JP4602689B2 - Positive electrode material for lithium ion secondary battery - Google Patents

Positive electrode material for lithium ion secondary battery Download PDF

Info

Publication number
JP4602689B2
JP4602689B2 JP2004122518A JP2004122518A JP4602689B2 JP 4602689 B2 JP4602689 B2 JP 4602689B2 JP 2004122518 A JP2004122518 A JP 2004122518A JP 2004122518 A JP2004122518 A JP 2004122518A JP 4602689 B2 JP4602689 B2 JP 4602689B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
ion secondary
lithium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004122518A
Other languages
Japanese (ja)
Other versions
JP2005310421A (en
Inventor
芳男 梶谷
博 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2004122518A priority Critical patent/JP4602689B2/en
Publication of JP2005310421A publication Critical patent/JP2005310421A/en
Application granted granted Critical
Publication of JP4602689B2 publication Critical patent/JP4602689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用正極材料(正極活物質)に関するものである。   The present invention relates to a positive electrode material (positive electrode active material) for a lithium ion secondary battery.

近年、高エネルギ−密度電池として非水系のリチウムイオン二次電池の需要が急増しており、その性能向上に関して様々な観点からの研究が行われている。   In recent years, the demand for non-aqueous lithium ion secondary batteries as high-energy density batteries has been rapidly increasing, and research from various viewpoints has been conducted on improving the performance thereof.

このリチウムイオン二次電池は、正極及び負極、並びに両電極間に介在する“電解質を保持したセパレ−タ”の3つの基本要素によって構成されており、正極及び負極には“活物質,導電材,結着材及び必要に応じて可塑剤を分散媒に混合分散させて成るスラリ−”を金属箔や金属メッシュ等の集電体に塗工したものが使用されている。   This lithium ion secondary battery is composed of three basic elements: a positive electrode and a negative electrode, and a “separator holding electrolyte” interposed between the two electrodes. In this case, a slurry obtained by mixing and dispersing a binder and, if necessary, a plasticizer in a dispersion medium, is applied to a current collector such as a metal foil or a metal mesh.

このうちの正極活物質としてはコバルト系複合酸化物(Li1-x CoO2 ),ニッケル系複合酸化物(Li1-x NiO2 ),マンガン系複合酸化物(Li1-x Mn24 )といったリチウムと遷移金属との複合酸化物が適用されており、これまでにもこれらを基本とした種々の材料が提案されている。 Among these, as the positive electrode active material, cobalt-based composite oxide (Li 1-x CoO 2 ), nickel-based composite oxide (Li 1-x NiO 2 ), manganese-based composite oxide (Li 1-x Mn 2 O 4) ), And composite materials of lithium and transition metals have been applied, and various materials based on these have been proposed.

なお、リチウムイオン二次電池用の正極材料として用いられる上述のようなリチウム複合酸化物は、一般にリチウムイオン二次電池用正極材料の主体となる元素の化合物(Co,Ni,Mn等の炭酸塩や酸化物など)とリチウム化合物(炭酸リチウム等)を所定の割合で混合し、それを熱処理することにより合成されている。
このようなリチウム複合酸化物の合成方法を紹介したものとして、例えば次の文献を挙げることができる。
In addition, the lithium composite oxide as described above used as a positive electrode material for a lithium ion secondary battery is generally a compound of an element (a carbonate such as Co, Ni, Mn, etc.) that is a main component of the positive electrode material for a lithium ion secondary battery. Or an oxide) and a lithium compound (lithium carbonate or the like) are mixed at a predetermined ratio and heat-treated.
As an introduction of such a method for synthesizing a lithium composite oxide, for example, the following documents can be cited.

特開平1−294364号公報 :「Ni,Coの塩化物を含む水溶 液に二酸化炭素ガス(炭酸ガス)を飽和させ、この溶液に重炭酸ナトリウム水溶液 を加えて放置することによりNi,Coの炭酸塩を共沈させ、得られた沈殿物を水洗し てからアルゴンガス中にて140℃で乾燥した後、これと炭酸リチウムとを混合し て空気中で加熱し反応させることから成るリチウム複合酸化物の製造方法」が示さ れている。JP-A-1-294364: “Carbon dioxide gas (carbon dioxide) is saturated in an aqueous solution containing chlorides of Ni and Co, and an aqueous sodium bicarbonate solution is added to the solution and left to stand. Lithium composite oxidation consisting of coprecipitation of salt, washing the resulting precipitate with water, drying in argon gas at 140 ° C, mixing this with lithium carbonate and heating to react in air. Manufacturing method ". 特開平11−307094号公報 :「リチウム以外の各成分元 素の硫酸塩水溶液とアンモニアを微量添加した重炭酸アンモニウム塩水溶液とを少 しずつ同時もしくは交互に反応槽内へ添加し、混合溶液のpHを中性領域に保ちな がらほぼ同心円上に均一な複合炭酸塩の結晶成長を行わせた後、得られた複合炭酸 塩と水酸化リチウムとを混合して酸素ガス流通雰囲気中で加熱焼成することから成 るリチウム複合酸化物の製造方法」が示されている。Japanese Patent Application Laid-Open No. 11-307094: “Sulfuric acid aqueous solution of each component element other than lithium and ammonium bicarbonate aqueous solution to which a small amount of ammonia was added were added to the reaction vessel little by little at the same time. While maintaining the pH in the neutral range, the crystal growth of uniform composite carbonate is performed almost concentrically, and the resulting composite carbonate and lithium hydroxide are mixed and heated and fired in an oxygen gas flow atmosphere. A process for producing a lithium composite oxide comprising

しかしながら、本発明者らは、種々のリチウム複合酸化物を正極材料に適用したリチウムイオン二次電池の特性調査を通じて、従前のリチウム複合酸化物には焼結性や組成安定性等の点で十分に満足することができない面があり、これらが電池特性(レ−ト特性等)の劣化につながることを知った。   However, the present inventors have investigated the characteristics of lithium ion secondary batteries in which various lithium composite oxides are applied to the positive electrode material, and the conventional lithium composite oxides are sufficient in terms of sinterability and composition stability. It has been found that there are aspects that cannot be satisfied, and that these lead to deterioration of battery characteristics (rate characteristics, etc.).

そこで、本発明者らは先に特願2003−1955号(WO2004/064180を参照)として次に示すリチウムイオン二次電池用正極材料の安定提供手段を提案した。
『炭酸リチウム懸濁液にニッケル塩化物,マンガン塩化物及びコバルト塩化物の1種 以上からなる水溶液を投入して炭酸塩を析出させた後、得られた炭酸塩をリチウム 源と混合して焼成するか、あるいは得られた炭酸塩を酸化処理して酸化物となして からリチウム源と混合して焼成することからなる、Na及びSの含有量が何れも質量 割合にて100ppm 以下のLi−A−O(但し、AはNi,Mn及びCoの1種以上)系リ チウムイオン二次電池正極材料(特性改善のためにMg,Al,Ti,Cr,Fe,Cu又はZr 等のド−プ金属を含んでいても良い)の製造方法』
この提案方法によると、焼結性や組成安定性に優れ、また電池特性にも優れるリチウムイオン二次電池用正極材料の安定提供が可能となる。
Therefore, the present inventors previously proposed means for stably providing a positive electrode material for a lithium ion secondary battery described below as Japanese Patent Application No. 2003-1955 (see WO2004 / 064180) .
“After putting an aqueous solution of one or more of nickel chloride, manganese chloride and cobalt chloride into the lithium carbonate suspension to precipitate the carbonate, the obtained carbonate is mixed with a lithium source and fired. Or the resulting carbonate is oxidized to form an oxide, and then mixed with a lithium source and fired. Both the Na and S contents are less than 100 ppm by mass. A-O (where A is one or more of Ni, Mn and Co) lithium ion secondary battery positive electrode materials (dope such as Mg, Al, Ti, Cr, Fe, Cu or Zr for improving characteristics) Manufacturing method that may contain metal)
According to this proposed method, it is possible to stably provide a positive electrode material for a lithium ion secondary battery that is excellent in sinterability and composition stability and also excellent in battery characteristics.

しかし、その後も続けられた本発明者らの検討により、従来から知られていたLi−A−O(但し、AはNi,Mn及びCoの1種以上)系リチウムイオン二次電池正極材料でも、また先の提案(特願2003−1955号)方法によって得られるリチウムイオン二次電池正極用材料についても低温特性が不安定となる場合が多々認められ、例えば低温の使用環境では電極抵抗が大きくなりがちであるなど電池特性の点で更に改善すべき点が存在することを認識するに至った。   However, as a result of continued investigations by the present inventors, a Li-A-O (wherein A is one or more of Ni, Mn, and Co) lithium ion secondary battery positive electrode materials that have been conventionally known In addition, the lithium-ion secondary battery positive electrode material obtained by the method of the previous proposal (Japanese Patent Application No. 2003-1955) often has unstable low-temperature characteristics. For example, the electrode resistance is large in a low-temperature use environment. It has been recognized that there are further points to be improved in terms of battery characteristics, such as being prone to be.

このようなことから、本発明の目的は、低温環境下でも優れた電池特性(初期容量,初期効率,電極抵抗等)を安定して発揮することができるリチウムイオン二次電池用正極材料(正極活物質)を安定提供することに置かれた。   Therefore, the object of the present invention is to provide a positive electrode material (positive electrode) for a lithium ion secondary battery that can stably exhibit excellent battery characteristics (initial capacity, initial efficiency, electrode resistance, etc.) even in a low temperature environment. Active material) was placed on stable provision.

本発明者らは、上記目的を達成すべく更に研究を重ねた結果、次の知見を得ることができた。
A)リチウムイオン二次電池正極用の活物質として用いられるリチウム複合酸化物は微細で均質なものほど良好な電池特性を発揮するとされているが、その平均粒径,比表面積がリチウムイオン二次電池の容量や効率に微妙な影響を及ぼしており、当該リチウム複合酸化物の平均粒径,比表面積の両者を特定の範囲内となるように調整することで電極集電体への良好な塗布性が維持されて容量や効率の低下が防止される上、低温特性の劣化抑制にも寄与する。
As a result of further studies to achieve the above object, the present inventors have obtained the following knowledge.
A) The lithium composite oxide used as the active material for the positive electrode of a lithium ion secondary battery is said to exhibit better battery characteristics as it is finer and more homogeneous, but its average particle size and specific surface area are lithium ion secondary It has a subtle effect on the capacity and efficiency of the battery, and it can be applied to the electrode current collector by adjusting both the average particle size and specific surface area of the lithium composite oxide to be within a specific range. Is maintained to prevent a decrease in capacity and efficiency, and also contributes to suppression of deterioration of low temperature characteristics.

B)更に、リチウムイオン二次電池正極材料を構成するリチウム複合酸化物粒子の集合体に存在する細孔もリチウムイオン二次電池の性能を左右し、特に前記細孔の大きさが電池の低温特性に大きな影響を与える。
即ち、前述したLi−A−O系リチウムイオン二次電池用正極材料(複合酸化物)では、その製造過程で一次粒子が結合して二次粒子を形成しがちである。この一次粒子の結合体である二次粒子中には空隙(細孔)が形成されやすく、これら粒子の集合体(正極材料:正極活物質)では様々な大きさの細孔が分散して存在する状態となる。本発明者らは、これら細孔の大きさが電池の低温特性に大きく影響することを突き止めた。
B) Furthermore, the pores present in the aggregate of lithium composite oxide particles constituting the positive electrode material of the lithium ion secondary battery also affect the performance of the lithium ion secondary battery. It has a great influence on the characteristics.
That is, in the above-described positive electrode material (composite oxide) for Li-A-O type lithium ion secondary batteries, primary particles tend to be bonded to form secondary particles in the production process. Voids (pores) are easily formed in the secondary particles, which are a combination of the primary particles, and pores of various sizes are dispersed in the aggregate of these particles (positive electrode material: positive electrode active material). It becomes a state to do. The present inventors have found that the size of these pores greatly affects the low temperature characteristics of the battery.

C)そして、本発明者らの更なる研究により、特に“極く小径から平均径近傍までの細孔の総容積”と“直径1μm以下の細孔の総容積”との比が電池の低温特性に著しく影響することが分かった。更に、厳密な平均径を基準にしなくても、直径5μmの細孔を基準とし(因みに5μm以上の細孔は二次粒子同士が凝集して形成されたものであると考えられる)、“直径5μm以下の細孔の総容積”と“直径1μm以下の細孔の総容積”との比を求めることによって低温特性の良好範囲を知ることができ、この比が8〜20%の範囲となるようにリチウムイオン二次電池用正極材料(リチウム複合酸化物粒子)の製造条件を調整することで低温特性の良好なリチウムイオン二次電池用正極材料(正極活物質)の提供が可能になることを確認した。    C) According to further studies by the present inventors, the ratio of “total volume of pores from a very small diameter to the vicinity of the average diameter” and “total volume of pores having a diameter of 1 μm or less” It was found that the characteristics were significantly affected. Furthermore, even if the strict average diameter is not used as a reference, a pore having a diameter of 5 μm is used as a reference (a pore having a diameter of 5 μm or more is considered to be formed by aggregation of secondary particles). By determining the ratio of “total volume of pores having a diameter of 5 μm or less” and “total volume of pores having a diameter of 1 μm or less”, a good range of low temperature characteristics can be obtained, and this ratio is in the range of 8 to 20%. Thus, it becomes possible to provide a positive electrode material (positive electrode active material) for lithium ion secondary batteries with good low-temperature characteristics by adjusting the manufacturing conditions of the positive electrode material (lithium composite oxide particles) for lithium ion secondary batteries It was confirmed.

本発明は、「低温特性に優れたリチウムイオン二次電池用正極材料(正極活物質)の指標としてその平均粒径,比表面積,細孔の径分布の組み合わせが重要である」等といった上記知見事項に基づいてなされたもので、
『Li−A−O(但し、AはNi,Mn及びCoの1種以上)系の複合酸化物粒子の集合体から成 り、前記複合酸化物粒子の集合体の平均粒径が2〜15μmで、比表面積が 0.3〜1.2 m2 /g であり、かつ前記複合酸化物粒子の集合体に存在する直径5μm以下の細孔の 総容積に対する直径1μm以下の細孔の総容積の割合が8〜20%である、低温での電 池特性に優れたリチウムイオン二次電池用正極材料』
を提供するものである。
The present invention is based on the above findings such as “the combination of the average particle size, specific surface area, and pore size distribution is important as an indicator of a positive electrode material (positive electrode active material) for lithium ion secondary batteries having excellent low-temperature characteristics”. Based on the matter,
“Li—A—O (where A is one or more of Ni, Mn, and Co) -based composite oxide particles having an average particle diameter of 2 to 15 μm. And the ratio of the total volume of pores having a diameter of 1 μm or less to the total volume of pores having a diameter of 5 μm or less present in the composite oxide particle aggregate of 8 to 1.2 m 2 / g is 8 -20% positive electrode material for lithium ion secondary batteries with excellent battery characteristics at low temperatures ”
Is to provide.

本発明によれば、リチウムイオン二次電池に適用することによって十分に満足できる初期容量,初期効率を示すと共に、低温環境下でも良好な電池特性を発揮する正極材料(正極活物質)を安定提供することができる。   According to the present invention, a positive electrode material (positive electrode active material) that exhibits sufficiently satisfactory initial capacity and initial efficiency when applied to a lithium ion secondary battery and also exhibits good battery characteristics even in a low temperature environment is stably provided. can do.

さて、本発明はLi−A−O(但し、AはNi,Mn及びCoの1種以上)系リチウムイオン二次電池正極材料(特性改善のためにMg,Al,Ti,Cr,Fe,Cu又はZr等のド−プ金属を含んでいても良い)を対象とするものであるが、当該正極材料を構成する複合酸化物粒子の集合体は、平均粒径2〜15μm,比表面積 0.3〜1.2 m2 /g に調整される。
平均粒径や比表面積が上記範囲を外れると、低温特性が劣化するのみならず、アルミニウム箔等といった集電体への塗布性が悪化して電池の容量や効率も低下する。
平均粒径や比表面積が前記範囲内となる正極材料(正極活物質)は、例えば前述した特願2003−1955号として提案した方法により製造することができる。この場合、製造原料たる複合炭酸塩を酸化処理する工程での酸化温度を上げるほど平均粒径は大きく、比表面積は小さくなる。
Now, the present invention is Li-A-O (where A is one or more of Ni, Mn and Co) based lithium ion secondary battery positive electrode materials (Mg, Al, Ti, Cr, Fe, Cu for improving characteristics). Or a composite metal particle constituting the positive electrode material has an average particle diameter of 2 to 15 μm and a specific surface area of 0.3 to Adjusted to 1.2 m 2 / g.
If the average particle size or specific surface area is out of the above range, not only the low temperature characteristics deteriorate, but also the applicability to a current collector such as an aluminum foil deteriorates and the capacity and efficiency of the battery also decrease.
A positive electrode material (positive electrode active material) having an average particle diameter and a specific surface area within the above ranges can be produced, for example, by the method proposed in Japanese Patent Application No. 2003-1955 described above. In this case, the average particle size increases and the specific surface area decreases as the oxidation temperature in the step of oxidizing the composite carbonate as the production raw material is increased.

更に、本発明では、正極材料を構成する複合酸化物粒子の集合体に存在する直径5μm以下の細孔の総容積に対する直径1μm以下の細孔の総容積の割合が8〜20%に規制される。
この割合が8%未満であると、十分な電解液を保持することが困難であるために電池特性の低下を招く。一方、前記割合が20%を上回ると、複合酸化物粒子の電気的接触が不十分で複合酸化物粒子同士の導電性を確保できにくくなり、またバインダ−等の如き粒子表面の活性を損なう物質が作用して電気化学的な反応面を少なくするため、良好な低温特性(低温での電極抵抗等)を安定して発揮することができなくなる。勿論、上記割合が8〜20%の範囲内であったとしても複合酸化物粒子の平均粒径や比表面積が前記規定範囲から外れていると低温特性への悪影響は大きい。
“直径5μm以下の細孔の総容積”に対する“直径1μm以下の細孔の総容積”の割合が8〜20%であるリチウムイオン二次電池正極材料は、例えば前記特願2003−1955号として提案した方法において製造原料たる複合炭酸塩を酸化処理する工程での酸化温度を高めに設定する等の方策により製造することができる。
Furthermore, in the present invention, the ratio of the total volume of pores having a diameter of 1 μm or less to the total volume of pores having a diameter of 5 μm or less present in the aggregate of composite oxide particles constituting the positive electrode material is regulated to 8 to 20%. The
If this ratio is less than 8%, it is difficult to maintain a sufficient electrolyte solution, resulting in deterioration of battery characteristics. On the other hand, if the ratio exceeds 20%, the electrical contact of the composite oxide particles is insufficient, and it becomes difficult to ensure the conductivity between the composite oxide particles, and the material which impairs the activity of the particle surface such as a binder. Acts to reduce the electrochemical reaction surface, so that good low-temperature characteristics (such as electrode resistance at low temperatures) cannot be stably exhibited. Of course, even if the ratio is in the range of 8 to 20%, if the average particle size or specific surface area of the composite oxide particles is out of the specified range, the adverse effect on the low temperature characteristics is large.
A lithium ion secondary battery positive electrode material in which the ratio of “total volume of pores having a diameter of 1 μm or less” to “total volume of pores having a diameter of 5 μm or less” is 8 to 20% is disclosed in, for example, Japanese Patent Application No. 2003-1955 In the proposed method, it can be produced by measures such as setting a higher oxidation temperature in the step of oxidizing the composite carbonate as a production raw material.

なお、本発明に係るリチウムイオン二次電池用正極材料(正極活物質)は、より具体的には、例えば次のようにして製造することができる。
まず、炭酸リチウム懸濁液を作製する。作製する液の炭酸リチウム濃度は20〜600 g/l 程度が適当である。
続いて、調整された上記炭酸リチウム懸濁液に所望組成のNi,Mn,Co塩化物水溶液を投入もしくは滴下する。この際、Al,Si,Mg,Ca,Ti,Cr等といった異種元素(電池特性改善元素として知られていたド−プ元素)の塩化物水溶液を加えても良い。得ようとする炭酸塩によってはNi塩化物,Mn塩化物,Co塩化物の単独の水溶液であっても構わない。
塩化物水溶液の投入速度は、ト−タル添加量が10分〜20時間で添加されるように調整するのが良い。
液温は何れも室温で良いが、加熱してもかまわない。また、塩化物水溶液の投入時は炭酸リチウム懸濁液を50〜400rpm の攪拌速度で攪拌するのが望ましい。攪拌速度は使用する槽に合わせて決定する。
投入速度,攪拌速度により所望の粒径の炭酸塩が得られる。
In addition, the positive electrode material (positive electrode active material) for lithium ion secondary batteries according to the present invention can be more specifically manufactured, for example, as follows.
First, a lithium carbonate suspension is prepared. The lithium carbonate concentration of the liquid to be produced is suitably about 20 to 600 g / l.
Subsequently, an aqueous solution of Ni, Mn, Co chloride having a desired composition is added or dropped into the prepared lithium carbonate suspension. At this time, a chloride aqueous solution of a different element such as Al, Si, Mg, Ca, Ti, Cr (a dopant element known as a battery characteristic improving element) may be added. Depending on the carbonate to be obtained, a single aqueous solution of Ni chloride, Mn chloride and Co chloride may be used.
The charging rate of the aqueous chloride solution is preferably adjusted so that the total addition amount is added in 10 minutes to 20 hours.
The liquid temperature may be room temperature, but it may be heated. In addition, it is desirable to stir the lithium carbonate suspension at a stirring speed of 50 to 400 rpm when the chloride aqueous solution is added. The stirring speed is determined according to the tank to be used.
A carbonate having a desired particle diameter can be obtained depending on the charging speed and stirring speed.

このようにして得られた炭酸塩は、酸化処理(大気等の酸化雰囲気中での焼成等)して酸化物とした後、リチウム源(炭酸リチウム等)と混合して熱処理(焼成)するとリチウム複合酸化物が得られ、これをリチウム二次電池の正極用材料(活物質)とする。前記酸化処理は1000〜1100℃の高温に1〜10時間保持する条件で実施するのが好ましい。
なお、酸化処理はLi含有複合金属炭酸塩を乾燥してから実施しても良いし、乾燥することなく実施しても良い。
酸化処理は、通常の静置炉の他、連続炉やその他の炉でも実施が可能である。
The carbonate thus obtained is oxidized into an oxide by oxidation treatment (firing in an oxidizing atmosphere such as the atmosphere), mixed with a lithium source (lithium carbonate, etc.), and heat treated (firing) to form lithium. A composite oxide is obtained and used as a positive electrode material (active material) for a lithium secondary battery. The oxidation treatment is preferably carried out under the condition of maintaining at a high temperature of 1000 to 1100 ° C. for 1 to 10 hours.
The oxidation treatment may be performed after the Li-containing composite metal carbonate is dried, or may be performed without drying.
The oxidation treatment can be carried out in a continuous furnace or other furnaces in addition to a normal stationary furnace.

ところで、特開平11−135119号公報には
『2μm以下の一次粒子が集合した粒子であり、正極活物質中における200Å(0.02 μm)以下の細孔のうち30Å( 0.003μm)以下の細孔半径を有する空間体積が全 空間体積に対して10%以下となるようにし、かつ30Å以下の細孔半径を有する空 間の総体積が0.002cm3/g 以下としたLi−A−O(但し、AはNi,Mn及びCoの1種以 上)系の複合酸化物からなる非水系二次電池用活物質』
に関する発明が記載されているが、これは、充電状態での高温保存時の有機溶媒の酸化分解を抑制することが可能で保存後においても良好な放電特性を示す電池用活物質に係るものであって、特に良好な低温特性を付与を目指した本発明とは異なるものである。そのため、上記発明では規定する細孔は半径が30Å( 0.003μm)以下と極めて小さいものを対象としている。このような規定では本発明の効果は得られない。
次いで、本発明を実施例によって説明する。
By the way, Japanese Patent Laid-Open No. 11-135119 discloses that “primary particles having a size of 2 μm or less are aggregated, and a pore radius of 30 μm (0.003 μm) or less among 200 μm (0.02 μm) or less pores in the positive electrode active material. Li-A-O (provided that the total volume of voids having a pore radius of 30 mm or less and 0.002 cm 3 / g or less) A is one or more of Ni, Mn, and Co) Active material for non-aqueous secondary batteries consisting of complex oxides ”
This relates to an active material for a battery that can suppress oxidative decomposition of an organic solvent during high-temperature storage in a charged state and exhibits good discharge characteristics even after storage. Thus, the present invention is different from the present invention aiming at imparting particularly good low temperature characteristics. Therefore, in the above invention, the pores defined are those having a very small radius of 30 mm (0.003 μm) or less. The effect of the present invention cannot be obtained with such a definition.
The invention will now be illustrated by examples.

まず、水に炭酸リチウムを懸濁させた炭酸リチウム懸濁液(炭酸リチウム濃度が420 g/l )を 0.4リットル準備した。
次に、この炭酸リチウム懸濁液(室温)を300rpm で攪拌しつつ、これにNi:Mn:Coが1:1:1の組成のNi,Mn,Co塩化物水溶液(Ni,Mn,Co塩化物のト−タル濃度が 2.9モル/l で室温の水溶液)を 0.3L/hrの添加速度で 0.6リットル添加した。
この処理によって溶液中に微粒の析出物が析出したが、この析出物を濾過・分離してから、更に水洗し乾燥して得られた粉粒状物質を調査したところ、NiMnCo系複合炭酸塩(Ni:Mn:Co=1:1:1)であることが確認された。
First, 0.4 liter of a lithium carbonate suspension (lithium carbonate concentration: 420 g / l) in which lithium carbonate was suspended in water was prepared.
Next, while stirring this lithium carbonate suspension (room temperature) at 300 rpm, Ni: Mn: Co chloride aqueous solution (Ni, Mn, Co chloride having a composition of Ni: Mn: Co of 1: 1: 1 was added thereto. The total concentration of the product was 2.9 mol / l and a room temperature aqueous solution) was added at 0.6 liter at an addition rate of 0.3 L / hr.
This treatment resulted in the formation of fine precipitates in the solution. The precipitates were filtered and separated, and then further examined by washing with water and drying. As a result, NiMnCo-based composite carbonates (Ni : Mn: Co = 1: 1: 1).

次に、得られた複合炭酸塩を乾燥してから4分割し、表1に示す各酸化温度で3時間の空気中酸化処理を施し、各々、Ni:Mn:Coが1:1:1の組成である微細粒の複合酸化物を得た。
これら複合酸化物と炭酸リチウムとを混合し、空気中にて表1に示す各熱処理温度で熱処理した。混合にあたり、Li/金属のモル比を1.10とした。
Next, the obtained composite carbonate was dried and divided into four, and subjected to an oxidation treatment in air at each oxidation temperature shown in Table 1 for 3 hours, and each of Ni: Mn: Co was 1: 1: 1. A fine-grained composite oxide having a composition was obtained.
These composite oxides and lithium carbonate were mixed and heat-treated in air at each heat treatment temperature shown in Table 1. In mixing, the molar ratio of Li / metal was 1.10.

上記熱処理によって得られた各化合物の粉末を粉末X線回折測定したところ、化学組成がLix Ni0.33Mn0.33Co0.332 (x=1.10) である層状リチウム複合酸化物であることが確認された。
これらリチウム複合酸化物粉末の粉体特性を表1に併せて示す。
なお、リチウム複合酸化物粉末の平均粒径はレ−ザ−回折法で、比表面積は窒素によるBET法で、そして細孔径分布(直径5μm以下の細孔の総容積に対する直径1μm以下の細孔の総容積の割合)は水銀圧入法でそれぞれ測定した。
When the powder of each compound obtained by the above heat treatment was measured by powder X-ray diffraction, it was confirmed that it was a layered lithium composite oxide having a chemical composition of Li x Ni 0.33 Mn 0.33 Co 0.33 O 2 (x = 1.10). It was.
The powder characteristics of these lithium composite oxide powders are also shown in Table 1.
The average particle size of the lithium composite oxide powder is a laser diffraction method, the specific surface area is a BET method using nitrogen, and the pore size distribution (pores having a diameter of 1 μm or less with respect to the total volume of pores having a diameter of 5 μm or less) The ratio of the total volume of each was measured by the mercury intrusion method.

Figure 0004602689
Figure 0004602689

参考までに、これら各試料の細孔の分布状況を図1に示す。   For reference, the distribution of pores in each sample is shown in FIG.

次いで、得られた各リチウム複合酸化物を正極活物質としたリチウムイオン二次電池の特性調査を行った。
この調査は、NMP(N−メチルピロリドン)を溶媒とし、これに得られた前記リチウム複合酸化物(活物質)85wt%とアセチレンブラック8wt%とPVDF(ポリフッ化ビニリデン)7wt%とを混合してスラリ−を作製した後、これをアルミニウム箔に塗布し乾燥してからプレス成形して得られた“リチウムイオン二次電池評価用の正極サンプル”を用いて実施した。
Subsequently, the characteristic investigation of the lithium ion secondary battery which used each obtained lithium complex oxide as the positive electrode active material was conducted.
In this investigation, NMP (N-methylpyrrolidone) was used as a solvent, and the obtained lithium composite oxide (active material) 85 wt%, acetylene black 8 wt%, and PVDF (polyvinylidene fluoride) 7 wt% were mixed. After producing the slurry, this was applied to an aluminum foil, dried, and then press-molded to obtain a “positive electrode sample for evaluating a lithium ion secondary battery”.

初期容量及び初期効率の評価は、正極に上記各正極サンプルを適用し対極にリチウム箔を使用した2032型コインセル様式の評価用リチウムイオン二次電池で、電解液には1モルのLiPF6 をEC(エチレンカ−ポネ−ト)/DMC(ジメチルカ−ボネ−ト)の比が1:1である溶媒に溶解したものを用いて行った。
なお、充電条件は 4.3VのCCCV(定電流定電圧モ−ド)とし、放電条件は 3.0VのCC(定電流モ−ド)とした。
また、低温特性の評価については、電解液として1モルのLiPF6 をPC(プロピレンカ−ボネ−ト)・EC(エチレンカ−ボネ−ト)・EMC(エチルメチルカ−ボネ−ト)(1:1:3)に溶解したものを用い、負極としてグラファイトを用いた電池を作製し、−20℃での正極の電極抵抗をインピ−ダンスアナライザ−により測定して行った。
これらの評価結果を表2に示す。
Evaluation of initial capacity and initial efficiency is a 2032 type coin cell type evaluation lithium ion secondary battery using the above positive electrode samples as the positive electrode and using lithium foil as the counter electrode, and 1 mol of LiPF 6 is used as the electrolyte in the EC. This was carried out using a solution in a solvent having a ratio of (ethylene carbonate) / DMC (dimethyl carbonate) of 1: 1.
The charging conditions were 4.3V CCCV (constant current constant voltage mode), and the discharging conditions were 3.0V CC (constant current mode).
For the evaluation of the low temperature characteristics, 1 mol of LiPF 6 was added as an electrolytic solution to PC (propylene carbonate), EC (ethylene carbonate), EMC (ethyl methyl carbonate) (1: 1: A battery using graphite as a negative electrode was prepared using the material dissolved in 3), and the electrode resistance of the positive electrode at −20 ° C. was measured by an impedance analyzer.
These evaluation results are shown in Table 2.

Figure 0004602689
Figure 0004602689

前記表1及び表2に示される結果からも次のことを確認することができる。
即ち、平均粒径,比表面積及び細孔径分布(直径5μm以下の細孔の総容積に対する直径1μm以下の細孔の総容積の割合)が何れも本発明の規定範囲内である複合酸化物(実施例1)は、リチウムイオン二次電池用正極材料(正極活物質)とした場合に優れた初期容量,初期効率,低温特性を示すのに対して、複合酸化物の平均粒径,比表面積あるいは細孔径分布が本発明の規定範囲を外れたもの(比較例1,比較例2,比較例3)では初期容量,初期効率,低温特性が劣る結果となる。
From the results shown in Tables 1 and 2, the following can be confirmed.
That is, a composite oxide (average ratio, specific surface area, and pore size distribution (ratio of the total volume of pores having a diameter of 1 μm or less to the total volume of pores having a diameter of 5 μm or less) within the specified range of the present invention ( Example 1) shows excellent initial capacity, initial efficiency, and low temperature characteristics when used as a positive electrode material (positive electrode active material) for a lithium ion secondary battery, whereas the average particle diameter and specific surface area of the composite oxide. Alternatively, when the pore size distribution is outside the specified range of the present invention (Comparative Example 1, Comparative Example 2 and Comparative Example 3), the initial capacity, initial efficiency, and low temperature characteristics are inferior.

なお、前記「実施例」ではNi,Mn及びCoを共に含むリチウム複合酸化物に係る例のみ示したが、Ni,Mn又はCoを単独で含むリチウム複合酸化物を対象とした場合や、Ni,Mn,Coのうちの2種を含むリチウム複合酸化物や、これらにMg,Al,Ti,Cr,Fe,Cu又はZr等のド−プ金属を含有させたリチウム複合酸化物を対象とした場合も同様に優れた結果が得られることも確認済である。   In the above-mentioned “Example”, only examples relating to lithium composite oxides containing both Ni, Mn and Co are shown, but when lithium composite oxides containing Ni, Mn or Co alone are targeted, Ni, For lithium composite oxides containing two types of Mn and Co, and lithium composite oxides containing Mg, Al, Ti, Cr, Fe, Cu, Zr or other dopant metals It has also been confirmed that excellent results can be obtained as well.

実施例及び比較例に係る試料に関する細孔の分布状況を比較したグラフである。It is the graph which compared the distribution condition of the pore regarding the sample which concerns on an Example and a comparative example.

Claims (1)

Li−A−O(但し、AはNi,Mn及びCoの1種以上)系の複合酸化物粒子の集合体から成り、前記複合酸化物粒子の集合体の平均粒径が2〜15μmで、比表面積が 0.3〜1.2 m2 /g であり、かつ前記複合酸化物粒子の集合体に存在する直径5μm以下の細孔の総容積に対する直径1μm以下の細孔の総容積の割合が8〜20%である、低温での電池特性に優れたリチウムイオン二次電池用正極材料。
Li-A-O (where A is one or more of Ni, Mn, and Co) based composite oxide particles, and the average particle diameter of the composite oxide particles aggregate is 2 to 15 μm, The ratio of the total volume of pores having a diameter of 1 μm or less to the total volume of pores having a specific surface area of 0.3 to 1.2 m 2 / g and existing in the composite oxide particle diameter of 5 μm or less is 8 to 20 %, A positive electrode material for a lithium ion secondary battery excellent in battery characteristics at low temperature.
JP2004122518A 2004-04-19 2004-04-19 Positive electrode material for lithium ion secondary battery Expired - Lifetime JP4602689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122518A JP4602689B2 (en) 2004-04-19 2004-04-19 Positive electrode material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122518A JP4602689B2 (en) 2004-04-19 2004-04-19 Positive electrode material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005310421A JP2005310421A (en) 2005-11-04
JP4602689B2 true JP4602689B2 (en) 2010-12-22

Family

ID=35438965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122518A Expired - Lifetime JP4602689B2 (en) 2004-04-19 2004-04-19 Positive electrode material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4602689B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336004A (en) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp Nickel manganese cobalt based multiple oxide, lamellar lithium nickel manganese cobalt based multiple oxide, lithium secondary cell positive electrode material, positive electrode for lithium secondary cell and lithium secondary cell using the same
EP2006937A4 (en) * 2006-04-07 2014-06-18 Mitsubishi Chem Corp Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
JP4591716B2 (en) * 2006-04-07 2010-12-01 三菱化学株式会社 Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4591717B2 (en) * 2006-09-22 2010-12-01 三菱化学株式会社 Lithium nickel manganese cobalt based composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, spray-dried powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4613943B2 (en) * 2006-11-10 2011-01-19 三菱化学株式会社 Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
EP2065887A1 (en) * 2007-11-30 2009-06-03 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing magnetic disk unit
JP5225708B2 (en) * 2008-02-27 2013-07-03 日本化学工業株式会社 Lithium nickel manganese cobalt composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery
US9059465B2 (en) * 2008-04-17 2015-06-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for secondary battery, and lithium ion battery
US20110065002A1 (en) * 2008-12-05 2011-03-17 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material for Lithium Ion Battery, Positive Electrode for Secondary Battery using said Positive Electrode Active Material, and Lithium Ion Secondary Battery using Secondary Battery Positive Electrode
JP2011105594A (en) * 2010-12-13 2011-06-02 Mitsubishi Chemicals Corp Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
JP6368022B1 (en) 2017-05-31 2018-08-01 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087894A (en) * 1994-06-14 1996-01-12 Dowa Mining Co Ltd Positive active material for nonaqueous lithium secondary battery, and lithium secondary battery
JP2000143248A (en) * 1998-10-15 2000-05-23 Fmc Corp Lithium manganese oxide spinel compound and its production
JP2000323123A (en) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and positive electrode for non-aqueous secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087894A (en) * 1994-06-14 1996-01-12 Dowa Mining Co Ltd Positive active material for nonaqueous lithium secondary battery, and lithium secondary battery
JP2000143248A (en) * 1998-10-15 2000-05-23 Fmc Corp Lithium manganese oxide spinel compound and its production
JP2000323123A (en) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and positive electrode for non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2005310421A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
KR101644252B1 (en) Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP4444121B2 (en) Material for positive electrode of lithium secondary battery and manufacturing method thereof
JP4915488B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
KR20160006172A (en) Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP2012254889A (en) Nickel/manganese composite hydroxide particle and method of manufacturing the same, cathode active material for nonaqueous electrolyte secondary cell and method of manufacturing the same, and nonaqueous electrolyte secondary cell
JP7087380B2 (en) Transition metal-containing composite hydroxide particles and their production methods, as well as positive electrode active materials for non-aqueous electrolyte secondary batteries and their production methods.
JP6346448B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7006255B2 (en) Transition metal-containing composite hydroxide particles and their production methods, as well as positive electrode active materials for non-aqueous electrolyte secondary batteries and their production methods.
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP7087379B2 (en) Transition metal-containing composite hydroxide particles and their production methods, as well as positive electrode active materials for non-aqueous electrolyte secondary batteries and their production methods.
JP6737153B2 (en) Nickel-cobalt-manganese composite hydroxide, method for producing nickel-cobalt-manganese composite hydroxide, lithium metal composite oxide particles
JPWO2017119459A1 (en) Cathode active material precursor for non-aqueous electrolyte secondary battery, cathode active material for non-aqueous electrolyte secondary battery, method for producing cathode active material precursor for non-aqueous electrolyte secondary battery, cathode active material for non-aqueous electrolyte secondary battery Manufacturing method
JP2016031854A (en) Transition metal complex hydroxide particle and manufacturing method thereof, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries with the same
JP4602689B2 (en) Positive electrode material for lithium ion secondary battery
JPWO2018021556A1 (en) Nickel-manganese composite hydroxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
JP2022095968A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP7389376B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7452570B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2005123180A (en) Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery
JP7035540B2 (en) Transition metal-containing composite hydroxide particles and their manufacturing methods, positive electrode active materials for non-aqueous electrolyte secondary batteries and their manufacturing methods, and non-aqueous electrolyte secondary batteries
JP2019021423A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP4797332B2 (en) Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery
JP5876739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR102015425B1 (en) Positive active material for lithium secondary battery with copper-manganese coating thereon, lithium secondary battery having the same, and method for manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250