このようにして発生させる微粒化水はその平均粒径が100μm以下となるようにする。本発明において、平均粒径が100μm以下の微粒化水は、吹付け材料を供給せず材料の搬送用空気のみを供給した状態で施工水を注水した時に、発生していれば良い。実際の吹付け施工においては、吹付け材料が搬送されており、水流どうしの衝突に加えて材料と施工水との衝突によっても、100μm以下の微粒化水が発生していると推定する。このように、材料搬送管内で微粒化水が発生するので、水の比表面積が大きくなり、従来の水の添加方法と比較して格段に吹付け材料を均一に湿潤させることができるため、材料搬送管内を高速で移動する吹付け材料の粉末に対しても短時間でより高い混練効果が得られる。特に微細な原料粉末に対するより均一な湿潤化の効果が大きい。その結果、低水分で緻密な施工体が得られる。また、微粒化水と共に圧縮空気は吹き込まないので、吹付け量が多くなっても圧縮空気量の増大に伴うリバウンドロス等の問題が発生することもない。   The atomized water generated in this way has an average particle size of 100 μm or less. In the present invention, the atomized water having an average particle size of 100 μm or less may be generated when the construction water is poured in a state where only the air for conveying the material is supplied without supplying the spray material. In actual spraying construction, the spraying material is transported, and it is estimated that atomized water of 100 μm or less is generated not only by collision between water streams but also by collision between the material and construction water. In this way, since the atomized water is generated in the material conveying pipe, the specific surface area of water is increased, and the spray material can be remarkably uniformly wet compared with the conventional water addition method. A higher kneading effect can be obtained in a short time even for the powder of the spray material that moves at high speed in the transport pipe. In particular, the effect of more uniform wetting on the fine raw material powder is great. As a result, a dense construction body with low moisture can be obtained. Further, since the compressed air is not blown together with the atomized water, problems such as rebound loss due to an increase in the amount of compressed air do not occur even if the amount of spraying increases.

この微粒化水は、上述のとおり平均粒径が100μm以下となるようにし、好ましくは70μm以下、さらに好ましくは5〜50μmとなるようにする。この平均粒径はレーザードップラー法によって測定することができる。微粒化水の平均粒径が100μmより大きな場合には、水の比表面積が小さくなり吹付け材料が均一に湿潤されにくくなり、混練された吹付け材料の場所による水分量にバラツキが発生してくる。その結果、良好な作業性を持つ吹付け材料とするためには施工水分が増えてしまう。   As described above, the atomized water has an average particle size of 100 μm or less, preferably 70 μm or less, and more preferably 5 to 50 μm. This average particle diameter can be measured by a laser Doppler method. When the average particle size of the atomized water is larger than 100 μm, the specific surface area of water becomes small and the spray material becomes difficult to be uniformly moistened, and the water content varies depending on the location of the kneaded spray material. come. As a result, construction moisture increases in order to obtain a spray material with good workability.

そして、水流の流速は速い方が、水流どうしの衝突あるいは水流と吹付け材料との衝突によってより小さな微粒化水を発生しやすくなり、低水分で混練することができる。また吹付け材料の攪拌効果もより大きくなる。このため水流の流速は、7m/s以上(s:秒)が好ましく、より好ましくは10m/s以上、さらに好ましくは15m/s以上である。水流が7m/s未満では、微細な微粒化水が得られにくく低水分で混練しにくくなる。ここで、本発明で言う水流の流速とは、注水器への水の単位時間当たりの供給量と注水口の内孔断面積とから計算される値である。なお、水流の流速の上限は50m/s以下とすることで十分細かい微粒化水が得られる。50m/sを超えると水圧が高くなり注水器や配管が高耐圧仕様となり高価になる割には、低水分化の効果が小さく実用的でない。   When the flow velocity of the water flow is higher, smaller atomized water is more likely to be generated due to the collision between the water flows or the collision between the water flow and the spray material, so that the water can be kneaded with low moisture. Moreover, the stirring effect of the spray material is further increased. For this reason, the flow velocity of the water flow is preferably 7 m / s or more (s: second), more preferably 10 m / s or more, and further preferably 15 m / s or more. When the water flow is less than 7 m / s, it is difficult to obtain fine atomized water, and it becomes difficult to knead with low moisture. Here, the flow velocity of the water flow referred to in the present invention is a value calculated from the amount of water supplied to the water injector per unit time and the cross-sectional area of the inner hole of the water inlet. In addition, sufficiently fine atomized water can be obtained by setting the upper limit of the flow velocity of the water flow to 50 m / s or less. If the pressure exceeds 50 m / s, the water pressure becomes high, and the water injector and the piping have a high pressure resistance specification and become expensive, but the effect of reducing moisture is small and impractical.

また、本発明においては注水器の注水口は断面が円形の複数の貫通孔とすることができる。この内径は0.4mm以上2mm以下、水圧は0.4Mpa以上5Mpa以下とすることが好ましい。注水口の内径が0.4mm未満では吹付け材料が詰まりやすくなり、2mmを超えると水流の直径が大きくなりすぎて微粒化水が大きくなりやすく均一な混練効果が得られにくくなる。注水口のより好ましい内径は、0.6mm以上1.5mm以下である。一方、水圧は0.4Mpa未満では、水流の流速が遅くなり良好な微粒化水が得られにくく混練効果が低下し、5Mpaを超えると水分過多になり易くなる。水圧のより好ましい範囲は、0.6Mpa以上3Mpa以下である。   In the present invention, the water inlet of the water injector can be a plurality of through holes having a circular cross section. The inner diameter is preferably 0.4 mm or more and 2 mm or less, and the water pressure is preferably 0.4 Mpa or more and 5 Mpa or less. If the inner diameter of the water injection port is less than 0.4 mm, the spray material is likely to be clogged, and if it exceeds 2 mm, the diameter of the water flow becomes too large and the atomized water tends to increase, making it difficult to obtain a uniform kneading effect. A more preferable inner diameter of the water inlet is 0.6 mm or more and 1.5 mm or less. On the other hand, if the water pressure is less than 0.4 Mpa, the flow rate of the water flow becomes slow, and it is difficult to obtain good atomized water, and the kneading effect is reduced. If the water pressure exceeds 5 Mpa, the water tends to be excessive. A more preferable range of the water pressure is 0.6 Mpa or more and 3 Mpa or less.

さらに、注水器から微粒化水を噴霧注水するための注水口は、円周方向に長いスリットとすることもできる。スリットの場合には、注水口から噴霧される水が面状に材料搬送管内に注水されるため、笠状の水流あるいは噴霧が形成されやすくしかも微粒化水と吹付け材料中の原料粒子との接触頻度を高くすることができる。さらにスリットにすると吹付け材料が詰まりにくい。スリットは、注水器の内孔面の円周方向に複数設けても良いし、連続した1本のスリットでも良い。そのスリットの開口部の幅は、平均粒径100μm以下の微粒化水を発生させる点から0.1〜1mmが好ましい。0.1mm未満ではスリットが吹付け材料により詰まりやすくなり、1mmを超えると平均粒径100μm以下の微粒化水が発生しにくくなる。   Further, the water injection port for spraying the atomized water from the water injector can be a slit that is long in the circumferential direction. In the case of the slit, since the water sprayed from the water injection port is poured into the material transport pipe in a planar shape, it is easy to form a cap-shaped water flow or spray, and the atomized water and the raw material particles in the spray material The contact frequency can be increased. Furthermore, if it is made into a slit, it will be hard to clog spray material. A plurality of slits may be provided in the circumferential direction of the inner hole surface of the water injector, or one continuous slit may be used. The width of the opening of the slit is preferably 0.1 to 1 mm from the viewpoint of generating atomized water having an average particle size of 100 μm or less. If it is less than 0.1 mm, the slit is easily clogged with the spray material, and if it exceeds 1 mm, atomized water having an average particle diameter of 100 μm or less is hardly generated.

本発明においては、材料搬送管において上流側に1次注水器と下流側に2次注水器とを設けて2ヶ所から注水し、1次注水器からは全施工水の10〜50質量%の施工水を注水し、2次注水器から施工に必要な残りの施工水を注水するに際して、少なくとも1次注水器から前記のうちいずれかの方法で注水することができる。また、この1次注水器から注水する水にはあらかじめ分散剤あるいは結合剤を添加しておくこともできる。あらかじめ分散剤を溶解しておけば、分散剤を粉末として最初から混合する場合と比較して水に早く溶解するので、より低水分化となる。   In the present invention, in the material conveying pipe, a primary water injector is provided on the upstream side and a secondary water injector is provided on the downstream side, and water is injected from two locations. When the construction water is poured and the remaining construction water necessary for the construction is poured from the secondary water feeder, the water can be poured from at least the primary water feeder by any one of the above methods. Further, a dispersant or a binder can be added in advance to the water to be injected from the primary water injector. If the dispersant is dissolved in advance, it dissolves faster in water than in the case where the dispersant is mixed as a powder from the beginning, resulting in a lower moisture content.

この1次注水器による吹付け材料の混練状態は、粉体、水及び空気のそれぞれが連続した状態すなわちFunicular域を目指している。このFunicular域とは、「混練技術」、橋本健次著、昭和53年10月5日、産業技術センター発行に記載されており、粉体、液体及び気体の混練状態をさらに細かく分類した一つの状態であり、粉体に対して液体が十分コーティングされた状態であるが、気体が連続しているため、見た感じはバサバサの状態にあることを意味する。具体的には、スラリーになる一歩手前の段階であり混練物を手で握ると固まるが、直ぐにまたほぐれるような状態である。通常分散剤を含む不定形耐火物は、水を少しずつ添加しながら混練してゆくと最初の内は水を添加してもほとんど変化がないが、あるとき急激に軟化しスラリーになる水分添加量がある。本発明の1次注水器での施工水の添加量は、この急激に軟化する直前の水分添加量を目標としている。この状態は、タップフロー試験でも混練物がほとんど広がらない状態つまり100〜110mmの範囲でもある。本発明においては、使用する耐火原料、急結剤、分散剤あるいは結合剤の種類、粒度及び添加量等によって1次注水量が異なるが、水分添加量の目安はこのタップフロー値の範囲も目安とすることができる。つまり水分が少なすぎても多すぎてもタップフロー値は広がるが、その中間の状態である。   The kneading state of the spray material by the primary water injector aims at a state in which powder, water and air are continuous, that is, a Funicular region. The Funicular region is described in “Kneading Technology”, written by Kenji Hashimoto, published on October 5, 1978, by the Industrial Technology Center, and is a state that further categorizes powder, liquid and gas kneading states. It is a state where the liquid is sufficiently coated on the powder, but since the gas is continuous, the feeling that it is seen means that it is in a state of lumpyness. Specifically, it is a stage one step before becoming a slurry, and when the kneaded product is grasped by hand, it is solidified, but it is in a state where it is immediately unraveled. In general, irregular refractories containing dispersants are kneaded while adding water little by little, but at the beginning there is almost no change even when water is added. There is a quantity. The amount of construction water added in the primary water injector of the present invention is targeted at the amount of water added immediately before this sudden softening. This state is also a state where the kneaded material hardly spreads in the tap flow test, that is, a range of 100 to 110 mm. In the present invention, the amount of primary water injection varies depending on the type of refractory raw material, rapid setting agent, dispersant or binder used, particle size, amount added, etc., but the amount of water added is also a guideline for this tap flow value range. It can be. In other words, the tap flow value increases even if there is too little or too much moisture, but it is an intermediate state.

さらにミクロ的には、粒径75μm以下の原料粒子はもともと粉末状態ではいくつかの原料粒子が集まった小さな2次粒子の形になっているが、本発明の1次注水器で注水する場合では原料粒子がこの2次粒子の形を保持した状態で微粒化水によって湿潤された状態になると考えられる。この2次粒子の中には粒径75μmより大きな原料粒子が核として存在することもある。そして本発明では、平均粒径が100μm以下と極めて小さな微粒化水が発生する条件で注水するため、1つの2次粒子に対する水分量がスラリーになる量より少ない値、あるいはスラリーになっても高粘性な値になっていると考えられる。このため搬送中に2次粒子どうしが合体しても、スラリーにはなりにくいと考えている。そして材料の搬送中において、2次粒子同士、2次粒子と75μm以上の粒子、あるいは2次粒子と材料搬送管内面等の衝突によってさらに混練効果が加わると考える。   Furthermore, microscopically, the raw material particles having a particle size of 75 μm or less are originally in the form of small secondary particles in which some raw material particles are gathered in the powder state, but in the case of water injection with the primary water injector of the present invention, It is considered that the raw material particles are wetted by the atomized water while maintaining the shape of the secondary particles. In the secondary particles, raw material particles having a particle size larger than 75 μm may exist as nuclei. In the present invention, since water is injected under the condition that the average particle size is 100 μm or less and very small atomized water is generated, the amount of water for one secondary particle is less than the amount of slurry or high even if the slurry is formed. It is considered to be a viscous value. For this reason, even if the secondary particles coalesce during conveyance, it is considered that it is difficult to form a slurry. Further, during the conveyance of the material, it is considered that the kneading effect is further added by the collision between the secondary particles, the secondary particles and particles of 75 μm or more, or the secondary particles and the inner surface of the material conveyance tube.

その結果、低水分で混練効果が優れた混練物となり、2次注水器で必要最小限の水分量で施工可能となる。したがって、従来の乾式吹付け施工法と比較して極めて少ない水分添加量で作業性に優れた混練物が得られることになる。さらに、材料搬送管内では、このため吹付け材料がスラリー状態にならないため、途中で詰まったりすることがないので、材料搬送管を長くすることができ、例えば、30m以上の長い距離を搬送することも可能となる。しかも材料搬送管内に付着堆積することもないので洗浄の手間が掛からない。   As a result, a kneaded product having a low moisture content and an excellent kneading effect is obtained, and can be constructed with a minimum amount of moisture in a secondary water injector. Therefore, a kneaded material excellent in workability can be obtained with an extremely small amount of added water as compared with the conventional dry spraying method. Furthermore, since the spray material does not become a slurry state in the material conveying pipe, it is not clogged in the middle, so the material conveying pipe can be lengthened, for example, conveying a long distance of 30 m or more. Is also possible. In addition, since it does not adhere and accumulate in the material transfer tube, it does not require time for cleaning.

一方、平均粒径が100μmよりも大きな微粒化水ではこの2次粒子を湿潤化したときに、一つの2次粒子に対する水分量が多すぎて2次粒子をスラリー化してしまう頻度が高くなると考えられる。前述のように、ほんの少しの水分含有率の差によってスラリー化(解こう)が生じる。したがって、搬送中に水分が過剰な2次粒子と水分が適量の2次粒子とが衝突した場合にはスラリーが合体成長する。その結果、搬送材料中には局部的にスラリーが生成してしまうことになる。そして吹付け材料は不均一な混合物となり混練効果が低下し、しかもスラリーは材料搬送管内に付着することになると推定される。   On the other hand, in the case of atomized water having an average particle size larger than 100 μm, when the secondary particles are wetted, the amount of water with respect to one secondary particle is too much and the frequency of slurrying the secondary particles is considered to be high. It is done. As mentioned above, a slight difference in the water content causes slurrying (plowing). Therefore, when secondary particles having excessive moisture collide with secondary particles having an appropriate amount of moisture during conveyance, the slurry grows in a combined manner. As a result, slurry is locally generated in the conveying material. It is estimated that the spray material becomes a non-uniform mixture and the kneading effect is reduced, and the slurry adheres to the material conveying pipe.

1次注水器による水分の添加量が、吹付けに必要な水分量の10質量%未満の場合には、吹付け材料に対して水分量が少ないため、搬送中に吹付け材料を均一な湿潤状態にすることができない。その結果、2次注水器での添加水分量をその分だけ増やすことになり、十分な混練状態にない吹付け材が吹付けられ、施工体の品質が低下する。また、50質量%を超えると、搬送中に混練された吹付け材料中に水分が多量に存在するようになるため、混練物が材料搬送管内に付着する現象が発生する。   When the amount of water added by the primary water dispenser is less than 10% by mass of the amount of water necessary for spraying, the amount of water is small relative to the spray material, so the spray material is evenly moistened during transportation. Cannot be in a state. As a result, the amount of added water in the secondary water injector is increased by that amount, and a spray material that is not in a sufficiently kneaded state is sprayed, resulting in a deterioration in the quality of the construction body. On the other hand, if the amount exceeds 50% by mass, a large amount of moisture is present in the spray material kneaded during conveyance, so that a phenomenon that the kneaded material adheres to the material conveyance tube occurs.

さらに、この均一に湿潤し混練された吹付け材料に対して2次注水器から残りの施工水を添加するが、より好ましくは平均粒径100μm以下の微粒化水を発生させるようにする。平均粒径100μm以下の微粒化水とすることで、前述のように搬送中の吹付け材料に対して、より均一に湿潤することができるので高い混練効果が得られる。このため、従来の乾式施工方法と比較してよりもはるかに少ない水分量で高い混練効果が得られ、これによってリバウンドロスが少なく付着率の高い緻密な施工体を得ることができる。   Further, the remaining construction water is added from the secondary water dispenser to the uniformly wetted and kneaded spray material, and more preferably atomized water having an average particle size of 100 μm or less is generated. By using atomized water having an average particle size of 100 μm or less, it is possible to wet the spray material being conveyed more uniformly as described above, so that a high kneading effect is obtained. For this reason, a high kneading effect can be obtained with a much smaller amount of water than in the conventional dry construction method, whereby a dense construction body with little rebound loss and high adhesion rate can be obtained.

また、2次注水器は、先端吹付けノズルの直前に設けることが好ましい。直前に設けることで材料搬送管の洗浄の手間を低減し、しかも先端吹付けノズル内での混練効果が得られる。なお、吹付けノズルの直前とは、必ずしも吹付けノズルと注水器を別々に設置することではなく、吹付けノズル自体に2次注水器を取り付けても良いし、吹付けノズルと一体化したものでも構わない。   The secondary water injector is preferably provided immediately before the tip spray nozzle. By providing it immediately before, it is possible to reduce the time and effort of cleaning the material conveying pipe and to obtain a kneading effect in the tip spray nozzle. Note that the term “immediately before the spray nozzle” does not necessarily mean that the spray nozzle and the water injector are installed separately, but a secondary water injector may be attached to the spray nozzle itself, or it is integrated with the spray nozzle. It doesn't matter.

また、この2次注水器から、急結剤を水に添加して噴霧注水することもできる。急結剤を水に添加して入れることで、急結剤が湿潤した吹付け材料中へより早く拡散することができ、反応性が高まり付着率が向上する。   Further, from this secondary water injector, the quick setting agent can be added to water and sprayed. By adding the quick-setting agent to water, the quick-setting agent can diffuse more quickly into the wet spraying material, and the reactivity is increased and the adhesion rate is improved.

本発明においては材料搬送管の2次注水器の近くに混合器を設けるとより混練効果が向上する。これは、1次注水器からの注水によって湿潤された吹付け材料が材料搬送管内を搬送されるときに、特に材料搬送管が長い場合には粗粒原料と微粉部とが分離しセグレが発生することがある。このセグレをもとに戻すために、混合器を設ける。この混合器によってバラツキのない緻密な施工体が得られる。混合器としては、スタティックミキサー等の一般的な混合器を設けることができるが、より好ましくは内径を絞った混合管である。内径を絞るという簡単な構造であり、材料の詰りが無いことからより好ましい。混合管の内径dは材料搬送管の内径Dに対して、0.5D以上0.9D未満が好ましい。   In the present invention, the kneading effect is further improved by providing a mixer near the secondary water injector of the material transport pipe. This is because when the spray material wetted by water injection from the primary water injector is transported in the material transport pipe, especially when the material transport pipe is long, the coarse raw material and the fine powder part are separated and segregation occurs. There are things to do. In order to restore this segle, a mixer is provided. With this mixer, a dense construction body without variations can be obtained. As the mixer, a general mixer such as a static mixer can be provided, but a mixing tube with a narrowed inner diameter is more preferable. A simple structure in which the inner diameter is reduced is preferable because there is no clogging of the material. The inner diameter d of the mixing tube is preferably 0.5D or more and less than 0.9D with respect to the inner diameter D of the material conveying tube.

本発明の施工方法に適用できる吹付け材料としては、従来の湿式吹付け材や乾式吹付け材のどちらでも問題なく使用することができる。従来の湿式吹付け材を使用した場合には、混練するためのミキサーが不要でしかも作業後に材料搬送管を洗浄する手間も要することがないので格段に作業性に優れる施工方法となる。しかも従来の湿式施工方法と同等クラスの添加水分で緻密な施工体が得られる。また従来の乾式吹付け材を適用した場合には、より低水分で緻密な施工体を得ることができる。例えば、鉄鋼業においては、取鍋や転炉用のマグネシア材質吹付け材、転炉用のマグネシア−カルシア材質吹付け材やマグネシア−カーボン質吹付け材、樋用のアルミナ−炭化ケイ素材質吹付け材、及び取鍋用のアルミナ−マグネシア材質吹付け材等を使用することができる。このとき、あらかじめ水に急結剤や分散剤等を溶解した施工水を微粒化水として使用することも可能である。   As a spraying material applicable to the construction method of the present invention, either a conventional wet spraying material or a dry spraying material can be used without any problem. When a conventional wet spraying material is used, a mixer for kneading is not required, and it is not necessary to clean the material conveying pipe after the operation, so that the construction method is remarkably excellent in workability. In addition, a dense construction body can be obtained with the same amount of added moisture as in the conventional wet construction method. Moreover, when the conventional dry-type spraying material is applied, a dense construction body with lower moisture can be obtained. For example, in the iron and steel industry, magnesia material spraying material for ladle and converter, magnesia-calcia material spraying material or magnesia-carbonaceous spraying material for converter, alumina-silicon carbide material spraying for firewood An alumina-magnesia material spraying material for ladle and ladle can be used. At this time, it is also possible to use construction water obtained by dissolving a quick setting agent, a dispersing agent and the like in water as atomized water.

なかでも吹付け材料が、粒径75μm以下の炭化ケイ素を5〜30質量%含むアルミナ−炭化ケイ素質不定形耐火物である場合には、低水分で施工することができる。アルミナ−炭化ケイ素質不定形耐火物を構成する炭化ケイ素は、多孔質でしかも水に濡れ難い原料であり、これがアルミナ−炭化ケイ素質不定形耐火物と施工水との馴じみの悪さの原因である。本発明では施工水を、平均粒径100μm以下の微粒化水とすることにより、炭化ケイ素の多孔質組織に微粒化水が挟入する。また、耐火原料組成に占める粒径75μm以下の炭化ケイ素微粉の割合を5〜30質量%としたことで、この炭化ケイ素微粉が不定形耐火物のマトリックスに微粒化水を封じ込める。すなわち、本発明によれば、この炭化ケイ素の多孔質組織への微粒化水の挟入と、炭化ケイ素微粉によるマトリックスへの微粒化水の封じ込めによって、炭化ケイ素に対する施工水の濡れ難さが緩和される。その結果、1次注水箇所で微粒化水が添加された不定形耐火物は吹付けノズルに到達するまでの間の混和が促進され、均一且つ緻密な施工体組織を得ることができる。   In particular, when the spray material is an alumina-silicon carbide amorphous refractory containing 5 to 30% by mass of silicon carbide having a particle size of 75 μm or less, it can be applied with low moisture. Silicon carbide that constitutes the alumina-silicon carbide amorphous refractory is a porous material that is difficult to wet with water, and this is the cause of the unfamiliarity between the alumina-silicon carbide amorphous refractory and construction water. is there. In the present invention, the construction water is atomized water having an average particle size of 100 μm or less, so that the atomized water is inserted into the porous structure of silicon carbide. Moreover, the ratio of the silicon carbide fine powder having a particle size of 75 μm or less in the refractory raw material composition is 5 to 30% by mass, so that the silicon carbide fine powder can contain the atomized water in the matrix of the amorphous refractory. That is, according to the present invention, the difficulty of wetting the construction water with respect to silicon carbide is mitigated by the insertion of atomized water into the porous structure of silicon carbide and the containment of atomized water in the matrix with silicon carbide fine powder. Is done. As a result, the amorphous refractory to which atomized water is added at the primary water injection point is promoted to mix until reaching the spray nozzle, and a uniform and dense construction body structure can be obtained.

さらに吹付け材料が、マグネシア微粉を1〜30質量%含み、残部がアルミナを主体とするアルミナ−マグネシア質不定形耐火物である場合には、より耐用性を向上させる効果がある。一般的にアルミナ−マグネシア質不定形耐火物において耐火物原料組成の一部を占めるマグネシアは、施工水分との反応で消化し、耐火物組織をぜい弱化させて施工体の強度低下の原因となる。本発明では前述したように不定形耐火物が施工水分と長時間の接触がないこと、さらに施工水量の低減化が可能となって、アルミナ−マグネシア質不定形耐火物におけるマグネシアの消化が抑制され、吹付け施工体の強度が向上する。また、施工水量の低減化によって不定形耐火物の施工体組織が緻密化する。この組織の緻密化は、アルミナ−マグネシア質不定形耐火物におけるアルミナ粒子とマグネシア粒子との接触面積を大きくし、吹付け施工体使用時の高温下においてアルミナとマグネシアとの反応によるスピネル生成が促進される。このスピネルの生成は、スピネル自身の耐スラグ性と共にスピネルボンド組織形成による強度付与の効果を持つ。   Furthermore, when the spray material contains 1 to 30% by mass of magnesia fine powder and the remainder is an alumina-magnesia amorphous refractory mainly composed of alumina, there is an effect of further improving the durability. In general, magnesia, which occupies a part of the refractory raw material composition in alumina-magnesia amorphous refractories, digests by reaction with construction moisture, weakens the refractory structure and causes a decrease in strength of the construction body. . In the present invention, as described above, the amorphous refractory has no contact with construction moisture for a long time, and the amount of construction water can be reduced, and digestion of magnesia in the alumina-magnesia amorphous refractory is suppressed. The strength of the spray construction body is improved. In addition, the construction body structure of the irregular refractory is densified by reducing the amount of construction water. This densification of the structure increases the contact area between alumina particles and magnesia particles in alumina-magnesia amorphous refractories, and promotes the formation of spinel due to the reaction between alumina and magnesia at high temperatures when using a sprayed body. Is done. The generation of this spinel has the effect of imparting strength by forming a spinel bond structure together with the slag resistance of the spinel itself.

耐火原料組成に占めるマグネシア微粉の割合は、1質量%未満ではマグネシアのもつ耐食性の効果が得られず、しかもアルミナとの反応によるスピネル生成量が少なくなって耐スラグ性の効果が不十分となる。30質量%を超えると、不定形耐火物施工体が使用時の熱間において、スピネル生成反応が不十分なマグネシア微粉の割合が増えるためか、スラグ浸潤層が厚くなって構造的スポーリングが原因した耐用性の低下を招く。マグネシア微粉の具体的な粒径は、アルミナとの反応性を向上させるためにJIS標準ふるいをもって、例えば1mm以下とする。さらに好ましくは150μm以下である。さらに75μm以下といった微細粒でもよい。   If the proportion of the magnesia fine powder in the composition of the refractory raw material is less than 1% by mass, the effect of the corrosion resistance of magnesia cannot be obtained, and the amount of spinel produced by the reaction with alumina is reduced and the effect of the slag resistance becomes insufficient. . If it exceeds 30% by mass, the proportion of magnesia fine powder with insufficient spinel formation reaction will increase during the use of the irregular refractory construction body, or the slag infiltrating layer will become thick and cause structural spalling Cause a decrease in durability. The specific particle size of the magnesia fine powder is, for example, 1 mm or less with a JIS standard sieve in order to improve the reactivity with alumina. More preferably, it is 150 μm or less. Further, fine particles such as 75 μm or less may be used.

一方、吹付け材料を施工温度で大別すると、冷温間用吹付け材と熱間吹付け材とに分けることができる。冷温間付け材は、新たな窯炉のライニングあるいは大掛かりな補修に使用され、窯炉等の温度は常温から600℃以下の範囲で行われ、施工後の養生時間中に水和反応が進行して結合組織が生成する。これに対して、熱間吹付け材は、操業中に小規模な補修を目的に行われるため、窯炉を冷やすことなく補修作業を行うので窯炉等の温度が600℃以上の高温での作業となる。施工直後の水分の蒸発と結合剤の重合もしくは縮合反応等によって急激に結合組織が生成する。   On the other hand, when the spray material is roughly classified according to the construction temperature, it can be divided into a cold spray material and a hot spray material. Cold and warm materials are used for new kiln lining or large-scale repairs, and the temperature of kilns and the like is kept in the range from room temperature to 600 ° C, and the hydration reaction proceeds during the curing time after construction. Connective tissue is generated. On the other hand, since the hot spray material is used for the purpose of small-scale repair during operation, the repair work is performed without cooling the kiln, so the temperature of the kiln or the like is 600 ° C or higher. It becomes work. A connective tissue is rapidly formed by evaporation of water immediately after construction and polymerization or condensation reaction of the binder.

600℃以下の温度で施工される冷温間吹付け材料としては、耐火原料粉末に対してアルミナセメント、マグネシアセメント、リン酸塩またはケイ酸塩のうち1種からなる結合剤と、急結剤と、分散剤と、繊維とを添加し混合してなる配合組成物であって、耐火原料粉末中に粒径75μm未満の原料を25〜60質量%含有し、しかもこのうち10μm未満の原料/75μm未満10μm以上の原料の質量比が0.25〜0.7である吹付け材料を使用することで、低水分で混練することができ緻密な施工体が得られる。   As a cold and warm spraying material constructed at a temperature of 600 ° C. or less, a binder composed of one kind of alumina cement, magnesia cement, phosphate or silicate with respect to the refractory raw material powder, a rapid setting agent, A blended composition obtained by adding and mixing a dispersant and fibers, containing 25-60 mass% of a raw material having a particle size of less than 75 μm in the refractory raw material powder, and of these, a raw material having a particle size of less than 10 μm / 75 μm By using a spray material in which the mass ratio of the raw material of less than 10 μm is 0.25 to 0.7, kneading can be performed with low moisture, and a dense construction body can be obtained.

本発明の施工方法において1次注水器を通過した後の材料は、前述のように、粉末状態の2次粒子の単位でそれぞれが分散し均一に湿潤された状態になっていると考えている。この2次粒子には、急結剤、分散剤及び結合剤が含有されているがその添加量は少なく、製造時に他の耐火原料粉末と均一に混合されているのでお互いに接触する頻度は極め低い。このため急結剤、分散剤及び結合剤のほとんどは、その効果を失効することなく2次粒子粒に存在していると考えられる。このため、材料が搬送されている間に急結剤や分散剤が水中に溶解して広範囲に拡散することがほとんどない。したがって材料が凝集しないので、水分量が増えることもない。このため、急結剤を先端部で別に添加する必要がなく、急結剤の添加量の管理や材料搬送管の洗浄という煩雑な作業も不要となる。しかも低水分で緻密な施工体が得られる。   In the construction method of the present invention, as described above, the material after passing through the primary water injector is considered to be in a state of being dispersed and uniformly wet in units of secondary particles in a powder state. . These secondary particles contain a quick-setting agent, a dispersing agent and a binder, but the amount added is small, and they are uniformly mixed with other refractory raw material powders at the time of manufacture, so the frequency of contact with each other is extremely high. Low. For this reason, it is considered that most of the quick setting agent, the dispersing agent and the binder are present in the secondary particles without losing its effect. For this reason, the quick setting agent and the dispersant are hardly dissolved in water and diffused in a wide range while the material is being conveyed. Therefore, since the material does not aggregate, the amount of water does not increase. For this reason, it is not necessary to add the quick setting agent separately at the tip portion, and the complicated work of managing the addition amount of the quick setting agent and cleaning the material transport pipe is also unnecessary. In addition, a dense construction body with low moisture can be obtained.

ただし本発明では施工水を100μm以下の微粒化水が発生する条件で添加しているため、湿潤効果が非常に高く、このため、急結剤、分散剤及び結合剤の溶解拡散を抑制しながら効果的に施工水を添加するには、比表面積の大きな10μm未満の超微粉原料が有効であり、しかも75μm未満10μm以上の原料とのバランスが重要である。すなわち10μm未満の原料/75μm未満10μm以上の原料の質量比が0.25〜0.7の範囲であることが好ましく、さらに0.30〜0.60の範囲がより緻密な施工体が得られることからより好ましい。0.25未満では凝集傾向になり施工水分が多くなり、0.7を超えると粉体が材料搬送管内に付着し易くなる。   However, in the present invention, since the construction water is added under the condition that atomized water of 100 μm or less is generated, the wetting effect is very high. For this reason, while suppressing the dissolution and diffusion of the quick setting agent, the dispersing agent and the binder, In order to effectively add construction water, an ultrafine raw material having a large specific surface area of less than 10 μm is effective, and a balance with a raw material of less than 75 μm and 10 μm or more is important. That is, the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is preferably in the range of 0.25 to 0.7, and further in the range of 0.30 to 0.60, a denser construction body can be obtained. This is more preferable. If it is less than 0.25, it tends to agglomerate and the construction moisture increases, and if it exceeds 0.7, the powder tends to adhere to the material conveying tube.

また75μm未満の原料の使用量は、25質量%未満では、緻密な施工体が得られにくく、60質量%を超えると施工体の耐用性が低下する。   Moreover, if the usage-amount of the raw material less than 75 micrometers is less than 25 mass%, a precise construction body will be hard to be obtained, and when it exceeds 60 mass%, the durability of a construction body will fall.

一方、この冷温間吹付け材料に繊維を添加しておくとより材料搬送管内へ材料が付着しにくくなる効果がある。この理由は、繊維の添加によって搬送中の材料が空気を多く含んだ、かさの低い塊りを形成するため、空気でより搬送されやすくなり材料搬送管内の内面に付着しにくくなるためではないかと推定する。一方、施工体が緻密になるので乾燥時の爆裂対策にも有効である。   On the other hand, if fibers are added to this cold and warm spray material, there is an effect that the material is less likely to adhere to the material transport pipe. The reason for this is that the material being transported contains a lot of air due to the addition of fibers to form a bulky lump, which makes it easier to transport with air and makes it difficult to adhere to the inner surface of the material transport pipe. presume. On the other hand, since the construction body becomes dense, it is also effective as a countermeasure against explosions during drying.

さらにより好ましい冷温間吹付け材料の粒度構成は、粒径5mm以下1mm以上が20〜45質量%、粒径1mm未満75μm以上が10〜40質量%、及び粒径75μm未満が25〜60質量%であり、しかも10μm未満の原料/75μm未満10μm以上の原料の質量比が0.25〜0.7である耐火原料粉末100質量部に対して、外掛けで結合剤としてアルミナセメント、マグネシアセメント、リン酸塩またはケイ酸塩のうち1種を1〜7質量部、急結剤を0.5〜5質量部、分散剤を0.01〜0.5質量部、及び繊維を0.05〜0.5質量部添加して混合してなる配合組成物である。   More preferably, the particle size composition of the cold and warm spray material is 20 to 45% by mass with a particle size of 5 mm or less and 1 mm or more, 10 to 40% by mass with a particle size of less than 1 mm and 75 μm or more, and 25 to 60% by mass with a particle size of less than 75 μm. Furthermore, with respect to 100 parts by mass of the refractory raw material powder having a mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more of 0.25 to 0.7, alumina cement, magnesia cement, 1-7 parts by mass of phosphate or silicate, 0.5-5 parts by mass of quick setting agent, 0.01-0.5 parts by mass of dispersant, and 0.05-0.5 of fiber It is a blended composition obtained by adding 0.5 parts by mass and mixing.

以上は、施工時の温度が600℃以下の場合であったが、600℃以上の温度で施工される熱間吹付け材料として好ましい材料は、耐火原料粉末に対して熱硬化性有機樹脂、リン酸塩またはケイ酸塩のうち1種からなる結合剤を添加し混合してなる配合組成物であって、耐火原料粉末中に粒径75μm未満の原料を10〜45質量%含有し、しかもこのうち10μm未満の原料/75μm未満10μm以上の原料の質量比が0.25〜0.7である。また、必要に応じて急結剤を添加することもできる。   The above is a case where the temperature at the time of construction is 600 ° C. or lower. However, preferable materials for the hot spraying material to be applied at a temperature of 600 ° C. or higher are thermosetting organic resin, phosphorous for the refractory raw material powder. A blended composition obtained by adding and mixing a binder consisting of one of acid salts or silicates, containing 10 to 45% by mass of a raw material having a particle size of less than 75 μm in the refractory raw material powder, Among them, the mass ratio of the raw material less than 10 μm / the raw material less than 75 μm and 10 μm or more is 0.25 to 0.7. Moreover, a quick setting agent can also be added as needed.

この熱間吹付け材料は、従来の乾式施工方法で一般的に使用されている熱硬化性有機樹脂、リン酸塩あるいはケイ酸塩を結合剤とするタイプと似ているが、微粉の構成に特徴がある。つまり、施工水を平均粒径100μm以下の微粒化水が発生する条件で添加するため、従来の湿式材料よりも75μm未満の微粉原料を10〜45質量%と多く使用することができ、その結果非常に緻密な施工体が得られるメリットがある。   This hot spray material is similar to the type that uses thermosetting organic resin, phosphate or silicate as a binder generally used in the conventional dry construction method, but in the structure of fine powder There are features. In other words, since the construction water is added under the condition that atomized water having an average particle size of 100 μm or less is generated, the fine powder raw material of less than 75 μm can be used in an amount of 10 to 45 mass% more than the conventional wet material, and as a result. There is an advantage that a very dense construction body can be obtained.

そして本発明では施工水を平均粒径が100μm以下の微粒化水が発生する条件で添加しているため、湿潤効果が非常に高く、比表面積の大きな10μm未満の超微粉原料が低水分で緻密な施工体を得るために有効であり、しかも75μm未満10μm以上の原料とのバランスが重要である。すなわち10μm未満の原料/75μm未満10μm以上の原料の質量比が0.25〜0.7の範囲であることが好ましく、さらに0.30〜0.60の範囲がより緻密な施工体が得られることからより好ましい。0.25未満では凝集傾向になり施工水分が多くなり、0.7を超えると粉体が材料搬送管内に付着し易くなる。   In the present invention, since the construction water is added under the condition that atomized water having an average particle size of 100 μm or less is generated, the wetting effect is very high, and the ultrafine powder material having a large specific surface area of less than 10 μm is dense with low moisture. It is effective to obtain a simple construction body, and balance with a raw material of less than 75 μm and 10 μm or more is important. That is, the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is preferably in the range of 0.25 to 0.7, and further in the range of 0.30 to 0.60, a denser construction body can be obtained. This is more preferable. If it is less than 0.25, it tends to agglomerate and the construction moisture increases, and if it exceeds 0.7, the powder tends to adhere to the material conveying tube.

さらに熱間吹付け材料におけるより好ましい粒度構成は、粒径5mm以下1mm以上が20〜45質量%、粒径1mm未満75μm以上が20〜45質量%、及び粒径75μm未満が10〜45質量%であり、しかも10μm未満の原料/75μm未満10μm以上の原料の質量比が0.3〜0.6である耐火原料粉末100質量部に対して外掛けで結合剤として熱硬化性有機樹脂、リン酸塩またはケイ酸塩のうち1種以上を1〜7質量部混合してなる配合組成物である。   Furthermore, the more preferable particle size constitution in the hot spray material is 20 to 45% by mass with a particle size of 5 mm or less and 1 mm or more, 20 to 45% by mass with a particle size of less than 1 mm and 75 μm or more, and 10 to 45% by mass with a particle size of less than 75 μm. In addition, the thermosetting organic resin, phosphorous as a binder on the outside with respect to 100 parts by mass of the refractory raw material powder having a mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more of 0.3 to 0.6 It is a blended composition formed by mixing 1 to 7 parts by mass of one or more of acid salts or silicates.

更に、本発明の吹付け施工方法では、常温で施工した施工体において、養生後110℃で24時間以上乾燥した後、見掛け気孔率が18〜30%、かつ通気率が100×10−5cm・cm/cm・cmHO・sec以上である吹付け材料を使用した場合にはより低水分で緻密でしかも耐爆裂性に優れた施工体を得ることができる。本発明の施工方法に適用する吹付け材料は、低水分施工を前提とした設計としているため、見掛け気孔率は低下する反面、乾燥時あるいは熱間での吹付け時に爆裂を生じ易くなる場合がある。このため、通気性を持たせた施工体とすることで爆裂を防止することができる。見掛け気孔率が18%未満では、緻密になり爆裂しやすくなり、30%を超えると耐食性が低下する。通気率が100×10−5cm・cm/cm・cmHO・sec未満では、爆裂しやすくなる。前記範囲を満足する材料は、粒度構成を最適化したり、繊維等の通気性を高める添加材を入れることで得られる。例えば、75μm以下の粒度構成を調整することにより得られ、より具体的には、10μm未満の原料/75μm未満10μm以上の原料の質量比を0.25〜0.7の範囲とすることで得ることができる。 Further, in the spray construction method of the present invention, in the construction body constructed at room temperature, after curing for 24 hours or more at 110 ° C., the apparent porosity is 18 to 30% and the air permeability is 100 × 10 −5 cm. When a spraying material of 3 · cm / cm 2 · cmH 2 O · sec or more is used, it is possible to obtain a construction body having a low moisture content and being dense and having excellent explosion resistance. The spraying material applied to the construction method of the present invention is designed on the premise of low moisture construction, so the apparent porosity is reduced, but explosion may easily occur during drying or hot spraying. is there. For this reason, an explosion can be prevented by setting it as the construction body which gave air permeability. If the apparent porosity is less than 18%, it becomes dense and tends to explode, and if it exceeds 30%, the corrosion resistance decreases. When the air permeability is less than 100 × 10 −5 cm 3 · cm / cm 2 · cmH 2 O · sec, explosion tends to occur. A material that satisfies the above range can be obtained by optimizing the particle size configuration or adding an additive that enhances air permeability such as fibers. For example, it is obtained by adjusting the particle size constitution of 75 μm or less, and more specifically, it is obtained by setting the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more in the range of 0.25 to 0.7. be able to.

本発明の吹付け材料に使用する耐火原料粉末としては、一般的な不定形耐火物に使用される耐火原料であれば問題なく使用することができる。例えば、金属酸化物、金属炭化物、金属窒化物、炭素類、金属等である。また、耐火原料粉末の最大粒径は、5mmを超えると1次注水器による注水後の搬送中に分離、セグレが生じ易くなり混練効果が低下するため、耐火原料粉末のうち粒径5mm以下の原料が90質量%以上であることがより好ましく、さらにより好ましくは、耐火原料粉末のうち粒径3mm以下の原料が90質量%以上である。   As the refractory raw material powder used for the spray material of the present invention, any refractory raw material used for general amorphous refractories can be used without any problem. For example, metal oxides, metal carbides, metal nitrides, carbons, metals and the like. In addition, if the maximum particle size of the refractory raw material powder exceeds 5 mm, separation and segle are likely to occur during conveyance after water injection by the primary water injector, and the kneading effect is reduced. More preferably, the raw material is 90% by mass or more, and even more preferably, the raw material having a particle size of 3 mm or less is 90% by mass or more in the refractory raw material powder.

冷温間吹付け材料の結合剤としては、アルミナセメント、マグネシアセメント、リン酸塩またはケイ酸塩のうち1種からなるものを使用することができるが、強度が発現しやすい点からは、アルミナセメントがより好ましい。   As a binder for the cold and warm spraying material, one of alumina cement, magnesia cement, phosphate or silicate can be used. Is more preferable.

熱間吹付け材料の結合剤としては、熱硬化性有機樹脂、リン酸塩またはケイ酸塩のうち1種以上からなるものを使用することができる。熱硬化性有機樹脂としては、フェノール樹脂やフラン樹脂を使用することができる。   As the binder for the hot spraying material, one composed of one or more of thermosetting organic resin, phosphate or silicate can be used. A phenol resin or a furan resin can be used as the thermosetting organic resin.

分散剤は解こう剤とも称され、一般的な不定形耐火物で使用されているものであれば問題なく使用することができる。不定形耐火物施工時の流動性を付与する効果をもつ。具体例としては、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、炭酸ソーダ、ポリメタリン酸塩などの無機塩、クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ポリカルボン酸塩、β−ナフタレンスルホン酸塩類、ナフタリンスルフォン酸、カルボキシル基含有ポリエーテル系分散剤等である。   The dispersant is also referred to as a peptizer and can be used without any problem as long as it is used in general amorphous refractories. Has the effect of imparting fluidity during construction of irregular refractories. Specific examples include inorganic salts such as sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, acid hexametaphosphate, sodium borate, sodium carbonate, polymetaphosphate, sodium citrate, sodium tartrate, sodium polyacrylate, Examples thereof include sodium sulfonate, polycarboxylate, β-naphthalenesulfonate, naphthalene sulfonic acid, carboxyl group-containing polyether dispersant, and the like.

急結剤は施工水の存在下で結合剤と反応し、不定形耐火物を急速に硬化させ、不定形耐火物に付着性を付与する。急結剤は粉末状態で不定形耐火物に当初から混入させておく他、急結剤を吹付けノズルの近傍で且つ二次注水箇所より前方にて添加してもよい。急結剤を吹付けノズルまたはその近傍で添加する場合は、必要により、急結剤を水で希釈した液状で使用する。   The rapid setting agent reacts with the binder in the presence of construction water to rapidly harden the amorphous refractory and impart adhesion to the amorphous refractory. The quick setting agent may be added to the amorphous refractory in the powder state from the beginning, or the quick setting agent may be added in the vicinity of the spray nozzle and in front of the secondary water injection point. When the quick setting agent is added at or near the spray nozzle, if necessary, the quick setting agent is used in a liquid diluted with water.

急結剤の具体例を挙げると、ケイ酸ナトリウム、ケイ酸カリウムなどのケイ酸塩、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸カルシウムなどのアルミン酸塩、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウムなどの炭酸塩、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウムなどの硫酸塩、CaO・Al、12CaO・7Al、CaO・2Al、3CaO・Al、3CaO・3Al・CaF、11CaO・7Al・CaFなどのカルシウムアルミネート類、酸化カルシウム、水酸化カルシウム、塩化カルシウムなどのカルシウム塩などである。 Specific examples of the quick setting agent include silicates such as sodium silicate and potassium silicate, aluminates such as sodium aluminate, potassium aluminate and calcium aluminate, sodium carbonate, potassium carbonate and sodium hydrogen carbonate. carbonates, sodium sulfate, potassium sulfate, sulfates such as magnesium sulfate, CaO · Al 2 O 3, 12CaO · 7Al 2 O 3, CaO · 2Al 2 O 3, 3CaO · Al 2 O 3, 3CaO · 3Al 2 O Calcium aluminates such as 3 · CaF 2 , 11CaO · 7Al 2 O 3 · CaF 2 , calcium salts such as calcium oxide, calcium hydroxide, and calcium chloride.

ただし、本発明の冷温間吹付け材料に使用する急結剤としては、アルミン酸ソーダまたは消石灰のいずれも粉末が、施工体の強度に優れる面からより好ましい。また本発明の熱間吹付け材料に使用する急結剤としては、消石灰、活性マグネシア、あるいは硫酸塩の粉末が、施工体の強度に優れる面からより好ましい。   However, as the quick setting agent used in the cold and warm spraying material of the present invention, sodium aluminate or slaked lime is more preferable from the viewpoint of excellent strength of the construction body. As the quick setting agent used in the hot spray material of the present invention, slaked lime, activated magnesia, or sulfate powder is more preferable from the viewpoint of excellent strength of the construction body.

繊維は、通常の不定形耐火物で爆裂防止等の目的で使用されている繊維を使用することができ、例えば、ビニロン、ナイロン、PVA、ポリビニル、ポリスチレン、ポリプロピレン、炭素等である。   As the fiber, a fiber that is an ordinary amorphous refractory and used for the purpose of preventing explosion or the like can be used, and examples thereof include vinylon, nylon, PVA, polyvinyl, polystyrene, polypropylene, and carbon.

平均粒径が100μm以下の気泡を0.1〜30体積%含有する施工水を材料搬送管内に注水することで、従来の水のみを添加する場合と比較して低水分で緻密な施工体が得らる。   By pouring the construction water containing 0.1 to 30% by volume of bubbles having an average particle size of 100 μm or less into the material transport pipe, a compact construction body with a low moisture content can be obtained compared to the case where only conventional water is added. Get.

材料搬送管内へ注水された水流が平均粒径100μm以下の微粒化水となる条件で施工されるため、低水分で良好な混練効果が得られるためバラツキの少ない緻密な施工体が得られ、炉の寿命が向上する。また、ミキサー等の特別な混練装置を必要とせず、しかも材料搬送管が詰まることもないので、作業中のトラブルが減少し、洗浄作業も軽減されるので作業性に非常に優れる施工方法となる。   Since the water flow poured into the material transport pipe is constructed under the condition of atomized water with an average particle size of 100 μm or less, a good kneading effect can be obtained with low moisture, so a dense construction body with little variation can be obtained, and the furnace The lifespan is improved. In addition, a special kneading device such as a mixer is not required, and the material conveying pipe is not clogged, so that trouble during operation is reduced and cleaning work is reduced, so that the construction method is extremely excellent in workability. .

吹付け材料が、粒径75μm以下の炭化ケイ素を5〜30質量%含むアルミナ−炭化ケイ素質不定形耐火物である場合には従来の施工方法と比較して施工水との馴じみが良く、材料搬送管内での施工水の添加では不定形耐火物と施工水との混和が十分となり、付着性の向上と共に、発塵が抑制される。そして、施工体の緻密性が向上する。   When the spray material is an alumina-silicon carbide amorphous refractory containing 5-30% by mass of silicon carbide having a particle size of 75 μm or less, the familiarity with the construction water is better than the conventional construction method, Addition of construction water in the material transport pipe allows sufficient mixing of the amorphous refractory and construction water, improving adhesion and suppressing dust generation. And the denseness of a construction body improves.

吹付け材料が、マグネシア微粉を1〜30質量%含み、残部がアルミナを主体とするアルミナ−マグネシア質不定形耐火物である場合には施工体の消化抑制とスピネル生成の促進によって、アルミナ−マグネシア質不定形耐火物がもつ容積安定性および耐食性の効果がいかんなく発揮され、吹付け施工体の耐用性は格段に向上する。   When the spray material contains 1 to 30% by mass of magnesia fine powder and the balance is an alumina-magnesia amorphous refractory mainly composed of alumina, the digestion of the construction body is promoted and the generation of spinel is promoted, so that the alumina-magnesia The volume stability and corrosion resistance effects of the amorphous refractories are fully demonstrated, and the durability of the sprayed construction is greatly improved.

また、耐火原料粉末に対してアルミナセメント、マグネシアセメント、リン酸塩またはケイ酸塩のうち1種からなる結合剤と、急結剤と、分散剤と、繊維とを添加し混合してなる配合組成物であって、耐火原料粉末中に粒径75μm未満の原料を25〜60質量%含有し、しかもこのうち10μm未満の原料/75μm未満10μm以上の原料の質量比が0.25〜0.7で構成された材料を使用した場合、従来の湿式施工方法と比べて、少ない添加水分量で混練することができるので高品質でしかもばらつきの少ない施工体が得られ、炉の寿命が向上する。さらに、従来のように急結剤の添加量の管理や材料搬送管の洗浄という煩雑な作業もほんどなく、作業効率が向上する。   In addition, a mixture of a refractory raw material powder, which is made by adding a binder composed of one of alumina cement, magnesia cement, phosphate or silicate, a rapid setting agent, a dispersing agent, and fibers. The composition is a refractory raw material powder containing a raw material having a particle size of less than 75 μm in an amount of 25 to 60% by mass, and the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is 0.25 to 0.005. 7 is used, it is possible to knead with a small amount of added water compared to the conventional wet construction method, so that a high-quality construction body with little variation is obtained, and the life of the furnace is improved. . Furthermore, unlike the conventional case, there is almost no complicated work of managing the addition amount of the quick setting agent and cleaning of the material conveying pipe, and the work efficiency is improved.

さらに、耐火原料粉末に対して結合剤として熱硬化性有機樹脂、リン酸塩またはケイ酸塩を添加し混合してなる配合組成物であって、耐火原料粉末中に粒径75μm未満の原料を10〜45質量%含有し、しかもこのうち10μm未満の原料/75μm未満10μm以上の原料の質量比が0.25〜0.7で構成された材料を使用した場合、従来の乾式施工方法と比べて少ない添加水分量で混練することができるので高品質でしかもばらつきの少ない施工体が得られ、炉の寿命が向上する。また、大掛かりな専用のミキサーを設置することがないので作業性に優れている。   Furthermore, the composition is a composition obtained by adding a thermosetting organic resin, phosphate or silicate as a binder to the refractory raw material powder and mixing the raw material with a particle size of less than 75 μm in the refractory raw material powder. 10% to 45% by mass, and among these, when using a material in which the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is composed of 0.25 to 0.7, compared with the conventional dry construction method In addition, since it can be kneaded with a small amount of added water, a high-quality construction body with little variation is obtained, and the life of the furnace is improved. In addition, since a large dedicated mixer is not installed, the workability is excellent.

以下、本発明の実施の形態を実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on examples.

図1は、本発明の不定形耐火物の吹付け施工方法を実施するための吹付け装置10の全体構成を示す。   FIG. 1 shows the overall configuration of a spraying device 10 for carrying out the method for spraying an irregular refractory according to the present invention.

同図において、1は吹付け材料2が収納された材料供給機を示す。材料供給機1は、一般に不定形耐火物の吹付け装置に使用されているもので定量吐出できるものであれば、ロテクターガン、リードガン、野上セメントガン等の如何なるタイプのものでも問題なく使用することができる。   In the same figure, 1 shows the material supply machine in which the spraying material 2 was accommodated. As long as the material supply machine 1 is generally used in spraying devices for irregular refractories and can discharge a fixed amount, any type of a protector gun, lead gun, Nogami cement gun or the like can be used without any problem. it can.

この材料供給機1内の吹付け材料2は、材料供給機1内に供給される圧縮空気によって内圧が調整され、下端に設けられたモータMによって駆動するテーブルフィーダー3によって、材料供給機1から先端吹付けノズル4まで配置された搬送ホース5に供給される。   The spray material 2 in the material feeder 1 is adjusted from the material feeder 1 by a table feeder 3 whose internal pressure is adjusted by compressed air supplied into the material feeder 1 and driven by a motor M provided at the lower end. It is supplied to the transport hose 5 arranged up to the tip spray nozzle 4.

搬送ホース5にはテーブルフィーダー3の搬送空気導入箇所6を通して搬送空気が供給され、材料供給機1からの吹付け材料2を搬送ホース5の先端吹付けノズル4から対象体9に吹き付け施工する。   Carrier air is supplied to the carrier hose 5 through the carrier air introduction portion 6 of the table feeder 3, and the spray material 2 from the material feeder 1 is sprayed from the tip spray nozzle 4 of the carrier hose 5 to the target body 9.

この搬送ホース5には、材料供給機1の直後に1次注水器7が、また、先端吹付けノズル4の直前には2次注水器8が設けられている。   The transport hose 5 is provided with a primary water injector 7 immediately after the material feeder 1 and a secondary water injector 8 immediately before the tip spray nozzle 4.

この1次注水器7及び2次注水器8は、搬送ホース5内で微粒化水を発生させ、空気搬送される吹付け材料に2段階で注水し、吹付け材料を湿潤する。   The primary water injector 7 and the secondary water injector 8 generate atomized water in the transport hose 5, inject water into the spray material transported by air in two stages, and wet the spray material.

また、それぞれの注水器は気泡発生器23を有している。この気泡発生器23としては、100μm以下の気泡を発生するマイクロバブル発生装置を使用している。マイクロバブル発生装置には色々なタイプがあるが、装置内に加圧水と空気(場合によっては加圧空気)を供給し攪拌することで数μmから数十μmの気泡を発生させるものである。これらは一般に市販されており、例えば、西華産業株式会社製のOHRラインミキサー、ナノプラネット研究所のマイクロナノバブル発生装置等を使用することができる。また、マイクロバブル発生装置を複数連結して使用することで、気泡の密度を高めることもできる。図1の実施例においては、気泡発生器23としてはOHRラインミキサーを使用した。   Each water injector has a bubble generator 23. As the bubble generator 23, a microbubble generator that generates bubbles of 100 μm or less is used. There are various types of microbubble generators, and bubbles of several μm to several tens of μm are generated by supplying pressurized water and air (in some cases, pressurized air) into the apparatus and stirring them. These are generally commercially available. For example, an OHR line mixer manufactured by Seika Sangyo Co., Ltd., a micro-nano bubble generator from Nano Planet Research Laboratories, etc. can be used. Moreover, the density of bubbles can be increased by using a plurality of microbubble generators connected together. In the embodiment of FIG. 1, an OHR line mixer was used as the bubble generator 23.

図2は、注水器の構成を搬送ホース5に沿って切断した断面によって示す。注水器としては、図1に示す1次注水器7と2次注水器8とも同様の構造のものを適用することができる。   FIG. 2 shows the configuration of the water injector by a section cut along the transport hose 5. As the water injector, those having the same structure can be applied to the primary water injector 7 and the secondary water injector 8 shown in FIG.

注水器7(8)は外筒11とその内部に設けられた内筒12とからなる。注水器7(8)は、注水器を貫通する図示しないボルトで搬送ホース5間に固定されている。吹付け材料は搬送ホース5内を図中の矢印の方向に空気搬送される。注水器の外筒11と内筒12との間には、加圧水の圧力が均一になるように溜りとして、円周方向に連続した均圧室13が形成されている。   The water injector 7 (8) includes an outer cylinder 11 and an inner cylinder 12 provided therein. The water injector 7 (8) is fixed between the transport hoses 5 with a bolt (not shown) penetrating the water injector. The spray material is pneumatically conveyed in the conveyance hose 5 in the direction of the arrow in the figure. A pressure equalizing chamber 13 that is continuous in the circumferential direction is formed between the outer cylinder 11 and the inner cylinder 12 of the water injector as a reservoir so that the pressure of the pressurized water is uniform.

この均圧室13には材料搬送方向に傾斜した注水口14が形成されている。この注水口14は、図2に示すように、搬送ホース5の搬送方向の軸心に向かって、矢印で示す材料進行方向とのなす角度αが30〜70度となるように傾斜して形成されている。この実施例の注水口は、内径は0.8mm、傾斜角度αは45度であり、円周方向に沿って等間隔に合計12個設けられている。   The pressure equalizing chamber 13 is formed with a water injection port 14 inclined in the material conveying direction. As shown in FIG. 2, the water injection port 14 is formed so as to be inclined so that the angle α formed with the material traveling direction indicated by the arrow is 30 to 70 degrees toward the axis of the conveyance hose 5 in the conveyance direction. Has been. The water injection port of this embodiment has an inner diameter of 0.8 mm and an inclination angle α of 45 degrees, and a total of 12 water injection ports are provided at equal intervals along the circumferential direction.

また、図2の例においては注水口として断面が円形の貫通孔を12個設けたが、この12個の貫通孔の代わりに、図5に示すように注水口を連続するスリットとすることも可能である。   In the example of FIG. 2, twelve through holes having a circular cross section are provided as the water inlet, but instead of the twelve through holes, the water inlet may be a continuous slit as shown in FIG. 5. Is possible.

図2において点線で示す微粒化水の動きは、実験用として注水器の両側に透明な材質の円筒を接続し、吹付け材料は導入せず、加圧水のみを供給した状態を観察した概略図を示している。注水口14から水は水流となって吐出し中央部で衝突して微粒化水となりその後ほぼ平行に流れて並流噴霧流Aを形成している。この状態で、材料搬送空気を供給すると、衝突の中心がやや大きく不明確になってくるが笠状の並流噴霧流が形成される。本発明では、この材料搬送用空気を供給した状態で100μm以下の微粒化水が発生することとする。この状態において微粒化水の大きさを100μm以下にするためには、注水口の内径、傾斜角度、数、さらには注水口から吐出される水流の流速、水圧等を最適条件にすれば良い。   The movement of atomized water indicated by the dotted line in FIG. 2 is a schematic diagram in which a transparent cylinder is connected to both sides of the water injector for the experiment, and a state where only pressurized water is supplied without introducing spray material is shown. Show. Water is discharged from the water injection port 14 as a water flow, collides with the central portion to become atomized water, and then flows almost in parallel to form a co-current spray flow A. In this state, when the material conveying air is supplied, the center of the collision becomes slightly large and unclear, but a co-sprayed co-current flow is formed. In the present invention, atomized water of 100 μm or less is generated in a state in which the material conveying air is supplied. In order to reduce the size of the atomized water to 100 μm or less in this state, the inner diameter, the inclination angle, the number of the water inlet, the flow velocity of the water flow discharged from the water inlet, the water pressure, and the like may be set as optimum conditions.

図3には、本発明に使用する混合管を示す。この混合管16は、両側にフランジを有する円筒で、内孔は、内径が材料搬送管5より小さい絞り部17と、その両側のテーパー部18、さらにその両側に材料搬送管の内径Dと同じストレート部19とからなっている。絞り部の内径dは、材料搬送管の内径Dに対して0.5D以上0.9D以下となっている。この混合管は、2次注水器の前後のいずれか一方もしく両方に設けることができる。この混合管を2次注水器の前後に配置すると、より混練効果が高まりバラツキの少ない施工体が得られる。   FIG. 3 shows a mixing tube used in the present invention. The mixing tube 16 is a cylinder having flanges on both sides, and the inner hole is the same as the inner diameter D of the narrowed portion 17 having a smaller inner diameter than the material conveying tube 5, the tapered portions 18 on both sides thereof, and the material conveying tube on both sides thereof. It consists of a straight part 19. The inner diameter d of the throttle portion is 0.5D or more and 0.9D or less with respect to the inner diameter D of the material transport pipe. This mixing tube can be provided either before or after the secondary water injector. When this mixing tube is disposed before and after the secondary water injector, a kneading effect is further increased and a construction body with less variation is obtained.

図4は、100μm以下の気泡を含む施工水を発生するための別の実施例である気泡供給ラインの例を示す。この気泡供給ラインで発生する100μm以下の気泡を含む施工水を吹付け施工装置の注水器に供給する。図4においては、気泡安定剤導入管21と施工水導入管20とを備える施工水タンク22の底部に気泡発生器23が接続されている。この気泡発生器23には、エアー配管27と施工水循環配管28が接続されている。施工水循環配管28は、減圧弁24と開閉バルブ25を有して他端は施工水昇圧ポンプ29に接続されている。施工水昇圧ポンプ29には、もう一方の施工水循環配管28が接続されている。このもう一方の施工水循環配管28の他端は、施工水タンク22の底部に接続されている。ここで、気泡発生器23は、100μm以下の気泡を発生するためのもので、マイクロバブル発生装置などと称されて一般に市販されているものを使用することができる。図4においては、西華産業株式会社製の商品名OHRラインミキサーを使用した。この気泡供給ラインにおいては、気泡を含む加圧水を流量調整弁26を介して吹付け施工装置まで輸送することができる。そして、気泡安定剤導入管21より気泡安定剤を添加することで、気泡密度低下を抑制している。気泡安定化剤は、より小さな気泡を形成しやすくししかも気泡の合体や浮上を抑制する目的で添加するもので界面活性剤等の公知の物質を使用することができる。   FIG. 4 shows an example of a bubble supply line which is another embodiment for generating construction water containing bubbles of 100 μm or less. Construction water containing bubbles of 100 μm or less generated in this bubble supply line is supplied to the water injector of the spray construction apparatus. In FIG. 4, a bubble generator 23 is connected to the bottom of a construction water tank 22 including a foam stabilizer introduction pipe 21 and a construction water introduction pipe 20. An air pipe 27 and a construction water circulation pipe 28 are connected to the bubble generator 23. The construction water circulation pipe 28 has a pressure reducing valve 24 and an opening / closing valve 25, and the other end is connected to a construction water boosting pump 29. The other construction water circulation pipe 28 is connected to the construction water booster pump 29. The other end of the other construction water circulation pipe 28 is connected to the bottom of the construction water tank 22. Here, the bubble generator 23 is for generating bubbles of 100 μm or less, and a commercially available device called a microbubble generator or the like can be used. In FIG. 4, a trade name OHR line mixer manufactured by Seika Sangyo Co., Ltd. was used. In this bubble supply line, pressurized water containing bubbles can be transported to the spray construction device via the flow rate adjustment valve 26. And the bubble stabilizer is suppressed by adding a bubble stabilizer from the bubble stabilizer introduction tube 21. The bubble stabilizer is added for the purpose of easily forming smaller bubbles and suppressing the coalescence and floating of the bubbles, and a known substance such as a surfactant can be used.

上記各図に示す吹付け装置10による吹付けは以下の要領で施工される。   The spraying by the spraying device 10 shown in the above drawings is performed in the following manner.

まず、従来の乾式吹付け方法と同様に、材料供給機1の吹付け材料を搬送空気導入箇所6からの搬送空気により搬送ホース5内を空気搬送させる。それと同時に、加圧した水を気泡発生器23を介して、1次注水器7及び2次注水器8の施工水導入口15に供給することで、空気搬送されている吹付け材料に注水する。注水器から注水される水流は、搬送ホース5内で他の水流あるいは吹付け材料と衝突することで微粒化水となる。この微粒化水が吹付け材料を均一に湿潤し均一に混練する。   First, similarly to the conventional dry-type spraying method, the spray material of the material feeder 1 is transported in the transport hose 5 by the transport air from the transport air introduction point 6. At the same time, the pressurized water is supplied to the construction water inlet 15 of the primary water injector 7 and the secondary water injector 8 through the bubble generator 23 to inject the sprayed material being conveyed by air. . The water flow injected from the water injector becomes atomized water by colliding with another water flow or spray material in the transport hose 5. This atomized water uniformly wets the spray material and kneads it uniformly.

そして、先端吹付けノズル4を操作して、炉壁等の対象体9に十分混練された不定形耐火物を吹付ける。   Then, the tip spray nozzle 4 is operated to spray the amorphous refractory sufficiently kneaded on the target body 9 such as a furnace wall.

図1に示す1次注水器7と2次注水器8との距離間隔については、特に限定することはないが、ある程度離れていた方が混練効果の面から好ましい。最低1m以上の間隔を設けることが好ましい。すなわち1次注水器は2次注水器の上流側1m以上から材料供給機1までの間であれば特に制約なく設けることができる。   The distance interval between the primary water injector 7 and the secondary water injector 8 shown in FIG. 1 is not particularly limited, but it is preferable that the distance is somewhat apart from the viewpoint of the kneading effect. It is preferable to provide a distance of at least 1 m. That is, the primary water injector can be provided without any particular limitation as long as it is between 1 m or more upstream of the secondary water injector and the material feeder 1.

2次注水器8は、先端吹付けノズル4本体あるいはその直前付近に設けることができる。先端吹付けノズルの先端から離れ過ぎると搬送ホースや先端吹付けノズルが詰まりやすくなる。搬送ホースの長さについても特に限定されず例えば10〜100mの間であれば問題なく使用することができる。   The secondary water injector 8 can be provided in the front-end spray nozzle 4 body or in the vicinity thereof. If it is too far from the tip of the tip spray nozzle, the transport hose and the tip spray nozzle are likely to be clogged. The length of the transport hose is not particularly limited, and can be used without any problem as long as it is between 10 and 100 m, for example.

表1は、耐火原料粉末として粒度調整したマグネシアクリンカー100質量部に対して、結合剤として粉末状のフェノール樹脂を4質量部使用した吹付け材料に対して種々の注水条件で吹付けテストを行った結果を示す。なお、注水器は先端吹付けノズルの先端から1.7mの位置に1ヶ所のみ設け、先端吹付けノズルの長さは1.5mである。また、吹付け材料の搬送用空気の流量は4.5Nm/min、圧力は0.25MPa、注水器の注水口の傾斜角度は45度とし、材料搬送管の内径は35mm、注水器に供給する水の元圧は1.0MPaとした。施工水量は、吹付け状況や施工体の状況に応じて調整した。このとき、微粒化水の平均粒径を吹付け材料は供給せず吹付け材料の搬送用空気のみを供給した状態でレーザードップラー法にて測定したところ21μm(体積平均粒径)であった。なお、測定位置は、注水器の注水口より300mm下流部である。微粒化水の粒径の測定装置としては、米国TSI社の商品名「AEROMETRICS」を使用した。テストは水平方向に約1m離れた位置に、垂直に置いた金枠(深さ40mm、幅160mm、長さ400mm)へ吹付け施工し、110℃で乾燥後の施工体の品質を調べたものである。 Table 1 shows spraying tests under various water injection conditions on a spraying material using 4 parts by weight of a powdered phenol resin as a binder against 100 parts by weight of magnesia clinker having a particle size adjusted as a refractory raw material powder. The results are shown. In addition, the water injector is provided only at one position at a position of 1.7 m from the tip of the tip spray nozzle, and the length of the tip spray nozzle is 1.5 m. Moreover, the flow rate of the air for conveying the spray material is 4.5 Nm 3 / min, the pressure is 0.25 MPa, the inclination angle of the water injection port of the water injection device is 45 degrees, the inner diameter of the material transfer pipe is 35 mm, and it is supplied to the water injection device The original pressure of the water to be used was 1.0 MPa. The amount of construction water was adjusted according to the spraying condition and the condition of the construction body. At this time, the average particle size of the atomized water was 21 μm (volume average particle size) as measured by the laser Doppler method in a state where only the air for supplying the spray material was supplied without supplying the spray material. In addition, a measurement position is a 300 mm downstream part from the water inlet of a water injector. As a measuring device for the particle size of atomized water, the trade name “AEROMETRICS” of TSI, USA was used. The test was performed by spraying a metal frame (depth 40mm, width 160mm, length 400mm) placed vertically at a position about 1m away in the horizontal direction, and examining the quality of the construction after drying at 110 ° C. It is.

また、施工水中の気泡の平均粒径は、気泡発生器から出た直後の水をビデオカメラで撮影し画像解析することで平均粒径を測定した。また気泡の体積割合は、施工条件と同一の条件で気泡発生器へ水と空気を供給し、一定時間に排出された水の前後の体積を測定することで計算した。その結果、気泡の平均粒径は37μm、気泡の割合は5体積%であった。

Figure 0004603477
Moreover, the average particle diameter of the bubble in construction water measured the average particle diameter by image | photographing and image-analyzing the water immediately after having come out of the bubble generator. The volume ratio of bubbles was calculated by supplying water and air to the bubble generator under the same conditions as the construction conditions, and measuring the volume before and after the water discharged in a certain time. As a result, the average particle diameter of the bubbles was 37 μm, and the ratio of the bubbles was 5% by volume.
Figure 0004603477

表1において、実施例1から実施例4は注水口の内径と水流の流速を変化させたものであるが、本発明の範囲内であり、低水分で緻密な施工体が得られている。   In Table 1, Examples 1 to 4 change the inner diameter of the water inlet and the flow velocity of the water flow, but are within the scope of the present invention, and a dense construction body with low moisture is obtained.

次に、表2、表3、及び表4に示す配合割合において、図1及び図2に示す施工方法で吹付けテストを実施した結果について説明する。1次注水器は先端吹付けノズルの先端から20mの位置、2次注水器は先端吹付けノズルの先端から1.7mの位置、先端吹付けノズルの長さは1.5mである。また、吹付け材料の搬送用空気の流量は4.8Nm/min、圧力は0.27MPa、1次注水器の水流の流速は9.5〜10m/s、注水口の内径は0.8mm、注水口の数は8個、注水口の傾斜角度は50度、2次注水器も同数値とし、注水器及び材料搬送管の内径は35mm、それぞれの注水器に供給する水の元圧は0.9〜1.1MPaとした。施工水量は、吹付け状況や施工体の状況に応じて調整した。このとき、微粒化水の平均粒径を吹付け材料は供給せず吹付け材料の搬送用空気のみを供給した状態でレーザードップラー法にて測定したところ24μm(体積平均粒径)であった。なお、測定位置は、注水器の注水口より300mm下流部である。また施工水中の、気泡の平均粒径は37μm、気泡の割合は5体積%であった。テストは水平方向に約1m離れた位置に、垂直に置いた金枠(深さ40mm、幅160mm、長さ400mm)へ吹付け施工し、110℃で乾燥後の施工体の品質を調べたものである。回転侵食試験については、表2では高炉スラグを使用し1550℃×4時間行い、表3、表4では転炉スラグを用い1650℃×4時間行い試験片の残存厚みを比較した。通気率の測定方法はJISR2115に従った。 Next, the results of performing the spray test by the construction method shown in FIGS. 1 and 2 at the blending ratios shown in Table 2, Table 3, and Table 4 will be described. The primary water injector is located 20 m from the tip of the tip spray nozzle, the secondary water dispenser is 1.7 m from the tip of the tip spray nozzle, and the length of the tip spray nozzle is 1.5 m. Moreover, the flow rate of the air for conveying the spray material is 4.8 Nm 3 / min, the pressure is 0.27 MPa, the flow rate of the water flow of the primary water injector is 9.5 to 10 m / s, and the inner diameter of the water inlet is 0.8 mm. The number of water inlets is 8, the angle of inclination of the water inlet is 50 degrees, and the secondary water injector is the same value, the inner diameter of the water injector and the material transport pipe is 35 mm, the original pressure of the water supplied to each water injector is The pressure was 0.9 to 1.1 MPa. The amount of construction water was adjusted according to the spraying condition and the condition of the construction body. At this time, the average particle size of the atomized water was 24 μm (volume average particle size) as measured by the laser Doppler method in a state where only the air for supplying the spray material was supplied without supplying the spray material. In addition, a measurement position is a 300 mm downstream part from the water inlet of a water injector. Moreover, the average particle diameter of the bubble in construction water was 37 micrometers, and the ratio of the bubble was 5 volume%. The test was performed by spraying a metal frame (depth 40mm, width 160mm, length 400mm) placed vertically at a position about 1m away in the horizontal direction, and examining the quality of the construction after drying at 110 ° C. It is. The rotary erosion test was conducted in Table 2 using blast furnace slag at 1550 ° C. for 4 hours, and in Tables 3 and 4 using converter slag at 1650 ° C. for 4 hours to compare the remaining thicknesses of the test pieces. The measuring method of the air permeability was according to JISR2115.

表2は、冷温間吹付け材の例で、粒径75μm以下の炭化ケイ素を10質量%含み、残部がアルミナからなる耐火原料粉末を使用したアルミナ−炭化ケイ素質吹付け材において、微粉部の施工体に与える影響について調査した結果を示す。結合剤、急結剤、及び分散剤は粉末状のものを使用し、耐火原料粉末及び繊維とあらかじめ均一に混合した配合組成物を使用した。実施例5〜12は、粒径75μm未満の原料の割合、及び10μm未満の原料/75μm未満10μm以上の原料の質量比が本発明の範囲内であり、低水分で緻密な施工体が得られている。これに対して比較例1は10μm未満の原料/75μm未満10μm以上の原料の質量比が0.2と小さいため、急結剤が凝集傾向になり添加水分が増えるため緻密な施工体が得られなかった。比較例2は10μm未満の原料/75μm未満10μm以上の原料の質量比が0.8と大きいため、材料搬送管が詰り気味になりノズルから材料が吐出する際に不安定となり良好な施工体が得られなかった。比較例3は粒径75μm未満の原料が不足し、低強度な施工体となっている。比較例4は粒径75μm未満の原料が多すぎて耐食性が悪い。

Figure 0004603477
Table 2 shows an example of a cold and warm spraying material. In an alumina-silicon carbide based spraying material using a refractory raw material powder containing 10% by mass of silicon carbide having a particle size of 75 μm or less and the balance being alumina, The result of investigating the influence on the construction body is shown. The binder, the quick setting agent, and the dispersing agent were in powder form, and a blended composition that was uniformly mixed with the refractory raw material powder and fibers in advance was used. In Examples 5 to 12, the ratio of the raw material having a particle size of less than 75 μm and the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more are within the scope of the present invention, and a dense construction body with low moisture is obtained. ing. On the other hand, in Comparative Example 1, since the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is as small as 0.2, the rapid setting agent tends to agglomerate and the added moisture increases, so that a dense construction body is obtained. There wasn't. In Comparative Example 2, since the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is as large as 0.8, the material conveying tube becomes clogged and becomes unstable when the material is discharged from the nozzle. It was not obtained. Comparative Example 3 is a low-strength construction body due to a shortage of raw materials having a particle size of less than 75 μm. In Comparative Example 4, the corrosion resistance is poor because there are too many raw materials having a particle size of less than 75 μm.
Figure 0004603477

表3は熱間吹付け材の例で、粒径75μm以下のマグネシアを10質量%含み、残部がアルミナからなる耐火原料粉末を使用したアルミナ−マグネシア材質吹付け材において微粉部の施工体に与える影響について調査した結果を示す。結合剤と急結剤は粉末状のものを使用し耐火原料粉末とあらかじめ均一に混合した配合組成物を使用した。実施例13〜20は、粒径75μm未満の原料の割合、及び10μm未満の原料/75μm未満10μm以上の原料の質量比が本発明の範囲内であり、低水分で緻密な施工体が得られている。これに対して比較例5は10μm未満の原料/75μm未満10μm以上の原料の質量比が0.2と小さいため、急結剤が凝集傾向になり添加水分が増えるため緻密な施工体が得られなかった。比較例6は10μm未満の原料/75μm未満10μm以上の原料の質量比が0.8と大きいため、材料搬送管が詰り気味になりノズルから材料が吐出する際に不安定となり良好な施工体が得られなかった。比較例7は粒径75μm未満の原料が不足し、低強度な施工体となっている。比較例8は粒径75μm未満の原料が多すぎて耐食性が悪い。

Figure 0004603477
Table 3 shows an example of a hot spray material, which is applied to a fine powder portion construction body in an alumina-magnesia material spray material using a refractory raw material powder containing 10% by mass of magnesia having a particle size of 75 μm or less and the balance being alumina. The result of investigating the impact is shown. The binder and the quick setting agent were in powder form, and a blended composition previously mixed with the refractory raw material powder was used. In Examples 13 to 20, the ratio of the raw material having a particle size of less than 75 μm and the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more are within the scope of the present invention, and a dense construction body with low moisture is obtained. ing. On the other hand, in Comparative Example 5, since the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is as small as 0.2, the rapid setting agent tends to agglomerate and the added moisture increases, so that a dense construction body is obtained. There wasn't. In Comparative Example 6, since the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is as large as 0.8, the material conveyance tube becomes clogged and becomes unstable when the material is discharged from the nozzle. It was not obtained. In Comparative Example 7, the raw material having a particle diameter of less than 75 μm is insufficient, and the construction body has a low strength. In Comparative Example 8, the corrosion resistance is poor because there are too many raw materials having a particle size of less than 75 μm.
Figure 0004603477

表4は結合剤としてフェノール樹脂を使用した熱間吹付け材の例で、粒径75μm以下のマグネシアを10質量%含み、残部もマグネシアクリンカーからなる耐火原料粉末を使用したマグネシア材質吹付け材において微粉部の施工体に与える影響について調査した結果を示す。結合剤は粉末状のものを使用し耐火原料粉末とあらかじめ均一に混合した配合組成物を使用した。実施例21〜28は、粒径75μm未満の原料の割合、及び10μm未満の原料/75μm未満10μm以上の原料の質量比が本発明の範囲内であり、低水分で緻密な施工体が得られている。これに対して比較例9は10μm未満の原料/75μm未満10μm以上の原料の質量比が0.2と小さいため、添加水分が増えるため緻密な施工体が得られなかった。比較例10は10μm未満の原料/75μm未満10μm以上の原料の質量比が0.8と大きいため、材料搬送管が詰り気味になりノズルから材料が吐出する際に不安定となり良好な施工体が得られなかった。比較例11は粒径75μm未満の原料が不足し、低強度な施工体となっている。比較例12は粒径75μm未満の原料が多すぎて耐食性が悪い。

Figure 0004603477
Table 4 shows an example of a hot spraying material using a phenol resin as a binder. In a spraying material of magnesia material containing 10% by mass of magnesia having a particle size of 75 μm or less, and the remainder using a refractory raw material powder composed of magnesia clinker. The result of having investigated about the influence which it has on the construction object of a fine powder part is shown. As the binder, a powdery composition was used, and a blended composition previously mixed with the refractory raw material powder was used. In Examples 21 to 28, the ratio of the raw material having a particle size of less than 75 μm and the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more are within the scope of the present invention, and a dense construction body with low moisture is obtained. ing. On the other hand, in Comparative Example 9, since the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more was as small as 0.2, the added moisture increased, so a dense construction body could not be obtained. In Comparative Example 10, since the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is as large as 0.8, the material conveyance tube becomes clogged and becomes unstable when the material is discharged from the nozzle. It was not obtained. In Comparative Example 11, the raw material having a particle size of less than 75 μm is insufficient, and the construction body has a low strength. In Comparative Example 12, the corrosion resistance is poor because there are too many raw materials having a particle size of less than 75 μm.
Figure 0004603477

本発明は、各種の冶金炉、窯業炉の各部位の吹付け補修、築炉に好適に使用できる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for spray repair and building of various parts of various metallurgical furnaces and ceramic furnaces.

本発明の不定形耐火物の吹付け施工方法を実施するための装置の全体構成を示す。The whole structure of the apparatus for enforcing the spray construction method of the irregular refractory of this invention is shown. 本発明で使用する注水器の構成を示す。The structure of the water injector used by this invention is shown. 混合管の断面を示す。The cross section of a mixing tube is shown. 気泡供給ラインの構成を示す。The structure of a bubble supply line is shown. 注水器の第二の実施例を示す。The 2nd Example of a water injector is shown.

符号の説明Explanation of symbols

1 材料供給機
2 吹付け材料(乾燥耐火物)
3 テーブルフィーダー
4 先端吹付けノズル
5 搬送ホ−ス
6 搬送空気導入箇所
7 1次注水器
8 2次注水器
9 対象体
10 吹付け装置
11 外筒
12 内筒
13 均圧室
14 注水孔
15 施工水導入口
16 混合管
17 絞り部
18 テーパー部
19 ストレート部
20 施工水導入管
21 気泡安定剤導入管
22 施工水タンク
23 気泡発生器
24 減圧弁
25 開閉バルブ
26 流量調整弁
27 エアー配管
28 施工水循環配管
29 施工水昇圧ポンプ
1 Material feeder 2 Spray material (dry refractory)
3 Table feeder
4 tip spray nozzle 5 transport hose 6 transport air introduction point 7 primary water injector 8 secondary water injector 9 target body 10 spraying device
DESCRIPTION OF SYMBOLS 11 Outer cylinder 12 Inner cylinder 13 Pressure equalization chamber 14 Water injection hole 15 Construction water introduction port 16 Mixing pipe 17 Restriction part 18 Taper part 19 Straight part 20 Construction water introduction pipe 21 Bubble stabilizer introduction pipe 22 Construction water tank 23 Bubble generator 24 Pressure reducing valve 25 Open / close valve 26 Flow rate adjusting valve 27 Air piping 28 Construction water circulation piping 29 Construction water booster pump

Claims (11)

材料搬送管内を搬送される吹付け材料に対して注水器から施工水を注水して吹付ける不定形耐火物の吹付け施工方法であって、材料搬送管内へ注水器から平均粒径100μm以下の気泡を0.1〜30体積%含有する施工水を、材料搬送方向に対して30〜70度傾斜し、材料搬送管内のほぼ中心で衝突するように注水し、平均粒径100μm以下の微粒化水を発生させることを特徴とする不定形耐火物の吹付け施工方法。   A spraying method for an irregular refractory that sprays and sprays construction water from a water injector to spray material transported in a material transport pipe, and has an average particle size of 100 μm or less from the water injector into the material transport pipe. Construction water containing 0.1 to 30% by volume of air bubbles is inclined 30 to 70 degrees with respect to the material transport direction, and injected so as to collide at almost the center in the material transport pipe, and atomized with an average particle size of 100 μm or less A method for spraying irregular refractories, characterized by generating water. 材料搬送管において上流側に1次注水器と下流側に2次注水器とを設けて2ヶ所から吹付け材料に施工水を注水し、1次注水器からは全施工水の10〜50質量%の施工水を注水し、2次注水器からは施工に必要な残りの施工水を注水して吹付ける不定形耐火物の吹付け施工方法であって、少なくとも1次注水器から平均粒径100μm以下の気泡を0.1〜30体積%含有する施工水を、材料搬送方向に対して30〜70度傾斜し、材料搬送管内のほぼ中心で衝突するように注水し、平均粒径100μm以下の微粒化水を発生させることを特徴とする不定形耐火物の吹付け施工方法。   In the material transport pipe, a primary water dispenser is installed on the upstream side and a secondary water dispenser is installed on the downstream side, and the construction water is poured into the spray material from two locations. % Of the construction water, and the secondary water dispenser sprays the remaining construction water required for construction and sprays it. The construction water containing 0.1 to 30% by volume of bubbles of 100 μm or less is inclined by 30 to 70 degrees with respect to the material conveying direction, and poured so as to collide almost at the center in the material conveying pipe, and the average particle size is 100 μm or less. A method for spraying an irregular shaped refractory, characterized by generating atomized water. 注水器から注水される水の流速が7m/s以上である請求項1または請求項2に記載の不定形耐火物の吹付け施工方法。   The method for spraying an irregular refractory according to claim 1 or 2, wherein a flow rate of water injected from the water injector is 7 m / s or more. 吹付け材料が、粒径75μm以下の炭化ケイ素を5〜30質量%含むアルミナ−炭化ケイ素質不定形耐火物である請求項1〜3のいずれかに記載の不定形耐火物の吹付け施工方法。   The method for spraying an amorphous refractory according to any one of claims 1 to 3, wherein the spray material is an alumina-silicon carbide amorphous refractory containing 5 to 30 mass% of silicon carbide having a particle size of 75 µm or less. . 吹付け材料が、マグネシア微粉を1〜30質量%含み、残部がアルミナを主体とするアルミナ−マグネシア質不定形耐火物である請求項1〜3のいずれかに記載の不定形耐火物の吹付け施工方法。   4. The spraying of the amorphous refractory according to any one of claims 1 to 3, wherein the spraying material is an alumina-magnesia amorphous refractory containing 1 to 30% by mass of magnesia fine powder and the balance being mainly alumina. Construction method. 冷温間で施工される冷温間吹付け材料であって、耐火原料粉末に対してアルミナセメント、マグネシアセメント、リン酸塩またはケイ酸塩のうち1種からなる結合剤と、急結剤と、分散剤と、繊維とを添加し混合してなり、耐火原料粉末中に粒径75μm未満の原料を25〜60質量%含有し、しかもこのうち10μm未満の原料/75μm未満10μm以上の原料の質量比が0.25〜0.7であることを特徴とする請求項1〜5のいずれかに記載の不定形耐火物の吹付け施工方法で使用される吹付け材料。   A cold / warm spraying material that is applied in a cold / warm condition, and a binder composed of one of alumina cement, magnesia cement, phosphate or silicate, a rapid setting agent, and a dispersion for the refractory raw material powder. An additive and a fiber are added and mixed, and the raw material having a particle size of less than 75 μm is contained in the refractory raw material powder in an amount of 25 to 60% by mass, and among these, the mass ratio of the material less than 10 μm / the material less than 75 μm and 10 μm or more The spraying material used in the method for spraying an irregular refractory according to any one of claims 1 to 5, wherein is a 0.25 to 0.7. 熱間で施工される熱間吹付け材料であって、耐火原料粉末に対して結合剤として熱硬化性有機樹脂、リン酸塩またはケイ酸塩のうち1種以上を添加し混合してなり、耐火原料粉末中に粒径75μm未満の原料を10〜45質量%含有し、しかもこのうち10μm未満の原料/75μm未満10μm以上の原料の質量比が0.25〜0.7であることを特徴とする請求項1〜5のいずれかに記載の不定形耐火物の吹付け施工方法で使用される吹付け材料。   It is a hot spraying material that is applied hot, and is a mixture of one or more of a thermosetting organic resin, phosphate or silicate as a binder to the refractory raw material powder, The refractory raw material powder contains 10 to 45% by mass of a raw material having a particle size of less than 75 μm, and the mass ratio of the raw material of less than 10 μm / the raw material of less than 75 μm and 10 μm or more is 0.25 to 0.7. The spray material used with the spray construction method of the irregular refractory according to any one of claims 1 to 5. 結合剤がアルミナセメントで、急結剤がアルミン酸ソーダまたは消石灰のいずれも粉末である請求項6に記載の吹付け材料。   The spray material according to claim 6, wherein the binder is alumina cement, and the rapid setting agent is either sodium aluminate or slaked lime. 結合剤がリン酸塩またはケイ酸で、急結剤として消石灰、活性マグネシア、あるいは硫酸塩を使用し、いずれも粉末である請求項7に記載の吹付け材料。   The spraying material according to claim 7, wherein the binder is phosphate or silicic acid, slaked lime, activated magnesia, or sulfate is used as the quick setting agent, and each is powder. 常温で吹付け施工した施工体において、養生後110℃で24時間以上乾燥した後、見掛け気孔率が18〜30%、かつ通気率が100×10−5cm・cm/cm・cmHO・sec以上であることを特徴とする請求項1〜5のいずれかに記載の不定形耐火物の吹付け施工方法で使用される吹付け材料。 In the construction body sprayed at room temperature, after curing and drying at 110 ° C. for 24 hours or more, the apparent porosity is 18 to 30% and the air permeability is 100 × 10 −5 cm 3 · cm 2 · cmH 2. It is O * sec or more, The spray material used with the spray construction method of the irregular refractory according to any one of claims 1 to 5. 常温で吹付け施工した施工体において、養生後110℃で24時間以上乾燥した後、見掛け気孔率が18〜30%、かつ通気率が100×10−5cm・cm/cm・cmHO・sec以上である請求項6〜9のいずれかに記載の吹付け材料。 In the construction body sprayed at room temperature, after curing and drying at 110 ° C. for 24 hours or more, the apparent porosity is 18 to 30% and the air permeability is 100 × 10 −5 cm 3 · cm 2 · cmH 2. It is O * sec or more, The spraying material in any one of Claims 6-9.
JP2005351165A 2005-12-05 2005-12-05 Method of spraying irregular refractories and spraying materials used therefor Active JP4603477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005351165A JP4603477B2 (en) 2005-12-05 2005-12-05 Method of spraying irregular refractories and spraying materials used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005351165A JP4603477B2 (en) 2005-12-05 2005-12-05 Method of spraying irregular refractories and spraying materials used therefor

Publications (2)

Publication Number Publication Date
JP2007155215A JP2007155215A (en) 2007-06-21
JP4603477B2 true JP4603477B2 (en) 2010-12-22

Family

ID=38239826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005351165A Active JP4603477B2 (en) 2005-12-05 2005-12-05 Method of spraying irregular refractories and spraying materials used therefor

Country Status (1)

Country Link
JP (1) JP4603477B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936426B2 (en) * 2006-01-20 2012-05-23 国立大学法人 筑波大学 Manufacturing method of cementitious material mixed with microbubbles
JP4758961B2 (en) * 2007-08-06 2011-08-31 黒崎播磨株式会社 Amorphous refractory composition for dry spray construction, and spray construction method using the same
JP5366240B2 (en) * 2008-01-22 2013-12-11 黒崎播磨株式会社 Spraying method for irregular refractories
WO2015064159A1 (en) * 2013-10-31 2015-05-07 日之出産業株式会社 Microbubble formation method, and microbubble formation device
JP6054488B1 (en) * 2015-08-19 2016-12-27 株式会社山崎工業 Self-leveling material slurry supply device and flat surface forming method
JP6420921B1 (en) * 2018-03-23 2018-11-07 黒崎播磨株式会社 Method for spraying irregular refractories and spraying materials used therefor
KR102391426B1 (en) * 2020-12-08 2022-04-27 동창기업주식회사 Facilities for depositing lightweight aerated concrete and foam regeneration-mixing-transmission device
KR102688398B1 (en) * 2022-03-08 2024-07-26 서울대학교산학협력단 Bubble-assisted anti-adhesive transport device of low sulfur fuel oil, method for designing the same and transport control method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356475A (en) * 1999-06-17 2000-12-26 Taiko Rozai Kk Method for dry type spraying of compact monolithic refractory composition
JP2001114573A (en) * 1999-10-13 2001-04-24 Kurosaki Harima Corp Method for spraying refractory and refractory spraying material
JP2001208482A (en) * 2000-01-26 2001-08-03 Shinagawa Refract Co Ltd Wet spraying work nozzle and method of spraying
JP2003073174A (en) * 2001-08-30 2003-03-12 Kurosaki Harima Corp Monolithic refractory for wet gunning and wet gunning method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596193B2 (en) * 1976-08-31 1984-02-09 旭硝子株式会社 Lining method by spraying monolithic refractory material
JPS58183258U (en) * 1982-05-27 1983-12-06 住友金属工業株式会社 Monolithic refractory spraying equipment
JPS6321485A (en) * 1986-07-15 1988-01-29 品川白煉瓦株式会社 Method and device for spraying and executing refractory
JPH0755864B2 (en) * 1991-03-08 1995-06-14 ハリマセラミック株式会社 Spray material for hot repair of furnace wall
JPH08188473A (en) * 1995-01-09 1996-07-23 Kawasaki Refract Co Ltd Monolithic refractory for spraying
JPH10212169A (en) * 1997-01-28 1998-08-11 Kawasaki Refract Co Ltd Monolithic refractory for spraying
JPH10291868A (en) * 1997-04-16 1998-11-04 Kurosaki Refract Co Ltd Castable refractory material having specific matrix and its wet spray executing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356475A (en) * 1999-06-17 2000-12-26 Taiko Rozai Kk Method for dry type spraying of compact monolithic refractory composition
JP2001114573A (en) * 1999-10-13 2001-04-24 Kurosaki Harima Corp Method for spraying refractory and refractory spraying material
JP2001208482A (en) * 2000-01-26 2001-08-03 Shinagawa Refract Co Ltd Wet spraying work nozzle and method of spraying
JP2003073174A (en) * 2001-08-30 2003-03-12 Kurosaki Harima Corp Monolithic refractory for wet gunning and wet gunning method

Also Published As

Publication number Publication date
JP2007155215A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4377913B2 (en) Method for spraying amorphous refractories, spraying material used therefor, and construction equipment
JP4603477B2 (en) Method of spraying irregular refractories and spraying materials used therefor
WO2007066660A1 (en) Method of castable refractory spray application and spray material for use therein
CN104507893A (en) Powdery set-accelerating agent and method for spray application of monothilic refractory
JP4669362B2 (en) Method for spraying amorphous refractories, spraying material used therefor, and construction equipment
JP5366240B2 (en) Spraying method for irregular refractories
JP2006220348A (en) Spraying method of monolithic refractory
JP5324751B2 (en) Method for spraying irregular refractories, and irregular refractories used for them
JP6393437B1 (en) Method for spraying irregular refractories and spraying materials used therefor
JP6420921B1 (en) Method for spraying irregular refractories and spraying materials used therefor
JP6420920B1 (en) Method for spraying irregular refractories and spraying materials used therefor
WO2006106879A1 (en) Method of applying castable refractory material by spraying
TWI697648B (en) Spraying construction method of unshaped refractory and spraying material used for spraying construction method
JP2003254672A (en) Method for spraying monolithic refractory excellent in corrosion resistance
JP6420922B1 (en) Method for spraying irregular refractories and spraying materials used therefor
JP2002048481A (en) Method for executing wet spray of monolithic refractory
JP2003293585A (en) Spraying method for mixture containing quick-setting admixture and its device
JP2002213880A (en) Air stream carrying type spray construction method for monolithic refractory
JP2001064708A (en) Hot-repairing method of furnace wall in blast furnace
JP2005047735A (en) Method for wet-spraying monolithic refractory
JPH1054669A (en) Forming method of refractory furnace structure
JP2011214762A (en) Method of spray application of monolithic refractory and spray application device
JPH1054670A (en) Forming method of furnace structure
JP2005047736A (en) Method for wet-spraying monolithic refractory
JP2003194475A (en) Wet spray construction method for refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4603477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250