JP4601591B2 - Valve operating apparatus for an internal combustion engine having a valve deactivation mechanism - Google Patents

Valve operating apparatus for an internal combustion engine having a valve deactivation mechanism Download PDF

Info

Publication number
JP4601591B2
JP4601591B2 JP2006244085A JP2006244085A JP4601591B2 JP 4601591 B2 JP4601591 B2 JP 4601591B2 JP 2006244085 A JP2006244085 A JP 2006244085A JP 2006244085 A JP2006244085 A JP 2006244085A JP 4601591 B2 JP4601591 B2 JP 4601591B2
Authority
JP
Japan
Prior art keywords
valve
engine
hydraulic
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006244085A
Other languages
Japanese (ja)
Other versions
JP2008064050A (en
Inventor
勇人 前原
信二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006244085A priority Critical patent/JP4601591B2/en
Publication of JP2008064050A publication Critical patent/JP2008064050A/en
Application granted granted Critical
Publication of JP4601591B2 publication Critical patent/JP4601591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

本発明は、内燃機関において、吸気弁または排気弁である機関弁を、内燃機関の運転状態に応じて休止状態にするバルブ休止機構を備える動弁装置に関する。   The present invention relates to a valve operating system including a valve deactivation mechanism for deactivating an engine valve, which is an intake valve or an exhaust valve, in accordance with an operation state of the internal combustion engine.

内燃機関の動弁装置が、カム軸に設けられる動弁カムにより駆動されるカムフォロアと、カムフォロアに設けられて機関弁を休止状態にするバルブ休止機構とを備え、バルブ休止機構が、カムフォロアに伝達された動弁カムの弁駆動力を機関弁に伝達する弁作動位置とカムフォロアに伝達された弁駆動力を機関弁に伝達しない弁休止位置との間で移動する作動素子と、作動油の油圧に基づいて作動素子に作用する油圧駆動力に対抗する弾発力を作動素子に作用させる弾発手段とを備えるものは知られている(例えば特許文献1参照)。
特開2003−27908号公報
A valve operating apparatus for an internal combustion engine includes a cam follower driven by a valve operating cam provided on a camshaft, and a valve pausing mechanism provided on the cam follower for pausing the engine valve, and the valve pausing mechanism transmits to the cam follower. An operating element that moves between a valve operating position that transmits the valve driving force of the valve drive cam that has been transmitted to the engine valve and a valve resting position that does not transmit the valve driving force transmitted to the cam follower to the engine valve, and hydraulic pressure of the hydraulic oil And a resilient means for causing a resilient force to act on the actuating element against the hydraulic driving force acting on the actuating element based on the above (see, for example, Patent Document 1).
JP 2003-27908 A

作動素子に作用する作動油の油圧が、弾発手段により予め設定された弾発力(以下、「設定弾発力」という。)以下の油圧駆動力を作動素子に作用させる低い油圧である(以下、「低油圧状態」という。)ときに、作動素子が弁休止位置を占め、作動油の油圧が、設定弾発力に打ち勝つ油圧駆動力を作動素子に作用させる高い油圧(以下、「高油圧状態」という。)であるときに、作動素子が弁作動位置を占めるバルブ休止機構では、内燃機関の始動時など、内燃機関の運転開始直後に、確実に作動素子が弁作動位置を占めることが困難なことがある。例えば、内燃機関の動力により駆動されるオイルポンプにより作動油が供給される場合には、内燃機関の始動時などで機関回転速度が極めて小さい運転時(以下、「極低速運転時」という。)では、作動油が高油圧状態になるまでの時間が比較的長くなり、その間、機関弁が休止状態になって、機関出力が不足することがある。このことは、多気筒内燃機関において、バルブ休止機構により一部の気筒が休止状態になる可変気筒内燃機関でも同様であり、また始動時などに減筒状態で運転されることになって、始動性が低下する虞や、始動直後の発進においては、トルク変動が大きくなってエンジンストールが発生しやすくなる。   The hydraulic pressure of the hydraulic oil that acts on the operating element is a low hydraulic pressure that causes the hydraulic element to apply a hydraulic driving force that is equal to or less than the elastic force preset by the elastic means (hereinafter referred to as “set elastic force”) ( (Hereinafter referred to as “low hydraulic pressure state”), the operating element occupies the valve resting position, and the hydraulic pressure of the operating oil causes a high hydraulic pressure (hereinafter referred to as “high hydraulic pressure”) to act on the operating element to overcome the set elastic force. In a valve deactivation mechanism in which the operating element occupies the valve operating position when it is in the “hydraulic state”), the operating element reliably occupies the valve operating position immediately after the start of the operation of the internal combustion engine, such as when starting the internal combustion engine. May be difficult. For example, when hydraulic oil is supplied from an oil pump driven by the power of the internal combustion engine, the engine speed is extremely low at the time of starting the internal combustion engine or the like (hereinafter referred to as “very low speed operation”). Then, it takes a relatively long time for the hydraulic oil to reach a high hydraulic pressure state, and during that time, the engine valve becomes inactive and engine output may be insufficient. This also applies to a variable cylinder internal combustion engine in which some cylinders are deactivated by a valve deactivation mechanism in a multi-cylinder internal combustion engine. When the vehicle starts to start immediately after starting, torque fluctuation increases and engine stall is likely to occur.

本発明は、このような事情に鑑みてなされたものであり、請求項1〜4記載の発明は、バルブ休止機構を備える内燃機関の動弁装置において、作動素子に作用する作動油の油圧が低油圧状態にあるときにも確実に機関弁が作動状態になるようにして、内燃機関の極低速運転時においても大きな機関出力が得られるようにすることを目的とする。そして、請求項2記載の発明は、さらに、作動油が作用する作動油側作動部での耐摩耗性の向上を図ることにより、油圧駆動力による作動素子の移動応答性を長期に渡って良好に維持することを目的とし、請求項3記載の発明は、さらに、作動素子の軽量化を図ることを目的とし、請求項4記載の発明は、さらに、休止可能シリンダを備える内燃機関の始動性を向上させると共に暖機の促進を図ることを目的とする。   The present invention has been made in view of such circumstances, and the invention according to claims 1 to 4 is directed to a valve operating device for an internal combustion engine having a valve deactivation mechanism. It is an object of the present invention to ensure that the engine valve is in an operating state even in a low hydraulic pressure state so that a large engine output can be obtained even at an extremely low speed operation of the internal combustion engine. The invention according to claim 2 further improves the movement responsiveness of the actuating element by the hydraulic driving force over a long period of time by improving the wear resistance at the working oil side working part on which the working oil acts. The invention according to claim 3 further aims to reduce the weight of the actuating element, and the invention according to claim 4 further provides the startability of the internal combustion engine provided with the cylinder capable of resting. The purpose is to promote warm-up as well as to improve.

請求項1記載の発明は、カム軸(21,22)に設けられる動弁カム(21a,22a)により駆動されるカムフォロア(23)と、前記カムフォロア(23)に設けられて機関弁を休止状態にするバルブ休止機構(30)とを備える内燃機関(E)の動弁装置(20)であって、前記バルブ休止機構(30)は、前記カムフォロア(23)と前記機関弁(8,9)とを連動させて前記カムフォロア(23)に伝達された前記動弁カム(21a,22a)の弁駆動力を前記機関弁(8,9)に伝達する弁作動位置と前記カムフォロア23と前記機関弁(8,9)との連動を解除して前記カムフォロア(23)に伝達された前記弁駆動力を前記機関弁(8,9)に伝達しない弁休止位置との間で移動する作動素子(32)と、作動油の油圧に基づいて前記作動素子(32)に作用する油圧駆動力に対抗する弾発力を前記作動素子(32)に作用させる弾発手段(33)とを備える内燃機関(E)の動弁装置(20)において、前記作動素子(32)は、前記弾発力により前記弁作動位置を占め、前記油圧駆動力により前記弁休止位置を占め、前記油圧駆動力は、クランク軸により駆動されるオイルポンプ(55)から吐出される作動油による駆動力であって、前記バルブ休止機構(30)は前記作動素子(32)を摺動可能に支持するホルダ(31)を備え、前記作動素子(32)には、前記油圧駆動力が作用する作動油側作用部(32a)と、前記カムフォロア(23)を介して伝達された前記弁駆動力を前記機関弁(8,9)に伝達する伝達部(32d)と、前記機関弁(8,9)に前記弁駆動力を伝達しない空間部(42,43)と、前記弾発力が作用する弾発側作用部(32b)とが設けられ、前記作動素子(32)は、前記弁作動位置において前記伝達部(32d)を介して前記カムフォロア(23)と前記機関弁(8,9)とを連動させ、前記弁休止位置において前記空間部(42,43)により前記カムフォロア(23)と前記機関弁(8,9)との連動を解除し、前記作動油側作用部(32a)と前記伝達部(32d)とは、前記作動素子(32)の移動方向で前記空間部を(42,43)挟んで対向して配置され、前記弾発側作用部(32b)は、前記移動方向で前記空間部(42,43)とは反対側で前記伝達部(32d)に隣接する共に前記弾発部材(33)を収容する収容室(45)を形成し、前記作動素子(32)には、前記移動方向で前記伝達部(32d)と重なる位置に前記空間部(42,43)と前記収容室(45)とを連通する連通路(46)が設けられ、かつ、前記作動素子(32)に設けられた空間部(43)のカム軸(21,22)寄り端部(32b)に切欠きが形成されることで、前記作動素子(32)は、エンジン始動時のクランキング回転速度を含むアイドル回転速度においても前記弁休止位置へ移動可能としたことを特徴とするものである。
請求項2記載の発明は、請求項1記載の内燃機関(E)は、機関温度に応じて稼動状態および休止状態に切り換えられる休止可能シリンダと常時稼動状態にある稼動シリンダとから構成される複数のシリンダ(1a)を備える多気筒内燃機関(E)であり、前記休止可能シリンダのすべての吸気弁(8)および排気弁(9)は前記バルブ休止機構(30)により休止状態にされる前記機関弁(8,9)により構成され、前記作動油の油圧は、油圧制御系統(57)に備えられる圧制御弁(56)により前記機関温度に応じて制御され、前記油圧制御弁(56)は、前記機関温度が前記内燃機関(E)の暖機状態での所定温度以下のときに前記作動素子(32)が前記弁作動位置を占めるように、かつ前記機関温度が前記所定温度を越えるときに前記作動素子(32)が前記弁休止位置を占めることを可能とするように、前記作動油の油圧を制御するものである。
According to the first aspect of the present invention, a cam follower (23) driven by a valve-operating cam (21a, 22a) provided on a cam shaft (21, 22) and an engine valve provided in the cam follower (23) in a dormant state. A valve operating mechanism (20) of an internal combustion engine (E) comprising a valve pausing mechanism (30) for making the valve pausing mechanism (30) comprising the cam follower (23) and the engine valve (8, 9) , The valve operating position for transmitting the valve driving force of the valve cam (21a, 22a) transmitted to the cam follower (23) to the engine valve (8, 9), the cam follower 23 and the engine valve. The actuating element (32) which moves between the valve resting position where the valve driving force transmitted to the cam follower (23) is not transmitted to the engine valve (8, 9) by releasing the linkage with (8, 9). ) And hydraulic driving force acting on the operating element (32) based on the hydraulic pressure of the hydraulic oil In the valve operating device (20) of the internal combustion engine (E) provided with a resilient means (33) that causes the resilient element (32) to act on the actuating element (32), the actuating element (32) Occupying the valve operating position by force, occupying the valve resting position by the hydraulic driving force, and the hydraulic driving force is a driving force by hydraulic oil discharged from an oil pump (55) driven by a crankshaft. The valve pause mechanism (30) includes a holder (31) that slidably supports the operating element (32), and the operating element (32) has a hydraulic oil acting portion on which the hydraulic driving force acts. (32a), a transmission part (32d) for transmitting the valve driving force transmitted through the cam follower (23) to the engine valve (8, 9), and the valve to the engine valve (8, 9). Space portions (42, 43) that do not transmit a driving force, and a resilient side acting portion on which the resilient force acts (32b), and the actuating element (32) interlocks the cam follower (23) and the engine valve (8, 9) via the transmission portion (32d) in the valve actuated position, In the valve resting position, the space portion (42, 43) releases the interlock between the cam follower (23) and the engine valve (8, 9), and the hydraulic oil side action portion (32a) and the transmission portion (32d). Is arranged to face the space (42, 43) with the space (42, 43) sandwiched in the moving direction of the actuating element (32), and the ballistic action part (32b) is arranged in the direction of movement of the space (42 , 43) on the opposite side of the transmission part (32d) on the side opposite to the transmission part (32d) and accommodating the elastic member (33) is formed, and the actuating element (32) is provided in the moving direction. A communication path (46) for communicating the space (42, 43) and the storage chamber (45) is provided at a position overlapping the transmission part (32d). Is, and, in Rukoto are notches formed in the cam shaft (21, 22) inboard end (32 b) of the space portion provided in the actuating element (32) (43), said actuating element (32) Further, the valve can be moved to the valve rest position even at an idling rotation speed including a cranking rotation speed when the engine is started .
According to a second aspect of the present invention, the internal combustion engine (E) according to the first aspect comprises a plurality of cylinders that can be switched between an operation state and a deactivation state according to the engine temperature, and an operation cylinder that is always in an operation state. The cylinder (1a) is a multi-cylinder internal combustion engine (E), and all the intake valves (8) and exhaust valves (9) of the restable cylinder are put into a pause state by the valve pause mechanism (30). is composed of the engine valve (8,9), the hydraulic pressure of the hydraulic fluid is controlled in accordance with the engine temperature by the oil pressure control valve provided in the hydraulic control system (57) (56), the hydraulic control valve (56 ) So that the operating element (32) occupies the valve operating position when the engine temperature is equal to or lower than a predetermined temperature in the warm-up state of the internal combustion engine (E), and the engine temperature exceeds the predetermined temperature. When the operating element exceeds The hydraulic pressure of the hydraulic oil is controlled so that the child (32) can occupy the valve rest position.

請求項1記載の発明によれば、バルブ休止機構において、互いに対抗する作動油の油圧駆動力と弾発手段の弾発力とに応じて移動して弁作動位置と弁休止位置とを占める作動素子は、弾発力により弁作動位置を占めるため、例えば内燃機関の始動時などで作動素子に作用する作動油の油圧が低油圧状態にあるときにも、弾発力により確実に弁作動位置を占めて、カムフォロアに伝達された動弁カムの弁駆動力が機関弁に伝達されるので、内燃機関の始動時などの極低速運転時においても大きな機関出力が得られる。
請求項記載の事項によれば、作動素子において機関弁からの反力が作用する伝達部は、伝達部が作動素子の移動方向で空間部を挟むことなく作動油側作用部に隣接する技術に比べて、該移動方向で空間部が介在している分、作動油側作用部から離れているため、作動油側作用部に作用する該反力の分力が小さくなるので、ホルダに対して摺動する作動素子とホルダとの摩耗が減少して、ホルダと作動油側作用部との間の隙間が拡大することが抑制される。この結果、該隙間を通じての作動油の漏れが減少するので、油圧駆動力による作動素子の移動応答性が長期に渡って良好に維持される。
請求項記載の事項によれば、空間部と収容室とを連通する連通路は、移動方向で弾発側作用部と伝達部とが互いに隣接していない技術に比べて、伝達部と重なる分だけ、移動方向に長い通路とすることができることから、作動素子が軽量化されるので、油圧駆動力および弾発力による移動応答性が向上し、また機関弁と共に移動可能なバルブ休止機構が軽量化されて、機関弁と共に運動する部材の慣性質量が減少するので、高速運転時の機関弁の開閉応答性が向上する。
請求項記載の事項によれば、機関温度が、内燃機関が暖機状態にあるときの所定温度以下であるときには、内燃機関はすべてのシリンダが稼動する全気筒運転により運転されるので、始動性が向上するうえ、内燃機関の暖機が促進される。そして、機関温度が前記所定温度を越えると、内燃機関は休止可能シリンダが休止状態になる部分気筒運転により運転されるので、燃費が改善される。
According to the first aspect of the present invention, in the valve pausing mechanism, the operation occupies the valve operating position and the valve pausing position by moving according to the hydraulic driving force of the hydraulic oil and the resilient force of the resilient means that oppose each other. Since the element occupies the valve operating position by the elastic force, the valve operating position is surely ensured by the elastic force even when the hydraulic oil acting on the operating element is in a low hydraulic pressure state, for example, at the start of the internal combustion engine. Since the valve driving force of the valve cam transmitted to the cam follower is transmitted to the engine valve, a large engine output can be obtained even at extremely low speed operation such as when the internal combustion engine is started.
According to the first aspect of the present invention, the transmission portion where the reaction force from the engine valve acts on the operating element is a technique in which the transmission portion is adjacent to the hydraulic oil side operating portion without sandwiching the space portion in the moving direction of the operating element Compared with the holder, since the space portion is interposed in the moving direction, the reaction force acting on the hydraulic oil side action portion is reduced because the space portion is separated from the hydraulic oil side action portion. Thus, the wear between the operating element that slides and the holder is reduced, and the gap between the holder and the hydraulic oil side action portion is prevented from being enlarged. As a result, since the leakage of hydraulic oil through the gap is reduced, the movement responsiveness of the operating element by the hydraulic driving force is well maintained over a long period of time.
According to claim 1, wherein the matter, the communication passage for communicating the accommodating chamber space, as compared to the technique with resilient side operating portion in the moving direction and the transmitting portion is not adjacent to one another, overlaps the transmitting portion Since the passage can be made longer in the moving direction, the operating element is reduced in weight, so that the movement responsiveness by the hydraulic driving force and the elastic force is improved, and there is a valve pausing mechanism that can move together with the engine valve. Since the weight is reduced and the inertial mass of the member that moves together with the engine valve is reduced, the opening / closing response of the engine valve during high-speed operation is improved.
According to claim 2, wherein the matter, the engine temperature is, the internal combustion engine is at the predetermined temperature or less when in a warmed-up state, the internal combustion engine is operated by the all-cylinder operation in which all cylinders are running, start In addition, the warm-up of the internal combustion engine is promoted. When the engine temperature exceeds the predetermined temperature, the internal combustion engine is operated by partial cylinder operation in which the cylinder capable of being deactivated is deactivated, so that fuel efficiency is improved.

以下、本発明の実施形態を図1〜図3を参照して説明する。
図1を参照すると、本発明が適用された動弁装置20は、クランク軸が車幅方向に延びて配置される横置き配置で車両としての自動二輪車に搭載される多気筒4ストローク内燃機関Eに備えられる。そして、内燃機関Eは、機関運転状態に応じて稼動状態および休止状態に切り換えられる休止可能シリンダである一部のシリンダと、常時稼動状態にある稼動シリンダである残りのシリンダとから構成される複数のシリンダ1aを備えて、稼動気筒数が機関運転状態に応じて変更可能な可変気筒内燃機関である。
Embodiments of the present invention will be described below with reference to FIGS.
Referring to FIG. 1, a valve operating apparatus 20 to which the present invention is applied is a multi-cylinder four-stroke internal combustion engine E mounted on a motorcycle as a vehicle in a horizontal arrangement in which a crankshaft extends in the vehicle width direction. Prepared for. The internal combustion engine E is composed of a plurality of cylinders, each of which is a cylinder that can be deactivated depending on the engine operation state, and a remaining cylinder that is an operation cylinder that is always in an operation state. This is a variable-cylinder internal combustion engine that can be changed according to the engine operating state.

内燃機関Eは、直列に配列された複数のシリンダ1a、ここでは4つのシリンダ1aが一体成形されたシリンダブロック1と、シリンダブロック1の上端部に結合されるシリンダヘッド2と、シリンダヘッド2の上端部に結合されるヘッドカバー3と、シリンダブロック1の下端部に結合されるクランクケース(図示されず)とから構成される機関本体を備える。
なお、この実施形態において、特に断らない限り、上下方向は、シリンダ軸線Lcに平行な方向であり、シリンダブロック1に対してシリンダヘッド2が結合される方向が上方向であるとする。
The internal combustion engine E includes a plurality of cylinders 1a arranged in series, here, a cylinder block 1 integrally formed with four cylinders 1a, a cylinder head 2 coupled to the upper end of the cylinder block 1, and a cylinder head 2 An engine body including a head cover 3 coupled to the upper end portion and a crankcase (not shown) coupled to the lower end portion of the cylinder block 1 is provided.
In this embodiment, unless otherwise specified, the vertical direction is a direction parallel to the cylinder axis Lc, and the direction in which the cylinder head 2 is coupled to the cylinder block 1 is the upward direction.

各シリンダ1aには、コンロッドを介してクランク軸に連結されるピストン4が往復動可能に嵌合する。シリンダヘッド2には、シリンダ1a毎に、シリンダ軸線方向でピストン4に対向する凹部により形成される燃焼室5が設けられ、さらに各燃焼室5にそれぞれ開口する1対の吸気口6aを有する吸気ポート6および1対の排気口7aを有する排気ポート7と、燃焼室5に臨む点火栓(図示されず)とが設けられる。
シリンダヘッド2には、いずれも弁バネ10により閉弁方向に常時付勢されるポペット弁からなる機関弁としての吸気弁8および排気弁9が設けられる。シリンダ1a毎(または燃焼室5毎)に設けられる1対の吸気弁8および1対の排気弁9は、動弁装置20により駆動されて、それぞれ1対の吸気口6aおよび1対の排気口7aを開閉する。吸気弁8および排気弁9は、それぞれ、その弁ステム8a,9aがシリンダヘッド2に固定される筒状の弁ガイド11に摺動可能に嵌合することにより、その軸線の方向Avでもある開閉方向に往復動可能である。
A piston 4 connected to the crankshaft via a connecting rod is fitted to each cylinder 1a so as to be able to reciprocate. The cylinder head 2 is provided with a combustion chamber 5 formed by a recess facing the piston 4 in the cylinder axial direction for each cylinder 1a, and an intake air having a pair of intake ports 6a that open to the combustion chambers 5 respectively. An exhaust port 7 having a port 6 and a pair of exhaust ports 7a and an ignition plug (not shown) facing the combustion chamber 5 are provided.
The cylinder head 2 is provided with an intake valve 8 and an exhaust valve 9 as engine valves each composed of a poppet valve that is always urged in the valve closing direction by a valve spring 10. A pair of intake valves 8 and a pair of exhaust valves 9 provided for each cylinder 1a (or for each combustion chamber 5) are driven by a valve operating device 20, and a pair of intake ports 6a and a pair of exhaust ports, respectively. 7a is opened and closed. The intake valve 8 and the exhaust valve 9 are each opened and closed in the direction of the axis Av by slidably fitting the valve stems 8a and 9a to the cylindrical valve guide 11 fixed to the cylinder head 2. It can reciprocate in the direction.

内燃機関Eは、シリンダヘッド2の吸気側の接続部2iに接続される吸気管を備えて吸入空気を燃焼室5に導く吸気装置(図示されず)と、該吸気管に取り付けられて吸入空気に燃料を供給する燃料噴射弁(図示されず)と、燃焼室5から流出した排気ガスを内燃機関Eの外部に導く排気装置(図示されず)とを備える。
前記吸気装置に設けられるスロットル弁により計量された吸入空気は、前記燃料噴射弁から噴射された燃料と混合して混合気を形成し、該混合気は吸気行程において吸気弁8の開弁時に吸気ポート6を通って燃焼室5に吸入され、圧縮行程において圧縮される。混合気は圧縮行程の終期に前記点火栓により点火されて燃焼し、膨張行程において燃焼ガスの圧力により駆動されるピストン4がクランク軸を回転駆動する。燃焼ガスは、排気行程において排気弁9の開弁時に、排気ガスとして燃焼室5から排気ポート7に流出し、排気ポート7の出口が開口するシリンダヘッド2の排気側の接続部2eに取り付けられる排気管を備える前記排気装置を通って外部に排出される。
The internal combustion engine E includes an intake pipe (not shown) that includes an intake pipe that is connected to the intake-side connecting portion 2i of the cylinder head 2 and guides the intake air to the combustion chamber 5, and an intake air that is attached to the intake pipe. And a fuel injection valve (not shown) for supplying fuel to the engine and an exhaust device (not shown) for guiding the exhaust gas flowing out from the combustion chamber 5 to the outside of the internal combustion engine E.
The intake air measured by the throttle valve provided in the intake device is mixed with the fuel injected from the fuel injection valve to form an air-fuel mixture, which is taken in when the intake valve 8 is opened in the intake stroke. It is sucked into the combustion chamber 5 through the port 6 and compressed in the compression stroke. The air-fuel mixture is ignited and burned by the spark plug at the end of the compression stroke, and the piston 4 driven by the pressure of the combustion gas in the expansion stroke rotates the crankshaft. When the exhaust valve 9 is opened in the exhaust stroke, the combustion gas flows out from the combustion chamber 5 to the exhaust port 7 as exhaust gas, and is attached to the exhaust-side connecting portion 2e of the cylinder head 2 where the outlet of the exhaust port 7 opens. It is discharged to the outside through the exhaust device provided with an exhaust pipe.

シリンダヘッド2に設けられてシリンダヘッド2とヘッドカバー3とにより形成される動弁室12内に配置されるDOHC型の動弁装置20は、吸気弁8および排気弁9をクランク軸の回転位置に応じて所定のタイミングで開閉する。動弁装置20は、シリンダヘッド2に回転可能に支持されて互いに平行な回転中心線を有する1対のカム軸である吸気カム軸21および排気カム軸22と、吸気カム軸21に一体に設けられて吸気弁8を開閉する動弁カムである吸気カム21aと、排気カム軸22に一体に設けられて排気弁9を開閉する動弁カムである排気カム22aと、吸気カム21aが摺接すると共に吸気カム21aの弁駆動力により駆動されるカムフォロアとしてのバルブリフタ23と、排気カム22aが摺接すると共に排気カム22aの弁駆動力により駆動されるカムフォロアとしてのバルブリフタ23と、吸気弁8および排気弁9を休止状態にするバルブ休止機構30とを備える。
このバルブ休止機構30は、前記休止可能シリンダ(図1に示されるシリンダ1aが相当する。)のすべての吸気弁8および排気弁9と、前記稼動シリンダの1対の吸気弁8のうちの1つの吸気弁8および1対の排気弁9のうちの1つの排気弁9とに対して設けられる。
吸気カム軸21および排気カム軸22は、タイミングチェーンを有する伝動機構を介して伝達されるクランク軸の動力により、その1/2の回転速度で回転駆動される。上端に天井壁23aが設けられ下端が開放する円筒部材である各バルブリフタ23は、シリンダヘッド2の支持部13に設けられた円柱状の嵌合孔に嵌合した状態で軸線方向Avに平行に摺動可能に支持される。
A DOHC type valve gear 20 provided in the cylinder head 2 and disposed in a valve valve chamber 12 formed by the cylinder head 2 and the head cover 3 has the intake valve 8 and the exhaust valve 9 at the rotational position of the crankshaft. Accordingly, it opens and closes at a predetermined timing. The valve gear 20 is provided integrally with the intake camshaft 21 and the intake camshaft 21, which are a pair of camshafts that are rotatably supported by the cylinder head 2 and have rotation center lines parallel to each other. The intake cam 21a that is a valve operating cam that opens and closes the intake valve 8 and the exhaust cam 22a that is integrally provided on the exhaust cam shaft 22 and opens and closes the exhaust valve 9 are in sliding contact with the intake cam 21a. In addition, a valve lifter 23 as a cam follower driven by the valve driving force of the intake cam 21a, a valve lifter 23 as a cam follower which is in sliding contact with the exhaust cam 22a and driven by the valve driving force of the exhaust cam 22a, the intake valve 8 and the exhaust valve And a valve pausing mechanism 30 that puts 9 into the pausing state.
The valve deactivation mechanism 30 includes all the intake valves 8 and exhaust valves 9 of the cylinder capable of deactivation (corresponding to the cylinder 1a shown in FIG. 1) and one of the pair of intake valves 8 of the working cylinder. One intake valve 8 and one exhaust valve 9 of a pair of exhaust valves 9 are provided.
The intake camshaft 21 and the exhaust camshaft 22 are rotationally driven at a half rotational speed by the power of the crankshaft transmitted through a transmission mechanism having a timing chain. Each valve lifter 23, which is a cylindrical member provided with a ceiling wall 23 a at the upper end and opened at the lower end, is fitted in a columnar fitting hole provided in the support portion 13 of the cylinder head 2 and is parallel to the axial direction Av. It is slidably supported.

以下、バルブ休止機構30を中心に説明する。バルブ休止機構30は、吸気弁用および排気弁用で同一構造であるので、以下の説明においては、吸気弁用のバルブ休止機構30について主に説明する。そして、特に断らない限り、吸気弁8と、吸気カム軸21、吸気カム21aおよびバルブリフタ23などの吸気弁8の動作に関連する部材とは、排気弁用のバルブ休止機構30に対しては、それぞれ、排気弁9と、排気カム軸22、排気カム22aおよびバルブリフタ23などの排気弁9の動作に関連する部材とに対応する。   Hereinafter, the valve pause mechanism 30 will be mainly described. Since the valve deactivation mechanism 30 has the same structure for the intake valve and the exhaust valve, the valve deactivation mechanism 30 for the intake valve will be mainly described in the following description. Unless otherwise specified, the members related to the operation of the intake valve 8 such as the intake valve 8, the intake cam shaft 21, the intake cam 21a, and the valve lifter 23 are as follows. Each corresponds to the exhaust valve 9 and members related to the operation of the exhaust valve 9 such as the exhaust cam shaft 22, the exhaust cam 22a, and the valve lifter 23.

バルブリフタ23と吸気弁8との間には、吸気カム21aにより押圧されて往復動するバルブリフタ23と吸気弁8とを連動させるべく、バルブリフタ23に伝達された吸気カム21aの弁駆動力の、吸気弁8に対する伝達および非伝達を切り換えるバルブ休止機構30が、バルブリフタ23の内側に設けられる。各バルブ休止機構30は、後述する油圧制御系統の作動油により制御されて、内燃機関Eの特定運転時として、機関温度が後述する所定温度を越える運転時、および低速運転時または低負荷運転時などに、吸気カム21aにより駆動されるバルブリフタ23の往復動に関わらず、吸気弁8を休止状態にする。   Between the valve lifter 23 and the intake valve 8, the intake cam of the valve drive force of the intake cam 21 a transmitted to the valve lifter 23 is linked to the valve lifter 23, which is pressed by the intake cam 21 a and reciprocates. A valve pause mechanism 30 that switches between transmission and non-transmission to the valve 8 is provided inside the valve lifter 23. Each valve deactivation mechanism 30 is controlled by hydraulic oil of a hydraulic control system, which will be described later, and during specific operation of the internal combustion engine E, during operation where the engine temperature exceeds a predetermined temperature described later, and during low speed operation or low load operation For example, the intake valve 8 is put into a rest state regardless of the reciprocating motion of the valve lifter 23 driven by the intake cam 21a.

併せて図2,3を参照すると、バルブ休止機構30は、バルブリフタ23の内側に摺動可能に、かつ回動可能に嵌合する円筒状のホルダ31と、ホルダ31に摺動可能に嵌合して支持される作動素子としての円柱状のスライドピン32と、ホルダ31とスライドピン32との間に配置されて作動油の油圧に基づいてスライドピン32に作用する油圧駆動力に対抗する弾発力をスライドピン32に作用させる弾発手段としての制御バネ33と、ホルダ31に設けられてスライドピン32の軸線回りの回転を阻止すると共にスライドピン32の軸線の方向Apであるスライドピン32の移動方向(以下、「移動方向」という。)での移動を規制するストッパピン34とを備える。   2 and 3 together, the valve pausing mechanism 30 is slidably fitted into the holder 31 and a cylindrical holder 31 slidably fitted inside the valve lifter 23. A cylindrical slide pin 32 as an operating element supported as a support, and a bullet that is arranged between the holder 31 and the slide pin 32 and that opposes the hydraulic drive force acting on the slide pin 32 based on the hydraulic pressure of the hydraulic oil. A control spring 33 as a resilient means for applying a force to the slide pin 32, and a slide pin 32 provided on the holder 31 to prevent the slide pin 32 from rotating about its axis and to be in the axis direction Ap of the slide pin 32. And a stopper pin 34 for restricting movement in the moving direction (hereinafter referred to as “moving direction”).

ホルダ31は、バルブリフタ23の内周面に面接触する外周面を有するリング部31aと、リング部31aを直径方向に連結する連結部31bと、連結部31bの中央部から上方に突出してバルブリフタ23の天井壁23aに当接して天井壁23aを押圧する押圧部31cとが一体成形された部材である。リング部31aの外周面には、全周に渡る環状溝からなる内側環状油路51が設けられる。連結部31bには、バルブリフタ23の軸線と直交する軸線を有して油路51に開放する開放端40aおよび底壁35により閉塞された閉塞端40bを有する収容部としての円柱状の収容孔40と、軸線方向Avに吸気弁8の弁ステム8aの先端部8a1(排気弁9においては弁ステム9aの先端部9a1)が貫通していると共に収容孔40に開放する貫通孔41とが設けられる。収容孔40にはスライドピン32が移動方向に往復動可能に収容される。押圧部31cには、先端部8a1が挿入可能であると共に下端が収容孔40に開放する孔42が形成される。
弁バネ10を囲んで配置された支持バネ36は、押圧部31cを天井壁23aに当接させると共に、ホルダ31を介して天井壁23aが吸気カム21aに接触するようにバルブリフタ23を付勢する。
The holder 31 includes a ring portion 31a having an outer peripheral surface that is in surface contact with the inner peripheral surface of the valve lifter 23, a connecting portion 31b that connects the ring portion 31a in the diametrical direction, and projects upward from the central portion of the connecting portion 31b. And a pressing portion 31c that contacts the ceiling wall 23a and presses the ceiling wall 23a. An inner annular oil passage 51 formed of an annular groove over the entire circumference is provided on the outer peripheral surface of the ring portion 31a. The connecting portion 31b has a cylindrical accommodation hole 40 as an accommodation portion having an open end 40a having an axis perpendicular to the axis of the valve lifter 23 and opening to the oil passage 51 and a closed end 40b closed by the bottom wall 35. In addition, a front end 8a1 of the valve stem 8a of the intake valve 8 (in the exhaust valve 9, the front end 9a1 of the valve stem 9a) penetrates in the axial direction Av and a through hole 41 that opens to the accommodation hole 40 is provided. . The slide pin 32 is accommodated in the accommodation hole 40 so as to be capable of reciprocating in the movement direction. The pressing portion 31c is formed with a hole 42 into which the distal end portion 8a1 can be inserted and whose lower end opens into the accommodation hole 40.
The support spring 36 disposed so as to surround the valve spring 10 brings the pressing portion 31c into contact with the ceiling wall 23a and biases the valve lifter 23 through the holder 31 so that the ceiling wall 23a contacts the intake cam 21a. .

ホルダ31には、開放端40a側に、連結部31bとスライドピン32の一方の端部32aとにより、油路51に開口する油圧室44が形成され、閉塞端40b側に、連結部31bとスライドピン32の他方の凹状の端部32bと底壁35とにより、油圧室44の容積を減少する方向にスライドピン32を付勢する制御バネ33が端部32bと底壁35とにその両端部で当接した状態で収容される収容室45が形成される。また、支持部13の内周面には、環状溝により形成される外側環状油路53が全周に渡って設けられ、バルブリフタ23の側壁に設けられた貫通孔からなる油路52を介して油路53が油路51に常時連通している。   The holder 31 has a hydraulic chamber 44 opened to the oil passage 51 by the connecting portion 31b and one end portion 32a of the slide pin 32 on the open end 40a side, and the connecting portion 31b on the closed end 40b side. Due to the other concave end portion 32b of the slide pin 32 and the bottom wall 35, a control spring 33 for urging the slide pin 32 in a direction to reduce the volume of the hydraulic chamber 44 is provided at both ends of the end portion 32b and the bottom wall 35. A storage chamber 45 is formed that is stored in contact with each other. Further, an outer annular oil passage 53 formed by an annular groove is provided on the inner peripheral surface of the support portion 13 over the entire circumference, and through an oil passage 52 including a through hole provided in the side wall of the valve lifter 23. The oil passage 53 is always in communication with the oil passage 51.

軸線方向Apでのスライドピン32の中間部には、先端部8a1が挿入されて貫通可能であると共に貫通孔41および孔42にほぼ同軸に連なることが可能な空間部としての挿入孔43が設けられる。挿入孔43は、貫通孔41側で、貫通孔41に軸線方向Avで対向可能であると共にスライドピン32の外周面に形成されて先端部8a1が当接可能な平坦な当接面32dに軸線方向Apで隣接して開口する。当接面32dは、軸線方向Apで挿入孔43と端部32bとの間に設けられる。   An insertion hole 43 is provided in the middle portion of the slide pin 32 in the axial direction Ap as a space portion through which the distal end portion 8a1 can be inserted and penetrated and can be connected to the through hole 41 and the hole 42 substantially coaxially. It is done. The insertion hole 43 is formed on the outer peripheral surface of the slide pin 32 and can be opposed to the through hole 41 in the axial direction Av on the through hole 41 side. It opens adjacently in the direction Ap. The contact surface 32d is provided between the insertion hole 43 and the end portion 32b in the axial direction Ap.

そして、端部32aと当接面32dとは、スライドピン32の移動方向(すなわち軸線方向Ap)で挿入孔43を挟んで対向して配置される。また、端部32bは移動方向で挿入孔43とは反対側で当接面32dに隣接する。スライドピン32には、移動方向で当接面32dと重なる位置に、挿入孔43と収容室45とを連通する連通路としての連通孔46が設けられる。さらに、端部32bには、移動方向で底壁35と対向する部分に収容室45を連結部31bに設けられた連通路としての孔48を通じて、動弁室12に開放しているバルブリフタ23の内側空間に連通させる連通路としての切欠き47が設けられる。連通孔46、切欠き47および孔48を通じて、空気および該空気に混入しているミスト状の潤滑油が流通することにより、スライドピン32の移動に伴う収容室45の容積増減に起因する収容室45の圧力の増減が解消されて、スライドピン32の移動が円滑になると共に、潤滑油により制御バネ33と端部32bおよび底壁35と接触部が潤滑される。   The end portion 32a and the contact surface 32d are arranged to face each other across the insertion hole 43 in the moving direction of the slide pin 32 (that is, the axial direction Ap). The end portion 32b is adjacent to the contact surface 32d on the side opposite to the insertion hole 43 in the moving direction. The slide pin 32 is provided with a communication hole 46 as a communication path that connects the insertion hole 43 and the storage chamber 45 at a position overlapping the contact surface 32d in the movement direction. Further, the end portion 32b has a valve lifter 23 opened to the valve train chamber 12 through a hole 48 serving as a communication path provided in the connecting portion 31b at a portion facing the bottom wall 35 in the moving direction. A notch 47 is provided as a communication path communicating with the inner space. The accommodation chamber caused by the volume increase / decrease of the accommodation chamber 45 due to the movement of the slide pin 32 due to the flow of air and mist-like lubricating oil mixed in the air through the communication hole 46, the notch 47 and the hole 48 The increase / decrease in the pressure of 45 is eliminated, the movement of the slide pin 32 becomes smooth, and the control spring 33, the end portion 32b, the bottom wall 35 and the contact portion are lubricated by the lubricating oil.

スライドピン32には、作動油側作用部としての端部32aに作用する油圧室44内の作動油の油圧に基づく油圧駆動力と、弾発側作用部としての端部32bに当接する制御バネ33が発生する弾発力とが、軸線方向Apで互いに反対方向に作用する。そして、スライドピン32は互いに対抗する油圧駆動力と弾発力とに応じて、バルブリフタ23と吸気弁8とを連動させてバルブリフタ23に伝達された吸気カム21aの弁駆動力を吸気弁8に伝達する弁作動位置と、バルブリフタ23と吸気弁8との連動を解除してバルブリフタ23に伝達された弁駆動力を吸気弁8に伝達しない弁休止位置との間で、軸線方向Apに移動する。
そして、収容孔40の開放端40a側でホルダ31に設けられる1対の装着孔49に圧入されて、油圧室44に開放して設けられるスリット32eを貫通するストッパピン34は、図2(a)に示されるように、弾発力に付勢された端部32aとスリット32e内で当接することにより、スライドピン32の弁作動位置を規定するストッパを構成する。一方、底壁35は、図2(b)に示されるように、油圧駆動力に付勢されたスライドピン32の端部32bと当接することにより、スライドピン32の弁休止位置を規定する。
The slide pin 32 has a hydraulic drive force based on the hydraulic pressure of the hydraulic oil in the hydraulic chamber 44 acting on the end portion 32a as the hydraulic oil side action portion, and a control spring that comes into contact with the end portion 32b as the elastic side action portion. The elastic force generated by 33 acts in opposite directions in the axial direction Ap. Then, the slide pin 32 causes the valve drive force of the intake cam 21a transmitted to the valve lifter 23 by interlocking the valve lifter 23 and the intake valve 8 to the intake valve 8 in accordance with the hydraulic drive force and the resilient force that oppose each other. It moves in the axial direction Ap between the valve operating position to be transmitted and the valve rest position where the valve driving force transmitted to the valve lifter 23 is not transmitted to the intake valve 8 by releasing the interlock between the valve lifter 23 and the intake valve 8. .
A stopper pin 34 that is press-fitted into a pair of mounting holes 49 provided in the holder 31 on the open end 40a side of the accommodation hole 40 and passes through a slit 32e provided open in the hydraulic chamber 44 is shown in FIG. ), The stopper 32 that defines the valve operating position of the slide pin 32 is configured by contacting the end 32a urged by the elastic force within the slit 32e. On the other hand, as shown in FIG. 2B, the bottom wall 35 abuts the end portion 32b of the slide pin 32 biased by the hydraulic driving force, thereby defining the valve rest position of the slide pin 32.

より具体的には、図2(a)を参照すると、油圧室44内の作動油の油圧が、スライドピン32とストッパピン34とが当接しているときの制御バネ33の弾発力である設定弾発力以下の油圧駆動力をスライドピン32に作用させる低油圧状態にあるとき、スライドピン32は制御バネ33に付勢されて、その弾発力により弁作動位置を占める。このとき、挿入孔43は貫通孔41および孔42から軸線方向Apにずれていて、軸線方向Ap(または移動方向)で当接面32dが貫通孔41および孔42と重なる位置にあるため、貫通孔41を貫通した吸気弁8の先端部8a1が当接面32dに当接可能な位置にあり、先端部8a1は挿入孔43に挿入されない。そして、スライドピン32は、伝達部としての当接面32dにおいて、バルブリフタ23を介して伝達された吸気カム21aの弁駆動力を吸気弁8に伝達する。これにより、吸気カム21aの弁駆動力がバルブリフタ23、ホルダ31およびスライドピン32を介して吸気弁8に伝達されて、吸気弁8は、吸気カム21aの回転に応じて開閉作動する作動状態になる。   More specifically, referring to FIG. 2A, the hydraulic pressure of the hydraulic oil in the hydraulic chamber 44 is the elasticity of the control spring 33 when the slide pin 32 and the stopper pin 34 are in contact with each other. When in a low hydraulic pressure state in which a hydraulic driving force equal to or less than the set elastic force is applied to the slide pin 32, the slide pin 32 is urged by the control spring 33 and occupies the valve operating position by the elastic force. At this time, the insertion hole 43 is displaced in the axial direction Ap from the through hole 41 and the hole 42, and the contact surface 32d is positioned so as to overlap the through hole 41 and the hole 42 in the axial direction Ap (or moving direction). The front end 8a1 of the intake valve 8 penetrating through the hole 41 is in a position where it can contact the contact surface 32d, and the front end 8a1 is not inserted into the insertion hole 43. The slide pin 32 transmits the valve driving force of the intake cam 21a transmitted via the valve lifter 23 to the intake valve 8 on the contact surface 32d as a transmission portion. As a result, the valve driving force of the intake cam 21a is transmitted to the intake valve 8 via the valve lifter 23, the holder 31 and the slide pin 32, and the intake valve 8 enters an operating state in which it opens and closes according to the rotation of the intake cam 21a. Become.

一方、図2(b)を参照すると、油圧室44内の作動油の油圧が、前記設定弾発力を越える油圧駆動力をスライドピン32に作用させる高油圧状態にあるとき、スライドピン32と底壁35とが当接して、スライドピン32は弁休止位置を占める。このとき、挿入孔43は貫通孔41および孔42と軸線方向Avでほぼ同軸に並んで、軸線方向Apで挿入孔43が貫通孔41および孔と重なる位置にあって、当接面32dには貫通孔41を貫通した先端部8a1が当接することはなく、先端部8a1は挿入孔43に挿入可能である。それゆえ、挿入孔43は、スライドピン32において、バルブリフタ23を介して伝達される吸気カム21aの弁駆動力を吸気弁8に伝達しない部分である。このため、吸気カム21aの弁駆動力により、バルブリフタ23、ホルダ31およびスライドピン32が軸線方向Avで移動したとしても、先端部8a1は挿入孔43おび孔42内で進退移動するだけであり、弁駆動力は吸気弁8には伝達されず、吸気弁8は、吸気カム21aの回転に関わらず、閉弁状態を保つ休止状態になる。   On the other hand, referring to FIG. 2B, when the hydraulic oil pressure in the hydraulic chamber 44 is in a high hydraulic pressure state in which the hydraulic drive force exceeding the set elastic force is applied to the slide pin 32, the slide pin 32 and The slide pin 32 occupies the valve rest position by contacting the bottom wall 35. At this time, the insertion hole 43 is aligned substantially coaxially with the through-hole 41 and the hole 42 in the axial direction Av, and the insertion hole 43 is positioned so as to overlap the through-hole 41 and the hole in the axial direction Ap. The distal end portion 8 a 1 penetrating through the through hole 41 does not come into contact, and the distal end portion 8 a 1 can be inserted into the insertion hole 43. Therefore, the insertion hole 43 is a portion of the slide pin 32 that does not transmit the valve driving force of the intake cam 21 a transmitted through the valve lifter 23 to the intake valve 8. For this reason, even if the valve lifter 23, the holder 31 and the slide pin 32 are moved in the axial direction Av by the valve driving force of the intake cam 21a, the tip 8a1 only moves forward and backward in the insertion hole 43 and the hole 42. The valve driving force is not transmitted to the intake valve 8, and the intake valve 8 enters a resting state in which the closed valve state is maintained regardless of the rotation of the intake cam 21a.

図1,図2を参照すると、バルブ休止機構30のスライドピン32を移動させるための油圧制御系統は、クランク軸の動力により駆動されるオイルポンプ55を油圧源として備え、該オイルポンプ55から吐出された潤滑油を作動油とする。さらに、前記油圧制御系統は、シリンダヘッド2に設けられて油路53に連通する油路54と、オイルポンプ55から供給される作動油の油圧を制御することにより油圧室44の作動油の油圧を制御する油圧制御弁56と、機関運転状態である機関温度(例えば、冷却水温度)、および機関回転速度または機関負荷などに応じて油圧制御弁56の作動を制御する制御装置57と、を備える。油圧制御弁56は、機関温度を検出する温度センサ、および機関回転速度を検出する回転速度検出センサまたは機関負荷を検出する負荷センサなどの運転状態検出手段からの検出信号が入力される制御装置57からの指令により、内燃機関Eの前記特定運転時に油圧室44の油圧が高油圧状態になり、それ以外の運転時に油圧室44の油圧が低油圧状態になるように、油路54を流通する作動油の油圧を制御する。   Referring to FIGS. 1 and 2, the hydraulic control system for moving the slide pin 32 of the valve deactivation mechanism 30 includes an oil pump 55 driven by the power of the crankshaft as a hydraulic source and discharges from the oil pump 55. The lubricated oil is used as hydraulic oil. Further, the hydraulic control system controls the hydraulic pressure of the hydraulic oil in the hydraulic chamber 44 by controlling the hydraulic pressure of the hydraulic fluid provided from the oil pump 55 and the hydraulic fluid 54 provided in the cylinder head 2 and communicating with the hydraulic fluid 53. A control valve 57 that controls the operation of the hydraulic control valve 56 in accordance with the engine temperature (for example, cooling water temperature) in the engine operating state and the engine rotational speed or the engine load. Prepare. The hydraulic control valve 56 is a control device 57 to which detection signals from operating state detection means such as a temperature sensor that detects engine temperature, a rotation speed detection sensor that detects engine rotation speed, or a load sensor that detects engine load are input. From the oil passage 54 so that the hydraulic pressure in the hydraulic chamber 44 is in a high hydraulic pressure state during the specific operation of the internal combustion engine E, and the hydraulic pressure in the hydraulic chamber 44 is in a low hydraulic pressure state during other operations. Controls hydraulic oil pressure.

オイルポンプ55の吐出圧は機関回転速度に応じて変化し得るため、該作動油の油圧は機関回転速度に応じて変化し得る。このため、内燃機関Eの始動時などで、機関回転速度が極めて低い極低速運転時には、作動油の油圧が高油圧状態に達しない場合がある。しかしながら、極低速運転時などで油圧室44内の作動油の油圧が低油圧状態にあるとき、そして前記特定運転時以外の運転時には、スライドピン32は、制御バネ33に付勢されて弁作動位置を確実に占める。
ここで、極低速運転時は、クランキング回転速度を含むと共にアイドル回転速度未満の機関回転速度で内燃機関Eが運転されるときであり、前記特定運転時としての前記低速運転時には含まれない。
Since the discharge pressure of the oil pump 55 can change according to the engine speed, the hydraulic pressure of the hydraulic oil can change according to the engine speed. For this reason, when the internal combustion engine E is started, the hydraulic pressure of the hydraulic oil may not reach a high hydraulic pressure during an extremely low speed operation at an extremely low engine speed. However, the slide pin 32 is urged by the control spring 33 to operate the valve when the hydraulic oil pressure in the hydraulic chamber 44 is in a low hydraulic pressure state, such as during extremely low speed operation, and during operations other than the specific operation. Securely occupies position.
Here, the extremely low speed operation is a time when the internal combustion engine E is operated at an engine rotation speed that includes the cranking rotation speed and less than the idle rotation speed, and is not included in the low speed operation as the specific operation.

そして、内燃機関Eは、各バルブ休止機構30により、吸気弁8および排気弁9が、作動状態にあるか、休止状態にあるかに応じて、例えば次のような運転形態、すなわち、すべてのシリンダ1aが稼動する全気筒運転での運転形態、休止可能シリンダが休止する部分気筒運転での運転形態、さらに部分気筒運転時に稼動シリンダの1つの吸気弁8および1つの排気弁9が休止状態になる運転形態での運転が可能になる。   Then, the internal combustion engine E uses, for example, the following operation modes according to whether the intake valve 8 and the exhaust valve 9 are in the activated state or the deactivated state by each valve deactivation mechanism 30, that is, all Operation mode in full cylinder operation in which the cylinder 1a is operated, operation mode in partial cylinder operation in which the cylinder that can be deactivated is deactivated, and one intake valve 8 and one exhaust valve 9 of the operation cylinder are deactivated during partial cylinder operation. It becomes possible to operate in the following operation mode.

また、休止可能シリンダのすべての吸気弁8および排気弁9に対して設けられるバルブ休止機構30を機関温度に応じて制御するために、油圧制御弁56は次のように作動油の油圧を制御する。すなわち、機関温度が、内燃機関Eが暖機状態にあるときの所定温度以下のとき、油圧制御弁56は油圧室44の油圧を低油圧状態にする低油圧位置を占め、そしてスライドピン32は油圧駆動力よりも大きい制御バネ33の弾発力により弁作動位置を占める。このため、機関温度が前記所定温度以下のときは、内燃機関Eはすべてのシリンダ1aが稼動する全気筒運転により運転される。一方、機関温度が前記所定温度を越えるとき、油圧制御弁56は、オイルポンプ55から供給される作動油の油圧に応じて油圧室44の油圧を高油圧状態にすることが可能な高油圧位置を占める。そして、オイルポンプ55からの作動油の油圧が十分に高いとき、スライドピン32は、制御バネ33の弾発力に打ち勝つ油圧駆動力により弁休止位置を占める。このため、機関温度が前記所定温度を越えるとき、内燃機関Eは休止可能シリンダが休止状態になる部分気筒運転により運転される。   In addition, the hydraulic control valve 56 controls the hydraulic pressure of the hydraulic oil as follows in order to control the valve deactivation mechanism 30 provided for all the intake valves 8 and the exhaust valves 9 of the deactivatable cylinder according to the engine temperature. To do. That is, when the engine temperature is equal to or lower than a predetermined temperature when the internal combustion engine E is in a warm-up state, the hydraulic control valve 56 occupies a low hydraulic pressure position at which the hydraulic pressure in the hydraulic chamber 44 is lowered, and the slide pin 32 is The valve operating position is occupied by the elastic force of the control spring 33 which is larger than the hydraulic driving force. For this reason, when the engine temperature is equal to or lower than the predetermined temperature, the internal combustion engine E is operated by an all cylinder operation in which all the cylinders 1a are operated. On the other hand, when the engine temperature exceeds the predetermined temperature, the hydraulic control valve 56 is a high hydraulic pressure position where the hydraulic pressure in the hydraulic chamber 44 can be changed to a high hydraulic pressure state according to the hydraulic pressure of the hydraulic oil supplied from the oil pump 55. Occupy. When the hydraulic pressure of the hydraulic oil from the oil pump 55 is sufficiently high, the slide pin 32 occupies the valve rest position by a hydraulic driving force that overcomes the elastic force of the control spring 33. For this reason, when the engine temperature exceeds the predetermined temperature, the internal combustion engine E is operated by the partial cylinder operation in which the incapable cylinder is deactivated.

次に、前述のように構成された実施形態の作用および効果について説明する。
内燃機関Eの動弁装置20に備えられるバルブ休止機構30のスライドピン32は、制御バネ33の弾発力により弁作動位置を占め、作動油の油圧駆動力により弁休止位置を占めることにより、バルブ休止機構30において、互いに対抗する油圧駆動力と弾発力とに応じて移動して弁作動位置と弁休止位置とを占めるスライドピン32は、弾発力により弁作動位置を占めるため、内燃機関Eの始動時などの極低速運転時にスライドピン32に作用する作動油の油圧が低油圧状態にあるときにも、弾発力により確実に弁作動位置を占めて、バルブリフタ23に伝達された吸気カム21aの弁駆動力が吸気弁8に伝達されるので、極低速運転時においても大きな機関出力が得られる。このため、内燃機関Eの始動性および自動二輪車の発進性が向上する。
Next, operations and effects of the embodiment configured as described above will be described.
The slide pin 32 of the valve pausing mechanism 30 provided in the valve gear 20 of the internal combustion engine E occupies the valve operating position by the elastic force of the control spring 33, and occupies the valve pausing position by the hydraulic drive force of the hydraulic oil. In the valve resting mechanism 30, the slide pin 32 that moves according to the hydraulic driving force and the resilient force that oppose each other and occupies the valve operating position and the valve resting position occupies the valve operating position by the resilient force. Even when the hydraulic oil pressure acting on the slide pin 32 during a very low speed operation such as when the engine E is started is in a low hydraulic pressure state, the valve operating position is reliably occupied by the elastic force and transmitted to the valve lifter 23. Since the valve driving force of the intake cam 21a is transmitted to the intake valve 8, a large engine output can be obtained even during extremely low speed operation. For this reason, the startability of the internal combustion engine E and the startability of the motorcycle are improved.

バルブ休止機構30はスライドピン32を摺動可能に支持するホルダ31を備え、スライドピン32には、油圧駆動力が作用する作動油側作用部としての端部32aと、バルブリフタ23を介して伝達される吸気カム21aの弁駆動力を吸気弁8に伝達する当接面32dと、吸気弁8に弁駆動力を伝達しない挿入孔43と、弾発力が作用する弾発側作用部としての端部32bとが設けられ、スライドピン32は、弁作動位置において当接面32dを介してバルブリフタ23と吸気弁8とを連動させ、弁休止位置において挿入孔43によりバルブリフタ23と吸気弁8との連動を解除し、端部32aと当接面32dとは、スライドピン32の移動方向(軸線方向Ap)で挿入孔43を挟んで対向して配置されることにより、スライドピン32において吸気弁8からの反力が作用する当接面32dは、当接面がスライドピンの移動方向で挿入孔を挟むことなく作動油側作用部に隣接する技術に比べて、該移動方向で挿入孔43が介在している分、端部32aから離れているため、端部32aに作用する該反力の分力が小さくなるので、ホルダ31に対して摺動するスライドピン32とホルダ31との摩耗が減少して、ホルダ31と端部32aとの間の隙間が拡大することが抑制される。この結果、該隙間を通じての油圧室44からの作動油の漏れが減少するので、油圧駆動力によるスライドピン32の移動応答性が長期に渡って良好に維持される。   The valve pause mechanism 30 includes a holder 31 that slidably supports a slide pin 32. The slide pin 32 is transmitted via an end portion 32a as a hydraulic oil side acting portion on which a hydraulic driving force acts and a valve lifter 23. The contact surface 32d for transmitting the valve driving force of the intake cam 21a to the intake valve 8, the insertion hole 43 for not transmitting the valve driving force to the intake valve 8, and the elastic side acting portion where the elastic force acts. An end portion 32b is provided, and the slide pin 32 interlocks the valve lifter 23 and the intake valve 8 via the contact surface 32d in the valve operating position, and the valve lifter 23 and the intake valve 8 are connected by the insertion hole 43 in the valve rest position. The end portion 32a and the abutting surface 32d are arranged to face each other with the insertion hole 43 in the moving direction (axial direction Ap) of the slide pin 32, so that the intake valve at the slide pin 32 is released. The contact surface 32d on which the reaction force from 8 acts is the contact surface Compared to the technique adjacent to the hydraulic oil side working part without sandwiching the insertion hole in the moving direction of the slide pin, since the insertion hole 43 is interposed in the moving direction, it is separated from the end part 32a. Since the component force of the reaction force acting on 32a is reduced, the wear between the slide pin 32 sliding on the holder 31 and the holder 31 is reduced, and the gap between the holder 31 and the end 32a is enlarged. Is suppressed. As a result, the leakage of hydraulic oil from the hydraulic chamber 44 through the gap is reduced, so that the movement responsiveness of the slide pin 32 by the hydraulic driving force is well maintained over a long period of time.

端部32bは、移動方向で挿入孔43とは反対側で当接面32dに隣接する共に制御バネ33を収容する収容室45を形成し、スライドピン32には、移動方向で当接面32dと重なる位置に挿入孔43と収容室45とを連通する連通孔46が設けられることにより、連通孔46は、移動方向で弾発側作用部と当接面とが互いに隣接していない技術に比べて、当接面32dと重なる分だけ、移動方向に長い孔とすることができることから、スライドピン32が軽量化されるので、油圧駆動力および弾発力による移動応答性が向上し、また吸気弁8と共に移動可能なバルブ休止機構30が軽量化されて、吸気弁8と共に運動する部材の慣性質量が減少するので、高速運転時の吸気弁8の開閉応答性が向上する。   The end portion 32b forms an accommodation chamber 45 that is adjacent to the contact surface 32d on the opposite side of the insertion hole 43 in the movement direction and accommodates the control spring 33, and the slide pin 32 has a contact surface 32d in the movement direction. Is provided in the position where the insertion hole 43 and the accommodation chamber 45 are communicated with each other, the communication hole 46 is a technology in which the elastic side action portion and the contact surface are not adjacent to each other in the moving direction. Compared with the contact surface 32d, since the hole can be made long in the moving direction, the slide pin 32 is reduced in weight, so that the movement responsiveness by the hydraulic driving force and the elastic force is improved. Since the valve pause mechanism 30 that can move together with the intake valve 8 is reduced in weight and the inertial mass of the member that moves with the intake valve 8 is reduced, the open / close response of the intake valve 8 during high speed operation is improved.

内燃機関Eにおいて、機関温度に応じて稼動状態および休止状態に切り換えられる休止可能シリンダのすべての吸気弁8および排気弁9はバルブ休止機構30により休止状態にされる機関弁により構成され、油圧制御弁56は、機関温度が内燃機関Eの暖機状態での前記所定温度以下のときにスライドピン32が弁作動位置を占めるように、かつ機関温度が前記所定温度を越えるときにスライドピン32が弁休止位置を占めることを可能とするように、作動油の油圧を制御することにより、機関温度が前記所定温度以下であるときには、内燃機関Eはすべてのシリンダ1aが稼動する全気筒運転により運転されるので、内燃機関Eの始動性および自動二輪車の発進性が向上するうえ、内燃機関Eの暖機が促進される。そして、機関温度が前記所定温度を越えると、内燃機関Eは休止可能シリンダが休止状態になる部分気筒運転により運転されるので、燃費が改善される。   In the internal combustion engine E, all intake valves 8 and exhaust valves 9 of the cylinders that can be deactivated according to the engine temperature are constituted by engine valves that are deactivated by a valve deactivation mechanism 30 and are hydraulically controlled. The valve 56 is configured so that the slide pin 32 occupies the valve operating position when the engine temperature is equal to or lower than the predetermined temperature in the warm-up state of the internal combustion engine E, and when the engine temperature exceeds the predetermined temperature, When the engine temperature is equal to or lower than the predetermined temperature by controlling the hydraulic pressure of the hydraulic oil so as to be able to occupy the valve rest position, the internal combustion engine E is operated by the full cylinder operation in which all the cylinders 1a are operated. Therefore, the startability of the internal combustion engine E and the startability of the motorcycle are improved, and warming up of the internal combustion engine E is promoted. When the engine temperature exceeds the predetermined temperature, the internal combustion engine E is operated by the partial cylinder operation in which the cylinder that can be deactivated is deactivated, so that fuel efficiency is improved.

以下、前述した実施形態の一部の構成を変更した実施形態について、変更した構成に関して説明する。
内燃機関は、1つのシリンダに対して複数の吸気弁または複数の排気弁が設けられ、そのうちの一部の吸気弁または排気弁がバルブ休止機構により休止状態になる単気筒内燃機関または多気筒内燃機関であってもよい。
バルブ休止機構に供給される作動油は、内燃機関の動力以外により駆動されるオイルポンプ、例えば電動式のオイルポンプにより供給されてもよく、またオイルポンプ以外の、低油圧状態となり得る油圧源から供給されてもよい。
内燃機関は、車両以外の機械に使用されるものであってもよい。
Hereinafter, an embodiment in which a part of the configuration of the above-described embodiment is changed will be described with respect to the changed configuration.
The internal combustion engine is provided with a plurality of intake valves or a plurality of exhaust valves for one cylinder, and some of the intake valves or exhaust valves are in a stopped state by a valve stop mechanism. It may be an institution.
The hydraulic oil supplied to the valve deactivation mechanism may be supplied by an oil pump driven by power other than the power of the internal combustion engine, for example, an electric oil pump, or from a hydraulic source that can be in a low hydraulic pressure state other than the oil pump. It may be supplied.
An internal combustion engine may be used for machines other than vehicles.

本発明が適用された動弁装置を備える内燃機関の、カム軸の回転中心線に直交する平面での要部断面図である。It is principal part sectional drawing in the plane orthogonal to the rotation center line of a cam shaft of an internal combustion engine provided with the valve operating apparatus with which this invention was applied. 図1の要部拡大図であり、(a)は、バルブ休止機構のスライドピンが弁作動位置を占めるときの図であり、(b)は、バルブ休止機構のスライドピンが弁休止位置を占めるときの図である。It is a principal part enlarged view of FIG. 1, (a) is a figure when the slide pin of a valve deactivation mechanism occupies a valve operation position, (b) is a figure when the slide pin of a valve deactivation mechanism occupies a valve deactivation position. It is a figure of time. 図1の動弁装置のバルブ休止機構の分解斜視図である。It is a disassembled perspective view of the valve stop mechanism of the valve operating apparatus of FIG.

符号の説明Explanation of symbols

1…シリンダブロック、2…シリンダヘッド、8…吸気弁、9…排気弁、20…動弁装置、21,22…カム軸、23…バルブリフタ、30…バルブ休止機構、31…ホルダ、32…スライドピン、32a,32b…端部、33…制御バネ、43…挿入孔、44…油圧室、45…収容室、46…連通孔、
E…内燃機関、Av,Ap…軸線方向。
DESCRIPTION OF SYMBOLS 1 ... Cylinder block, 2 ... Cylinder head, 8 ... Intake valve, 9 ... Exhaust valve, 20 ... Valve-operating device, 21, 22 ... Cam shaft, 23 ... Valve lifter, 30 ... Valve rest mechanism, 31 ... Holder, 32 ... Slide Pin, 32a, 32b ... end, 33 ... control spring, 43 ... insertion hole, 44 ... hydraulic chamber, 45 ... storage chamber, 46 ... communication hole,
E: Internal combustion engine, Av, Ap: Axial direction.

Claims (2)

カム軸(21,22)に設けられる動弁カム(21a,22a)により駆動されるカムフォロア(23)と、前記カムフォロア(23)に設けられて機関弁を休止状態にするバルブ休止機構(30)とを備える内燃機関(E)の動弁装置(20)であって、前記バルブ休止機構(30)は、前記カムフォロア(23)と前記機関弁(8,9)とを連動させて前記カムフォロア(23)に伝達された前記動弁カム(21a,22a)の弁駆動力を前記機関弁(8,9)に伝達する弁作動位置と前記カムフォロア(23)と前記機関弁(8,9)との連動を解除して前記カムフォロア(23)に伝達された前記弁駆動力を前記機関弁(8,9)に伝達しない弁休止位置との間で移動する作動素子(32)と、作動油の油圧に基づいて前記作動素子(32)に作用する油圧駆動力に対抗する弾発力を前記作動素子(32)に作用させる弾発手段(33)とを備える内燃機関(E)の動弁装置(20)において、
前記作動素子(32)は、前記弾発力により前記弁作動位置を占め、前記油圧駆動力により前記弁休止位置を占め、
前記油圧駆動力は、クランク軸により駆動されるオイルポンプ(55)から吐出される作動油による駆動力であって、
前記バルブ休止機構(30)は前記作動素子(32)を摺動可能に支持するホルダ(31)を備え、前記作動素子(32)には、前記油圧駆動力が作用する作動油側作用部(32a)と、前記カムフォロア(23)を介して伝達された前記弁駆動力を前記機関弁(8,9)に伝達する伝達部(32d)と、前記機関弁(8,9)に前記弁駆動力を伝達しない空間部(42,43)と、前記弾発力が作用する弾発側作用部(32b)とが設けられ、前記作動素子(32)は、前記弁作動位置において前記伝達部(32d)を介して前記カムフォロア(23)と前記機関弁(8,9)とを連動させ、前記弁休止位置において前記空間部(42,43)により前記カムフォロア(23)と前記機関弁(8,9)との連動を解除し、前記作動油側作用部(32a)と前記伝達部(32d)とは、前記作動素子(32)の移動方向で前記空間部を(42,43)挟んで対向して配置され、
前記弾発側作用部(32b)は、前記移動方向で前記空間部(42,43)とは反対側で前記伝達部(32d)に隣接する共に前記弾発部材(33)を収容する収容室(45)を形成し、前記作動素子(32)には、前記移動方向で前記伝達部(32d)と重なる位置に前記空間部(42,43)と前記収容室(45)とを連通する連通路(46)が設けられ、かつ、前記作動素子(32)に設けられた空間部(43)のカム軸(21,22)寄り端部(32b)に切欠きが形成されることで、前記作動素子(32)は、エンジン始動時のクランキング回転速度を含むアイドル回転速度においても前記弁休止位置へ移動可能としたことを特徴とする内燃機関の動弁装置。
A cam follower (23) driven by a valve-operating cam (21a, 22a) provided on the cam shaft (21, 22), and a valve pause mechanism (30) provided on the cam follower (23) for putting the engine valve in a pause state The valve operating mechanism (20) of the internal combustion engine (E) includes the cam follower (23) and the engine follower (8, 9) in conjunction with the cam follower ( A valve operating position for transmitting the valve driving force of the valve cam (21a, 22a) transmitted to 23) to the engine valve (8, 9), the cam follower (23), and the engine valve (8, 9); The actuating element (32) that moves between the valve resting position where the valve driving force transmitted to the cam follower (23) is not transmitted to the engine valve (8, 9), Based on the hydraulic pressure, a resilient force that opposes the hydraulic driving force acting on the operating element (32). In the valve operating device (20) of the internal combustion engine (E), comprising a resilient means (33) for acting on the operating element (32),
The actuating element (32) occupies the valve operating position by the elastic force, occupies the valve rest position by the hydraulic driving force,
The hydraulic driving force is a driving force by hydraulic oil discharged from an oil pump (55) driven by a crankshaft,
The valve pause mechanism (30) includes a holder (31) that slidably supports the operating element (32), and the operating element (32) has a hydraulic oil acting section (where the hydraulic driving force acts) 32a), a transmission part (32d) for transmitting the valve driving force transmitted through the cam follower (23) to the engine valve (8, 9), and the valve drive to the engine valve (8, 9). A space portion (42, 43) that does not transmit force and a resilient side acting portion (32b) on which the resilient force acts are provided, and the actuating element (32) is configured so that the transmitting portion ( 32d), the cam follower (23) and the engine valve (8, 9) are interlocked, and the cam follower (23) and the engine valve (8, 9), and the hydraulic oil side action part (32a) and the transmission part (32d) Is arranged to face said space portion (42, 43) sandwiched therebetween in the direction of movement of the child (32),
The impact-side action portion (32b) is adjacent to the transmission portion (32d) on the opposite side of the space portion (42, 43) in the moving direction and accommodates the impact member (33). (45) is formed, and the operating element (32) communicates with the space portions (42, 43) and the storage chamber (45) at a position overlapping the transmission portion (32d) in the moving direction. passage (46) is provided, and, in Rukoto are notches formed in the cam shaft (21, 22) inboard end (32 b) of the space portion provided in the actuating element (32) (43), wherein The valve operating device for an internal combustion engine, wherein the actuating element (32) is movable to the valve rest position even at an idling rotational speed including a cranking rotational speed at the time of starting the engine .
前記内燃機関(E)は、機関温度に応じて稼動状態および休止状態に切り換えられる休止可能シリンダと常時稼動状態にある稼動シリンダとから構成される複数のシリンダ(1a)を備える多気筒内燃機関(E)であり、前記休止可能シリンダのすべての吸気弁(8)および排気弁(9)は前記バルブ休止機構(30)により休止状態にされる前記機関弁(8,9)により構成され、前記作動油の油圧は、油圧制御系統(57)に備えられる圧制御弁(56)により前記機関温度に応じて制御され、前記油圧制御弁(56)は、前記機関温度が前記内燃機関(E)の暖機状態での所定温度以下のときに前記作動素子(32)が前記弁作動位置を占めるように、かつ前記機関温度が前記所定温度を越えるときに前記作動素子(32)が前記弁休止位置を占めることを可能とするように、前記作動油の油圧を制御することを特徴とする請求項1記載の内燃機関の動弁装置。 The internal combustion engine (E) includes a multi-cylinder internal combustion engine (1a) having a plurality of cylinders (1a) including a cylinder capable of being switched between an operation state and a suspension state according to an engine temperature, and an operation cylinder which is always in an operation state. E), and all the intake valves (8) and exhaust valves (9) of the restable cylinder are constituted by the engine valves (8, 9) brought into a rest state by the valve rest mechanism (30), hydraulic pressure of the hydraulic fluid is controlled in accordance with the engine temperature by the oil pressure control valve provided in the hydraulic control system (57) (56), the hydraulic control valve (56), the engine temperature is the internal combustion engine (E ) So that the operating element (32) occupies the valve operating position when the temperature is below a predetermined temperature in the warm-up state, and the operating element (32) is the valve when the engine temperature exceeds the predetermined temperature. Occupy a rest position So as to allow the door, valve operating system for an internal combustion engine according to claim 1, characterized in that to control the hydraulic pressure of the hydraulic fluid.
JP2006244085A 2006-09-08 2006-09-08 Valve operating apparatus for an internal combustion engine having a valve deactivation mechanism Expired - Fee Related JP4601591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244085A JP4601591B2 (en) 2006-09-08 2006-09-08 Valve operating apparatus for an internal combustion engine having a valve deactivation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244085A JP4601591B2 (en) 2006-09-08 2006-09-08 Valve operating apparatus for an internal combustion engine having a valve deactivation mechanism

Publications (2)

Publication Number Publication Date
JP2008064050A JP2008064050A (en) 2008-03-21
JP4601591B2 true JP4601591B2 (en) 2010-12-22

Family

ID=39286970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244085A Expired - Fee Related JP4601591B2 (en) 2006-09-08 2006-09-08 Valve operating apparatus for an internal combustion engine having a valve deactivation mechanism

Country Status (1)

Country Link
JP (1) JP4601591B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134504U (en) * 1985-02-08 1986-08-22
JPH11141364A (en) * 1997-11-10 1999-05-25 Toyota Motor Corp Drive device for vehicle
JP2003027908A (en) * 2001-07-16 2003-01-29 Honda Motor Co Ltd Valve resting mechanism of four-stroke internal combustion engine
JP2006077587A (en) * 2004-09-07 2006-03-23 Honda Motor Co Ltd Cylinder deactivation internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134504U (en) * 1985-02-08 1986-08-22
JPH11141364A (en) * 1997-11-10 1999-05-25 Toyota Motor Corp Drive device for vehicle
JP2003027908A (en) * 2001-07-16 2003-01-29 Honda Motor Co Ltd Valve resting mechanism of four-stroke internal combustion engine
JP2006077587A (en) * 2004-09-07 2006-03-23 Honda Motor Co Ltd Cylinder deactivation internal combustion engine

Also Published As

Publication number Publication date
JP2008064050A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP3358887B2 (en) Cylinder number control internal combustion engine
KR100701878B1 (en) Valve drive apparatus of internal-combustion engine
US8061311B2 (en) Variable valve actuating apparatus for internal combustion engine
JP4896817B2 (en) Variable valve operating device for internal combustion engine
US8113157B2 (en) Variable valve control apparatus
US9068483B2 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
US20090159027A1 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
US8051814B2 (en) Engine
CA2298986A1 (en) A decompression device of a four-stroke cycle internal combustion engine
JP4626994B2 (en) Internal combustion engine
JP4327050B2 (en) Cylinder deactivation internal combustion engine
US6131541A (en) Variable valve performance mechanism in internal combustion engine
JP4104518B2 (en) Variable cylinder internal combustion engine
JP4601591B2 (en) Valve operating apparatus for an internal combustion engine having a valve deactivation mechanism
JP5071234B2 (en) Variable valve operating device for internal combustion engine
JP4608468B2 (en) Variable valve operating device for internal combustion engine
JP4201617B2 (en) Internal combustion engine
JP2007162607A (en) Internal combustion engine
JP5474699B2 (en) Internal combustion engine having a variable valve mechanism
JP4502980B2 (en) Variable valve operating device for internal combustion engine
JP2009103040A (en) Variable valve gear for internal combustion engine
JP2010127256A (en) Auxiliary arrangement structure for cylinder deactivation type multi-cylinder internal combustion engine
JPH0598994A (en) Dual-fuel engine
JP4555802B2 (en) Variable valve operating device for internal combustion engine
JP2011214500A (en) Internal combustion engine equipped with variable valve train

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees