JP4599718B2 - Multiaxial stitch fabric for reinforcement and method for forming FRP - Google Patents

Multiaxial stitch fabric for reinforcement and method for forming FRP Download PDF

Info

Publication number
JP4599718B2
JP4599718B2 JP2001020030A JP2001020030A JP4599718B2 JP 4599718 B2 JP4599718 B2 JP 4599718B2 JP 2001020030 A JP2001020030 A JP 2001020030A JP 2001020030 A JP2001020030 A JP 2001020030A JP 4599718 B2 JP4599718 B2 JP 4599718B2
Authority
JP
Japan
Prior art keywords
fabric
yarn
frp
reinforcing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001020030A
Other languages
Japanese (ja)
Other versions
JP2002227066A (en
JP2002227066A5 (en
Inventor
明 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001020030A priority Critical patent/JP4599718B2/en
Publication of JP2002227066A publication Critical patent/JP2002227066A/en
Publication of JP2002227066A5 publication Critical patent/JP2002227066A5/ja
Application granted granted Critical
Publication of JP4599718B2 publication Critical patent/JP4599718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Knitting Of Fabric (AREA)
  • Nonwoven Fabrics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はFRPの補強繊維基材として使用する多軸ステッチ布帛およびその多軸ステッチ布帛を用いてなるFRPの成形方法ならびに自動車外板に関する。
【0002】
【従来の技術】
連続補強繊維からなる繊維強化プラスチックは、繊維軸方向の機械的特性には優れるが、繊維軸から離れるに従い、その方向の機械的特性は急激に低下する。
この対策として、たとえば、機械的特性が疑似等方性基材となるように繊維軸方向がFRP成形体の長さ(0゜)方向、幅(90゜)方向や斜め(±α゜)方向となるよう積層され、成形されている。
【0003】
しかしながら、通常の織物を使用すると、繊維の配列方向は織物の長さ(0゜)方向と幅(90゜)方向であるから、斜め(±α゜)方向の補強ができなくなる。この対策として、織物を斜め方向に裁断し、裁断された織物の端部が0゜方向と90゜方向に配列する織物と平行になるように積層し、斜め方向に裁断した繊維の配列方向が±45゜になるようにしている。しかしながら、このような方法では織物の裁断や積層に手間が掛かるし、また積層の際、(0゜/90゜)配列織物と(+45゜/−45゜)配列織物がずれ、正確な繊維配向が困難となる。
【0004】
一方、上記課題に対して、最近、よこ入れトリコット装置で、布帛の長さ方向に対して+α゜、−α゜やこれに0゜および/または90゜方向に、すなわち、2方向以上の多軸の各々の方向で層状に補強繊維が並行に配列し、これらが積層した状態で、ポリエステル繊維糸などのステッチで縫合一体化した、いわゆる多軸ステッチ布帛が注目を浴びている。この布帛は+α゜、−α゜、0゜や90゜配列繊維がステッチ糸で一体となっているから、わざわざ裁断によって、所定の方向に配列するような準備作業が必要なくなり、1枚の布帛で疑似等方性の特性が得られるので、積層作業が大幅に省力化され、安価なFRP成形体が得られるという利点はある。また、ステッチ糸のステッチ密度を最適化することによって、深絞り賦形が可能となり、成形のプリフォームを容易に作製することもできる利点がある。
【0005】
しかしながら、ステッチ布帛は、ステッチ糸によって補強繊維を拘束する布帛構造となっているから、各層内では補強繊維の拘束部分と補強繊維がまったく存在しない部分が存在している。したがって、樹脂が含浸され、樹脂が硬化すると樹脂が硬化収縮するので、FRPの状態では補強繊維の拘束部部分の厚さ方向の収縮量は補強繊維が存在するので小さく、補強繊維がまったく存在しない部分の収縮量が大きくなって、FRPの表面の凹凸が大きくなり、表面が平滑なFRPが得られなかった。
【0006】
とくに、自動車の外板に要求される表面平滑性はクラスAの厳しいグレードが求められるので、FRP表面をサンデングして塗装するか、FRPの表面によほど厚いゲルコート層を設けないと、クラスAには到達しなかった。
【0007】
【発明が解決しようとする課題】
本発明は、かかる従来技術の背景に鑑み、表面平滑で、しかも安価なFRPが得られる多軸ステッチ布帛およびその成形方法、ならびに自動車の外板を提供せんとするものである。
【0008】
【課題を解決するための手段】
本発明は、かかる課題を解決するために、次の手段を採用するものである。すなわち、本発明の多軸ステッチ布帛は、
(1)多数本の強化繊維糸条が並行にシート状に配列して層構成をなし、前記層の少なくとも2層以上が交差積層されて積層体をなし、該積層体が、融点が80〜200℃の低融点ポリマー糸でステッチされて一体化されていることを特徴とする補強用多軸ステッチ布帛。
【0009】
(2)前記交差角度が布帛の長さ方向に対して+α゜、−α゜の2方向、0゜,90゜の2方向、0゜,+α゜,−α゜の3方向、+α゜,−α゜,90゜の3方向、および、0゜,+α゜,−α゜,90゜の4方向のいずれかである前記(1)に記載の補強用多軸ステッチ布帛。
【0014】
)前記角度α゜が45゜である前記(2)に記載の補強用多軸ステッチ布帛。
【0015】
)前記低融点ポリマー糸が共重合ナイロン糸である前記(1)〜(3)のいずれかに記載の補強用多軸ステッチ布帛。
【0016】
)前記低融点ポリマー糸が変成ポリエステル糸である前記(1)〜(3)のいずれかに記載の補強用多軸ステッチ布帛。
【0018】
(6)前記(1)〜(5)のいずれかに記載の補強用多軸ステッチ布帛に樹脂を含浸し、前記低融点ポリマー糸の融点以上に加熱成形するFRPの成形方法。
【0019】
)前記()に記載の成形方法によって得られるFRPを用いてなる自動車外板
【0020】
【発明の実施の形態】
以下、図面に示す実施例に基づいて本発明をさらに詳細に説明する。
【0021】
図1は、本発明に係る多軸ステッチ布帛の一実施例を示す一部切り欠き概略斜視図である。図1に示すように、布帛1の下面から、まず第一層が長さ方向イに対して斜め方向に多数本の強化繊維糸条2が並行に配列して+α゜層6を構成し、次いで第二層が布帛の幅方向に多数本の強化繊維糸条3が並行に配列して90゜層7を構成し、次いで第三層が斜め方向に多数本の強化繊維糸条4が並行に配列して−α゜層8を構成し、次いで第四層が布帛の長さ方向に多数本の強化繊維糸条5が並行に配列して0゜層9を構成し、互いに配列方向が異なる第一〜第4層が積層された状態で、ステッチ糸10でこれら4層が縫合一体化されている。
縫合一体化にあたってのステッチ糸が形成する縫い組織としては、単環縫い、1/1のトリコット編みなどが挙げられる。
【0022】
図2は、図1に示した多軸ステッチ布帛のA−A´断面の拡大概略図である。図2に示すように、−α゜層6、90゜層7、+α゜層8、0゜層9の4層にステッチ糸10が形成するトリコット編み組織で一体化されている。なお、各層の糸条は層内において並行に配列し、これら糸条に対してランダムにニードルが突き刺さりステッチ糸が縫い組織を形成する。この時、ステッチ糸の張力によりステッチ糸10とステッチ糸10の間には、強化繊維11が存在せず、大きな空隙部Bが形成される。
【0023】
図3に従来の図2に示した多軸ステッチ布帛を使用したFRP成形体の断面概略図を示したが、ステッチ糸10とステッチ糸10の間の空隙部Bには強化繊維が存在しないので、多軸ステッチ布帛に含浸された樹脂が硬化する際体積収縮し、その箇所の表面は凹む。また、ステッチ糸10は強化繊維層の外側に位置する部分があるから、成形型に布帛が充填されて成形されても、ステッチ糸10の部分はステッチ糸10の存在しない箇所に比べて凸状態となり、FRP表面が凸凹し、表面平滑性はクラスAにはとても到達しないのである。
【0024】
本発明の多軸ステッチ布帛の布帛構造は、従来の多軸ステッチ布帛となんら変わりはないが、本発明ではステッチ糸として低融点ポリマー糸を使用することを特徴とする。
【0025】
本発明に使用する低融点ポリマー糸は、融点が80〜200℃のポリマーを溶融紡糸したもので、成形時に溶融し、成形後ステッチ糸が形成しているステッチ糸の組織が消滅してポリマーの状態となるものが好ましい。融点が80℃未満であると、繊維強化プラスチック(以下FRPと呼称)に成形した時に、わずかな面積、体積ではあるがFRP成形体が屋外暴露などによる昇温により低融点ポリマーの存在箇所が溶融状態となるので好ましくない。また、融点が200℃を越えると、成形の際マトリックス樹脂の硬化のための成形型の昇温および成形型の冷却に時間がかかり、成形サイクルが長くなるので好ましくない。より好ましくは、低融点ポリマー糸の融点は120〜160℃である。
【0026】
本発明に用いる低融点ポリマーは、通常、ナイロン、共重合ナイロン、ポリエステル、変成ポリエステル、塩化ビニリデン、塩化ビニル、ポリウレタン、ポリプロピレン、ポリウレタンなどから選ばれたものである。なかでも低温でポリマーを溶融でき、かつFRPのマトリックス樹脂との接着性が良好な共重合ナイロンが好ましい。
【0027】
また、低温でポリマーを溶融でき、マトリックス樹脂との接着性が良好で、吸水率の小さな変成ポリエステルが好ましい。
【0028】
ステッチ糸の太さは、細いとステッチ操作の際糸切れし、また太いとFRPにした時ステッチ糸が溶融して形成される低融点ポリマー部分が大きくなり、塗装の際に色斑などになるので50〜400デシテックスが好ましい。より好ましくは70〜300デシテックスである。
【0029】
本発明に使用する強化繊維としては、ガラス繊維、ポリアラミド繊維や炭素繊維が挙げられるが、なかでも炭素繊維はマトリックス樹脂との接着性が良く、引張強度や引張弾性率も高いのでFRP成形体の軽量化が図られるので好ましく用いられる。
【0030】
本発明に使用する強化繊維の太さは、3,000〜50,000デシテックス程度であることが好ましい。とくに、太い強化繊維糸条を用いると、強化繊維が安くなるので安価な布帛が得られ好ましい。しかし、一層当たりの強化繊維の目付が小さいと、層内の糸条と糸条の間に隙間ができ、ステッチ糸で一体化すると繊維密度が部分的に不均一となり、成形すると繊維密度が大きなところはFRPが厚くなり、また繊維密度が小さなところはFRPが薄くなり、表面が凸凹したFRPとなる。さらに7,000〜50,000デシテックスの太い強化繊維糸条を用いる場合は、ステッチ糸による一体化加工前に強化繊維糸条をローラの揺動操作やエアー・ジェット噴射で薄く拡げると、布帛の全面にわたり強化繊維の密度が均一となり、表面が平滑なFRPが得られるので好ましい。
【0031】
もともとステッチ糸の役割は、布帛になった状態で繊維配向が乱れないように、また並行に配列した多数本の強化繊維糸条がほつれないようにするものであり、布帛の層方向にステッチ糸が配列しているとはいえ、層方向に対する補強効果はさほど大きくはない。
【0032】
なお、図1に示した布帛の強化繊維の構成は+α゜層/90゜層/−α゜層/0゜層の4層構成について説明したが、これに限定するものではなく、少なくとも、布帛の長さ方向に対して−α゜層と+α゜層のバイアス(±α゜)の方向に層構成をなしておればよい。また、層構成の順番も−α゜/90゜/+α゜/0゜の順番に限定するものではなく、0゜/−α゜/90゜/+α゜や0゜/−α゜/+α゜/90゜など適宜設計することができる。また、−α゜層と+α゜層のバイアス方向のみに強化繊維が配列した布帛にすると、布帛の長さ方向に引っ張ると簡単に強化繊維の方向がずれ、布帛の幅方向が狭くなるなど、形態が不安定である。このような時には、たとえば0゜方向やまたは90゜方向に細いガラス繊維、炭素繊維やポリアラミド繊維などの補助糸を20〜100g/m2 程度配列し、−α゜層、+α゜層とステッチ糸で一体化すると形態を安定させることができる。
【0033】
なお、バイアス角α゜は、多軸ステッチ布帛をFRP成形体の長さ方向に積層し、強化繊維による剪断補強を効果的に行う観点から45゜が好ましい。
【0034】
本発明の多軸ステッチ布帛を使用したFRPは、たとえば次のように成形することができる。
【0035】
RTM成形型の雌型に、本発明の多軸ステッチ布帛を所定の方向に、所定の枚数積層し、この上に雄型を乗せ、型の周囲をパテでシーリングする。ついで、真空ポンプで型内を真空状態となるよう吸引し、その後樹脂を注入する。次いで、成形型を低融点ポリマー糸の融点以上になるよう十分に加熱して、注入した樹脂を硬化させる。成形型を冷却し、脱型する。
【0036】
なお、本発明の成形方法は、上記のRTM成形法に限定するものではなく、たとえば多軸ステッチ布帛を、乾式法では低融点ポリマー糸の融点以下の温度で加熱含浸、または、湿式法では融点以下の温度で加熱乾燥することによってプリプレグ化し、これを成形型に積層し、低融点ポリマー糸の融点以上の温度で加熱、加圧して成形する方法でもよい。
【0037】
本発明に用いる樹脂は、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂やフェノール樹脂などの熱硬化性樹脂やナイロン樹脂、PBT樹脂、ポリエチレン樹脂、ポリプロピレン樹脂などの熱可塑性樹脂であってもよい。
【0038】
図4に、本発明の成形法によって得られるFRP成形体の断面概略図を示したが、型の加熱と同時に多軸ステッチ布帛も低融点ポリマー糸の融点以上に加熱されるから、低融点ポリマー糸が溶融し、FRP中にポリマー糸が存在していた箇所に低融点ポリマー12が点在するようになる。また、低融点ポリマーからなるステッチ糸が形成していた縫い組織は、ステッチ糸の溶融によって消滅するので、ステッチ糸による強化繊維の拘束は解かれ、空隙部Bの箇所にも強化繊維が分散し、得られるFRPの表面は平滑となる。
【0039】
図5は自動車外板を説明する概略図で、フ−ド13、フェンダ−14、ドア15、ル−フ16、トランク・カバー17などの外板に、本発明の補強用多軸ステッチ布帛を使用し、樹脂を含浸し、低融点ポリマー糸の融点以上に加熱成形することによって得られるFRP成形体を使用すると、表面が平滑で意匠性に優れ、安価な自動車外板となる。
【0040】
【発明の効果】
本発明の補強用多軸ステッチ布帛は低融点ポリマー糸でステッチ一体化されているから、樹脂を含浸し、低融点ポリマー糸の融点以上に加熱成形することによって表面が平滑なFRP成形体が得られる。
【図面の簡単な説明】
【図1】本発明の多軸ステッチ布帛の一例を示す一部切り欠き概略斜視図である。
【図2】図1のA−A´断面拡大概略図である。
【図3】従来の多軸ステッチ布帛のFRP成形体の断面概略図である。
【図4】本発明の多軸ステッチ布帛のFRP成形体の一例を示す断面概略図である。
【図5】自動車外板を説明する概略図である。
【符号の説明】
1:多軸ステッチ布帛
2:+α゜層の強化繊維糸条
3:90゜層の強化繊維糸条
4:−α゜層の強化繊維糸条
5:0゜層の強化繊維糸条
6:布帛を形成する+α゜の強化繊維層
7:布帛を形成する90゜の強化繊維層
8:布帛を形成する−α゜の強化繊維層
9:布帛を形成する0゜の強化繊維層
10:ステッチ糸
11:強化繊維
12:低融点ポリマー
13:自動車のフ−ド
14:自動車のフェンダ−
15:自動車のドア
16:自動車のル−フ
17:自動車のトランク・カバー
イ:布帛の長手方向
A−A´:断面の基準線
B:空隙部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multiaxial stitched fabric used as a reinforcing fiber base material for FRP, a method for forming FRP using the multiaxial stitched fabric, and an automobile outer plate.
[0002]
[Prior art]
The fiber reinforced plastic composed of continuous reinforcing fibers is excellent in the mechanical properties in the fiber axis direction, but as the distance from the fiber axis increases, the mechanical properties in that direction decrease rapidly.
As a countermeasure, for example, the fiber axis direction is the length (0 °) direction, the width (90 °) direction, or the oblique (± α °) direction of the FRP molded body so that the mechanical characteristics become a pseudo-isotropic substrate. Are laminated and molded.
[0003]
However, when a normal woven fabric is used, the fiber arrangement directions are the length (0 °) direction and the width (90 °) direction of the woven fabric, so that reinforcement in an oblique (± α °) direction cannot be performed. As a countermeasure, the fabric is cut in an oblique direction, and the ends of the cut fabric are laminated so as to be parallel to the fabric arranged in the 0 ° direction and the 90 ° direction, and the arrangement direction of the fibers cut in the oblique direction is ± 45 °. However, this method takes time and effort to cut and laminate the fabrics, and the (0 ° / 90 °) aligned fabric and the (+ 45 ° / −45 °) aligned fabric are misaligned during the stacking, and the fiber orientation is accurate. It becomes difficult.
[0004]
On the other hand, recently, with a weft insertion tricot device, the above-mentioned problems have been achieved in the + α °, −α ° and 0 ° and / or 90 ° directions with respect to the length direction of the fabric, ie, more than two directions. A so-called multiaxial stitched fabric in which reinforcing fibers are arranged in parallel in a layered manner in each direction of the shaft and these are laminated and stitched together with stitches such as polyester fiber yarns has attracted attention. In this fabric, + α °, -α °, 0 °, and 90 ° aligned fibers are integrated with stitch yarns, so that it is not necessary to perform preparation work for arranging in a predetermined direction by cutting. Therefore, there is an advantage that a laminating operation is greatly saved and an inexpensive FRP molded body can be obtained. Further, by optimizing the stitch density of the stitch yarn, deep drawing can be performed, and there is an advantage that a preform for molding can be easily produced.
[0005]
However, since the stitch fabric has a fabric structure in which the reinforcing fibers are constrained by the stitch yarn, there are portions where the reinforcing fibers are constrained and no reinforcing fibers exist in each layer. Therefore, when the resin is impregnated and the resin is cured, the resin is cured and contracted. Therefore, in the FRP state, the amount of contraction in the thickness direction of the restraining portion of the reinforcing fiber is small because the reinforcing fiber exists, and there is no reinforcing fiber at all. The shrinkage amount of the portion was increased, the unevenness of the surface of the FRP was increased, and an FRP having a smooth surface was not obtained.
[0006]
In particular, since the surface smoothness required for the outer panel of automobiles is required to be a severe grade of Class A, if the FRP surface is sanded and painted or the gel coat layer is not thick enough on the surface of FRP, Did not reach.
[0007]
[Problems to be solved by the invention]
In view of the background of such prior art, the present invention is intended to provide a multi-axis stitched fabric, a molding method thereof, and an outer panel of an automobile, which can obtain a smooth surface and inexpensive FRP.
[0008]
[Means for Solving the Problems]
The present invention employs the following means in order to solve such problems. That is, the multi-axis stitched fabric of the present invention is
(1) A large number of reinforcing fiber yarns are arranged in a sheet form in parallel to form a layer structure, and at least two layers of the layers are cross-laminated to form a laminated body, and the laminated body has a melting point of 80 to A multiaxial stitched fabric for reinforcement characterized by being stitched and integrated with a low melting point polymer yarn at 200 ° C.
[0009]
(2) The crossing angle is + α °, two directions of −α °, two directions of 0 °, 90 °, three directions of 0 °, + α °, and −α °, + α °, -.alpha. °, 90 ° 3 direction and 0 °, + alpha DEG-.alpha. °, reinforcing multiaxial stitch fabric according to SL before Ru der either 90 ° in four directions (1).
[0014]
(3) the angle α゜Ga 45 reinforcing multiaxial stitch fabric according to゜Dea Ru before SL (2).
[0015]
(4) the reinforcing multiaxial stitch fabric according to any one of the low-melting polymer yarns copolymerized nylon yarn der Ru before SL (1) to (3).
[0016]
(5) the reinforcing multiaxial stitch fabric according to any one of the low-melting polymer yarns modified polyester yarn der Ru before SL (1) to (3).
[0018]
(6) A method for molding FRP, wherein the reinforcing multiaxial stitch fabric according to any one of (1) to (5) is impregnated with a resin and heat-molded to a temperature higher than the melting point of the low-melting polymer yarn.
[0019]
(7) The automatic vehicle exterior plate Do that using FRP obtained by the molding method described in (6) [0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.
[0021]
FIG. 1 is a partially cutaway schematic perspective view showing an embodiment of a multi-axis stitched fabric according to the present invention. As shown in FIG. 1, from the lower surface of the fabric 1, first, a first layer has a number of reinforcing fiber yarns 2 arranged in parallel in an oblique direction with respect to the length direction A to form a + α ° layer 6. Next, the second layer has a plurality of reinforcing fiber yarns 3 arranged in parallel in the width direction of the fabric to form a 90 ° layer 7, and then the third layer has a plurality of reinforcing fiber yarns 4 in parallel in the oblique direction. -Α ° layer 8 is arranged to form a fourth layer, and a plurality of reinforcing fiber yarns 5 are arranged in parallel in the length direction of the fabric to form 0 ° layer 9, and the arrangement direction is mutually In a state where different first to fourth layers are laminated, these four layers are stitched and integrated with the stitch yarn 10.
Examples of the stitch structure formed by the stitch thread upon the stitching integration include single ring stitching and 1/1 tricot knitting.
[0022]
FIG. 2 is an enlarged schematic view of the AA ′ cross section of the multi-axis stitched fabric shown in FIG. 1. As shown in FIG. 2, a tricot knitting structure in which stitch yarns 10 are formed in four layers of a -α ° layer 6, a 90 ° layer 7, a + α ° layer 8, and a 0 ° layer 9 is integrated. The yarns of each layer are arranged in parallel in the layers, and the needles are randomly inserted into these yarns, and the stitch yarn forms a stitched structure. At this time, the reinforcing fiber 11 does not exist between the stitch yarn 10 and the stitch yarn 10 due to the tension of the stitch yarn, and a large gap B is formed.
[0023]
FIG. 3 shows a schematic cross-sectional view of an FRP molded body using the conventional multiaxial stitch fabric shown in FIG. 2, but there is no reinforcing fiber in the space B between the stitch yarn 10 and the stitch yarn 10. When the resin impregnated in the multiaxial stitch fabric is cured, the volume shrinks, and the surface of the portion is recessed. In addition, since the stitch yarn 10 has a portion located outside the reinforcing fiber layer, the stitch yarn 10 portion is more convex than the portion where the stitch yarn 10 does not exist even when the mold is filled with the fabric. Thus, the FRP surface is uneven, and the surface smoothness does not reach Class A very much.
[0024]
The fabric structure of the multiaxial stitched fabric of the present invention is not different from the conventional multiaxial stitched fabric, but the present invention is characterized in that a low melting polymer yarn is used as the stitched yarn.
[0025]
The low-melting-point polymer yarn used in the present invention is a melt-spun polymer having a melting point of 80 to 200 ° C., melted at the time of molding, and the stitch yarn structure formed by the stitch yarn after molding disappears. What will be in a state is preferable. When the melting point is less than 80 ° C., when it is molded into fiber reinforced plastic (hereinafter referred to as FRP), the area where the low melting point polymer is present is melted due to the temperature rise due to outdoor exposure, etc., although the area and volume are small. Since it will be in a state, it is not preferable. On the other hand, if the melting point exceeds 200 ° C., it takes time to raise the temperature of the mold and cool the mold for curing the matrix resin during molding, which is not preferable. More preferably, the melting point of the low-melting polymer yarn is 120 to 160 ° C.
[0026]
The low melting point polymer used in the present invention is usually selected from nylon, copolymer nylon, polyester, modified polyester, vinylidene chloride, vinyl chloride, polyurethane, polypropylene, polyurethane and the like. Among these, copolymer nylon is preferable because it can melt the polymer at a low temperature and has good adhesion to the matrix resin of FRP.
[0027]
Further, a modified polyester that can melt the polymer at a low temperature, has good adhesion to the matrix resin, and has a low water absorption rate is preferable.
[0028]
If the thickness of the stitch yarn is thin, the yarn will break during stitching operation, and if it is thick, the low melting point polymer part formed by melting the stitch yarn will become large when it is made FRP, resulting in color spots etc. during painting Therefore, 50 to 400 dtex is preferable. More preferably, it is 70-300 dtex.
[0029]
Examples of the reinforcing fibers used in the present invention include glass fibers, polyaramid fibers, and carbon fibers. Among them, carbon fibers have good adhesiveness with a matrix resin, and have high tensile strength and tensile elastic modulus. Since weight reduction is achieved, it is preferably used.
[0030]
The thickness of the reinforcing fiber used in the present invention is preferably about 3,000 to 50,000 dtex. In particular, it is preferable to use a thick reinforcing fiber yarn because the reinforcing fiber becomes cheap and an inexpensive fabric can be obtained. However, if the basis weight of the reinforcing fiber per layer is small, a gap is formed between the yarns in the layer, and when the stitches are integrated with each other, the fiber density becomes partially non-uniform, and when molded, the fiber density is high. However, the FRP becomes thick and the FRP becomes thin where the fiber density is small, resulting in an FRP having an uneven surface. Furthermore, when using thick reinforcing fiber yarns of 7,000 to 50,000 decitex, if the reinforcing fiber yarns are spread thinly by roller swinging operation or air jet injection before integrated processing with stitch yarns, This is preferable because the density of the reinforcing fibers becomes uniform over the entire surface and an FRP having a smooth surface can be obtained.
[0031]
Originally, the role of the stitch yarn is to prevent the fiber orientation from being disturbed in the state of the fabric, and to prevent the multiple reinforcing fiber yarns arranged in parallel from being frayed. However, the reinforcing effect in the layer direction is not so great.
[0032]
The configuration of the reinforcing fiber of the fabric shown in FIG. 1 has been described as a four-layer configuration of + α ° layer / 90 ° layer / −α ° layer / 0 ° layer, but is not limited to this, and at least the fabric The layer structure may be formed in the direction of the bias (± α °) of the −α ° layer and the + α ° layer with respect to the length direction. Further, the order of the layer structure is not limited to the order of -α ° / 90 ° / + α ° / 0 °, but is 0 ° / -α ° / 90 ° / + α ° or 0 ° / -α ° / + α °. / 90 ° can be designed as appropriate. In addition, when a fabric in which reinforcing fibers are arranged only in the bias direction of the -α ° layer and the + α ° layer is used, the direction of the reinforcing fibers is easily shifted when pulled in the length direction of the fabric, and the width direction of the fabric is narrowed. The form is unstable. In such a case, for example, auxiliary fibers such as glass fibers, carbon fibers and polyaramid fibers that are thin in the 0 ° direction or 90 ° direction are arranged at about 20 to 100 g / m 2 , and the −α ° layer, + α ° layer and stitch yarn are arranged. If integrated with, the form can be stabilized.
[0033]
The bias angle α ° is preferably 45 ° from the viewpoint of effectively laminating multiaxial stitched fabric in the length direction of the FRP molded body and effectively performing shear reinforcement with reinforcing fibers.
[0034]
The FRP using the multiaxial stitched fabric of the present invention can be formed, for example, as follows.
[0035]
A predetermined number of multiaxial stitched fabrics of the present invention are laminated in a predetermined direction on a female RTM molding die, a male die is placed thereon, and the periphery of the die is sealed with a putty. Next, the inside of the mold is sucked with a vacuum pump so as to be in a vacuum state, and then the resin is injected. Next, the mold is sufficiently heated to be equal to or higher than the melting point of the low-melting polymer yarn to cure the injected resin. Cool the mold and remove it.
[0036]
The molding method of the present invention is not limited to the above RTM molding method. For example, a multiaxial stitched fabric is heated and impregnated at a temperature lower than the melting point of the low-melting polymer yarn in the dry method, or the melting point in the wet method. A method of forming a prepreg by heating and drying at the following temperature, laminating the prepreg on a mold, and heating and pressing at a temperature higher than the melting point of the low-melting polymer yarn may be used.
[0037]
The resin used in the present invention may be a thermosetting resin such as epoxy resin, unsaturated polyester resin, vinyl ester resin or phenol resin, or a thermoplastic resin such as nylon resin, PBT resin, polyethylene resin or polypropylene resin.
[0038]
FIG. 4 shows a schematic cross-sectional view of the FRP molded body obtained by the molding method of the present invention. Since the multiaxial stitched fabric is heated to the melting point of the low-melting polymer yarn simultaneously with the heating of the mold, the low-melting polymer The yarn is melted, and the low melting point polymer 12 is scattered at the locations where the polymer yarn was present in the FRP. In addition, the stitch structure formed by the stitch yarn made of the low melting point polymer disappears when the stitch yarn melts, so that the reinforcing fiber is unconstrained by the stitch yarn and the reinforcing fiber is dispersed in the space B. The surface of the obtained FRP becomes smooth.
[0039]
FIG. 5 is a schematic diagram for explaining an automobile outer plate. The reinforcing multi-axis stitch fabric of the present invention is applied to outer plates such as a hood 13, a fender 14, a door 15, a roof 16, a trunk cover 17, and the like. When an FRP molded body obtained by using, impregnating a resin, and heat-molding to a temperature higher than the melting point of the low-melting polymer yarn is used, the surface becomes smooth, excellent in design, and inexpensive.
[0040]
【The invention's effect】
Since the reinforcing multiaxial stitch fabric of the present invention is stitch-integrated with a low-melting polymer yarn, an FRP molded product with a smooth surface can be obtained by impregnating the resin and heat-molding it above the melting point of the low-melting polymer yarn. It is done.
[Brief description of the drawings]
FIG. 1 is a partially cutaway schematic perspective view showing an example of a multi-axis stitched fabric of the present invention.
FIG. 2 is an enlarged schematic view of the AA ′ cross section of FIG. 1;
FIG. 3 is a schematic cross-sectional view of an FRP molded body of a conventional multi-axis stitched fabric.
FIG. 4 is a schematic cross-sectional view showing an example of an FRP molded body of the multi-axis stitched fabric of the present invention.
FIG. 5 is a schematic view illustrating an automobile outer plate.
[Explanation of symbols]
1: Multiaxial stitched fabric 2: + α ° layer reinforcing fiber yarn 3: 90 ° layer reinforcing fiber yarn 4: -α ° layer reinforcing fiber yarn 5: 0 ° layer reinforcing fiber yarn 6: Fabric + Α ° reinforcing fiber layer 7 forming the fabric: 90 ° reinforcing fiber layer forming the fabric 8: forming the fabric -α ° reinforcing fiber layer 9: 0 ° reinforcing fiber layer forming the fabric 10: stitch yarn 11: Reinforcing fiber 12: Low melting point polymer 13: Automotive hood 14: Automotive fender
15: Automobile door 16: Automobile roof 17: Automobile trunk cover: Longitudinal direction AA 'of the fabric: Reference line B of the cross section: Air gap

Claims (7)

多数本の強化繊維糸条が並行にシート状に配列して層構成をなし、前記層の少なくとも2層以上が交差積層されて積層体をなし、該積層体が、融点が80〜200℃の低融点ポリマー糸でステッチされて一体化されていることを特徴とする補強用多軸ステッチ布帛。A large number of reinforcing fiber yarns are arranged in a sheet form in parallel to form a layer structure, and at least two layers of the layers are cross-laminated to form a laminated body, and the laminated body has a melting point of 80 to 200 ° C. A multiaxial stitched fabric for reinforcement characterized by being stitched and integrated with a low melting point polymer yarn. 前記交差角度が布帛の長さ方向に対して+α゜、−α゜の2方向、0゜,90゜の2方向、0゜,+α゜,−α゜の3方向、+α゜,−α゜,90゜の3方向、および、0゜,+α゜,−α゜,90゜の4方向のいずれかである請求項1に記載の補強用多軸ステッチ布帛。The crossing angles are + α °, -α ° in two directions, 0 °, 90 ° in two directions, 0 °, + α °, -α ° in three directions, + α °, -α ° with respect to the length direction of the fabric. , 90 ° 3 direction and 0 °, + alpha DEG,-.alpha. °, is either 90 ° in four directions, reinforcing multiaxial stitch fabric according to claim 1. 前記角度α゜が45゜である請求項2に記載の補強用多軸ステッチ布帛。It said angle α゜Ga is 45 °, the reinforcing multiaxial stitch fabric according to claim 2. 前記低融点ポリマー糸が共重合ナイロン糸である請求項1〜3のいずれかに記載の補強用多軸ステッチ布帛。The multiaxial stitch fabric for reinforcement according to any one of claims 1 to 3 , wherein the low-melting-point polymer yarn is a copolymerized nylon yarn. 前記低融点ポリマー糸が変成ポリエステル糸である請求項1〜3のいずれかに記載の補強用多軸ステッチ布帛。The multiaxial stitch fabric for reinforcement according to any one of claims 1 to 3 , wherein the low melting point polymer yarn is a modified polyester yarn. 請求項1〜5のいずれかに記載の補強用多軸ステッチ布帛に樹脂を含浸し、前記低融点ポリマー糸の融点以上に加熱成形するFRPの成形方法。A method for molding FRP, comprising impregnating a resin in the reinforcing multiaxial stitch fabric according to any one of claims 1 to 5, and heat-molding the resin to a temperature equal to or higher than a melting point of the low-melting polymer yarn. 請求項6に記載の成形方法によって得られるFRPを用いてなる自動車外板。An automobile outer plate using FRP obtained by the molding method according to claim 6.
JP2001020030A 2001-01-29 2001-01-29 Multiaxial stitch fabric for reinforcement and method for forming FRP Expired - Fee Related JP4599718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020030A JP4599718B2 (en) 2001-01-29 2001-01-29 Multiaxial stitch fabric for reinforcement and method for forming FRP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020030A JP4599718B2 (en) 2001-01-29 2001-01-29 Multiaxial stitch fabric for reinforcement and method for forming FRP

Publications (3)

Publication Number Publication Date
JP2002227066A JP2002227066A (en) 2002-08-14
JP2002227066A5 JP2002227066A5 (en) 2008-03-13
JP4599718B2 true JP4599718B2 (en) 2010-12-15

Family

ID=18885807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020030A Expired - Fee Related JP4599718B2 (en) 2001-01-29 2001-01-29 Multiaxial stitch fabric for reinforcement and method for forming FRP

Country Status (1)

Country Link
JP (1) JP4599718B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324141B4 (en) * 2003-05-26 2010-07-01 Eurocopter Deutschland Gmbh Process for producing a fiber composite component and intermediate product for such a process
JP4770300B2 (en) * 2004-07-15 2011-09-14 三菱樹脂株式会社 Reinforcement method
JP4867259B2 (en) * 2005-09-29 2012-02-01 東レ株式会社 Preform and method for manufacturing preform
CN101466535B (en) 2006-11-22 2013-05-22 福井县 Thermalplastic resin multi-layer reinforced sheet, production method thereof and forming method for thermalplastic resin composite material forming article
JP5023785B2 (en) * 2007-04-18 2012-09-12 トヨタ自動車株式会社 Fiber reinforced plastic
JP4699425B2 (en) * 2007-06-22 2011-06-08 株式会社ジャムコ Sandwich panel
US20120302118A1 (en) * 2010-02-15 2012-11-29 Kurashiki Boseki Kabushiki Kaisha Sheet for fiber-reinforced resin and fiber-reinforced resin molded article using the same
US11046049B2 (en) * 2014-03-19 2021-06-29 The Boeing Company Fabrication of composite laminates using temporarily stitched preforms
WO2017104481A1 (en) * 2015-12-14 2017-06-22 三菱レイヨン株式会社 Multiaxial-inlay knitted fabric base material production method, multiaxial-inlay knitted fabric base material, and fiber-reinforced composite material
KR101905555B1 (en) * 2015-12-16 2018-11-21 현대자동차 주식회사 Thermoplastic resin composite and preparation method thereof
JP6684155B2 (en) * 2016-06-02 2020-04-22 株式会社Subaru Fabric laminate
JP6907637B2 (en) * 2017-03-29 2021-07-21 東レ株式会社 Production method of reinforced fiber laminated sheet and resin molded product
KR101861046B1 (en) 2017-11-08 2018-05-24 주식회사 유엠에스 Low Weight Flame Retardant Nonwoven Fabric and Seat-Cover using the same and Manufacturing Method thereof
CA3105951A1 (en) * 2018-08-07 2020-02-13 Toray Industries, Inc. Multiaxial textile resin base material and method for production thereof
CN109968699B (en) * 2019-04-11 2024-05-28 大庆市九天新型保温建筑材料有限公司 Inclined plane sewing machine and sewing net woven reinforced fiber insulation board manufactured by same
CN115635705A (en) * 2022-10-25 2023-01-24 西安工程大学 Waste textile fiber reinforced composite material prepared from waste textiles and phenolic resin and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892555A (en) * 1981-11-30 1983-06-01 東レ株式会社 Laminate for resin reinforcement
JPH02134232A (en) * 1988-09-26 1990-05-23 Tech Textiles Ltd Continuous molding method of reinforced product
JPH03505615A (en) * 1989-04-18 1991-12-05 ブロシエール・ソシエテ・アノニム Deformable textile structure
JPH0813305A (en) * 1994-06-24 1996-01-16 Dynic Corp Wear-resistant automotive trim facing material
JPH08199441A (en) * 1995-01-17 1996-08-06 Teijin Ltd Yarn used in sewing machine and its production
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892555A (en) * 1981-11-30 1983-06-01 東レ株式会社 Laminate for resin reinforcement
JPH02134232A (en) * 1988-09-26 1990-05-23 Tech Textiles Ltd Continuous molding method of reinforced product
JPH03505615A (en) * 1989-04-18 1991-12-05 ブロシエール・ソシエテ・アノニム Deformable textile structure
JPH0813305A (en) * 1994-06-24 1996-01-16 Dynic Corp Wear-resistant automotive trim facing material
JPH08199441A (en) * 1995-01-17 1996-08-06 Teijin Ltd Yarn used in sewing machine and its production
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic

Also Published As

Publication number Publication date
JP2002227066A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP4599718B2 (en) Multiaxial stitch fabric for reinforcement and method for forming FRP
ES2391828T3 (en) Preform, PRF and processes to produce them
EP1125728B1 (en) Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
US11806920B2 (en) Heat curable composite textile
EP2111128B1 (en) Protective helmets
TWI401407B (en) Helmets for protection against rifle bullets
US5350614A (en) All composite article of manufacture including first and second composite members joined by a composite hinge
US7168272B2 (en) Crimp-free infusible reinforcement fabric
CN1017126B (en) Assembly of several layers comprising one or more reinforcing layers and fibre reinforced plastic produced therofrom
JP6956309B2 (en) Textile substrate made of reinforced fiber
US20060121805A1 (en) Non-woven, uni-directional multi-axial reinforcement fabric and composite article
JP4106826B2 (en) Fiber-reinforced resin structure and method for producing the same
JP2002227067A (en) Reinforcing multiaxial stitched fabric and preform
JP6946666B2 (en) Reinforced fiber laminated sheet and fiber reinforced resin molded product
JP2018531307A6 (en) Textile substrate made of reinforced fiber
JP4560965B2 (en) Multi-axis stitched fabric for reinforcement
JP4613298B2 (en) Composite sheet and composite material having smooth surface using the same
US20220258434A1 (en) Thin-walled composite product reinforced by hybrid yarns and method for manufacturing such a product
JP2002321215A (en) Preform and molding thereof
EP1667838B1 (en) Crimp-free infusible reinforcement fabric and method for its manufacture
USH1162H (en) Molded composite article and process for producing the same
JP2000238139A (en) Manufacture of frp structure
JP4558398B2 (en) Composite material with smooth surface
JP6746973B2 (en) Base material for preform, reinforced fiber preform, fiber reinforced resin molding and method for manufacturing fiber reinforced resin molding
JP2002264235A (en) Reinforcing multishaft stitch cloth and fiber reinforced plastic

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees