JP4599868B2 - Hydrogenation catalyst and method for producing the same - Google Patents

Hydrogenation catalyst and method for producing the same Download PDF

Info

Publication number
JP4599868B2
JP4599868B2 JP2004101073A JP2004101073A JP4599868B2 JP 4599868 B2 JP4599868 B2 JP 4599868B2 JP 2004101073 A JP2004101073 A JP 2004101073A JP 2004101073 A JP2004101073 A JP 2004101073A JP 4599868 B2 JP4599868 B2 JP 4599868B2
Authority
JP
Japan
Prior art keywords
catalyst
active component
catalytically active
carrier
catalyst carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004101073A
Other languages
Japanese (ja)
Other versions
JP2005279587A (en
Inventor
宏樹 日石
朋彦 井上
和成 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004101073A priority Critical patent/JP4599868B2/en
Publication of JP2005279587A publication Critical patent/JP2005279587A/en
Application granted granted Critical
Publication of JP4599868B2 publication Critical patent/JP4599868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、水添触媒およびその製造方法に関する。詳しくは、アルデヒドを水素添加して対応するアルコールを製造する反応に用いる水添触媒およびその製造方法に関する。   The present invention relates to a hydrogenation catalyst and a method for producing the same. Specifically, the present invention relates to a hydrogenation catalyst used in a reaction for producing a corresponding alcohol by hydrogenating an aldehyde and a production method thereof.

従来アルデヒドの水添触媒としては、ニッケルを主な触媒成分とするものが工業的に使用されている。その代表的なものの一つは特許文献1に記載されているようなニッケルおよびクロムを触媒成分とするものである。
特公昭57−16858号公報
Conventionally, as a hydrogenation catalyst for aldehydes, those having nickel as a main catalyst component have been industrially used. One of the typical ones uses nickel and chromium as described in Patent Document 1 as catalyst components.
Japanese Patent Publication No.57-16858

しかしながら、触媒は同じ方法で製造しても、製造ロットによって得られる触媒の選択率は相当に変化する。一方、選択率の測定は、長時間の反応を実際に行う必要があり、時間がかかるという問題がある。そこで、選択率が高い触媒を安定して製造する方法の開発が望まれている。   However, even if the catalyst is produced by the same method, the selectivity of the catalyst obtained by the production lot varies considerably. On the other hand, the measurement of selectivity has a problem that it takes time to actually perform a long-time reaction. Therefore, development of a method for stably producing a catalyst with high selectivity is desired.

アルデヒド水添触媒は、通常、触媒担体を触媒活性成分を含有する溶液に含浸することによって製造されている。従来、触媒担体を溶液でスラリー状にして含浸する場合には、溶液と触媒担体とを十分に攪拌したり、触媒担体をカラムに詰め溶液を流通させて含浸する場合には溶液の流通速度を早くしたりして、触媒担体と溶液との混合性を良好にすることにより、触媒担体と触媒活性成分との接触する確率が高くなり、より多くの触媒活性成分が触媒担体に担持され、良好な触媒が得られると考えられていた。   Aldehyde hydrogenation catalysts are usually produced by impregnating a catalyst carrier with a solution containing a catalytically active component. Conventionally, when a catalyst carrier is impregnated in a slurry with a solution, the solution and the catalyst carrier are sufficiently agitated, or when the catalyst carrier is packed in a column and the solution is circulated, the solution flow rate is increased. By improving the mixing speed between the catalyst carrier and the solution, the probability of contact between the catalyst carrier and the catalytically active component is increased, and more catalytically active components are supported on the catalyst carrier. It was thought that a good catalyst could be obtained.

ところが、本発明者らが上記課題について鋭意検討した結果、溶液と触媒担体との混合性を低くして得られる、触媒活性成分が表面から中心部に向かってなだらかな濃度勾配をもって担持されている触媒は、選択率が高いことを見出し本発明に到達した。   However, as a result of intensive studies on the above problems by the present inventors, a catalytically active component obtained by reducing the mixing property between the solution and the catalyst carrier is supported with a gentle concentration gradient from the surface toward the center. The catalyst has been found to have high selectivity and has reached the present invention.

すなわち、本発明の要旨は、触媒担体を充填したカラムに、触媒活性成分を含有する溶液を流通して、触媒担体に活性成分を担持するアルデヒドの水添触媒の製造方法において、溶液の線速を3.0m/hr以下とすることを特徴とするアルデヒド水添触媒の製造方法、および、アルデヒドを水素添加してアルコールを製造するための触媒であって、活性成分としてニッケル、銅、白金、コバルト、パラジウムから選ばれる金属を含有し、X線マイクロアナライザー(EPMA)で触媒の断面を測定した場合の、活性成分の含有量のチャートにおいて、触媒粒子の表面と中心部分の中間点のおけるピーク強度が触媒粒子の中心部分におけるピーク強度よりも大きいことを特徴とする水添触媒に存する。   That is, the gist of the present invention is to provide a linear velocity of a solution in a method for producing an aldehyde hydrogenation catalyst in which a solution containing a catalytically active component is passed through a column packed with a catalyst carrier to carry the active component on the catalyst carrier. 3.0 m / hr or less, a method for producing an aldehyde hydrogenation catalyst, and a catalyst for producing an alcohol by hydrogenating an aldehyde, wherein the active component is nickel, copper, platinum, The peak at the midpoint between the surface of the catalyst particle and the central part in the active ingredient content chart when the cross section of the catalyst is measured with an X-ray microanalyzer (EPMA) containing a metal selected from cobalt and palladium. It exists in the hydrogenation catalyst characterized by the intensity | strength being larger than the peak intensity in the center part of a catalyst particle.

本発明によれば、アルコール選択率の高い水添触媒およびアルコール選択率の高い水添触媒の製法を提供することができ、工業的に極めて有利である。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a hydrogenation catalyst with high alcohol selectivity and a hydrogenation catalyst with high alcohol selectivity can be provided, and it is industrially very advantageous.

以下に本発明について詳細に説明する。
本発明に係る水添触媒は、触媒活性成分として、ニッケル、銅、白金、コバルト、パラジウムから選ばれる金属を含有するものであり、なかでも触媒活性成分としてニッケルを含むものが好ましい。
The present invention is described in detail below.
The hydrogenation catalyst according to the present invention contains a metal selected from nickel, copper, platinum, cobalt, and palladium as a catalytic active component, and among them, a catalyst containing nickel as the catalytic active component is preferable.

触媒活性成分を含有する溶液としては、ニッケル、銅、白金、コバルト、パラジウムから選ばれる金属の水溶性化合物を、金属として通常100〜200g/Lの濃度で含有する水溶液が用いられる。触媒活性成分がニッケルの場合は、水溶性化合物としては、硝酸ニッケル、硫酸ニッケル、硝酸ニッケルなどが挙げられる。
触媒担体としては、珪藻土、アルミナ、シリカゲル、シリカアルミナ、活性炭などが挙げられる。触媒担体は表面積が大きいものが活性の点から好ましく、通常1m2/g以上
程度である。また、触媒担体は、直径1〜10mmφ、長さ1〜20mmに成形されたものが好ましく用いられる。
As the solution containing the catalytically active component, an aqueous solution containing a metal water-soluble compound selected from nickel, copper, platinum, cobalt and palladium as a metal at a concentration of usually 100 to 200 g / L is used. When the catalytically active component is nickel, examples of the water-soluble compound include nickel nitrate, nickel sulfate, and nickel nitrate.
Examples of the catalyst carrier include diatomaceous earth, alumina, silica gel, silica alumina, activated carbon and the like. A catalyst carrier having a large surface area is preferable from the viewpoint of activity, and is usually about 1 m 2 / g or more. Moreover, the catalyst carrier is preferably used having a diameter of 1 to 10 mmφ and a length of 1 to 20 mm.

本発明に係る水添触媒は、触媒担体に触媒活性成分を含有する溶液を含浸させた後、乾燥、焼成することにより得ることができる。
触媒担体に触媒活性成分を含有する溶液を含浸させる方法は特に限定されないが、触媒担体をつめたカラムに触媒活性成分を含有する溶液を流通させる方法、触媒活性成分を含有する溶液に触媒担体を入れて攪拌混合する方法などが挙げられる。本発明の方法においては、このときの溶液の液線速を3.0m/hr以下、特には2.5m/hr以下にすることを特徴とする。液線速の求め方は、カラムにつめた触媒担体に溶液を流通させて含浸させる方法では、カラムの断面積をSm2、溶液の流通速度をQm3/hrとした時にQ/Sで求められる。
The hydrogenation catalyst according to the present invention can be obtained by impregnating a catalyst carrier with a solution containing a catalytically active component, followed by drying and firing.
The method of impregnating the catalyst carrier with the solution containing the catalytically active component is not particularly limited, but the method of circulating the solution containing the catalytically active component through the column packed with the catalyst carrier, the catalyst carrier containing the catalyst carrier in the solution containing the catalytically active component. And a method of stirring and mixing. The method of the present invention is characterized in that the liquid linear velocity of the solution at this time is 3.0 m / hr or less, particularly 2.5 m / hr or less. The liquid linear velocity can be obtained by Q / S when the cross-sectional area of the column is Sm 2 and the flow rate of the solution is Qm 3 / hr in the method in which the solution is passed through the catalyst support packed in the column and impregnated. It is done.

本発明により選択率が高まる理由は明らかではないが、液線速を遅くすると触媒活性成分は触媒担体表面近傍のみならず、中心部にまで順次浸透し、表面から中心部に向けてなだらかな濃度勾配をもって担持される。一方、触媒担体内部は触媒担体表面に比べて水素の供給が乏しいため、触媒担体内部では高沸物等の副生物を生成する反応が起こりやすくなる。本発明の方法により得られる触媒では、副反応を起こす触媒担体内部の触媒活性成分が少ないため、選択率が向上したものと推察される。しかしながら、触媒活性成分を表面のみに担持した場合、多孔質である担体の特長を十分に生かすことができず、低活性の触媒しか得られない。以上のことから、表面に比べて水素の供給が乏しくなる触媒中心部に向かって徐々に触媒活性成分濃度を下げていくことがで、多孔質担体の特長を生かした高活性かつ高選択性の触媒を得ることができるもの推察される。   The reason why the selectivity is increased by the present invention is not clear, but when the liquid linear velocity is decreased, the catalytically active component penetrates not only in the vicinity of the surface of the catalyst carrier but also in the center, and the concentration from the surface toward the center is gentle. Carried with a gradient. On the other hand, since the supply of hydrogen is poor in the catalyst carrier compared to the surface of the catalyst carrier, a reaction that generates by-products such as high boiling matters easily occurs in the catalyst carrier. In the catalyst obtained by the method of the present invention, it is presumed that the selectivity is improved because there are few catalytically active components inside the catalyst carrier that cause side reactions. However, when the catalytically active component is supported only on the surface, the characteristics of the porous carrier cannot be fully utilized, and only a low activity catalyst can be obtained. From the above, it is possible to gradually reduce the concentration of the catalytically active component toward the center of the catalyst where the supply of hydrogen is scarce compared to the surface. It is inferred that a catalyst can be obtained.

担体の触媒活性成分を含有する溶液への浸漬時間は、液線速、溶液の濃度にもよるが、通常、0.5〜24時間である。浸漬温度は、通常5〜100℃で行う。
触媒活性成分を含有する溶液を含浸させた触媒担体は、通常30〜100℃で1〜24時間乾燥され、次いで、通常250〜400℃で1〜10時間焼成を行う。このようにして得られる触媒は、ニッケル、銅、白金、コバルト、パラジウムから選ばれる金属、なかでもニッケルを10〜20重量%含有する。
The immersion time of the support in the solution containing the catalytically active component is usually 0.5 to 24 hours, although it depends on the liquid linear velocity and the concentration of the solution. The immersion temperature is usually 5 to 100 ° C.
The catalyst carrier impregnated with the solution containing the catalytically active component is usually dried at 30 to 100 ° C. for 1 to 24 hours, and then usually calcined at 250 to 400 ° C. for 1 to 10 hours. The catalyst thus obtained contains 10 to 20% by weight of a metal selected from nickel, copper, platinum, cobalt and palladium, especially nickel.

得られた水添触媒は、通常、水素気流下、通常250〜450℃で5〜40時間還元を行い、触媒活性が付与される。このような還元された触媒は不安定であるため、通常、酸素濃度が0.05〜21容量%の窒素流通下、30〜150℃で1〜24時間加熱し、酸化安定化体とするか、アルコール等の不活性な液体雰囲気で保管する。   The obtained hydrogenation catalyst is usually reduced at 250 to 450 ° C. for 5 to 40 hours under a hydrogen stream to impart catalytic activity. Since such a reduced catalyst is unstable, it is usually heated at 30 to 150 ° C. for 1 to 24 hours under a nitrogen flow of 0.05 to 21% by volume to obtain an oxidized stabilizer. Store in an inert liquid atmosphere such as alcohol.

このようにして得られる触媒は、X線マイクロアナライザー(EPMA)で、触媒成形体の断面を測定した場合の、触媒活性成分の含有量のチャートにおいて、触媒粒子の表面と中心部分の中間点のおけるピーク強度が触媒粒子の中心部分におけるピーク強度よりも大きく、触媒活性成分が触媒担体の表面から中心部にむけてなだらかな濃度勾配をもって存在している。触媒粒子の表面と中心部分の中間点のおけるピーク強度が触媒粒子の中心部分におけるピーク強度の1.1倍以上、特に1.2倍以上であることが好ましい。なお、チャートが細かな凹凸をもつ場合には、各ピークの頂点を結ぶ接線を引き、この接線を
用いてピーク強度の比を求める。
The catalyst thus obtained is an intermediate point between the surface of the catalyst particle and the central portion in the chart of the content of the catalyst active component when the cross section of the catalyst molded body is measured with an X-ray microanalyzer (EPMA). The peak intensity in the catalyst particles is larger than the peak intensity in the central portion of the catalyst particles, and the catalytically active component is present with a gentle concentration gradient from the surface of the catalyst carrier to the central portion. The peak intensity at the midpoint between the surface of the catalyst particles and the central part is preferably 1.1 times or more, particularly 1.2 times or more than the peak intensity in the central part of the catalyst particles. If the chart has fine irregularities, a tangent line connecting the vertices of each peak is drawn, and the ratio of peak intensities is obtained using this tangent line.

X線マイクロアナライザーで触媒活性成分の含有量を測定するための試料は、常法に従えばよいが、まず、触媒活物質を担持した触媒担体の成形体を切断した後、エポキシ樹脂で包埋し、切断面を平滑になるまで研磨し、プラチナを蒸着して作製する。
本発明に係る水添触媒は、安全のため活性成分が酸化物の状態で取り扱われるのが普通である。その場合は、通常、水素気流下、120〜200℃で1〜5時間加熱することにより還元して触媒として反応に用いられる。
The sample for measuring the content of the catalytically active component with an X-ray microanalyzer may be in accordance with an ordinary method. First, after cutting the molded body of the catalyst carrier carrying the catalytic active material, the sample is embedded with an epoxy resin. Then, the cut surface is polished until smooth, and platinum is vapor-deposited.
In the hydrogenation catalyst according to the present invention, the active component is usually handled in an oxide state for safety. In that case, it reduces by heating normally at 120-200 degreeC under hydrogen stream for 1 to 5 hours, and is used for reaction as a catalyst.

本発明に係る触媒により水添されるアルデヒドは特に限定されず、飽和アルデヒド、不飽和アルデヒドなどの脂肪族アルデヒド、芳香族アルデヒド等が挙げられる。好ましくは炭素数1〜30、特に炭素数1〜20の脂肪族アルデヒドである。このようなアルデヒドの例としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、イソブチルアルデヒド、ノルマルブチルアルデヒド、ノルマルバレルアルデヒド、2−エチル−2ヘキセナール、2−プロピル−2−ヘプテナール、4−メトキシカルボニルシクロヘキサンカルボキシアルデヒド等が挙げられる。   The aldehyde hydrogenated by the catalyst according to the present invention is not particularly limited, and examples thereof include aliphatic aldehydes such as saturated aldehydes and unsaturated aldehydes, and aromatic aldehydes. Preferably it is a C1-C30, especially C1-C20 aliphatic aldehyde. Examples of such aldehydes include formaldehyde, acetaldehyde, propionaldehyde, isobutyraldehyde, normal butyraldehyde, normal valeraldehyde, 2-ethyl-2-hexenal, 2-propyl-2-heptenal, 4-methoxycarbonylcyclohexanecarboxaldehyde, etc. Is mentioned.

以下に本発明の具体的態様を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例によって限定されるものではない。   Specific embodiments of the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

<実施例1>
直径3〜4mmφ、長さ5〜6mmの珪藻土担体880kgを円筒形固定床に充填し、ここに、硝酸ニッケルを金属ニッケルとして170g/L及び重クロム酸アンモニウムを金属クロムとして23g/Lの割合で含有する水溶液を、液線速2.3m/Hr、室温で7時間循環させた後、乾燥、330℃で4時間焼成を行って、触媒を調製した。この触媒を水素気流下370℃で還元し、さらに酸素濃度0.1容量%の窒素流通下、80℃で5時間加熱して酸化安定化体(ニッケル担持量12%、クロム担持量2%)とした。
<Example 1>
A cylindrical fixed bed is filled with 880 kg of a diatomaceous earth carrier having a diameter of 3 to 4 mmφ and a length of 5 to 6 mm. Here, nickel nitrate is used as metallic nickel at 170 g / L and ammonium bichromate is used as metallic chromium at a rate of 23 g / L. The aqueous solution contained was circulated at a liquid linear velocity of 2.3 m / Hr at room temperature for 7 hours, then dried and calcined at 330 ° C. for 4 hours to prepare a catalyst. This catalyst was reduced at 370 ° C. under a hydrogen stream, and further heated at 80 ° C. for 5 hours under a nitrogen flow with an oxygen concentration of 0.1% by volume (a nickel loading amount of 12% and a chromium loading amount of 2%). It was.

得られた触媒の断面のNi濃度分布を、島津社製X線マイクロアナライザー「EPMA8705」を用い、以下の条件で測定した。測定結果を図1に示す。触媒粒子の表面と中心部分の中間点におけるピーク強度は、触媒粒子の中心部分におけるピーク強度の1.3倍であった。
加速電圧:15kV
照射電流:0.130μA
測定時間:40ms/point
測定点数:512×512point(間隔10μm、10μm)
The Ni concentration distribution in the cross section of the obtained catalyst was measured under the following conditions using an X-ray microanalyzer “EPMA8705” manufactured by Shimadzu Corporation. The measurement results are shown in FIG. The peak intensity at the midpoint between the surface of the catalyst particles and the central part was 1.3 times the peak intensity at the central part of the catalyst particles .
Acceleration voltage: 15 kV
Irradiation current: 0.130 μA
Measurement time: 40 ms / point
Number of measurement points: 512 × 512 points (interval 10 μm, 10 μm)

この触媒を水素気流下150℃に加熱することにより還元活性化を行った。内容量1000mlのオートクレーブに得られた還元活性化触媒80g及び、n−ブチルアルデヒドとn−ブタノールの混合液(重量比1:5)600mlを投入し、これに水素ガスを圧入し、反応温度100℃、反応圧力4.9MPaで2時間反応させた。n−ブタノール選択率は98.6%であった。   The catalyst was reduced and activated by heating to 150 ° C. in a hydrogen stream. 80 g of the reduced activation catalyst obtained in an autoclave with an internal volume of 1000 ml and 600 ml of a mixed solution of n-butyraldehyde and n-butanol (weight ratio 1: 5) are charged, hydrogen gas is injected into this, and the reaction temperature is 100 The reaction was carried out at 2 ° C. and a reaction pressure of 4.9 MPa for 2 hours. The n-butanol selectivity was 98.6%.

<実施例2>
直径3〜4mmφ、長さ5〜6mmの珪藻土担体104gを円筒形固定床に充填し、そこに、硝酸ニッケルを金属ニッケルとして170g/L及び重クロム酸アンモニウムを金属クロムとして23g/Lの割合で含有する水溶液450mlを入れ、水溶液の循環は行わずに(液線速0m/hr)、常温で7時間浸漬させた他は、実施例1と同様に行って、触媒の酸化安定化体(ニッケル担持量12%、クロム担持量2%)を調製した。
得られた触媒の断面のNi濃度分布を実施例1と同様の方法で測定した結果を図2に示す。触媒粒子の表面と中心部分の中間点におけるピーク強度は、触媒粒子の中心部分におけるピーク強度の1.2倍であった。
この触媒を実施例1と同様に還元活性化した後、n−ブチルアルデヒドの水添を行った。n−ブタノール選択率は98.3%であった。
<Example 2>
104 g of diatomaceous earth carrier having a diameter of 3 to 4 mmφ and a length of 5 to 6 mm is packed into a cylindrical fixed bed, and there is nickel nitrate as metallic nickel at 170 g / L and ammonium bichromate as metallic chromium at a rate of 23 g / L. The catalyst was stabilized in the same manner as in Example 1 except that 450 ml of the aqueous solution was added and the aqueous solution was not circulated (liquid linear velocity: 0 m / hr) and immersed for 7 hours at room temperature. A loading amount of 12% and a chromium loading amount of 2%) were prepared.
The results of measuring the Ni concentration distribution in the cross section of the obtained catalyst by the same method as in Example 1 are shown in FIG. The peak intensity at the midpoint between the surface of the catalyst particles and the central portion was 1.2 times the peak intensity at the central portion of the catalyst particles .
This catalyst was reduced and activated in the same manner as in Example 1 and then hydrogenated with n-butyraldehyde. The n-butanol selectivity was 98.3%.

<比較例1>
直径3〜4mmφ、長さ5〜6mmの珪藻土担体104gを円筒形固定床に充填し、硝酸ニッケルを金属ニッケルとして170g/L及び重クロム酸アンモニウムを金属クロムとして23g/Lの割合で含有する水溶液を、液線速3.5m/Hr、室温で7時間循環した他は実施例1と同様に行って、触媒の酸化安定化体(ニッケル担持量12%、クロム担持量2%)を調製した。
得られた触媒の断面のNi濃度分布を実施例1と同様の方法で測定した結果を図3に示す。、触媒粒子の表面と中心部分の中間点におけるピーク強度触媒粒子の中心部分におけるピーク強度の1.0倍であった。
この触媒を実施例1と同様に還元活性化した後、n−ブチルアルデヒドの水添を行った。n−ブタノール選択率は96.0%であった。
<Comparative Example 1>
An aqueous solution containing 104 g of diatomaceous earth support having a diameter of 3 to 4 mmφ and a length of 5 to 6 mm packed in a cylindrical fixed bed and containing nickel nitrate as metallic nickel at a rate of 170 g / L and ammonium dichromate as metallic chromium at a rate of 23 g / L. Was performed in the same manner as in Example 1 except that the liquid linear velocity was circulated at room temperature for 7 hours at room temperature to prepare an oxidation stabilized body of the catalyst (nickel loading 12%, chromium loading 2%). .
The result of measuring the Ni concentration distribution in the cross section of the obtained catalyst by the same method as in Example 1 is shown in FIG. The peak intensity at the midpoint between the surface and the central part of the catalyst particles was 1.0 times the peak intensity at the central part of the catalyst particles .
This catalyst was reduced and activated in the same manner as in Example 1 and then hydrogenated with n-butyraldehyde. The n-butanol selectivity was 96.0%.

実施例1の触媒のEPMA測定結果EPMA measurement result of the catalyst of Example 1 実施例2の触媒のEPMA測定結果EPMA measurement result of the catalyst of Example 2 比較例1の触媒のEPMA測定結果EPMA measurement result of the catalyst of Comparative Example 1

Claims (3)

アルデヒドを水素添加してアルコールを製造するための触媒であって、触媒活性成分としてニッケルを10〜20重量%含有し、前記触媒は触媒担体に前記触媒活性成分を担持したものであり、X線マイクロアナライザー(EPMA)で触媒の断面を測定した場合の、触媒活性成分の含有量のチャートにおいて、触媒粒子の表面と中心部分の中間点におけるピーク強度が触媒粒子の中心部分におけるピーク強度の1.1倍以上であることを特徴とする水添触媒。 A catalyst for producing an alcohol by hydrogenating an aldehyde, comprising 10 to 20% by weight of nickel as a catalytically active component, wherein the catalyst carries the catalytically active component on a catalyst carrier, and X-ray In the chart of the content of the catalytic active component when the cross section of the catalyst is measured with a microanalyzer (EPMA), the peak intensity at the midpoint between the surface of the catalyst particles and the central portion is 1. The hydrogenation catalyst characterized by being 1 time or more . 触媒担体を充填したカラムに、触媒活性成分を含有する溶液を線速3.0m/hr以下で流通させて、触媒担体に触媒活性成分を担持させる方法により得られたことを特徴とする請求項1に記載の水添触媒。 The method according to claim 1, wherein the catalyst carrier is loaded on the catalyst carrier by passing a solution containing the catalyst active component at a linear velocity of 3.0 m / hr or less through a column packed with the catalyst carrier. 2. The hydrogenation catalyst according to 1. 触媒活性成分が触媒担体の表面から中心部にむけてなだらかな濃度勾配をもって存在することを特徴とする請求項1又は2に記載の水添触媒。 The hydrogenation catalyst according to claim 1 or 2 , wherein the catalytically active component is present with a gentle concentration gradient from the surface of the catalyst support toward the center.
JP2004101073A 2004-03-30 2004-03-30 Hydrogenation catalyst and method for producing the same Expired - Fee Related JP4599868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101073A JP4599868B2 (en) 2004-03-30 2004-03-30 Hydrogenation catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101073A JP4599868B2 (en) 2004-03-30 2004-03-30 Hydrogenation catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005279587A JP2005279587A (en) 2005-10-13
JP4599868B2 true JP4599868B2 (en) 2010-12-15

Family

ID=35178534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101073A Expired - Fee Related JP4599868B2 (en) 2004-03-30 2004-03-30 Hydrogenation catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4599868B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506123B (en) * 2012-06-29 2015-08-19 中国石油化工股份有限公司 A kind of preparation method of aldehyde liquid phase hydrogenating catalyst
WO2015112672A1 (en) * 2014-01-22 2015-07-30 Lyondell Chemical Technology, L.P. Method of preparing epoxidation catalysts

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678633A (en) * 1979-11-06 1981-06-27 Exxon Research Engineering Co Manufacture of novel nonferrous viii group metallaluminum coprecipitating hydrogenating catalyst and its use
JPH021416A (en) * 1988-02-05 1990-01-05 Huels Ag Preparation of 2-ethylhexanol by hydrogenating 2-ethylhexenal in liquid phase, and catalyst used therein
JPH02153991A (en) * 1988-08-25 1990-06-13 Uop Inc Manufacture of hydrocarbon white oil through hydrogenation
JPH05253482A (en) * 1986-11-03 1993-10-05 Union Carbide Corp Precursor of aldehyde hydrogenation catalyst
JPH1015388A (en) * 1996-06-28 1998-01-20 Mitsubishi Chem Corp Catalyst for hydrogenation reaction, its manufacture, and hydrogenation reaction using the catalyst
WO1998026867A1 (en) * 1996-12-16 1998-06-25 Asahi Kasei Kogyo Kabushiki Kaisha Noble metal support
JPH1190223A (en) * 1997-05-19 1999-04-06 Sud Chem Mt Srl Hydrogenation catalyst
JP2001096157A (en) * 1999-07-29 2001-04-10 Samsung General Chem Co Ltd Catalyst for purification of terephthalic acid, its production, and method for purification of terephthalic acid
JP2002521184A (en) * 1998-07-23 2002-07-16 バーゼル、ポリプロピレン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Method for producing a metal-containing supported catalyst or supported catalyst component by impregnation of a support material
WO2005092494A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678633A (en) * 1979-11-06 1981-06-27 Exxon Research Engineering Co Manufacture of novel nonferrous viii group metallaluminum coprecipitating hydrogenating catalyst and its use
JPH05253482A (en) * 1986-11-03 1993-10-05 Union Carbide Corp Precursor of aldehyde hydrogenation catalyst
JPH021416A (en) * 1988-02-05 1990-01-05 Huels Ag Preparation of 2-ethylhexanol by hydrogenating 2-ethylhexenal in liquid phase, and catalyst used therein
JPH02153991A (en) * 1988-08-25 1990-06-13 Uop Inc Manufacture of hydrocarbon white oil through hydrogenation
JPH1015388A (en) * 1996-06-28 1998-01-20 Mitsubishi Chem Corp Catalyst for hydrogenation reaction, its manufacture, and hydrogenation reaction using the catalyst
WO1998026867A1 (en) * 1996-12-16 1998-06-25 Asahi Kasei Kogyo Kabushiki Kaisha Noble metal support
JPH1190223A (en) * 1997-05-19 1999-04-06 Sud Chem Mt Srl Hydrogenation catalyst
JP2002521184A (en) * 1998-07-23 2002-07-16 バーゼル、ポリプロピレン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Method for producing a metal-containing supported catalyst or supported catalyst component by impregnation of a support material
JP2001096157A (en) * 1999-07-29 2001-04-10 Samsung General Chem Co Ltd Catalyst for purification of terephthalic acid, its production, and method for purification of terephthalic acid
WO2005092494A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst

Also Published As

Publication number Publication date
JP2005279587A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR100549741B1 (en) Method for Hydrogenating Carbonyl Compounds
CA2238253C (en) Polybetaine-stabilized, palladium-containing nanoparticles, a process for preparing them and also catalysts prepared from them for producing vinyl acetate
US4376724A (en) Rhodium catalyst and method for preparing the same
US4835131A (en) Catalyst and process for the preparation of the catalyst
JP2016153389A (en) Hydrogenation of hydroformylated mixture without using chromium
KR102444992B1 (en) Fixed catalyst layer comprising metal foam
EP1358935B1 (en) Zinc modified Pd/Ni catalysts
WO1999008790A8 (en) Shell catalyst, method for its production and use, in particular for gaseous phase oxidation of ethylene and acetic acid into vinyl acetate
JP2009542772A (en) Dehydrogenation of alcohol
JP5543150B2 (en) Selective hydrogenation catalyst for aromatic nitro compounds, process for producing and regenerating the same, and process for selective hydrogenation of aromatic nitrated compounds using the same
JP2020534150A (en) Manufacturing method of catalyst molded product
CN108654635B (en) Supported trimetal catalyst, preparation method thereof and method for catalyzing hydrogenolysis reaction of glycerol
KR100839292B1 (en) Method for Hydrogenating Carbonyl Compounds
US4786743A (en) Silver catalyst and a process for preparing same
CN111359655A (en) High-carbon olefin hydroformylation heterogeneous Co-based catalyst
JP4599868B2 (en) Hydrogenation catalyst and method for producing the same
JP4381071B2 (en) Method for producing exhaust gas treatment catalyst
JP2017047377A (en) Solid catalyst, and production method of aldehydes
EP0794006A1 (en) Metal-metal oxide catalyst and method for production thereof by mechanical alloying treatment
CN111905731B (en) Method for activating silver catalyst
CN110721707A (en) Low-temperature deoxidation catalyst for synthesis gas and preparation and application thereof
CN115739080A (en) Preparation of Pt-based catalyst and application of Pt-based catalyst in preparation of chloroaniline by selective hydrogenation of chloronitrobenzene
CN112547070B (en) Catalyst for preparing chlorotrifluoroethylene and preparation method thereof
JP2005118676A (en) Hydrogenation catalyst
CN111437816B (en) Supported silver catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4599868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees