JP2005118676A - Hydrogenation catalyst - Google Patents

Hydrogenation catalyst Download PDF

Info

Publication number
JP2005118676A
JP2005118676A JP2003356814A JP2003356814A JP2005118676A JP 2005118676 A JP2005118676 A JP 2005118676A JP 2003356814 A JP2003356814 A JP 2003356814A JP 2003356814 A JP2003356814 A JP 2003356814A JP 2005118676 A JP2005118676 A JP 2005118676A
Authority
JP
Japan
Prior art keywords
catalyst
peak
hydrogen
hydrogenation catalyst
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003356814A
Other languages
Japanese (ja)
Inventor
Hiroki Nitsuseki
宏樹 日石
Tomohiko Inoue
朋彦 井上
Kazunari Takahashi
和成 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003356814A priority Critical patent/JP2005118676A/en
Publication of JP2005118676A publication Critical patent/JP2005118676A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily sorting a hydrogenation catalyst having high alcohol selectivity. <P>SOLUTION: This hydrogenation catalyst is used for producing alcohol by hydrogenating aldehyde and contains nickel as an active component. The intensity ratio of the peak of the amount of the water to be generated near 340°C to the peak of the amount of the water to be generated near 500°C is ≥0.8 when a catalyst-oxidized/stabilized body is heated and reduced thermally in the presence of hydrogen to generate water and the amount of the water to be generated is measured and charted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は水素添加触媒に関する。詳しくはアルデヒド類を水素添加して、対応するアルコールを製造する反応に用いる水素添加触媒に関する。   The present invention relates to a hydrogenation catalyst. More specifically, the present invention relates to a hydrogenation catalyst used in a reaction in which an aldehyde is hydrogenated to produce a corresponding alcohol.

従来、アルデヒドの水素添加用触媒としては、ニッケル等を主な成分とするものが工業的に使用されている。その代表的なものの一つは、特許文献1に記載されているようなニッケル及びクロムを活性成分とするものである。
特公昭57−16858号公報
Conventionally, as a catalyst for hydrogenation of aldehydes, those containing nickel or the like as a main component have been industrially used. One of the typical ones has nickel and chromium as active components as described in Patent Document 1.
Japanese Patent Publication No.57-16858

しかしながら、触媒は同じ方法で製造しても、製造ロットによって得られる触媒の選択率は相当に変化する。一方、選択率の測定は、長時間の反応を実際に行う必要があり、時間がかかるという問題がある。そこで選択率が高い触媒を簡単に選別する方法の開発が望まれている。   However, even if the catalyst is produced by the same method, the selectivity of the catalyst obtained by the production lot varies considerably. On the other hand, the measurement of selectivity has a problem that it takes time to actually perform a long-time reaction. Therefore, development of a method for easily selecting a catalyst having a high selectivity is desired.

本発明者らは、上記の問題点について鋭意検討した結果、活性成分としてニッケルを含有する水素添加触媒は、その酸化安定化体を水素昇温熱還元(水素TPR)した場合の発生水量を測定すると、触媒によって温度に対する水の発生量が異なり、500℃付近における水の最大発生量に対する、340℃付近における水の最大発生量の強度比、すなわち温度に対して水の発生量をプロットしたチャートにおいて500℃付近のピークに対する340℃付近のピークの比が大きいものは、アルコールの選択率が高いことを見出し、本発明に到達した。   As a result of intensive studies on the above problems, the inventors of the present invention measured the amount of water generated when a hydrogenation catalyst containing nickel as an active component was subjected to hydrogen temperature-enhanced thermal reduction (hydrogen TPR). In the chart in which the amount of water generated with respect to temperature differs depending on the catalyst, the intensity ratio of the maximum amount of water generated near 340 ° C. to the maximum amount of water generated near 500 ° C., that is, a chart plotting the amount of water generated against temperature Those having a large ratio of the peak near 340 ° C. to the peak near 500 ° C. found that the alcohol selectivity was high, and reached the present invention.

本発明によれば、アルコール選択性の高い水素添加触媒を容易に選別することができ、工業的に極めて有利である。   According to the present invention, a hydrogenation catalyst having high alcohol selectivity can be easily selected, which is extremely advantageous industrially.

以下に本発明について詳細に説明する。
本発明に係る水素添加触媒は、触媒活性成分としてニッケルを含有するものであればよい。
本発明に係る水素添加触媒は常法により製造すればよく、例えば、触媒担体にニッケル溶液を含浸させ、乾燥、焼成を行う方法が挙げられる。
The present invention is described in detail below.
The hydrogenation catalyst according to the present invention only needs to contain nickel as a catalytically active component.
What is necessary is just to manufacture the hydrogenation catalyst which concerns on this invention by a conventional method, For example, the method of making a catalyst support impregnate a nickel solution, and drying and baking is mentioned.

触媒担体としては、珪藻土、アルミナ、シリカゲル、シリカアルミナ、活性炭などが挙げられる。
ニッケル溶液は、硝酸ニッケル、硫酸ニッケル、酢酸ニッケルなどの水溶性ニッケル化合物をニッケルとして通常100〜200g/Lの濃度で含有する水溶液が用いられる。ニッケル溶液に他の活性成分を溶解させておくことにより、ニッケルと他の金属とを含有する触媒を得ることができる。このようなニッケルと併用される金属の代表的なものは、クロム、ナトリウム、マグネシウムなどである。ニッケルに対するこれと併用する金属の重量比は通常1:0.01〜1:0.3の範囲である。
Examples of the catalyst carrier include diatomaceous earth, alumina, silica gel, silica alumina, activated carbon and the like.
As the nickel solution, an aqueous solution containing a water-soluble nickel compound such as nickel nitrate, nickel sulfate, or nickel acetate as nickel in a concentration of usually 100 to 200 g / L is used. A catalyst containing nickel and another metal can be obtained by dissolving other active components in the nickel solution. Typical metals used in combination with nickel are chromium, sodium, magnesium and the like. The weight ratio of the metal used in combination with nickel is usually in the range of 1: 0.01 to 1: 0.3.

ニッケル溶液を含浸させた触媒担体は、通常30〜100℃で1〜24時間乾燥され、次いで、通常250〜400℃で1〜10時間焼成を行う。このようにして得られる水素添加触媒は、通常ニッケルを10〜20重量%、他の金属を0.1〜5重量%含有する。
得られた水素添加触媒は、通常、水素気流下、通常250〜450℃で5〜40時間還元を行い、触媒活性が付与される。このような還元された触媒は不安定であるため、通常、酸素濃度が0.05〜21容量%の窒素流通下、30〜150℃で1〜24時間加熱し、酸化安定化体とする。
The catalyst carrier impregnated with the nickel solution is usually dried at 30 to 100 ° C. for 1 to 24 hours, and then calcined at 250 to 400 ° C. for 1 to 10 hours. The hydrogenation catalyst thus obtained usually contains 10 to 20% by weight of nickel and 0.1 to 5% by weight of other metals.
The obtained hydrogenation catalyst is usually reduced at 250 to 450 ° C. for 5 to 40 hours under a hydrogen stream to impart catalytic activity. Since such a reduced catalyst is unstable, it is usually heated at 30 to 150 ° C. for 1 to 24 hours under a nitrogen stream having an oxygen concentration of 0.05 to 21% by volume to obtain an oxidized stabilizer.

本発明にかかる水素添加触媒は、このような酸素安定化体を水素昇温熱還元(水素TPR)した場合の発生水量のチャートにおいて、500℃付近のピークに対する340℃付近のピークの強度比が0.8以上であることを特徴とする。この強度比は0.9以上、特に1.0以上であることが好ましい。なお、本明細書において、ピーク温度について「付近」とは、添付図に示すようにほぼ±20℃の範囲を意味する。   In the hydrogenation catalyst according to the present invention, the intensity ratio of the peak around 340 ° C. with respect to the peak around 500 ° C. is 0 in the chart of the amount of generated water when such an oxygen stabilizer is subjected to hydrogen temperature-enhanced thermal reduction (hydrogen TPR). .8 or more. This strength ratio is preferably 0.9 or more, particularly 1.0 or more. In the present specification, “near” the peak temperature means a range of approximately ± 20 ° C. as shown in the attached drawings.

500℃付近のピークと340℃付近のピークの強度比が上記の範囲であると好ましい理由は明らかではないが、触媒中においてニッケルは種々の形態で存在しており、この形態の違いにより、これを酸化安定化体としたものの水素昇温熱還元の進行が異なり、また、触媒の酸塩基性度に相違が生じ、その結果、選択性に優劣が発現するものと推察される。   The reason why the intensity ratio of the peak around 500 ° C. and the peak around 340 ° C. is preferably in the above range is not clear, but nickel exists in various forms in the catalyst. It is inferred that the oxidation-stabilized product of hydrogen is different in the progress of hydrogen temperature rising thermal reduction, and the acid basicity of the catalyst is different, resulting in superiority and inferiority in selectivity.

水素TPRの測定法は、水素添加触媒の酸化安定化体0.1gを直径25mmの反応管に収容し、ヘリウムガスを50ml/分で流通させながら、昇温速度20℃/分で500℃まで加熱し、室温まで冷却することにより付着水分を蒸発させる。その後、水素10%、ヘリウム90%の混合ガスを50ml/分で流通させながら、昇温速度10℃/分で500℃まで加熱する。このように水素存在下で酸化安定化体の触媒を加熱することにより、触媒中のニッケル酸化物を構成する酸素が水素と反応して水が発生する。本発明においてはこの発生水分量を質量分析計により測定する。質量分析の条件は、測定する質量範囲m/z=2〜100、検出器の感度SEM=1700V、イオン化電圧EE=70V、積算回数Ave=8である。   The hydrogen TPR measurement method is as follows: 0.1 g of an oxidized stabilizer of a hydrogenation catalyst is contained in a reaction tube having a diameter of 25 mm, and helium gas is circulated at 50 ml / min. Heating and cooling to room temperature evaporate the adhering moisture. Thereafter, the mixture is heated to 500 ° C. at a temperature rising rate of 10 ° C./min while flowing a mixed gas of 10% hydrogen and 90% helium at 50 ml / min. In this way, by heating the oxidation stabilizer catalyst in the presence of hydrogen, oxygen constituting the nickel oxide in the catalyst reacts with hydrogen to generate water. In the present invention, the amount of generated water is measured by a mass spectrometer. The conditions of mass spectrometry are a mass range to be measured m / z = 2 to 100, a detector sensitivity SEM = 1700 V, an ionization voltage EE = 70 V, and an integration count Ave = 8.

活性成分としてニッケルを含有する水素添加触媒は、安全のためニッケルが酸化物の状態で取り扱われるのが普通である。そのため、通常、水素気流下、120〜200℃で1〜5時間加熱することにより還元して触媒として反応に用いられる。
本発明に係る触媒により水素添加されるアルデヒドは特に限定されず、飽和アルデヒド、不飽和アルデヒドなどの脂肪族アルデヒド、芳香族アルデヒド等が挙げられる。好ましくは、炭素数1〜30、特に炭素数1〜20の脂肪族アルデヒドである。このようなアルデヒドの例としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、イソブチルアルデヒド、ノルマルブチルアルデヒド、ノルマルバレルアルデヒド、2−エチル−2−ヘキセナール、2−プロピル−2−ヘプテナール等が挙げられる。
For safety, a hydrogenation catalyst containing nickel as an active component is usually handled in an oxide state for safety. Therefore, it is usually reduced by heating at 120 to 200 ° C. for 1 to 5 hours under a hydrogen stream and used as a catalyst for the reaction.
The aldehyde hydrogenated by the catalyst according to the present invention is not particularly limited, and examples thereof include aliphatic aldehydes such as saturated aldehydes and unsaturated aldehydes, and aromatic aldehydes. Preferably, it is an aliphatic aldehyde having 1 to 30 carbon atoms, particularly 1 to 20 carbon atoms. Examples of such aldehydes include formaldehyde, acetaldehyde, propionaldehyde, isobutyraldehyde, normal butyraldehyde, normal valeraldehyde, 2-ethyl-2-hexenal, 2-propyl-2-heptenal and the like.

以下に本発明の具体的態様を実施例により更に具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例によって限定されるものではない。
<実施例1>
珪藻土(直径3〜4mm、高さ6〜7mmの円筒形、重さ880kg)を、硝酸ニッケル170g/L及び重クロム酸アンモニウム17g/Lの割合で含有する水溶液に浸漬した後、乾燥した。これをGHSV500〜800Hr-1の空気流通下、室温から15℃/Hrの昇温速度で330℃まで昇温し、330℃で4時間焼成を行い、触媒(ニッケル担持量12重量%、クロム担持量2重量%)を調製した。
Specific embodiments of the present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
<Example 1>
Diatomaceous earth (a cylindrical shape having a diameter of 3 to 4 mm and a height of 6 to 7 mm, and a weight of 880 kg) was dipped in an aqueous solution containing nickel nitrate 170 g / L and ammonium dichromate 17 g / L and then dried. This was heated from room temperature to 330 ° C. at a rate of 15 ° C./Hr under an air flow of GHSV 500 to 800 Hr −1 , and calcined at 330 ° C. for 4 hours. 2% by weight) was prepared.

次に、この触媒を水素気流下370℃で還元し、さらに酸素濃度が0.1容量%の窒素流通下80℃で5時間加熱して酸化安定化体とした。
この酸化安定化体約0.1gを白金皿に採取し、これを直径25mmの反応管に入れ、前処理としてヘリウムガスを50ml/分流通下、20℃/分の昇温速度で室温から500℃まで昇温した後、室温まで冷却した。その後、水素10%、ヘリウム90%の混合ガスを50ml/分流通下、10℃/分の昇温速度で500℃まで昇温し、10分間保持した。この間に発生した水分量を質量分析器で測定した。
Next, this catalyst was reduced at 370 ° C. under a hydrogen stream, and further heated at 80 ° C. for 5 hours under a nitrogen flow with an oxygen concentration of 0.1% by volume to obtain an oxidized stabilized body.
About 0.1 g of this oxidized stabilized body is collected in a platinum dish, put in a reaction tube having a diameter of 25 mm, and pretreated as helium gas at a temperature rising rate of 20 ° C./min under a flow of 50 ml / min. After raising the temperature to 0 ° C., it was cooled to room temperature. Thereafter, the mixture was heated to 500 ° C. at a heating rate of 10 ° C./min under a flow of 50 ml / min with a mixed gas of 10% hydrogen and 90% helium, and held for 10 minutes. The amount of water generated during this period was measured with a mass spectrometer.

質量分析の条件は次の通り。m/z=2〜100、SEM=1700V、EE=70V、Ave=8。
結果を図1に示す。500℃付近の発生水分強度と340℃付近の発生水分強度の比は1.013であった。
また、上記で得られた水素添加触媒の酸化安定化体を水素ガス流通下、150℃に加熱することにより還元活性化を行った。内容積1000mlのオートクレーブに得られた還元活性化触媒80g及び、n−ブチルアルデヒド及びn−ブタノールの混合液(重量比1:5)600mlを投入し、これに水素ガスを圧入し、反応温度100℃、反応圧力4.9MPaで、2時間反応させた。n−ブタノール選択率は98.6%であった。
The conditions for mass spectrometry are as follows. m / z = 2-100, SEM = 1700V, EE = 70V, Ave = 8.
The results are shown in FIG. The ratio of the generated water strength around 500 ° C. to the generated water strength around 340 ° C. was 1.013.
Further, the oxidation stabilization product of the hydrogenation catalyst obtained above was subjected to reduction activation by heating to 150 ° C. under the flow of hydrogen gas. 80 g of the reduced activation catalyst obtained in an autoclave with an internal volume of 1000 ml and 600 ml of a mixed solution of n-butyraldehyde and n-butanol (weight ratio 1: 5) are charged, hydrogen gas is injected into this, and the reaction temperature is 100 The reaction was carried out at 0 ° C. and a reaction pressure of 4.9 MPa for 2 hours. The n-butanol selectivity was 98.6%.

<実施例2>
珪藻土(直径3〜4mm、高さ6〜7mmの円筒形、重さ52g)を、硝酸ニッケル170g/L及び重クロム酸アンモニウム17g/Lの割合で含有する水溶液に浸漬した後、乾燥した。これをGHSV500〜800Hr-1の空気流通下、室温から15℃/Hrの昇温速度で330℃まで昇温し、330℃で5時間焼成を行い、触媒(ニッケル担持量12重量%、クロム担持量2重量%)を調製した。
次に、この触媒100gを水素気流下370℃で還元し、さらに酸素濃度が0.1容量%の窒素流通下80℃で15時間加熱して酸化安定化体とした。
<Example 2>
Diatomaceous earth (a cylindrical shape having a diameter of 3 to 4 mm and a height of 6 to 7 mm, and a weight of 52 g) was dipped in an aqueous solution containing nickel nitrate 170 g / L and ammonium dichromate 17 g / L, and then dried. This was heated from room temperature to 330 ° C. at a rate of 15 ° C./Hr under an air flow of GHSV 500 to 800 Hr −1 , and calcined at 330 ° C. for 5 hours to obtain a catalyst (nickel loading 12 wt%, chromium loading). 2% by weight) was prepared.
Next, 100 g of this catalyst was reduced at 370 ° C. under a hydrogen stream, and further heated at 80 ° C. for 15 hours under a nitrogen flow with an oxygen concentration of 0.1% by volume to obtain an oxidized stabilized body.

実施例1と同様に水素TPR測定を行った。結果を図1に示す。500℃付近の発生水分強度と340℃付近の発生水分強度の比は1.082であった。
また、上記で得られた水素添加触媒の酸化安定化体を水素ガス流通下、150℃に加熱することにより還元活性化を行った。得られた還元活性化触媒を用いた他は実施例1と同様にn−ブチルアルデヒドの水素添加反応を行ったところ、n−ブタノール選択率は98.3%であった。
Hydrogen TPR measurement was performed in the same manner as in Example 1. The results are shown in FIG. The ratio of the generated water intensity around 500 ° C. to the generated water intensity around 340 ° C. was 1.082.
Further, the oxidation stabilization product of the hydrogenation catalyst obtained above was subjected to reduction activation by heating to 150 ° C. under a hydrogen gas flow. A hydrogenation reaction of n-butyraldehyde was carried out in the same manner as in Example 1 except that the obtained reduction activation catalyst was used. The n-butanol selectivity was 98.3%.

<比較例1>
珪藻土(直径3〜4mm、高さ6〜7mmの円筒形、重さ52g)を、硝酸ニッケル170g/L及び重クロム酸アンモニウム17g/Lの割合で含有するの混合水溶液に浸漬した後、乾燥した。これをGHSV50000Hr-1の空気流通下、室温から30℃/Hrの昇温速度で330℃まで昇温し、330℃で4時間焼成を行い、触媒(ニッケル担持量12重量%、クロム担持量2重量%)を調製した。
次に、この触媒100gを水素気流下370℃で還元し、さらに酸素濃度が0.1容量%の窒素流通下80℃で15時間加熱して酸化安定化体を得た。
<Comparative Example 1>
It was dried after being immersed in a mixed aqueous solution of diatomaceous earth (3-4 mm in diameter, 6-7 mm in height, 52 g in weight) containing nickel nitrate 170 g / L and ammonium dichromate 17 g / L. . This was heated from room temperature to 330 ° C. at a rate of temperature increase of 30 ° C./Hr under an air flow of GHSV 50000Hr −1 , and calcined at 330 ° C. for 4 hours to obtain a catalyst (nickel loading 12 wt%, chromium loading 2 % By weight) was prepared.
Next, 100 g of this catalyst was reduced at 370 ° C. under a hydrogen stream, and further heated at 80 ° C. for 15 hours under a nitrogen flow with an oxygen concentration of 0.1% by volume to obtain an oxidized stabilized product.

実施例1と同様に水素TPR測定を行った。結果を図1に示す。500℃付近の発生水分強度と340℃付近の発生水分強度の比は0.716であった。
また、上記で得られた水添触媒の酸化安定化体を水素ガス流通下、150℃に加熱することにより還元活性化を施した。得られた還元活性化触媒を用いた他は実施例1と同様にn−ブチルアルデヒドの水素添加反応を行ったところ、n−ブタノール選択率は98.0%であった。
Hydrogen TPR measurement was performed in the same manner as in Example 1. The results are shown in FIG. The ratio of the generated water strength around 500 ° C. to the generated water strength around 340 ° C. was 0.716.
Further, the hydrogenated catalyst oxidation-stabilized product obtained above was subjected to reduction activation by heating to 150 ° C. under a hydrogen gas flow. When the hydrogenation reaction of n-butyraldehyde was carried out in the same manner as in Example 1 except that the obtained reduction activation catalyst was used, the n-butanol selectivity was 98.0%.

<比較例2>
珪藻土(直径3〜4mm、高さ6〜7mmの円筒形、重さ220g)を、硝酸ニッケル170g/L及び重クロム酸アンモニウム17g/Lの割合で含有する水溶液に浸漬した後、乾燥した。これをGHSV50000Hr-1の空気流通下、室温から15℃/Hrの昇温速度で330℃まで昇温し、330℃で4時間焼成を行い、触媒(ニッケル担持量重量12%、クロム担持量2重量%)を調製した。
次に、この触媒100gを水素気流下370℃で還元し、さらに酸素濃度が0.1容量%の窒素流通下80℃で15時間加熱して酸化安定化体を得た。
<Comparative example 2>
Diatomaceous earth (a cylindrical shape having a diameter of 3 to 4 mm and a height of 6 to 7 mm, and a weight of 220 g) was immersed in an aqueous solution containing nickel nitrate 170 g / L and ammonium dichromate 17 g / L, and then dried. This was heated from room temperature to 330 ° C. at a temperature increase rate of 15 ° C./Hr under an air flow of GHSV 50000Hr −1 , and calcined at 330 ° C. for 4 hours to obtain a catalyst (nickel loading weight 12%, chromium loading 2 % By weight) was prepared.
Next, 100 g of this catalyst was reduced at 370 ° C. under a hydrogen stream, and further heated at 80 ° C. for 15 hours under a nitrogen flow with an oxygen concentration of 0.1% by volume to obtain an oxidized stabilized product.

実施例1と同様に水素TPR測定を行った。結果を図1に示す。500℃付近の発生水分強度と340℃付近の発生水分強度の比は0.295であった。
また、上記で得られた水素添加触媒の酸化安定化体を水素ガス流通下、150℃に加熱することにより還元活性化を行った。得られた還元活性化触媒を用いた他は実施例1と同様にn−ブチルアルデヒドの水素添加反応を行ったところ、n−ブタノール選択率は96.0%であった。
Hydrogen TPR measurement was performed in the same manner as in Example 1. The results are shown in FIG. The ratio of the generated water strength around 500 ° C. to the generated water strength around 340 ° C. was 0.295.
Further, the oxidation stabilization product of the hydrogenation catalyst obtained above was subjected to reduction activation by heating to 150 ° C. under a hydrogen gas flow. When the hydrogenation reaction of n-butyraldehyde was carried out in the same manner as in Example 1 except that the obtained reduction activation catalyst was used, the n-butanol selectivity was 96.0%.

実施例1〜2、比較例1〜2の水素TPR測定の結果。The result of the hydrogen TPR measurement of Examples 1-2 and Comparative Examples 1-2.

Claims (5)

アルデヒドを水素添加してアルコールを製造するための触媒であって、活性成分としてニッケルを含有し、かつ、触媒の酸化安定化体を水素昇温熱還元測定した場合の発生水量のチャートにおいて、500℃付近におけるピークに対する340℃付近におけるピークの強度比が0.8以上であることを特徴とする水素添加触媒。   A catalyst for producing an alcohol by hydrogenating an aldehyde, which contains nickel as an active ingredient, and in the chart of the amount of water generated when the oxidation stabilization body of the catalyst is measured by hydrogen temperature-programmed thermal reduction, 500 ° C. A hydrogenation catalyst characterized in that an intensity ratio of a peak in the vicinity of 340 ° C. to a peak in the vicinity is 0.8 or more. 500℃付近におけるピークに対する340℃付近におけるピークの強度比が0.9以上であることを特徴とする請求項1に記載の水素添加触媒。   2. The hydrogenation catalyst according to claim 1, wherein an intensity ratio of a peak in the vicinity of 340 ° C. to a peak in the vicinity of 500 ° C. is 0.9 or more. 触媒が更にクロム、ナトリウムおよびマグネシウムからなる群から選ばれる1以上とを含有することを特徴とする請求項1または2に記載のアルデヒドの水添触媒。   The aldehyde hydrogenation catalyst according to claim 1 or 2, wherein the catalyst further contains at least one selected from the group consisting of chromium, sodium and magnesium. 請求項1ないし3のいずれかに記載の触媒の存在下にアルデヒドの水素添加を行うことを特徴とするアルコールの製造方法。   A method for producing an alcohol, comprising hydrogenating an aldehyde in the presence of the catalyst according to any one of claims 1 to 3. アルデヒドを水素添加してアルコールを製造するための活性成分としてニッケルを含有する水素添加触媒の触媒性能の予測方法であって、この触媒の酸化安定体を水素昇温熱還元し、発生する水量のチャートにおいて、500℃付近におけるピークの強度に対する340℃付近におけるピークの強度比を算出し、このピーク強度比に基づいて触媒性能を予測することを特徴とする方法。


A method for predicting the catalytic performance of a hydrogenation catalyst containing nickel as an active ingredient for hydrogenation of an aldehyde to produce an alcohol, wherein the oxidation stabilizer of this catalyst is reduced by heating with hydrogen, and a chart of the amount of water generated In the method, a peak intensity ratio in the vicinity of 340 ° C. with respect to a peak intensity in the vicinity of 500 ° C. is calculated, and the catalyst performance is predicted based on the peak intensity ratio.


JP2003356814A 2003-10-16 2003-10-16 Hydrogenation catalyst Pending JP2005118676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356814A JP2005118676A (en) 2003-10-16 2003-10-16 Hydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356814A JP2005118676A (en) 2003-10-16 2003-10-16 Hydrogenation catalyst

Publications (1)

Publication Number Publication Date
JP2005118676A true JP2005118676A (en) 2005-05-12

Family

ID=34613936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356814A Pending JP2005118676A (en) 2003-10-16 2003-10-16 Hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP2005118676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099961A1 (en) * 2007-02-16 2008-08-21 Kao Corporation Catalyst for alcohol production
US8742177B2 (en) 2011-12-28 2014-06-03 Rohm And Haas Company Catalyst and process to produce branched unsaturated aldehydes
CN113019379A (en) * 2021-03-18 2021-06-25 中国海洋石油集团有限公司 Catalyst for liquid-phase hydrogenation of olefine aldehyde and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099961A1 (en) * 2007-02-16 2008-08-21 Kao Corporation Catalyst for alcohol production
US8329961B2 (en) 2007-02-16 2012-12-11 Kao Corporation Catalyst for producing alcohol
US8742177B2 (en) 2011-12-28 2014-06-03 Rohm And Haas Company Catalyst and process to produce branched unsaturated aldehydes
CN113019379A (en) * 2021-03-18 2021-06-25 中国海洋石油集团有限公司 Catalyst for liquid-phase hydrogenation of olefine aldehyde and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR100798557B1 (en) Method for Catalytic Hydrogenation on Rhenium-Containing Active Carbon Carrier Catalysts
US7459571B2 (en) Catalyst extrudates based on copper oxide and their use for hydrogenating carbonyl compounds
US4376724A (en) Rhodium catalyst and method for preparing the same
KR101324286B1 (en) Calcination in an inert gas in the presence of a small concentration of an oxidizing component
JP5160421B2 (en) Catalyst for oxidizing methacrolein and its production and use
JP2016153389A (en) Hydrogenation of hydroformylated mixture without using chromium
JP4731689B2 (en) High temperature stable catalyst for N2O decomposition
HU223965B1 (en) Process for preparing aliphatic alpha,omega-aminonitriles
JP2009542772A (en) Dehydrogenation of alcohol
EP0003642A2 (en) Production of olefine oxides
JPS62741B2 (en)
JP6480835B2 (en) Solid catalyst, method for producing solid catalyst, and method for producing acetaldehyde
JP6360801B2 (en) Catalyst, method for producing aldehydes and / or alcohols
JP2742091B2 (en) Catalyst compositions, methods for their preparation and methods for hydrogenating chlorofluoroalkenes with these compositions
KR100798548B1 (en) Method for the Production of Alcohols on Rhenium-Containing Activated Charcoal Supported Catalysts
US3886219A (en) Process for preparing saturated alcohols
KR100839292B1 (en) Method for Hydrogenating Carbonyl Compounds
JP2005118676A (en) Hydrogenation catalyst
US3803055A (en) Catalyst for preparing saturated alcohols
JP4599868B2 (en) Hydrogenation catalyst and method for producing the same
EP0057066B1 (en) Process for the production of ethylene oxide
JP7314712B2 (en) Method for producing catalyst for producing allyl acetate
JP6758113B2 (en) Method for producing solid catalysts and aldehydes
JP6350122B2 (en) Method for producing cyclohexanone and catalyst thereof
TWI435762B (en) Palladium / carbon hydrogenation catalyst and its preparation and use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630