JP4603297B2 - Polyhexamethylene adipamide fiber - Google Patents

Polyhexamethylene adipamide fiber Download PDF

Info

Publication number
JP4603297B2
JP4603297B2 JP2004168889A JP2004168889A JP4603297B2 JP 4603297 B2 JP4603297 B2 JP 4603297B2 JP 2004168889 A JP2004168889 A JP 2004168889A JP 2004168889 A JP2004168889 A JP 2004168889A JP 4603297 B2 JP4603297 B2 JP 4603297B2
Authority
JP
Japan
Prior art keywords
dtex
fiber
weaving
polyhexamethylene adipamide
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004168889A
Other languages
Japanese (ja)
Other versions
JP2005344266A (en
Inventor
史章 伊勢
剛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2004168889A priority Critical patent/JP4603297B2/en
Publication of JP2005344266A publication Critical patent/JP2005344266A/en
Application granted granted Critical
Publication of JP4603297B2 publication Critical patent/JP4603297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、糊剤を用いることなしに、かつ、実質的に無撚で高密度袋織製織するためのポリヘキサメチレンアジパミド繊維に関するものである。さらには、高密度袋織時の高速製織性に優れ、かつ、製織後の品位に優れ、また、エラストマー塗布による接着性、接着保持性に優れた高密度産業資材用布帛を得るためのノンサイジング製織用ポリヘキサメチレンアジパミド繊維に関する。   The present invention relates to a polyhexamethylene adipamide fiber for weaving a high-density bag weaving without using a paste and substantially without twisting. Furthermore, non-sizing weaving to obtain a fabric for high-density industrial materials that is excellent in high-speed weaving at the time of high-density bag weaving, excellent in quality after weaving, and excellent in adhesion and adhesion retention by elastomer application. The present invention relates to polyhexamethylene adipamide fiber.

近年、ジャカード織機などを用いて、袋織あるいは2重織とも呼ばれる製織方法で袋状のあるいは中空の布帛を形成し、産業資材用途に用いられている。例えば、土木資材用途でコンクリートを打設するための布製型枠や、自動車の乗員拘束安全装置であるエアバッグなどの用途で、比較的複雑な形状の中空布帛が袋織で得られている。
袋織布帛は中空形状内にコンクリートやガスなど用途に応じた物質が注入されるため、高密度に製織されるとともに、織機上で2重の(あるいは多重の)布帛形成を行うため、特に経糸は綜絖や筬で非常に立て込んだ場所を通過して製織される。
In recent years, bag-like or hollow fabrics are formed by a weaving method called bag weaving or double weaving using a jacquard loom, and are used for industrial materials. For example, relatively complicated hollow fabrics are obtained by bag weaving in applications such as cloth forms for placing concrete in civil engineering materials and airbags that are occupant restraint safety devices for automobiles.
The bag-woven fabric is filled with a material depending on the application, such as concrete or gas, in the hollow shape, so that it is woven at a high density and a double (or multiple) fabric is formed on the loom. It is woven by passing through a place that is very deep with ridges and folds.

高密度で立て込んだ製織では、経糸はいっそう強くしごかれることになるため、繊維自身の毛羽品位はもとより製織過程で新たに発生する毛羽により、経糸の切断や緯糸の走飛不十分で織機が停止することになる。このような場合、一般的には水溶性の糊剤を繊維に付与して、製織することにより製織時の毛羽発生を防止する。しかしながら、このような糊剤を用いて製織する方法では、製織後に、繊維に付着した糊剤を洗浄にて除去する工程並びに、洗浄後の布帛を乾燥・熱セットする工程が必須となる。糊剤を用いない、ノンサイジングによる製織技術そのものは公知であるが、この技術で高密度織物を製織しようとすると、高密度であるために製織工程での毛羽発生が多く、また、毛羽による織機停台が多発することになる。例え製織が可能であったとしても、毛羽が発生し、毛羽が織り込まれた高密度布帛では、外観品位が劣るとともに、機械的強度が低下する恐れがあり、好ましくなかった。   In weaving with high density, the warp is more strongly squeezed.Therefore, not only the fiber's own fluff quality but also the fluff newly generated during the weaving process causes the weaving machine to cut warp and weft to run poorly. Will stop. In such a case, generation of fluff during weaving is generally prevented by applying a water-soluble paste to the fiber and weaving. However, in the method of weaving using such a paste, a step of removing the paste attached to the fibers by washing after weaving and a step of drying and heat-setting the washed fabric are essential. Non-sizing weaving technology that does not use a paste is known, but when we try to weave a high-density fabric with this technology, there is a lot of fluffing in the weaving process due to the high density, and weaving with a fluff There will be many stops. Even if weaving was possible, fluff was generated, and a high-density fabric in which fluff was woven was not preferable because the appearance quality was inferior and the mechanical strength could be lowered.

産業資材用の高密度織物、特にエアバッグに供する袋織織物においては、複雑な形状の構造であり、かつ、袋織物そのものが1重部と2重部とから構成された複雑な構造であり、高密度部、特に1重部並びに1重部と2重部境界付近の糊剤が洗浄により十分に脱落せず、洗浄工程に時間がかかる欠点があった。
更に、出来上がった高密度袋織布帛は、必要に応じ展開時の空気保持性を維持するためにエラストマー樹脂、例えば、シリコーン、ウレタン、クロロプレン樹脂等によるコーティングが施されるが、その際、コーティング膜とこれらの樹脂との接着性が問題であった。すなわち、コーティング樹脂液を公知の方法でコーティングする際、コーティング樹脂が毛羽の多い袋織織物であれば大きな塗布むら欠点を引き起こし、部分的な塗布量が変化するという問題があった。さらに、乾燥後のエラストマー皮膜は袋織布帛に強固に付着していることが要請されるが、糊剤を用いて製織され、精練(洗浄)された高密度布帛では、エラストマー浸透性に欠けてエラストマー皮膜と布帛との接着強度が低くなる問題もあった。
In high-density fabrics for industrial materials, particularly bag woven fabrics used for airbags, the structure is a complicated shape, and the bag fabric itself is a complex structure composed of a single part and a double part. The high-density part, particularly the single part, and the paste near the single part and double part boundary did not fall off sufficiently by washing, and there was a drawback that the washing process took time.
Furthermore, the finished high-density bag woven fabric is coated with an elastomer resin, for example, silicone, urethane, chloroprene resin, etc. in order to maintain air retention during deployment as required. Adhesion with these resins has been a problem. That is, when the coating resin solution is coated by a known method, if the coating resin is a bag-woven fabric with a lot of fluff, there is a problem that a large coating unevenness is caused and a partial coating amount is changed. Furthermore, it is required that the elastomer film after drying is firmly attached to the bag-woven fabric. However, in a high-density fabric woven and scoured (washed) using a paste, the elastomer permeability is lacking. There was also a problem that the adhesive strength between the film and the fabric was lowered.

特許文献1には、糊剤を用いることなしに、かつ、実質的無撚で製織するノンサイジング製織のために、単糸交絡した合成繊維を用いてエアバッグ用途のような産業資材織物を得るための繊維として、針を糸に割り刺して計測した交絡評価における交絡強度の高い糸が用いられることが開示されている。しかしながら、袋織の高速製織性や布帛の品位、さらにはエラストマー塗布性能に関して何も触れていない。
特許文献2には無サイズ(ノンサイジング)ヤーンとして、接触変位計による繊維糸条の凹凸から計測した交絡程度(すなわち、開口長)が良好で、かつ、製糸中にオンライン毛羽センサーで選別した後の毛羽出現長(毛羽数の逆数)の長い品位の糸であってノンサイジング製織できるという糸が示されている。しかしながら、本発明が目的とする、袋織の高速製織性や製織中の毛羽の新規発生による製織品位の低下、さらにはエラストマー塗布性能に関して何も開示されていない。
In Patent Document 1, an industrial material woven fabric such as an airbag is obtained by using a single fiber entangled synthetic fiber for non-sizing weaving without using a glue and substantially non-twisting. It is disclosed that a thread having high entanglement strength in entanglement evaluation measured by piercing a thread into a thread is used as a fiber for the purpose. However, nothing is said about the high-speed weaving property of the bag weave, the quality of the fabric, and the elastomer application performance.
In Patent Document 2, as an unsized (non-sizing) yarn, the degree of entanglement (that is, opening length) measured from the unevenness of the fiber yarn by a contact displacement meter is good, and after selection with an online fluff sensor during yarn production A yarn having a long fluff appearance length (reciprocal of the number of fluff) and capable of non-sizing weaving is shown. However, nothing is disclosed regarding the high-speed weaving property of bag weaving, the degradation of weaving quality due to the new generation of fluff during weaving, and the performance of elastomer application, which are the objects of the present invention.

特許文献3には製織用の繊維として交絡糸を用い、その交絡糸としては形状投影観察による繊維糸条の外形から計測した交絡程度が良好でそのばらつきが少ない糸が開示されている。この交絡糸は高速製織が可能で製織後には交絡が解消されて、ガス透過性が低減でき、コート面が均一になることをうたっている。しかしながら、本発明者らの検討によれば、この交絡糸では実用的な高速製織が困難であり、また、袋織での製織中の毛羽の新規発生による製織品位の低下の問題があり、さらにはエラストマー塗布後のコーティング膜と布帛との接着強度を高める点に関して何も開示されておらず、ノンサイジング繊維による高密度袋織布帛を得るための条件についてはなんら触れられていないのである。   Patent Document 3 discloses a entangled yarn as a fiber for weaving, and as the entangled yarn, a yarn having a good degree of entanglement measured from the outer shape of the fiber yarn by shape projection observation and little variation. This entangled yarn is capable of high-speed weaving. After weaving, the entanglement is eliminated, gas permeability can be reduced, and the coated surface becomes uniform. However, according to the study by the present inventors, practical high-speed weaving is difficult with this entangled yarn, and there is a problem of degradation of weaving quality due to new generation of fluff during weaving in bag weaving, Nothing is disclosed regarding the point of increasing the adhesive strength between the coating film and the fabric after the application of the elastomer, and nothing is mentioned about the conditions for obtaining a high-density bag-woven fabric with non-sizing fibers.

特開平8−311733号公報JP-A-8-31733 特開2001−288638号公報JP 2001-288638 A 特表2003−521589号公報Special table 2003-521589 gazette

本発明は、産業資材用途、特にエアバッグ袋織布帛用途に最適な高密度袋織物を、糊剤を用いることなしに、かつ、実質的に無撚で高速で製織する際に必要な原糸の条件を検討し、製織毛羽の発生を抑制し、毛羽による生機品位の低下を防ぐことができるとともに、さらには、エラストマー塗布後の布帛とエラストマー膜との接着性に優れた袋織布帛を得るためのポリヘキサメチレンアジパミド繊維を提供することを目的とする。   The present invention provides a high-density bag woven fabric that is optimal for industrial material applications, particularly for airbag bag woven fabrics. In order to obtain a bag woven fabric that is excellent in the adhesiveness between the fabric after the elastomer coating and the elastomer film, and the condition can be examined, the occurrence of woven fluff can be suppressed, and the degradation of the quality of the living machine due to the fluff can be prevented. An object is to provide polyhexamethylene adipamide fiber.

本発明者等は、前記課題を解決するため、繊維の単糸交絡状態について鋭意検討し、本発明をなすに至った。
すなわち、本発明は、
(1)下記物性を満足するエアバッグ用ポリヘキサメチレンアジパミド繊維。
(a)交絡数が30〜45個/m
(b)交絡数のばらつきが5〜30%
(c)100m/minの速度での1.0cN/dtexの緊張処理後の交絡数残存率が60〜100%
(d)繊維の切断面における単糸断面積のばらつきが0.5〜10%
)タフネスが180〜350cN・mm/dtex
(f)繊度が100〜1000dtex
(g)単糸繊度が1〜7dtex
(2)中間強度における伸度と沸水収縮率との和が16.0〜20.0%であることを特徴とする(1)記載のポリヘキサメチレンアジパミド繊維。
(3)下記物性を満足するポリヘキサメチレンアジパミド繊維からなる樹脂コーティングエアバッグ。
(a)交絡数が30〜45個/m
(b)交絡数のばらつきが5〜30%
(c)100m/minの速度での1.0cN/dtexの緊張処理後の交絡数残存率が60〜100%
(d)繊維の切断面における単糸断面積のばらつきが0.5〜10%
(e)タフネスが180〜350cN・mm/dtex
(f)繊度が100〜1000dtex
(g)単糸繊度が1〜7dtex
(4)ポリヘキサメチレンアジパミドを溶融紡糸する際に、蟻酸相対粘度が50〜100のポリヘキサメチレンアジパミド樹脂を用い、紡糸口金に保温ヒーターを接触させることで紡糸口金ユニットを保温しながら取り付け、紡糸口金背圧30kg/cm 以上で濾過し、紡出糸をネルソンロールまたはセパレーターロールにより多段延伸し、オリフィス断面積/チャンバー断面積比が0.25〜0.50のインターレーサーを用い、3.1MPa・Nm /Hr以上の流体エネルギーを付与し、25msec以上の糸条滞留時間で単糸交絡を行なった後巻き取ることからなる、繊度が100〜1000dtexおよび単糸繊度が1〜7dtexのポリヘキサメチレンアジパミド繊維の製造方法。
である。
In order to solve the above-mentioned problems, the present inventors diligently studied about the single yarn entanglement state of the fiber, and reached the present invention.
That is, the present invention
(1) Polyhexamethylene adipamide fiber for air bags satisfying the following physical properties.
(A) The number of entanglements is 30 to 45 / m
(B) 5-30% variation in the number of entanglements
(C) The confounding number remaining ratio after tension treatment of 1.0 cN / dtex at a speed of 100 m / min is 60 to 100%.
(D) Variation in cross-sectional area of single yarn on the cut surface of the fiber is 0.5 to 10%
( E ) Toughness of 180 to 350 cN · mm / dtex
(F) Fineness is 100 to 1000 dtex
(G) Single yarn fineness of 1 to 7 dtex
(2) The polyhexamethylene adipamide fiber according to (1), wherein the sum of the elongation at the intermediate strength and the boiling water shrinkage is 16.0 to 20.0%.
(3) A resin-coated airbag made of polyhexamethylene adipamide fiber that satisfies the following physical properties.
(A) The number of entanglements is 30 to 45 / m
(B) 5-30% variation in the number of entanglements
(C) The confounding number remaining ratio after tension treatment of 1.0 cN / dtex at a speed of 100 m / min is 60 to 100%.
(D) Variation in cross-sectional area of single yarn on the cut surface of the fiber is 0.5 to 10%
(E) Toughness of 180 to 350 cN · mm / dtex
(F) Fineness is 100 to 1000 dtex
(G) Single yarn fineness of 1 to 7 dtex
(4) When melt spinning polyhexamethylene adipamide, a polyhexamethylene adipamide resin having a relative viscosity of 50 to 100 is used, and the spinneret unit is kept warm by bringing a heat insulation heater into contact with the spinneret. While attached, filter at a spinneret back pressure of 30 kg / cm 2 or more, stretch the spun yarn in multiple stages with a Nelson roll or separator roll, and install an interlacer with an orifice cross-sectional area / chamber cross-sectional area ratio of 0.25 to 0.50. Used, a fluid energy of 3.1 MPa · Nm 3 / Hr or more is applied, a single yarn is entangled with a yarn residence time of 25 msec or more, and then wound, and the fineness is 100 to 1000 dtex and the single yarn fineness is 1 Process for producing -7 dtex polyhexamethylene adipamide fiber.
It is.

本発明の合成繊維は、産業資材用途の高密度袋織物をノンサイジングで製織することができるもので、高速製織可能で、製織毛羽発生が抑制された高品位かつ柔軟な袋織物が得られ、さらには、該織物にエラストマー塗膜を形成した際の塗膜付着が強固であるという効果を有する。   The synthetic fiber of the present invention is capable of non-sizing high-density bag fabric for industrial material use, is capable of high-speed weaving, and a high-quality and flexible bag fabric with suppressed weaving fluff is obtained. Furthermore, it has the effect that the coating film adhesion is strong when the elastomer coating film is formed on the woven fabric.

本発明について、以下具体的に説明する。
本発明のポリヘキサメチレンアジパミド繊維は、いわゆる長繊維であり、ポリアミド繊維、特に、主としてポリヘキサメチレンアジパミド繊維からなる。本発明のポリヘキサメチレンアジパミド繊維とは100%ヘキサメチレンジアミンとアジピン酸とから構成される融点が250℃以上のポリアミド66繊維を指すが、融点が250℃未満とならない範囲で、ポリアミド6、ポリアミド6I、ポリアミド610、ポリアミド6Tなどの共重合、あるいはブレンドしてもよい。また、ポリヘキサメチレンアジパミド繊維以外に物性が低下しない範囲で他素材、例えば、芳香族ポリアミド、ポリエステル繊維等を混繊して用いてもよい。
The present invention will be specifically described below.
The polyhexamethylene adipamide fiber of the present invention is a so-called long fiber, and is composed of a polyamide fiber, particularly, a polyhexamethylene adipamide fiber. The polyhexamethylene adipamide fiber of the present invention refers to a polyamide 66 fiber having a melting point composed of 100% hexamethylene diamine and adipic acid and having a melting point of 250 ° C. or higher. , Polyamide 6I, polyamide 610, polyamide 6T or the like may be copolymerized or blended. In addition to the polyhexamethylene adipamide fiber, other materials such as aromatic polyamide and polyester fiber may be mixed and used within the range where the physical properties do not deteriorate.

本発明のポリヘキサメチレンアジパミド繊維の繊度は、100〜1000dtexが好ましく、更に好ましくは120〜500dtexである。この範囲の繊度であれば問題なく高密度の袋織布帛が得られる。
本発明におけるポリヘキサメチレンアジパミド繊維の構成単糸の繊度は、1〜7dtexが好ましく、更に好ましくは2〜4.5dtexである。単糸繊度が低ければ柔軟な布帛が得られる可能性が大きいが、特に袋織布帛においては2〜4.5dtexであれば、柔軟性並びにエラストマー皮膜との接着性に優れたエアバッグが得られる。単糸繊度が7dtex超えると袋織布帛が硬くなり、柔軟な織物が得られない。一方、単糸繊度1dtexより小さければ、経糸および緯糸を構成する繊維束の単糸タフネスなどの引張り機械特性が低く、高密度で高速製織中の物理的なダメージによる毛羽発生すなわち単糸切れの発生を抑制することが困難である。
The fineness of the polyhexamethylene adipamide fiber of the present invention is preferably 100 to 1000 dtex, more preferably 120 to 500 dtex. If the fineness is within this range, a high-density bag woven fabric can be obtained without any problem.
The fineness of the constituent single yarn of the polyhexamethylene adipamide fiber in the present invention is preferably 1 to 7 dtex, more preferably 2 to 4.5 dtex. If the single yarn fineness is low, there is a high possibility that a flexible fabric will be obtained. However, in the case of a bag-woven fabric, if it is 2 to 4.5 dtex, an airbag excellent in flexibility and adhesiveness to the elastomer film can be obtained. When the single yarn fineness exceeds 7 dtex, the bag woven fabric becomes hard and a flexible woven fabric cannot be obtained. On the other hand, if the single yarn fineness is smaller than 1 dtex, the tensile mechanical properties such as single yarn toughness of the fiber bundle constituting the warp and weft are low, and fluff generation due to physical damage during high-speed weaving, that is, single yarn breakage occurs. Is difficult to suppress.

本発明のポリヘキサメチレンアジパミド繊維は引張強度は6.0cN/dtex以上、より好ましくは8.0cN/dtex以上である。この時ポリヘキサメチレンアジパミド繊維の破断伸度は15〜30%となる。
本発明においてはポリヘキサメチレンアジパミド繊維の構成単糸繊維を集束させるため、構成する単糸同士と特定の条件で絡み合わせていることに特徴がある。一般に繊維に空気流を吹き付けるとその前後部分で単糸相互の絡み合いが生ずることが知られている。
The polyhexamethylene adipamide fiber of the present invention has a tensile strength of 6.0 cN / dtex or more, more preferably 8.0 cN / dtex or more. At this time, the breaking elongation of the polyhexamethylene adipamide fiber is 15 to 30%.
In the present invention, the constituent single yarn fibers of the polyhexamethylene adipamide fiber are converged, so that the constituent single yarns are entangled with each other under specific conditions. In general, it is known that when an air stream is blown onto a fiber, single yarns are entangled with each other at the front and back portions thereof.

走行している糸条でこれを実施すると、交絡部と非交絡部すなわち開口部が糸長方向に交互に配された繊維となる。本発明においては交絡数が30個/m以上、45個/m以下であることが製織工程に用いるのに必要である。ここにおける交絡数はEnka technica GmbH 社製「ITEMAT LAB TSI」装置を用いて測定できる。ポリヘキサメチレンアジパミド繊維の単糸は製織準備工程ではばらけにくくなり、毛羽発生を防止して、製織工程の準備を行うことができる。交絡数は通常、1m当たりの交絡数であり、この交絡数が多ければ、交絡点間の距離が短く、すなわち、開口長が短くなり、交絡間でばらけることが少なくなる。   When this is carried out with the running yarn, the entangled part and the non-entangled part, that is, the opening part are fibers in which they are alternately arranged in the yarn length direction. In the present invention, the number of entanglements is 30 / m or more and 45 / m or less for use in the weaving process. The number of entanglements here can be measured using an “ITEMAT LAB TSI” apparatus manufactured by Enka technica GmbH. The single yarn of polyhexamethylene adipamide fiber is less likely to be separated in the weaving preparation process, and can prevent the occurrence of fluff and prepare for the weaving process. The number of entanglements is usually the number of entanglements per meter, and the greater the number of entanglements, the shorter the distance between the entangled points, that is, the shorter the opening length, and the less the variation between the entangled points.

本発明においては交絡数のばらつきが5〜30%であることが必要である。交絡数のばらつきが30%以下であることにより、製織中に織機によるしごきに起因する毛羽になりやすい長開口部が減少するためであり、単糸切れによる織機の停台や、単糸切れの織り込みによる生機品位低下を防止することができる。   In the present invention, the variation in the number of entanglements needs to be 5 to 30%. This is because the variation in the number of entanglements is 30% or less, and long openings that tend to become fluff due to ironing by the loom during weaving are reduced. It is possible to prevent the degradation of raw machinery quality due to weaving.

交絡数残存率の測定は、以下の方法にて測定することができる。すなわち、交絡数はEnka technica GmbH 社製「ITEMAT LAB TSI」装置を用い、実質的に無負荷での交絡数(1)と有負荷での交絡数(2)との比率で求める。この装置は評価速度100m/分で繊維を引き出し、その引き出された繊維糸条をはさむようにして設置した2つのロール間で繊維のある一定圧力下でのギャップを検出することにより交絡部を決定する。繊維の交絡部では単糸が相互に乗り上げていて交絡しているためロール間ギャップが大きく、非交絡部すなわち開口部では単糸が平行に平たく並んでいるため、繊維が扁平状になることでギャップが小さくなる。試料長20m測定することにより、この交絡部、非交絡部、並びにその交絡部の繊維長方向のばらつきを評価することができる。この装置においては、交絡の強度を評価することができ、無負荷での測定と1.0cN/dtexでの張力を負荷した状態での交絡数で評価する。   The remaining number of entanglements can be measured by the following method. In other words, the number of entanglements is obtained by the ratio of the number of entanglements (1) with no load and the number of entanglements (2) with load, using an “ITEMAT LAB TSI” device manufactured by Enka technica GmbH. This device draws fibers at an evaluation speed of 100 m / min, and determines the entangled part by detecting the gap of the fibers under a certain pressure between two rolls installed so as to sandwich the drawn fiber yarn. . Since the single yarns run on each other at the entangled part of the fiber, the gap between the rolls is large, and at the non-entangled part, that is, the opening part, the single yarns are arranged in parallel and flat. The gap becomes smaller. By measuring the sample length of 20 m, the entangled portion, the non-entangled portion, and the variation in the fiber length direction of the entangled portion can be evaluated. In this apparatus, the strength of entanglement can be evaluated, and the evaluation is based on the measurement with no load and the number of entanglements with a tension of 1.0 cN / dtex applied.

本発明においては、1.0cN/dtexの緊張処理後の交絡数残存率が60〜100%であることが必要である。交絡数残存率は交絡数(2)を交絡数(1)で割り、100をかけて%を求めることができる。もちろん、この測定装置においては負荷張力をある程度変更することが可能であるが、本発明者らは目的とするノンサイジング製織に必要な交絡の強さと初期の交絡数(2)との関係において、1.0cN/dtex時の交絡数との相関が大きいことを初めて見いだしたものである。1.0cN/dtexの緊張処理後の交絡残存率が60%以上であれば、ノンサイジング製織が可能なだけでなく製織後の織糸ににも交絡が明確に残存することを見出し、ノンサイジング製織時に毛羽発生を防止することが可能であることがわかった。   In the present invention, it is necessary that the entangling number remaining rate after the tension treatment of 1.0 cN / dtex is 60 to 100%. The confounding number remaining rate can be obtained by dividing the number of confounding (2) by the number of confounding (1) and multiplying by 100. Of course, in this measuring device, it is possible to change the load tension to some extent, but in the relationship between the strength of the entanglement necessary for the intended non-sizing weaving and the initial number of entanglements (2), It has been found for the first time that the correlation with the number of confounding at 1.0 cN / dtex is large. It is found that if the residual rate of entanglement after tension treatment of 1.0 cN / dtex is 60% or more, non-sizing weaving is possible, and entanglement clearly remains in the woven yarn after weaving. It was found that fluffing can be prevented during weaving.

すなわち、1.0cN/dtexの緊張処理後の交絡数残存率が60%以上であれば、まず、織物を製織した後の織糸に集束性が残留し、織物表面の凹凸が多くなるとともに、織物中の単糸の粗密が生ずる。次に、織物表面において織糸の単糸が交錯することにより、織物の織糸表面での単糸は、織糸方向の均一性が破れ、一部筋交い状に走ることになる。こうした織物表面の大小の凹凸や、織物内部での単糸集束の粗密によって、エラストマー膜を形成する際に、エラストマーの浸透促進と表面状態に凹凸を生じるためエラストマー皮膜との接着性が良好となる。   That is, if the remaining ratio of the entanglement number after the tension treatment of 1.0 cN / dtex is 60% or more, first, the convergence remains in the woven yarn after weaving the fabric, and the unevenness of the fabric surface increases. The single yarn in the woven fabric becomes coarse and dense. Next, since the single yarns of the woven yarn cross on the surface of the fabric, the single yarn on the surface of the woven yarn is broken in the uniformity in the direction of the woven yarn, and partially runs in a straight line. Due to the large and small irregularities on the surface of the fabric and the density of single yarn focusing inside the fabric, when forming the elastomer film, the penetration of the elastomer is promoted and the surface state is irregular, which improves the adhesion to the elastomer film. .

本発明におけるポリヘキサメチレンアジパミド繊維における単糸断面積のばらつきが0.5〜10%であることが必要である。単糸の断面積は繊維断面写真から画像解析により求めることができ、同時に断面積のばらつきを計算することができる。単糸断面積のばらつきが10%を超えると織糸中に単糸太細糸が混在することになり、特に細い単糸の破断エネルギーが低いものが混入していることになり、毛羽が発生しやすくなるためである。ポリヘキサメチレンアジパミド繊維を製造する際には繊維束としてまとめて一斉延伸しているため、延伸工程での断面積のばらつきを生じやすいが、このばらつきを0.5〜10%とし、前記交絡数残存率を60〜100%にする点と組み合わせることにより、製織中の毛羽発生を押さえることができる。   It is necessary that the variation of the single yarn cross-sectional area in the polyhexamethylene adipamide fiber in the present invention is 0.5 to 10%. The cross-sectional area of the single yarn can be obtained by image analysis from the fiber cross-sectional photograph, and at the same time, the variation in cross-sectional area can be calculated. When the variation in cross-sectional area of single yarn exceeds 10%, single yarn thick and thin yarn will be mixed in the weaving yarn, especially thin single yarn with low breaking energy will be mixed, and fluff will be generated It is because it becomes easy to do. When producing polyhexamethylene adipamide fiber, since it is stretched all together as a fiber bundle, it is easy to cause variation in cross-sectional area in the stretching process, this variation is 0.5 to 10%, Combining with the point which makes an entangling number residual rate 60-100% can suppress the fluff generation | occurrence | production during weaving.

本発明においては、繊維の引張試験における繊度当たりタフネスが180〜350cN・mm/dtexであることが必要である。本発明は、産業資材用途の高密度織物を得るためのものであり、機械特性が高い方が好ましい。特に、布帛として破断しにくい、すなわち、破断エネルギーが高い袋織布帛を得るために必要である。
また、製織中に発生する毛羽は、製織の繊維の破断エネルギーが高い方が切断しにくい為、毛羽立ちしにくく、特に180〜350cN・mm/dtexのタフネスを有することにより、高密度製織時の毛羽発生を防止することができる。
In the present invention, the toughness per fineness in the tensile test of the fiber needs to be 180 to 350 cN · mm / dtex. The present invention is for obtaining a high-density fabric for use in industrial materials, and preferably has higher mechanical properties. In particular, it is necessary to obtain a bag-woven fabric that is difficult to break as a fabric, that is, has a high breaking energy.
Further, the fluff generated during weaving is difficult to cut when the breaking energy of the weaving fiber is higher, so it is difficult to fluff, and in particular, it has a toughness of 180 to 350 cN · mm / dtex, so that fluff during high-density weaving Occurrence can be prevented.

本発明において、繊維の中間強度における伸度と沸水収縮率との和は16.0〜20.0%であることが好ましい。中間強度における伸度はいわゆる中間伸度と呼称されているものであり、JIS L1017に規定される一定荷重時伸び率に相当する。この中間伸度と沸水収縮率の値の和は布帛としての寸法安定性の目安であり、繊維の物性として加工工程で熱処理などを経過する際の寸法変化の程度を示している。本発明ではこの寸法安定性が20.0%以下であれば、袋織布帛のエラストマー塗膜との接着性が良好であり、好適な加工適性が得られる。これは、袋織布帛がコーティング後、熱固定過程を経たとしても、布帛としての寸法安定性がよいことで、織物縮みが少なく、所望の寸法を有する布帛を得ることができる。この和が16%未満であると袋織布帛としての強度が不十分な場合があり、また20%を超えると、コーティング時の熱処理時に寸法変化が大きい場合があり、いずれも好ましくない。   In the present invention, the sum of the elongation at the intermediate strength of the fiber and the boiling water shrinkage is preferably 16.0 to 20.0%. The elongation at the intermediate strength is referred to as so-called intermediate elongation, and corresponds to the elongation at constant load specified in JIS L1017. The sum of the values of the intermediate elongation and boiling water shrinkage is a measure of the dimensional stability of the fabric, and indicates the degree of dimensional change when heat treatment or the like is passed in the processing step as the physical property of the fiber. In the present invention, if the dimensional stability is 20.0% or less, the adhesiveness of the bag-woven fabric with the elastomer coating is good, and suitable processability is obtained. This is because even if the bag-woven fabric is subjected to a heat setting process after coating, the fabric has good dimensional stability, so that a fabric having a desired dimension can be obtained with little shrinkage of the fabric. If this sum is less than 16%, the strength of the bag-woven fabric may be insufficient, and if it exceeds 20%, the dimensional change may be large during heat treatment during coating, which is not preferable.

ここでの繊維としての好ましい中間伸度は11〜15%である。JIS L 1017に規定される中間強度Th[N]=44*F繊度/D基準繊度(ポリアミド繊維の場合は940dtex)における伸度は、すなわち中間伸度は、繊維の1軸配向した高分子構造に由来するものであって、とりわけ、タイ分子鎖の配向と緩和と歪の程度分布を反映している。分子鎖の全体配向程度が高く、すなわち、中間伸度が高く、みかけの剛性が高い繊維は、構造歪を大きく有する場合がある。この場合、構造歪は熱で緩和してしまい、繊維は収縮するとともに熱処理後の中間伸度が低く変化する。熱処理における中間伸度の変化が少ない方が寸法安定性がよく織物クリンプの大きさが維持できる。   The preferred intermediate elongation for the fiber here is 11 to 15%. The elongation at the intermediate strength Th [N] = 44 * F fineness / D reference fineness (940 dtex in the case of polyamide fiber) as defined in JIS L 1017, that is, the intermediate elongation is a uniaxially oriented polymer structure of the fiber. In particular, it reflects the orientation and relaxation and strain distribution of tie molecular chains. A fiber having a high degree of overall orientation of molecular chains, that is, a high intermediate elongation and a high apparent rigidity may have a large structural strain. In this case, the structural strain is relaxed by heat, the fiber contracts, and the intermediate elongation after heat treatment changes low. The smaller the change in the intermediate elongation during heat treatment, the better the dimensional stability and the size of the fabric crimp can be maintained.

また、中間強度Th[N]=44*F繊度/D基準繊度(ポリアミド940dtex)での伸度は、高負荷時の剛性を表す。寸法安定性としては中間伸度と沸水収縮率は共に小さい方が良いが、エアバッグ用途のように作動時に高負荷が掛かる際、初期負荷に対して高伸度であることは、織物変形追随性が良く、中空織物が充填物の漏洩を防ぐために有利である。複雑な形状を有する中空織物は、繊維剛性が高ければ、2重部と1重部の境界部の特定部に局所的に応力集中し、充填物の漏洩が生じやすい。充填物漏洩の抑制のためには中間伸度が11%以上がよい。特に、エアバッグの気密性が向上に有利である。   Further, the elongation at intermediate strength Th [N] = 44 * F fineness / D reference fineness (polyamide 940 dtex) represents the rigidity at high load. In terms of dimensional stability, both the intermediate elongation and boiling water shrinkage ratio should be small. However, when a high load is applied during operation as in an airbag application, the high elongation relative to the initial load means that the fabric follows deformation. It has good properties, and a hollow woven fabric is advantageous for preventing leakage of the filler. If the hollow fabric having a complicated shape has high fiber rigidity, stress is concentrated locally on a specific part of the boundary between the double part and the single part, and the leakage of the filler tends to occur. In order to suppress filling material leakage, the intermediate elongation is preferably 11% or more. In particular, the airtightness of the airbag is advantageous for improvement.

繊維の中間伸度11%以上とするには、製糸条件としては、充分な重合度のポリマーを用い、充分で適切な熱多段延伸とともに、延伸に引き続いて熱リラックスする製糸条件を選べばよい。
本発明のポリヘキサメチレンアジパミド繊維の収縮率は、沸水中の収縮率(JIS L1017 8.14)による。好ましい沸水収縮率は1〜10%である。より好ましい沸水収縮率は5.0〜9.0%であり、最も好ましくは6.0〜8.0%である。熱収縮率が低ければ加工時の寸歩安定性がよく、織物クリンプの大きさが維持できる。また、加工時の収縮の程度が小さいため、所定の形状・寸法とするための加工時の寸法変化が小さく、最終的に必要な寸法を設計しやすい利点がある。
本発明のポリヘキサメチレンアジパミド繊維は好ましくは通常の直接紡糸延伸法により得られる。もちろん通常の未延伸糸―後延伸法によるコンベ法によって製造してもよいが、産業資材用途としての高強力糸を低生産コストで製造するためには直接紡糸延伸法による製造が好ましい。
In order to set the intermediate elongation of the fiber to 11% or more, as the spinning condition, a polymer having a sufficient degree of polymerization may be used, and a spinning condition in which heat is relaxed subsequent to stretching together with sufficient and appropriate thermal multistage stretching may be selected.
The shrinkage rate of the polyhexamethylene adipamide fiber of the present invention depends on the shrinkage rate in boiling water (JIS L1017 8.14). A preferred boiling water shrinkage is 1 to 10%. A more preferable boiling water shrinkage is 5.0 to 9.0%, and most preferably 6.0 to 8.0%. If the heat shrinkage rate is low, the step stability during processing is good and the size of the fabric crimp can be maintained. Further, since the degree of shrinkage during processing is small, there is an advantage that a dimensional change during processing for obtaining a predetermined shape / dimension is small, and it is easy to design a required dimension finally.
The polyhexamethylene adipamide fiber of the present invention is preferably obtained by a usual direct spinning drawing method. Of course, it may be produced by a conventional undrawn yarn-combination method using a post-drawing method, but in order to produce a high strength yarn for industrial material use at a low production cost, production by a direct spinning drawing method is preferred.

本発明においては、通常の押出機を用い、乾燥されたポリヘキサメチレンアジパミド樹脂を溶融押出する。ポリヘキサメチレンアジパミド樹脂として、分子量の目安として、蟻酸相対粘度で50〜100のものが好適である。更に好ましくは60〜90である。この範囲のポリヘキサメチレンアジパミド樹脂を溶融紡糸し、多段延伸で、低歪速度延伸(低速度延伸など)することで得られる。溶融されたポリヘキサメチレンアジパミドは通常、ひとつの紡糸口金から複数の紡出孔から吐出され、引き取られることで製造される。本発明における、得られたポリヘキサメチレンアジパミド繊維の単糸断面積ばらつきは紡出孔吐出量のバラツキに主として起因する。本発明の単糸断面積のばらつきを0.5〜30%とするためには、溶融樹脂の濾過時に、背圧が30kg/cm以上とすることが好ましい。更に好ましくは50kg/cm以上である。この背圧の生じる要因の第1は、紡出孔の形状に起因する単一の紡出孔の圧損と紡出孔数による。紡糸口金背圧は、紡出孔が大開口である紡糸口金を取付けて、通常紡糸口金との紡糸口金ユニット圧差を観測すればよい。第2の要因は、紡糸口金取付け時の紡出孔詰まりである。通常、紡糸口金ユニットは紡糸温度以上に加温された後に紡糸ヘッドに取付けが実施され、紡糸ヘッドに取付けられてからは、紡糸ヘッドおよび周辺ヒーターからの伝熱、輻射とポリマー吐出によるポリマー自身の持ち込み熱量で一定温度に保たれる。しかしながら、紡糸口金ユニットは取付け作業中に紡糸口金表面は外気にさらされて温度低下するため、部分的に冷えると、その近傍の紡出孔からポリマー吐出が固化して、ポリマー流路の一部が固化閉塞し、所定の吐出量が得られず、紡糸口金面内の紡出孔吐出量のバラツキや単糸欠損となることがある。さらに、一旦、紡出孔からのポリマー吐出が滞ると、ポリマー自身による熱量供給が少ないこと、また、吐出直前では融解点近くまで温度低下しているのが現状のため、固化したポリマー部分を再融解することは困難であり、該紡出孔における吐出量は回復することがないのが一般的である。特に、本発明のような単糸繊度が細い紡糸においては、紡出孔断面積が小さかったり、紡出孔当たりのポリマー吐出量が少なく、紡糸口金ユニット取付けの際に生じる紡出孔吐出ばらつきが発生しやすい。そのため、紡糸口金ユニットの取付けの際に、紡糸口金表面温度低下を防ぐ紡糸口金面保温ヒーターを接触させておくのが好ましい。紡糸口金面保温ヒーターは、紡糸口金ユニット取付けが完了後、ポリマー吐出の際に取り外すことができる。本発明においては、ポリマー吐出までの期間中、紡糸口金表面温度が紡糸口金面保温ヒーターにより確実に紡糸温度以上に維持されるため、紡出孔吐出ばらつきがなくなり、繊維の単糸断面積のばらつきが減らせ、ばらつきを0.5〜10%とすることができる。 In the present invention, the dried polyhexamethylene adipamide resin is melt-extruded using an ordinary extruder. As the polyhexamethylene adipamide resin, those having a relative viscosity of formic acid of 50 to 100 are suitable as a measure of molecular weight. More preferably, it is 60-90. The polyhexamethylene adipamide resin in this range is melt-spun and obtained by multi-stage stretching and low strain rate stretching (such as low speed stretching). The melted polyhexamethylene adipamide is usually produced by being discharged from a plurality of spinning holes from a single spinneret and taken out. In the present invention, the single yarn cross-sectional area variation of the obtained polyhexamethylene adipamide fiber is mainly caused by variations in the discharge amount of the spinning holes. In order to make the variation in the single yarn cross-sectional area of the present invention 0.5 to 30%, it is preferable that the back pressure is 30 kg / cm 2 or more during filtration of the molten resin. More preferably, it is 50 kg / cm 2 or more. The first cause of this back pressure is due to the pressure loss of the single spinning hole and the number of spinning holes due to the shape of the spinning hole. The spinneret back pressure may be measured by attaching a spinneret having a large spinning hole and observing the spinneret unit pressure difference from the normal spinneret. The second factor is clogging of spinning holes when the spinneret is attached. Normally, the spinneret unit is heated to a temperature higher than the spinning temperature and then attached to the spinning head. After being attached to the spinning head, heat transfer from the spinning head and the surrounding heater, radiation and polymer discharge are performed by the polymer itself. It is kept at a constant temperature by the amount of heat brought in. However, since the spinneret unit is exposed to the outside air and the temperature drops during the mounting operation, the polymer discharge is solidified from the adjacent spinning holes when it is partially cooled, and a part of the polymer flow path is formed. May solidify and block, and a predetermined discharge amount may not be obtained, resulting in variations in the discharge amount of the spinning holes in the spinneret surface and single yarn defects. Furthermore, once the polymer discharge from the spinning hole is delayed, the amount of heat supplied by the polymer itself is small, and the temperature has dropped to near the melting point just before the discharge. It is difficult to melt, and the discharge amount in the spinning hole generally does not recover. In particular, in spinning with a fine single yarn fineness as in the present invention, the spinning hole cross-sectional area is small, the amount of polymer discharged per spinning hole is small, and there is a dispersion in spinning hole discharge that occurs when the spinneret unit is attached. Likely to happen. Therefore, when attaching the spinneret unit, it is preferable to keep a spinneret surface warming heater in contact with the spinneret surface to prevent a decrease in the temperature of the spinneret surface. The spinneret surface warming heater can be removed when the polymer is discharged after the spinneret unit has been attached. In the present invention, the spinneret surface temperature is reliably maintained above the spinning temperature by the spinneret surface heat-retaining heater during the period until the polymer is discharged. Can be reduced, and the variation can be made 0.5 to 10%.

延伸は通常のネルソンロールあるいはセパレーターロール方式の多段延伸方式により得得られる。ロール速度は通常の500〜2000m/分の第1引取りロールから2500〜6000m/分の最終熱セットロールまで製造条件により選択可能である。引取りロールは延伸ロールだけではなく、熱セットロールを併用してもよい。
また、用いるロールの表面粗度は鏡面、梨地のいずれであってもよく、また表面粗度も適宜0.4〜8Sの間で選択することができる。
本発明における単糸交絡付与はインターレーサーを多段に用いることが好ましい。
まず、引取りロール前にプレインターレーサーを用い、最終ロールと捲取機との間に更に多段のインターレーサーを設けることが好ましい(図1では多段は表示せず)。通常捲取機前には1個のインターレーサーが設置されるのが一般的であるが、本発明においては多段、特に2ないし3個のインターレーサーを直列に設置するのが好ましい。
ここで用いるインターレーサーは例えば、Heberlein Fiber Technology Inc.社の PolyJet―SP25 シリーズが好ましい。
Stretching can be obtained by a normal Nelson roll or separator roll multistage stretching method. The roll speed can be selected depending on the production conditions from the normal first take-up roll of 500 to 2000 m / min to the final heat set roll of 2500 to 6000 m / min. The take-up roll may be used not only as a stretching roll but also as a heat setting roll.
Moreover, the surface roughness of the roll to be used may be either a mirror surface or a satin surface, and the surface roughness can be appropriately selected between 0.4 to 8S.
In the present invention, it is preferable to use an interlacer in multiple stages for imparting single yarn entanglement.
First, it is preferable to use a pre-interlacer before the take-up roll and provide a multi-stage interlacer between the final roll and the take-up machine (multi-stage is not shown in FIG. 1). In general, one interlacer is generally installed before the take-up machine. However, in the present invention, it is preferable to install two or three interlacers in series.
The interlacer used here is preferably, for example, PolyJet-SP25 series manufactured by Heberlein Fiber Technology Inc.

繊維の単糸交絡はインターレーサー中のエアジェット流が繊維と衝突することで生じる。使用されるエアジェットは、繊維が通過するインターレーサーはヤーンチャンバーと空気またはガスをヤーンチャンバーへと案内する少なくとも1個のエアオリフィスが含まれる。好ましいエアジェット流は圧縮された空気が好ましく、他の可能なガスとしてスチームが挙げられる。有用なエアジェット流は商業的にも入手可能である。インターレーサーにおけるエアオリフィスの数には制限はないが、シングルオリフィス、ダブルオリフィスまたはトリプルオリフィスのエアジェットが好ましい。エアジェットはインターレーサー内で直列で配置することもできる。即ち、繊維糸条の各1本につき2つ以上のエアジェットが存在することができる。ヤーンチャンバーは、繊維が通過する断面形状が、卵形、円形、方形、半方形、三角形、半月形または平行な板のような任意の形状であることができる。また、断面形状が連続的に変化しても良い。空気流を繊維糸条に当てる角度は任意に設定してよいが、概略直角が好ましい。   Single yarn entanglement of the fibers occurs when the air jet flow in the interlacer collides with the fibers. The air jet used includes an interlacer through which the fiber passes and a yarn chamber and at least one air orifice that guides air or gas into the yarn chamber. A preferred air jet stream is preferably compressed air, and other possible gases include steam. Useful air jet streams are also commercially available. The number of air orifices in the interlacer is not limited, but a single orifice, double orifice or triple orifice air jet is preferred. The air jets can also be arranged in series in the interlacer. That is, there can be more than one air jet for each fiber yarn. The yarn chamber can have any cross-sectional shape through which the fiber passes, such as an oval, circular, square, half square, triangular, half moon or parallel plate. Moreover, the cross-sectional shape may change continuously. The angle at which the air flow is applied to the fiber yarn may be arbitrarily set, but is preferably a substantially right angle.

本発明に用いるインターレーサー中のオリフィス断面積/チャンバー断面積の比は0.25〜0.50が好ましい。
本発明の交絡度を得るためには十分なエア圧力が同時に必要である。本発明の繊維を製造するために用いられる圧縮空気圧は、0.2〜1.5MPa、好ましくは0.4〜1.0MPaであり、この範囲の圧力とポリヘキサメチレンアジパミド繊維の繊度及び単糸繊度の条件下で本発明の交絡度を得ることができる。
The ratio of the orifice cross-sectional area / chamber cross-sectional area in the interlacer used in the present invention is preferably 0.25 to 0.50.
In order to obtain the degree of entanglement of the present invention, sufficient air pressure is required at the same time. The compressed air pressure used for producing the fiber of the present invention is 0.2 to 1.5 MPa, preferably 0.4 to 1.0 MPa. Pressure in this range and the fineness of the polyhexamethylene adipamide fiber and The entanglement degree of the present invention can be obtained under the condition of single yarn fineness.

本発明においては、交絡数の変動が少ない、ばらつきの無い交絡を得るために、エアジェットにおける繊維糸条の適度な滞留時間が必要である。エアジェット装置内の糸条滞留時間は25msec以上が望ましく、さらに好ましくは30msec以上である。エアジェット内で有効にジェットのエネルギーが付与される効果について、主たる支配因子は、エアジェットのヤーンチャンバー長であり、さらに制御すべき最大の因子は糸条の走行速度である。糸条滞留時間は25msec以上で、かつ多段とすることにより、交絡数が所望の30ヶ/m以上であり、かつ、交絡数ばらつきが30%以下と安定したポリヘキサメチレンアジパミド繊維を製造することができる。   In the present invention, an appropriate residence time of the fiber yarn in the air jet is required in order to obtain a entanglement with little variation in the number of entanglements and no variation. The yarn residence time in the air jet device is desirably 25 msec or more, more preferably 30 msec or more. The main governing factor of the effect of effectively imparting jet energy in the air jet is the length of the air jet yarn chamber, and the maximum factor to be controlled is the yarn traveling speed. Producing stable polyhexamethylene adipamide fiber with a yarn residence time of 25 msec or more and multiple stages, and a desired number of entanglements of 30 / m or more and a variation of the number of entanglements of 30% or less can do.

本発明の繊維を製造するには、上記、インターレーサーにおけるエアジェットの装置条件とエア圧力によって決定される流体エネルギーが充分でなければならない。流体エネルギー(MPa・Nm/Hr)は、エア圧力(MPa)とエア消費流量(Nm/Hr)の積から求める。流体エネルギー値は3.1(MPa・Nm/Hr)以上必要であって、好ましくは3.5(MPa・Nm/Hr)以上、さらに好ましくは4.0(MPa・Nm/Hr)以上である。流体エネルギー値が3.1以上であれば交絡強度を高くすることができ、本発明のノンサイジング製織に好適なポリヘキサメチレンアジパミド繊維を得ることができる。 In order to produce the fibers of the present invention, the fluid energy determined by the air jet device conditions and air pressure in the interlacer must be sufficient. The fluid energy (MPa · Nm 3 / Hr) is obtained from the product of the air pressure (MPa) and the air consumption flow rate (Nm 3 / Hr). The fluid energy value is required to be 3.1 (MPa · Nm 3 / Hr) or more, preferably 3.5 (MPa · Nm 3 / Hr) or more, and more preferably 4.0 (MPa · Nm 3 / Hr). That's it. If the fluid energy value is 3.1 or more, the entanglement strength can be increased, and polyhexamethylene adipamide fibers suitable for non-sizing weaving of the present invention can be obtained.

本発明における紡糸油剤としては通常のエマルジョン型、あるいはストレート型の油剤を用いることができる。紡糸油剤としては特にエラストマーとの接着性を考慮すれば、エマルジョン型の紡糸油剤を少量、好ましくは0.3〜1.5wt%付与するのが好ましい。
本発明のポリヘキサメチレンアジパミド繊維の沸水収縮率を10%以下とするには、繊維の製糸工程にて、熱延伸後に糸条張力を低くし、かつ、延伸糸のガラス転移点以上の温度とする熱リラックス条件で無定型部の構造ひずみを除去すればよい。例えば、糸条張力をロール間速度差で、糸条温度をロール温度やチャンバー雰囲気温度で適宜制御すればよい。また、ポリマー重合度の適切な範囲を選択することが必要である。特に高重合度ポリマーでは延伸歪みの解消が困難になり易いためであり、蟻酸相対粘度は110を超えない方が好ましい。
延伸後の繊維は通常の捲取機にて3〜20kg程度の巻き重量で巻き取られる。
As the spinning oil in the present invention, a normal emulsion type or straight type oil can be used. As the spinning oil, it is preferable to apply an emulsion type spinning oil in a small amount, preferably 0.3 to 1.5 wt%, particularly considering the adhesiveness to the elastomer.
In order to set the boiling water shrinkage of the polyhexamethylene adipamide fiber of the present invention to 10% or less, in the fiber yarn production process, the yarn tension is lowered after heat drawing, and the glass transition point of the drawn yarn is higher than the glass transition point. What is necessary is just to remove the structural distortion of an amorphous part on the thermal relaxation conditions made into temperature. For example, the yarn tension may be appropriately controlled by the speed difference between the rolls, and the yarn temperature may be appropriately controlled by the roll temperature or the chamber atmosphere temperature. It is also necessary to select an appropriate range for the degree of polymer polymerization. This is because, particularly, a high polymerization degree polymer tends to make it difficult to eliminate stretching strain, and it is preferable that the relative viscosity of formic acid does not exceed 110.
The stretched fiber is wound up with a winding weight of about 3 to 20 kg by a normal winder.

得られたポリヘキサメチレンアジパミド繊維はノンサイジング製織用途に好適に用いることができる。ノンサイジング製織とは、繊維に糊剤を付与せず、かつ、撚り工程を経ずに実質的無撚りで経糸準備し、製織する方法である。この方法では、糊剤の材料費が不要となり、糊剤付与後の乾燥管理、織機上での糊剤脱落の清掃管理が省けるとともに、用途によっては、精練工程が省略または簡略化できる。糊剤を付与しない代わりに、糊剤付与工程でWAXなどを付与して単糸集束性を確保する方法もある。WAXによるノンサイジング製織は、精練工程での洗浄性が向上し工程簡略化できる可能性がある。しかし、WAXのみで本願の目的とするような充分な単糸収束性は確保できない。本発明では、いずれのノンサイジング製織にも有用である。   The obtained polyhexamethylene adipamide fiber can be suitably used for non-sizing weaving applications. Non-sizing weaving is a method in which a warp is prepared and woven without substantial twisting without applying a paste to the fibers and without undergoing a twisting process. In this method, the material cost of the sizing agent becomes unnecessary, and the drying management after applying the sizing agent and the cleaning management for removing the sizing agent on the loom can be omitted, and the scouring process can be omitted or simplified depending on the application. There is also a method of securing single yarn convergence by applying WAX or the like in the paste applying step instead of applying the paste. Non-sizing weaving by WAX may improve the cleaning performance in the scouring process and simplify the process. However, sufficient single yarn convergence cannot be ensured by using only WAX. In the present invention, it is useful for any non-sizing weaving.

本願のポリヘキサメチレンアジパミド繊維は、ジャカード機構(ストーブリ製など)、または、ドビー機構を有する通常のRapier織機(スルザー製など)、エアージェット織機(AJL)、ウォータージェット織機(WJL)などの織機での袋織において高密度の製織が可能である。エアバッグ用途にはカバーファクターが2000以上の高密度袋織布帛が好適に用いられ、このような高密度布帛が300rpmから800rpmの高速での製織が可能となる。
本発明により得られた袋織布帛に対して、エラストマー塗布は好適に用いられる。もちろん、特に気密性を要請されないエアバッグの場合はノンコートで用いることができる。エラストマー塗布量は10〜150g/mまで適宜選択できる。特に、エアバッグ用途では80g/m以下が軽量となるため好ましい。
The polyhexamethylene adipamide fiber of the present application is an ordinary Rapier loom (such as Sulzer) having a Jacquard mechanism (made by Stoveli) or a dobby mechanism, an air jet loom (AJL), a water jet loom (WJL), etc. High-density weaving is possible in the bag weaving of this loom. A high-density bag woven fabric having a cover factor of 2000 or more is suitably used for airbag applications, and such a high-density fabric can be woven at a high speed of 300 rpm to 800 rpm.
Elastomer application is suitably used for the bag-woven fabric obtained by the present invention. Of course, in the case of an airbag that does not require airtightness, it can be used without coating. The amount of elastomer applied can be appropriately selected from 10 to 150 g / m 2 . In particular, 80 g / m 2 or less is preferable for airbag applications because it is lightweight.

本発明を実施例に基づいて説明する。なお、明細書本文および実施例に用いた物性の定義および測定法は次の通りである。
(1)交絡数(1)
ENKA technica GmbH社製「ITEMAT LAB TSI」による。評価速度は100m/min、試料長は20mで無負荷で評価した。
(2)交絡数(2)
ENKA technica GmbH社製「ITEMAT LAB TSI」による。評価速度は100m/min、試料長は20mで1.0cN/dtexの緊張処理後、評価した。
The present invention will be described based on examples. In addition, the definition and measurement method of the physical properties used in the specification text and examples are as follows.
(1) Number of entanglements (1)
According to “ITEMAT LAB TSI” manufactured by ENKA technology GmbH. The evaluation speed was 100 m / min, the sample length was 20 m, and no load was evaluated.
(2) Number of entanglements (2)
According to “ITEMAT LAB TSI” manufactured by ENKA technology GmbH. The evaluation speed was 100 m / min, the sample length was 20 m, and evaluation was performed after a tension treatment of 1.0 cN / dtex.

(3)1.0cN/dtexの緊張処理後の交絡数残存率
下記の式より計算した。
交絡数残存率(%)={交絡数(2)/交絡数(1)}×100
(4)交絡数のばらつきCV値(coefficient of variation/ 変動計数):
(2)の評価に基づき、次式より計算した。
CV値(変動計数)(%)=s/Χ×100
ここで、s:交絡数バラツキの標準偏差、Χ:交絡数平均値をそれぞれ示し、CV値が高いほど、バラツキが大きいことを示す。
(5)繊度、強度、伸度、繊度当たりタフネス
JIS L 1073により測定した。なお、強度および伸度は試長25cm、引張り速度30cm/分で測定した値である。繊度当たりタフネスは、引張り試験での切断エネルギー積分値を繊度で割った値である。
(3) Entanglement number remaining rate after tension treatment of 1.0 cN / dtex Calculated from the following equation.
Entanglement number remaining rate (%) = {entanglement number (2) / entanglement number (1)} × 100
(4) Confounding number variation CV value (coefficient of variation):
Based on the evaluation of (2), the calculation was made from the following equation.
CV value (variation count) (%) = s / Χ × 100
Here, s: standard deviation of entanglement number variation, and Χ: mean number of entanglement values are shown, respectively, and the higher the CV value, the larger the variation.
(5) Fineness, strength, elongation, and toughness per fineness Measured according to JIS L 1073. The strength and elongation are values measured at a test length of 25 cm and a tensile speed of 30 cm / min. The toughness per fineness is a value obtained by dividing the integrated value of cutting energy in the tensile test by the fineness.

(6)沸水収縮率
沸水中の収縮率(JIS L1017 8.14)を求めた。
(7)整経毛羽
製糸巻き上げパッケージから経糸準備する際に、光電検知により毛羽を観測し、10mあたりの毛羽数に換算した。
(8)製織時停台
製織時に経糸の集束性に係る欠点が原因で停台した頻度を求めた。
(9)生機検反
織りあがり布の異常欠点を計上し、100m当たりに換算した。
(6) Boiling water shrinkage The shrinkage in boiling water (JIS L1017 8.14) was determined.
(7) Warp fluff When preparing the warp from the yarn winding package, the fluff was observed by photoelectric detection and converted to the number of fluff per 10 8 m.
(8) Stoppage at the time of weaving The frequency at which the machine was stopped at the time of weaving was determined due to a defect related to the convergence of warps.
(9) Biomechanical inspection Abnormal defects of weaving cloth were counted and converted per 100 m.

(10)コート布検反
コート基布の塗布面での異常欠点(個)を計上し、100m当たりに換算した。
(11)蟻酸相対粘度(VR)
90%の蟻酸を用い、25℃でオストワルド粘度管を用いて5.4gを49mlに溶解した溶液で測定した。
(12)コーティング袋の展開耐圧:コーティングされた袋織試料に貯留タンクから空気を一気に送り込み、コーティング膜の剥離に由来するエアリークを観測し、5秒後に95%以上の圧力保持がある場合をエアリーク無しとした。エアリークの無い最高圧力を耐圧とした。
(13)コインピール
コーティングされた布帛の1重織部分のコート面を、100円硬貨の外縁のギザギザ部で5mm擦り、5箇所で全く剥離しないものを良好(◎)とし、微細にコート膜が損傷するが剥離しないものを良(○)、1箇所でも剥離の認められるものを不良(×)とした。
(10) Coated cloth inspection Abnormal defects (pieces) on the coated surface of the coated base cloth were counted and converted per 100 m.
(11) Formic acid relative viscosity (VR)
Using 90% formic acid, an 5.4 g solution in 49 ml was measured using an Ostwald viscosity tube at 25 ° C.
(12) Development pressure resistance of the coating bag: Air is sent from the storage tank to the coated bag weaving sample at once, air leaks due to coating film peeling are observed, and there is no air leak when there is a pressure holding of 95% or more after 5 seconds. It was. The maximum pressure without air leak was taken as the pressure resistance.
(13) Coin peel The coated surface of the single woven portion of the coated fabric is rubbed 5 mm at the jagged portion of the outer edge of a 100-yen coin. Those that were damaged but not peeled were judged as good (◯), and those that were peeled even at one place were judged as bad (x).

[実施例1〜4、比較例1〜6]
エクストルーダー型紡糸機を用い、蟻酸相対粘度82のポリヘキサメチレンアジパミドチップを295℃で溶融紡糸した。各紡糸とも口金は孔径0.3mmφで糸条を紡出し、直接紡糸延伸プロセスでエアバッグ用原糸を製糸した。製糸した繊度および単糸数を表1に記載した。
延伸は、図1に示した2段熱延伸により、紡糸走行糸条1を順次、仕上剤付与ノズル2、引取りロール3、第1延伸ロール4、第2延伸ロール5、最終ロール7、インターレーサー8を順次通過させた後、巻取機9にて巻取った。
各ローラの温度は、引取りロール3を常温、第1延伸ロール4を210℃、第2延伸ロール5を230℃、最終ロール7を60℃とした。
[Examples 1 to 4, Comparative Examples 1 to 6]
Using an extruder-type spinning machine, a polyhexamethylene adipamide chip having a relative viscosity of formic acid of 82 was melt-spun at 295 ° C. In each spinning, the base spun a yarn with a hole diameter of 0.3 mmφ, and the airbag yarn was produced by the direct spinning drawing process. The fineness and number of single yarns produced are shown in Table 1.
Stretching is performed by two-stage thermal stretching shown in FIG. 1, in which the spinning running yarn 1 is sequentially subjected to a finishing agent application nozzle 2, a take-up roll 3, a first stretching roll 4, a second stretching roll 5, a final roll 7, After sequentially passing through the racer 8, it was wound up by a winder 9.
The temperature of each roller was set to room temperature for the take-up roll 3, 210 ° C. for the first stretching roll 4, 230 ° C. for the second stretching roll 5, and 60 ° C. for the final roll 7.

製糸速度は表1に記載した。延伸倍率は、得られる繊維の切断強度8.5cN/dtexとなるようにしたが、第1延伸比と第2延伸比は、前者を70%の割合とした。
仕上剤としては、C18〜26不飽和アルコールチオジプロピオン酸エステルを50重量部、トリメチロールプロパントリ(C10〜18脂肪酸)エステルを10重量部、C10〜26アルキルPOEOポリエーテル:20重量部、POE硬化ヒマシ油エーテルC10〜18脂肪酸エステルを20重量部、鉱物油中に30重量%濃度に溶解し、糸条に固形分付着量で0.8重量%付与した。
The spinning speed is shown in Table 1. The draw ratio was such that the resulting fiber had a cutting strength of 8.5 cN / dtex, but the first draw ratio and the second draw ratio were set to 70% of the former.
As finishing agents, C18-26 unsaturated alcohol thiodipropionic acid ester 50 parts by weight, trimethylolpropane tri (C10-18 fatty acid) ester 10 parts by weight, C10-26 alkyl POEO polyether: 20 parts by weight, POE 20 parts by weight of hardened castor oil ether C10-18 fatty acid ester was dissolved in mineral oil at a concentration of 30% by weight, and 0.8% by weight of solid content was applied to the yarn.

糸条にインターレースをかけるための交絡付与装置インターレーサー8は、最終ローラと巻き取り機間に設置し、それぞれエアジェットの種類や高圧空気圧力を表1、表2に示したように変えた。交絡数、交絡数の均一性、および、交絡の強さを評価した。更に、得られた交絡糸について500m/分で整経を行い、次いでRapier織機(スルザー製G6200)、ジャガード機(ストーブリ製、タイプCX960)にて回転速度300rpmおよび480rpmで製織し、緯糸および経糸の集束性に係る欠点が原因で停台した頻度を求めた。Jaquard織により図2に示す形状の袋織を織り上げた。さらに生機検反により欠点を求めた。生機織密度とあわせて結果を表1に示した。次いで、得られた基布をヒートセットした後、これに付加型液状シリコーンゴムを50g/m塗布しコート布とした。そして、このコート布の欠点を測定した。 The interlacing device interlacer 8 for interlacing the yarn was installed between the final roller and the winder, and the type of air jet and the high pressure air pressure were changed as shown in Tables 1 and 2, respectively. The number of entanglements, the uniformity of the number of entanglements, and the strength of the entanglement were evaluated. Further, warping was performed on the obtained entangled yarn at 500 m / min, and then weaved at a rotational speed of 300 rpm and 480 rpm with a Rapier loom (Sulzer G6200) and a Jacquard machine (Staubri, type CX960), and weft and warp The frequency of stopping due to the defects related to convergence was obtained. A bag weave having the shape shown in FIG. 2 was woven by the Jaquard weave. Furthermore, the defects were obtained by biomechanical inspection. The results are shown in Table 1 together with the density of the raw weaving. Next, the obtained base fabric was heat-set, and then 50 g / m 2 of addition-type liquid silicone rubber was applied thereto to obtain a coated fabric. And the fault of this coat cloth was measured.

また、コート布から袋を切り出し、展開耐圧を評価した。結果を表1に示す。
実施例1〜3では、交絡数が多く、交絡数ばらつきがない、さらには単糸断面積ばらつきも無く、袋織過程で毛羽が増加することがないため、高速製織可能で、製織品位も良好である。また、交絡強度も高いため、製織後に織物中に交絡集束が維持されている。高速高圧での袋展開では、コーティング膜の剥離破損なく気密性に優れている。実施例4では、交絡数が多く、交絡数ばらつきがない、さらには単糸断面積ばらつきも無く、袋織過程で毛羽が増加することがないため、高速製織可能で、製織品位も良好である。また、交絡強度も高いため、製織後に織物中に交絡集束が維持されている。繊維の収縮が大きいため、織物のクリンプが小さくなり、高速高圧での袋展開でのコーティング膜の剥離破損による耐圧性評価は、やや良好である。比較例1では、交絡数は多いが交絡強度が不足で、製織中の毛羽発生によって停台回数の増加、生機欠点、コート布欠点が多い。比較例2では、交絡強度が高く、交絡数が少なく、交絡数ばらつきが多いため、停台回数は少ないものの毛羽の影響は大きく、生機欠点、コート布欠点が多い。比較例3、4では、交絡強度が低いため、停台回数の増加と、生機欠点、コート布欠点が多い。比較例5では、タフネスが低く、製織中の毛羽発生によって生機欠点、コート布欠点が多い。
Moreover, the bag was cut out from the coated cloth and the developed pressure resistance was evaluated. The results are shown in Table 1.
In Examples 1 to 3, the number of entanglements is large, there is no variation in the number of entanglements, there is no variation in cross-sectional area of single yarn, and fluff does not increase in the bag weaving process, so that high-speed weaving is possible and weaving quality is also good. is there. Moreover, since the entanglement strength is high, the entanglement focusing is maintained in the woven fabric after weaving. With high-speed and high-pressure bag deployment, the coating film is excellent in airtightness without peeling damage. In Example 4, the number of entanglements is large, there is no variation in the number of entanglements, there is no variation in the cross-sectional area of the single yarn, and there is no increase in fluff during the bag weaving process, so that high-speed weaving is possible and weaving quality is good. Moreover, since the entanglement strength is high, the entanglement focusing is maintained in the woven fabric after weaving. Since the shrinkage of the fiber is large, the crimp of the woven fabric is small, and the pressure resistance evaluation due to the peeling damage of the coating film at the time of developing the bag at high speed and high pressure is slightly good. In Comparative Example 1, the number of entanglements is large, but the entanglement strength is insufficient, and the occurrence of fluff during weaving causes an increase in the number of stops, raw machine defects, and coated cloth defects. In Comparative Example 2, the entanglement strength is high, the entanglement number is small, and the entanglement number variation is large. Therefore, although the number of stops is small, the influence of fluff is large, and there are many defects of raw machinery and coat cloth. In Comparative Examples 3 and 4, since the entanglement strength is low, there are many increases in the number of stops, raw machine defects, and coated cloth defects. In Comparative Example 5, data Funes is low, greige disadvantage by fluff generation during weaving, often coated cloth drawbacks.

以上、本発明の適度な交絡数と均一な交絡数、交絡強さを有するとともに、単糸繊維の断面積が均一な交絡糸は、高速袋織の製織工程における新規毛羽生成が抑制されており、経糸および緯糸原因の停台回数は少なく、生機品位が良好である。また、コート布のシリコーンコート膜の接着性に優れ、耐圧気密性の良好なコート布が得られた。   As described above, the entangled yarn having a moderate number of entanglements and a uniform number of entanglements, entanglement strength of the present invention and a uniform cross-sectional area of the single yarn fiber, the generation of new fluff in the weaving process of the high-speed bag weave is suppressed, The number of stops caused by warps and wefts is small and the quality of raw machinery is good. In addition, a coated fabric excellent in the adhesiveness of the silicone coated film of the coated fabric and having good pressure and airtightness was obtained.

Figure 0004603297
Figure 0004603297

Figure 0004603297
Figure 0004603297

本発明の合成繊維は、産業資材用途で用いられる袋織物で、さらには、エラストマー塗膜を付着して用いる袋織物を製織する分野で好適に利用できる。たとえば、自動車安全装置のエアバッグ用の基布に用いる袋織物を製織する分野で好適に利用できる。   The synthetic fiber of the present invention can be suitably used in the field of weaving bag fabrics used for industrial material applications, and furthermore, weaving bag fabrics with an elastomer coating attached. For example, it can be suitably used in the field of weaving a bag fabric used as a base fabric for an airbag of an automobile safety device.

本発明の延伸設備図であるIt is the extending | stretching installation figure of this invention. 展開評価用の袋織評価試料であるIt is a bag weave evaluation sample for deployment evaluation

符号の説明Explanation of symbols


1 紡糸走行糸条
2 仕上剤付与ノズル
3 引取ロール
4 第1延伸ロール
5 第2延伸ロール
6 第3延伸ロール
7 最終ロール
8 インターレーサー(図1では1セットで表示)
9 巻取り機
11 袋織形状
12 コート基布からの試料切出しライン
13 2重部
14 1重部

DESCRIPTION OF SYMBOLS 1 Spinning running yarn 2 Finishing agent provision nozzle 3 Take-up roll 4 1st extending | stretching roll 5 2nd extending | stretching roll 6 3rd extending | stretching roll
7 Final roll 8 Interlacer (Displayed as one set in Fig. 1)
9 Winding Machine 11 Bag Weaving Shape 12 Sample Cutting Line from Coated Base Fabric 13 Double Part 14 Single Part

Claims (4)

下記物性を満足する袋織エアバッグ用ポリヘキサメチレンアジパミド繊維。
(a)交絡数が30〜45個/m
(b)交絡数のばらつきが5〜30%
(c)100m/minの速度での1.0cN/dtexの緊張処理後の交絡数残存率が60〜100%
(d)繊維の切断面における単糸断面積のばらつきが0.5〜10%
(e)タフネスが180〜350cN・mm/dtex
(f)繊度が100〜1000dtex
(g)単糸繊度が1〜7dtex
Polyhexamethylene adipamide fiber for bag- woven airbags that satisfies the following physical properties.
(A) The number of entanglements is 30 to 45 / m
(B) 5-30% variation in the number of entanglements
(C) The confounding number remaining ratio after tension treatment of 1.0 cN / dtex at a speed of 100 m / min is 60 to 100%.
(D) Variation in cross-sectional area of single yarn on the cut surface of the fiber is 0.5 to 10%
(E) Toughness of 180 to 350 cN · mm / dtex
(F) Fineness is 100 to 1000 dtex
(G) Single yarn fineness of 1 to 7 dtex
中間強度における伸度と沸水収縮率との和が16.0〜20.0%である請求項1記載のポリヘキサメチレンアジパミド繊維。   The polyhexamethylene adipamide fiber according to claim 1, wherein the sum of the elongation at the intermediate strength and the boiling water shrinkage is 16.0 to 20.0%. 下記物性を満足するポリヘキサメチレンアジパミド繊維からなる樹脂コーティング袋織エアバッグ。
(a)交絡数が30〜45個/m
(b)交絡数のばらつきが5〜30%
(c)100m/minの速度での1.0cN/dtexの緊張処理後の交絡数残存率が60〜100%
(d)繊維の切断面における単糸断面積のばらつきが0.5〜10%
(e)タフネスが180〜350cN・mm/dtex
(f)繊度が100〜1000dtex
(g)単糸繊度が1〜7dtex
A resin-coated bag- woven airbag made of polyhexamethylene adipamide fiber that satisfies the following physical properties.
(A) The number of entanglements is 30 to 45 / m
(B) 5-30% variation in the number of entanglements
(C) The confounding number remaining ratio after tension treatment of 1.0 cN / dtex at a speed of 100 m / min is 60 to 100%.
(D) Variation in cross-sectional area of single yarn on the cut surface of the fiber is 0.5 to 10%
(E) Toughness of 180 to 350 cN · mm / dtex
(F) Fineness is 100 to 1000 dtex
(G) Single yarn fineness of 1 to 7 dtex
蟻酸相対粘度が50〜100のポリヘキサメチレンアジパミド樹脂を溶融後、背圧30kg/cm以上で濾過し、紡糸口金取り付け時に保温ヒーターを紡糸口金に接触させて保温し、ネルソンロールまたはセパレーターロールによる多段延伸を行ない、オリフィス断面積/チャンバー断面積比が0.25〜0.50のインターレーサーを用い、3.1MPa・Nm/Hr以上の流体エネルギーを付与し、25msec以上の糸条滞留時間で単糸交絡を行なった後巻き取ることからなる、繊度が100〜1000dtexおよび単糸繊度が1〜7dtexのポリヘキサメチレンアジパミド繊維の製造方法。 After melting polyhexamethylene adipamide resin with relative viscosity of 50-100 formic acid, it is filtered with a back pressure of 30 kg / cm 2 or more, and when the spinneret is attached, a heat retaining heater is kept in contact with the spinneret to maintain the temperature, and a Nelson roll or separator Multi-stage drawing with a roll, using an interlacer with an orifice cross-sectional area / chamber cross-sectional area ratio of 0.25 to 0.50, applying fluid energy of 3.1 MPa · Nm 3 / Hr or more, and a thread of 25 msec or more A process for producing polyhexamethylene adipamide fibers having a fineness of 100 to 1000 dtex and a single yarn fineness of 1 to 7 dtex, comprising winding after single yarn entanglement with a residence time.
JP2004168889A 2004-06-07 2004-06-07 Polyhexamethylene adipamide fiber Active JP4603297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168889A JP4603297B2 (en) 2004-06-07 2004-06-07 Polyhexamethylene adipamide fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168889A JP4603297B2 (en) 2004-06-07 2004-06-07 Polyhexamethylene adipamide fiber

Publications (2)

Publication Number Publication Date
JP2005344266A JP2005344266A (en) 2005-12-15
JP4603297B2 true JP4603297B2 (en) 2010-12-22

Family

ID=35496904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168889A Active JP4603297B2 (en) 2004-06-07 2004-06-07 Polyhexamethylene adipamide fiber

Country Status (1)

Country Link
JP (1) JP4603297B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097094A1 (en) * 2020-11-06 2022-05-12 Inv Performance Materials, Llc Airbag fabrics
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862536B2 (en) * 2006-07-27 2012-01-25 東レ株式会社 Flame retardant polyester fiber
JP5302739B2 (en) * 2009-04-08 2013-10-02 旭化成せんい株式会社 High strength polyhexamethylene adipamide fiber
JP5425563B2 (en) * 2009-09-01 2014-02-26 旭化成せんい株式会社 Airbag fabrics and airbags
CN103874791B (en) 2011-10-05 2016-11-23 帝人芳纶有限公司 For spinning the spinning head of multifilament yarn
US9878684B2 (en) * 2012-08-28 2018-01-30 Toray Industries, Inc. Coated fabric and method for producing same
JP6627572B2 (en) * 2016-02-29 2020-01-08 東レ株式会社 Polyamide fiber and fabric comprising the same
CN110431267B (en) 2017-03-31 2022-09-20 旭化成株式会社 Plied yarn cord containing organic fibers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174760A (en) * 1990-11-01 1992-06-22 Teijin Ltd Production of sailcloth
JPH04185726A (en) * 1990-11-15 1992-07-02 Asahi Chem Ind Co Ltd Interlace yarn
JPH08311733A (en) * 1995-04-22 1996-11-26 Akzo Nobel Nv Entangled synthetic filament yarn with no sizing,industrial woven fabric consisting of it and woven fabric for air bag
JPH11107105A (en) * 1997-08-04 1999-04-20 Toray Ind Inc Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic
WO2001009416A1 (en) * 1999-08-02 2001-02-08 Asahi Kasei Kabushiki Kaisha Base cloth for air bag
JP2001355144A (en) * 2000-06-13 2001-12-26 Asahi Kasei Corp Base fabric for airbag and airbag
JP2003020566A (en) * 2001-07-05 2003-01-24 Asahi Kasei Corp Polyamide fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174760A (en) * 1990-11-01 1992-06-22 Teijin Ltd Production of sailcloth
JPH04185726A (en) * 1990-11-15 1992-07-02 Asahi Chem Ind Co Ltd Interlace yarn
JPH08311733A (en) * 1995-04-22 1996-11-26 Akzo Nobel Nv Entangled synthetic filament yarn with no sizing,industrial woven fabric consisting of it and woven fabric for air bag
JPH11107105A (en) * 1997-08-04 1999-04-20 Toray Ind Inc Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic
WO2001009416A1 (en) * 1999-08-02 2001-02-08 Asahi Kasei Kabushiki Kaisha Base cloth for air bag
JP2001355144A (en) * 2000-06-13 2001-12-26 Asahi Kasei Corp Base fabric for airbag and airbag
JP2003020566A (en) * 2001-07-05 2003-01-24 Asahi Kasei Corp Polyamide fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags
WO2022097094A1 (en) * 2020-11-06 2022-05-12 Inv Performance Materials, Llc Airbag fabrics

Also Published As

Publication number Publication date
JP2005344266A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP5253685B1 (en) Synthetic fiber
US8261779B2 (en) Base cloth for air bag, raw yarn for air bag, and method for producing the raw yarn
JP5365272B2 (en) Fabric for airbag and method for producing fabric for airbag
JP2012502194A (en) Airbag fabric and method for producing the same
JP2007182646A (en) Flame-retardant ultrafine polyester fiber, method for producing the same and high-density woven fabric
JP4603297B2 (en) Polyhexamethylene adipamide fiber
JP2007162187A (en) Non-coated woven fabric for airbag, coated woven fabric, method for producing the same and inflatable curtain airbag
US10549711B2 (en) Airbag-use woven fabric and airbag
JP2010174390A (en) Woven fabric for airbag, and method for producing the same
CN110997995A (en) Fabric for airbag, coated fabric for airbag, and airbag using same
JP2010111958A (en) Non-coated woven fabric for air bags
WO2008146690A1 (en) Monofilament for screen fabric and process for production of screen fabric
JP2009242958A (en) Extra-fine fiber multifilament and textile product for industrial material using the same
JP4655967B2 (en) Method for producing polyester monofilament for screen bag and monofilament
JP4306391B2 (en) Airbag base fabric and manufacturing method thereof
JP2008208513A (en) Production apparatus and production method of polyamide monofilament
JP4770152B2 (en) Airbag yarn package, airbag fabric using the same, and method for producing airbag yarn package
JP2011058132A (en) Base cloth for air bag and method for producing the same
JP2005105446A (en) Ground fabric for air bag and method for producing the ground fabric
JP2021161559A (en) Polyester conjugate fiber
JP2001288638A (en) Interlaced yarn, woven fabric and air bag
US20230182676A1 (en) Airbag cushion and method for preparing the same
EP4140830A1 (en) Airbag cushion and manufacturing method therefor
JP2008231590A (en) Method for producing polyester monofilament for screen gauze, and polyester monofilament for screen gauze
JPWO2018062132A1 (en) Non-coated woven fabric for air bag and air bag using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091026

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4603297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350