JP4596505B2 - Exhaust gas treatment apparatus and method - Google Patents

Exhaust gas treatment apparatus and method Download PDF

Info

Publication number
JP4596505B2
JP4596505B2 JP2001179532A JP2001179532A JP4596505B2 JP 4596505 B2 JP4596505 B2 JP 4596505B2 JP 2001179532 A JP2001179532 A JP 2001179532A JP 2001179532 A JP2001179532 A JP 2001179532A JP 4596505 B2 JP4596505 B2 JP 4596505B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
dust
steam
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001179532A
Other languages
Japanese (ja)
Other versions
JP2002372219A (en
JP2002372219A5 (en
Inventor
久 遠藤
宏幸 横幕
喜代志 小島
政一 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2001179532A priority Critical patent/JP4596505B2/en
Publication of JP2002372219A publication Critical patent/JP2002372219A/en
Publication of JP2002372219A5 publication Critical patent/JP2002372219A5/ja
Application granted granted Critical
Publication of JP4596505B2 publication Critical patent/JP4596505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、焼却や溶融処理等の燃焼処理に先立って乾燥を要する下水汚泥や生ごみ等の含水廃棄物に好適な排ガス処理装置及びその方法に関する。
【0002】
【従来の技術】
近年の廃棄物処理設備においては、省エネルギー化の要請により、焼却や溶融に伴って発生する排熱を回収し、同設備内の熱源として又は発電機により電気エネルギーとして有効利用している。
【0003】
例えば含水廃棄物処理設備において排熱の有効利用を図るものとしては、特公平7−24733号公報に開示される技術がある。この従来技術は、蒸気と含水廃棄物とを直接接触させて乾燥を行う蒸気直接乾燥機と、この乾燥機により乾燥した乾燥廃棄物を焼却または溶融する処理炉とを備え、熱交換器を用いて乾燥機により使用した使用済み蒸気を処理炉の排ガスとの熱交換により加熱し、再び乾燥機に循環供給するように構成したものである。
【0004】
実際には、熱交換器は一つでは排熱回収が十分になされないので、溶融炉の排ガスを、排ガス連通路を介して直列接続された複数段の間接熱交換器に順次流通させ、複数段階に分けて排ガスの排熱を回収する構成を採用することとなる。
【0005】
【発明が解決しようとする課題】
しかしながら、かかる複数段の熱交換を行う場合、例えば廃棄物の溶融処理に際しては溶融炉内の運転温度が約1300〜1500℃もの高温に達するため、排ガス中には蒸発した金属類が混入し、これが熱交換器により順次冷却される過程で再固化してダストが発生し、このダストが熱交換器内に付着して排ガス流路が閉塞する虞がある。またそのため、定期的な清掃が必要であるが、複数段ある熱交換器の全てにおいてダストが付着するのでは、清掃作業が非常に煩雑となる。特に熱交換器の伝熱面にダストが付着生成すると、その清掃作業は容易ではない。また、他の燃焼処理においても、ダストの発生・付着およびその清掃は避けられない。
【0006】
そこで、本発明の主たる課題は、熱交換器内の排ガス流路が閉塞しにくく、また発生したダストの清掃が容易な排ガス処理装置及びその方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決した本発明は、燃焼炉の排ガスを、排ガス連通路を介して直列接続された複数段の間接熱交換器に順次流通させ、排ガスの排熱を複数段階に分けて回収する排ガス処理装置であって、
間隔を置いて隣接する縦向きの上段熱交換器及び下段熱交換器の下部にそれぞれ、下窄まりの排出路及びこれに連なる排出口を有するダスト排出経路が形成され、
前記上段熱交換器の下方と下段熱交換器の下方とが水平方向に排ガスを流通させる横向きダクトによりつながっており、
この横向きダクトの下側壁が、上段熱交換器の下段側端部と下段熱交換器の上段側端部の間を境にして、一方側が前記上段熱交換器の下端排出口まで連続的に下向きに傾斜し、かつ他方側が前記下段熱交換器の下端排出口まで連続的に下向きに傾斜し、
前記排ガス連通路の入側及び出側に、内部を流通する排ガスの流速が少なくとも前記上段熱交換器内よりも低速となるダスト捕捉スペースを形成した、
ことを特徴とする排ガス処理装置である。
【0008】
本発明においては、前記ダスト捕捉スペース内における流速が、前記ダスト捕捉スペースよりも上流の全ての排ガス流路内よりも低速となるように構成するのが好ましい。また、前記排ガス連通路が、下端部に排出口を有するとともに、通路内面の下側部分の実質的に全体が前記排出口まで連続的に下向き傾斜しているのが好ましい。
【0009】
他方、本発明の排ガス処理方法は、燃焼炉の排ガスを、排ガス連通路を介して直列接続された複数段の間接熱交換器に順次流通させ、排ガスの排熱を複数段階に分けて回収するにあたり、
間隔をおいて隣接する縦向きの上段熱交換器及び下段熱交換器の下部にそれぞれ、下窄まりの排出路及びこれに連なる排出口を有するダスト排出経路を形成し、
前記上段熱交換器の下方と下段熱交換器の下方とを水平方向に排ガスを流通させる横向きダクトにより接続し、
この横向きダクトの下側壁を、上段熱交換器の下段側端部と下段熱交換器の上段側端部の間を境にして、一方側が前記上段熱交換器の下端排出口まで連続的に下向きに傾斜するよう形成し、かつ他方側が前記下段熱交換器の下端排出口まで連続的に下向きに傾斜するよう形成し、
前記排ガス連通路の入側及び出側に、排ガスの流速を少なくとも前記上段熱交換器内よりも低速にしてダストを捕捉するダスト捕捉スペースを形成し、
前記ダスト捕捉スペースに排ガスを流通させて排ガスのダストを捕捉する、
ことを特徴とするものである。
【0010】
(作用効果)
本発明においては、ダストを伴う排ガスの流速が、熱交換器相互をつなぐ排ガス連通路内のダスト捕捉スペースにおいて低下し、そこに含まれるダストが捕捉スペース内において集中的に降下捕捉される。よって、当該排ガス連通路以降の熱交換器内にはダストが付着しにくく、流路閉塞のおそれも少なくなり、また清掃作業が著しく容易になる。
【0011】
特に、排ガス連通路が、下端部に排出口を有するとともに、通路内面の下側部分の実質的に全体が排出口まで連続的に下向き傾斜していると、流速が低下し通路内下面に降下したダストの全部が排出口に滑り落ち収集される利点がある。
【0012】
【発明の実施の形態】
以下、本発明について、下水汚泥処理設備の例を引いて詳説する。
図1及び図2は、本発明を適用した下水汚泥処理設備例のフロー図を示している。図1中の符号1は、汚泥ピットを示しており、ここに貯留された汚泥Sは、図示しないクレーン等により図示しないホッパーに移送されそこに付属する汚泥供給ポンプ2により乾燥機3に供給される。
【0013】
乾燥機3においては、加熱済みの約400℃程度の蒸気を乾燥熱源として汚泥が乾燥される。乾燥機3としては、乾燥熱源として蒸気等の熱媒を循環利用できるものであれば、図示例のように蒸気と含水廃棄物とを直接接触させて乾燥を行う蒸気直接乾燥タイプのものでなくても良い。また循環熱媒としては蒸気に限られない。
【0014】
汚泥との熱交換により減温した蒸気は、約150℃程度となって集塵機3Cに対して供給され、ここで乾燥汚泥ダストが分離回収された後、蒸気循環ファン3Fにより後述の一段目の蒸気加熱器8に供給される。なお、集塵機3Cとしてはバグフィルタまたはサイクロンを複数段設けるのが好ましい。
【0015】
乾燥機3により乾燥され排出された乾燥汚泥、および集塵機3Cにより回収した乾燥汚泥ダストは、次いで乾燥汚泥輸送ブロワ4による空気輸送にて溶融炉5へ供給され、燃焼溶融される。燃焼溶融炉5は、本発明では特に限定されないが、図示例の場合、竪型旋回式の予備燃焼炉50と、その下端に一端が接続された横型主燃焼炉51と、その他端にスラグシュート52を介して接続された竪型の混合冷却器53とから構成された自然放冷式のものであり、乾燥汚泥は予備燃焼炉50の上部に吹き込まれる。予備燃焼炉50の上部にはバーナー54が設けられ、このバーナー54に対して都市ガス、重油、灯油、廃油等の燃料、ならびにファン55からの燃焼空気が供給されるように構成されており、予備燃焼炉50内に旋回方向に沿って吹き込まれた乾燥汚泥は、旋回降下しながらバーナー54による燃焼フレームにより燃焼溶融され、主燃焼炉51内を経て、スラグシュート52から溶融スラグとして排出される。排出した溶融スラグは、水冷スラグコンベヤ6により冷却固化された後に取り出される。
【0016】
他方、溶融炉5の排ガスは約1350〜1450℃となっており、これが混合冷却器53を経て約850℃程度まで放冷された後に、空気予熱器7および複数段の蒸気加熱器8〜10からなる排熱回収部に送られる。本例では、空気予熱器7および一段目の蒸気加熱器8がそれぞれ輻射式熱交換器からなり、二段目および三段目の蒸気加熱器9,10がシェルアンドチューブ式熱交換器からなるものとされているが、本発明においてはかかる種類及び組み合わせに限定されず、他の公知の熱交換器を用いることもできる。
【0017】
空気予熱器7は、約20〜200℃程度の空気を炉内過熱防止のために主燃焼炉51内に吹き込むにあたり極端な温度低下を避けるべく、予め溶融炉排ガスとの熱交換により予熱するための熱交換器であり、より詳細には図3に示すように、上部供給口7iから下端排出口7eへ向けて溶融炉排ガスが流通される縦置き配置の筒状部7T(例えば、内径1500〜2500mm程度)と、筒状部7T内の流通排ガスを取り囲むように設けられ、燃焼空気が上端部供給口7mから下端部排出口7nへ流通される筒状ジャケット部7Jとから構成されている。そして、例えば図示のように大気を空気予熱器7に対して直接供給し、供給された空気はジャケット部7J内を下側へ流通する過程で、筒状部7T内を並流する溶融炉排ガスとの間接熱交換により、約500℃程度まで予熱された後、主燃焼炉51に送られ、炉内温度が適温に抑制される。この予熱空気は予備燃焼炉50に対しても供給することができる。また、予備燃焼炉50の上部冷却ジャケットから取り出した約200℃程度の冷却空気を、大気とともに或いは大気に代えて単独で空気予熱器7に対して供給することもできる。
【0018】
空気予熱器7を通過した溶融炉排ガスは、約811℃程度となって排ガス連通路70を介して一段目の蒸気加熱器8に供給される。一段目の蒸気加熱器8は、空気予熱器7と基本的には同様の構造とされている。すなわち一段目の蒸気加熱器8は、図3に詳細示すように、下端供給口8iから上部排出口8eへ向けて溶融炉排ガスが流通される縦置き配置の筒状部8Tと、筒状部8T内の流通排ガスを取り囲むように配置され、乾燥機3から排出された蒸気が下端部供給口8mから上端部排出口8nへ向けて流通される筒状ジャケット部8Jとから構成されている。乾燥機3から排出された約150℃程度の蒸気は、ジャケット部8J内を流通する過程で、筒状部8T内を流通する溶融炉排ガスとの間接熱交換により約181℃程度に加熱される。一方、これにより溶融炉排ガスは約750度程度まで冷却される。
【0019】
次いで本例では、一段目の蒸気加熱器8を通過した蒸気は二段目の蒸気加熱器9、三段目の蒸気加熱器10の順に流通され、反対に溶融炉排ガスは三段目の蒸気加熱器10、二段目の蒸気加熱器9の順に流通され、相互に逆流する形態で間接熱交換がなされるようになっている。そしてこれら二段目及び三段目の蒸気加熱器9,10は、図3に詳細に示すように、シェル9S,10S内に多数のチューブ9T,10Tを備えたいわゆるシェルアンドチューブ式の熱交換器であり、蒸気がシェル9S,10S内面とチューブ9T,10T外面との間に、および溶融炉排ガスがチューブ9T,10T内にそれぞれ流通され、その過程で蒸気が溶融炉排ガスとの間接熱交換により加熱されるようになっている。
【0020】
蒸気の流れに沿って詳説すると、先ず二段目の蒸気加熱器9に対しては、一段目の蒸気加熱器8において加熱を終えた約181℃程度の蒸気が蒸気連通路80を介して、および三段目の蒸気加熱器10において熱交換を終えた約400℃程度の溶融炉排ガスが排ガス連通路72を介してそれぞれ供給される。これにより、シェル9S内を流通する蒸気が、チューブ9T内を流通する排ガスとの間接熱交換により約232℃程度まで加熱される。また溶融炉排ガスは約250℃程度まで冷却される。次に、三段目の蒸気加熱器10には、二段目の蒸気加熱器9において加熱を終えた約232℃程度の蒸気が蒸気連通路81を介して、および一段目の蒸気加熱器8において熱交換を終えた約750℃程度の溶融炉排ガスが排ガス連通路71を介してそれぞれ供給される。これにより、シェル10S内を流通する蒸気が、チューブ10T内を流通する排ガスとの間接熱交換により約369℃程度まで加熱される。また溶融炉排ガスは約400℃程度まで冷却される。
【0021】
他方、溶融炉排ガスに含まれるダストは、空気予熱器7、一段目〜3段目の蒸気加熱器8〜10の下端部に堆積して回収され、図示しない飛灰処理設備で異物除去等の処理を行った後に安定化して外部処分するか、あるいは乾燥汚泥輸送ブロワ4の入側に戻し、乾燥汚泥に混入する。
【0022】
このように、本例では溶融炉排ガスの排熱回収を順次行う複数段の熱交換器7〜10のうち、蒸発金属の再固化によるダストが発生し易い前段側熱交換器(空気予熱器7及び一段目の蒸気加熱器8)として、前述構成の輻射式熱交換器を用いたことにより、筒状部の内周面に多少ダストが付着しても、排ガスの流通を阻害又は閉塞するような事態までは至りにくく、清掃も容易であり、かつ高温耐性も十分に確保される。しかも、単にかかる輻射式熱交換器を用いるだけでは熱交換効率が低いために排熱回収部全体の設置スペースが過大となってしまうが、本例では更に、蒸発金属によるダストが発生しにくい後段側熱交換器(二段目及び三段目の蒸気加熱器9,10)として、単位設置面積あたりの熱交換効率が非常に高くかつ高温耐性も十分にあるシェルアンドチューブ式熱交換器を組み合わせることによって、ダストによる排ガス流通系の閉塞のおそれを少なくしながらも、排熱回収部の設置スペースを最小限に抑えることができる。
【0023】
しかし、以上のような組み合わせ構成を採用したとしても、熱交換器7〜10内にダストが付着するのを完全に抑えることはできず、定期的な清掃が必要である。しかし清掃が必要であるとしても、複数段ある熱交換器の全てにダストが付着するのでは、清掃作業が非常に煩雑となる。
【0024】
そこで本例では、図4に示すように、本発明に従って少なくとも蒸発金属によるダストが発生し易い最上流側の熱交換器(空気予熱器7)からの排ガスを次段の熱交換器(一段目蒸気加熱器8)へ送給する排ガス連通路70に、内部の排ガスがその上流側の熱交換器7よりも低速となるように、例えば排ガス流通方向に対する横断面積が上流側の熱交換器7よりも大きいダスト捕捉スペース70S,70Sを形成するのが望ましい。特に好適には、ダスト捕捉スペース70S,70S内における流速が、当該ダスト捕捉スペース70S,70Sよりも上流の全ての排ガス流路(すなわち本例の場合、熱交換器7、およびこれと混合冷却器53との連通路72)内よりも低速となるように構成するのが望ましい。このダスト捕捉スペース70S,70Sにおける流速低下度合いは、一概にはいえないが例えば約2〜5m/秒であるのが望ましい。より具体的には、連通路72内の流速が5〜10m/秒、熱交換器7内の流速が3〜6m/秒、およびダスト捕捉スペース70S内の流速が2〜5m/秒となるように設計するのが望ましい。
【0025】
これにより、最上流側の熱交換器7における冷却により発生したダストを伴う排ガスの流速が、次段への排ガス連通路70内のダスト捕捉スペース70S,70Sにおいて低下し、そこに含まれるダストが捕捉スペース70S,70S内において集中的に捕捉される。よって、最上流側の熱交換器7内にはダストが多少付着するかもしれないが、当該排ガス連通路70以降の熱交換器8〜10内にはダストが付着しにくく、流路閉塞のおそれも少なくなり、また清掃作業が著しく容易になる。この構成は、特に本例のように下流側の排ガス流通系にシェルアンドチューブ式熱交換器のチューブのような閉塞のおそれがある細い流路を有する場合に特に好適なものである。
【0026】
また図示のように、空気予熱器7と蒸気加熱器8とをつなぐ横向き排ガス連通路(ダクト)70が、一端部上壁の供給口70iにおいて空気予熱器7の筒状部の下端排出口7eと着脱自在に接続され、他端部上壁の排出口70eにおいて蒸気加熱器8の筒状部の下端供給口8iと接続されていると排ガス連通路70内の清掃が容易となる利点がある。
【0027】
特に排ガス連通路70は、図4に詳細に示すように、空気予熱器7の下端排出口7eと直列接続される筒状上側部分t1および下端頂点部にダスト排出口x1を有する円錐状下側部分c1からなる入側竪型筒状部70Aと、蒸気加熱器8の下端供給口8iに直列接続される筒状上側部分t2および下端頂点部にダスト排出口x2を有する円錐状下側部分c2からなる出側竪型筒状部70Bと、入側が入側竪型筒状部70Aの側部に及び出側が出側竪型筒状部70Bの側部にそれぞれ連通され、入側部分内の下面enが入側竪型筒状部の下端排出口x1まで及び出側部分内の下面exが出側竪型筒状部の下端排出口x2までそれぞれ連続的に下向き傾斜した横向きダクト部70Cとを一体的に形成したものが好ましい。この排ガス連通路70では、横向きダクト部70C中央の縮径部ceの両側全体がそれぞれダスト捕捉スペースとなる。このように構成するとで、縮径部ceを除く連通路70の略全体がダスト捕捉スペースとなるだけでなく、下側部分の略全てc1,en,ex,c2が下向き傾斜面で形成されるため、下面の略全体にわたり水平面がなく、流速が低下し降下したダストの略全部がいずれかの排出口x1,x2に滑り落ちることになる。よって、排ガス連通路70内でのダスト捕捉能力がより高くなるとともに、降下ダストの略全てを排出口x1,x2に収集して排出させることができるようになる。
【0028】
他方、溶融炉排ガスとの熱交換により加熱された蒸気は乾燥機3に対して循環供給される。この際、必要に応じて補助加熱器11(間接熱交換器)において、都市ガス等の燃料を燃焼する補助炉12からのクリーン排ガスとの熱交換により所定温度、例えば400℃まで加熱した後に、乾燥機3に対して供給するのが望ましい。このため、図示しないが、乾燥機3に対して戻される蒸気の温度を測定する温度測定装置を設け、この温度測定装置による測定結果に基づいて加熱器11へのクリーン排ガス送風量や補助炉12の燃焼度合いを調節するように構成することができる。符号13は、補助炉へ燃焼空気を送り込む補助炉ファンを示している。
【0029】
また図示するように、乾燥機3に対して戻される蒸気の一部を溶融炉5内に供給し、過熱防止を図るのも好適である。すなわち本例のように汚泥に蒸気を直接接触させて乾燥する場合、汚泥乾燥時の水分の蒸発により循環蒸気は経時的に増加するため、これを必要に応じて系外に排出する必要がある。他方、前述のように溶融炉5が自然放冷式の場合、過熱を防ぐためには多量の空気を炉内に供給しなければならない。しかるに、本発明に従って炉5内に循環蒸気の一部を吹き込むことにより、循環蒸気量の調節を行えるだけでなく、蒸気の比熱が空気の約4倍程度あるために、空気のみの場合と比較して著しく少ない吹き込み量で炉内温度を調節できるのである。また循環蒸気には多量の悪臭成分が含まれているが、溶融炉5内に吹き込まれると悪臭成分が熱分解されるという副次的な利点もある。ただし、本例のように溶融炉5内に吹き込む蒸気が低温(約370℃程度)の場合には、炉内温度が急激に下がり温度調節に支障が生じるので、そのような場合には図示のように予熱器7から溶融炉5内に吹き込まれる空気と混合してから炉内に吹き込むのが好ましい。本例の溶融炉5の場合、上記利点を得るためには、循環蒸気を主燃焼炉51に吹き込みその余りを混合冷却器53に吹き込むようにするのが望ましい。また図示しないが、循環蒸気量の調節のために、乾燥機3内圧を測定する圧力計と、この圧力計の測定結果に応じて溶融炉5へ供給する循環蒸気量を制御する手段とを設けるのが望ましい。
【0030】
他方、蒸気との熱交換により約250℃程度まで冷却した溶融炉排ガスは、排ガス冷却器100において冷却水および冷却エアの噴霧により、約200℃程度まで冷却され、次いでバグフィルタ101により除塵される。またこれら排ガス冷却器100およびバグフィルタ101で回収されるダストも、図示しない飛灰処理設備で異物除去等の処理を行った後に安定化して外部処分するか、あるいは乾燥汚泥輸送ブロワ4の入側に戻し、乾燥汚泥に混入する。バグフィルタ101を経た排ガスは、次いで排煙処理塔102(スクラバー)に供給され、洗浄水により洗浄集塵される。またその過程で約50℃程度まで冷却された後、誘引ファン103により脱硝処理部110に導入される。
【0031】
脱硝処理部110は、溶融炉排ガスを脱硝予熱器(間接熱交換器)111において排熱との熱交換により予め250℃程度まで予熱し、次いで都市ガス等の燃料を用いる加熱炉112により約350℃の反応塔供給温度まで加熱した後、尿素水、エア及び希釈水等を添加して反応塔113内において脱硝反応による脱硝処理を行うものである。予熱器111で用いる排熱媒体としては、本例では、蒸気循環系の補助加熱器11において使用したクリーン排ガスが適温(約400℃)となるのでその全部(一部でも良い)と、脱硝処理後の排ガスが適温(約350℃)となるのでその全部とを合流混合した後に用いるように構成されている。もちろん、いずれか一方でも良い。この混合ガスは、予熱器111での熱交換後、煙突114から大気放出される。特に、このように補助加熱器11において使用したクリーン排ガスを脱硝処理後の排ガスに混入することにより、大気放出する際の白煙の発生を防止することができる利点がある。なお、符号115は加熱炉に空気を送り込む空気ファンを示している。
【0032】
<その他>
(イ)上記例では溶融炉排ガスを加熱媒体とする熱交換器は4段設けられているが、熱交換器の段数は排熱回収度合いに応じて適宜定めることができる。
【0033】
(ロ)また上記例は、乾燥熱源としての循環蒸気により排熱回収を行う設備例であるが、本発明では溶融炉排ガスから複数段の熱交換器により熱回収を行うものであれば、他の熱媒により排熱回収したり、回収排熱を他の用途に利用したりすることもできる。
【0034】
(ハ)さらに上記例は下水汚泥の溶融処理設備への適用例であるが、本発明はこれに限定されず、他の廃棄物や非廃棄物などの処理にも適用でき、また溶融までは行わない焼却設備等の燃焼処理設備にも適用することができる。
【0035】
(ニ)図示しないが、上記例の排ガス連通路70の中央縮径部ceにおいて、内部下面の水平面が無くなるように、入側下面enおよび出側下面exを延長して鋭角に形成することもできる。これにより、連通路内下面の全体が完全に下向き傾斜面のみからなる構造となる。
【0036】
【発明の効果】
以上のとおり本発明によれば、熱交換器内の排ガス流路が閉塞しにくく、また発生したダストの清掃が容易な設備となる。
【図面の簡単な説明】
【図1】 本発明に係る汚泥処理設備例の前段フロー図である。
【図2】 後段フロー図である。
【図3】 排熱回収部の拡大図である。
【図4】 排ガス連通路の拡大斜視図である。
【符号の説明】
1…汚泥ピット、2…汚泥供給ポンプ、3…乾燥機、4…乾燥汚泥輸送ブロワ、5…溶融炉、6…水冷スラグコンベヤ、7…空気予熱器、8,9,10…蒸気加熱器、11…補助加熱器、12…補助炉、70,71,72…排ガス連通路、80,81…蒸気連通路、100…排ガス冷却器、101…バグフィルタ、102…排煙処理塔、111…脱硝予熱器、112…加熱炉、113…反応塔、114…煙突。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas treatment apparatus and method suitable for water-containing waste such as sewage sludge and garbage that require drying prior to combustion treatment such as incineration and melting treatment.
[0002]
[Prior art]
In recent waste treatment facilities, in response to a request for energy saving, exhaust heat generated by incineration or melting is recovered and effectively used as a heat source in the facility or as electric energy by a generator.
[0003]
For example, there is a technique disclosed in Japanese Patent Publication No. 7-24733 as an effective utilization of exhaust heat in a hydrous waste treatment facility. This prior art includes a steam direct dryer that performs drying by directly contacting steam and hydrous waste, and a treatment furnace that incinerates or melts the dry waste dried by the dryer, and uses a heat exchanger. The used steam used by the dryer is heated by heat exchange with the exhaust gas from the processing furnace and is circulated again to the dryer.
[0004]
Actually, exhaust heat recovery is not sufficient with a single heat exchanger, so the exhaust gas from the melting furnace is sequentially circulated through multiple stages of indirect heat exchangers connected in series via the exhaust gas communication passage. A configuration for collecting exhaust heat of exhaust gas in stages will be adopted.
[0005]
[Problems to be solved by the invention]
However, when performing such a multi-stage heat exchange, for example, when the waste is melted, the operating temperature in the melting furnace reaches as high as about 1300 to 1500 ° C., so that the evaporated metals are mixed in the exhaust gas, There is a possibility that dust is generated by solidifying in the process of being sequentially cooled by the heat exchanger, and this dust adheres to the inside of the heat exchanger and the exhaust gas passage is blocked. For this reason, periodic cleaning is necessary, but if dust adheres to all of the heat exchangers in a plurality of stages, the cleaning operation becomes very complicated. In particular, if dust adheres to the heat transfer surface of the heat exchanger, the cleaning operation is not easy. Also, in other combustion processes, the generation and adhesion of dust and the cleaning thereof are inevitable.
[0006]
Accordingly, a main object of the present invention is to provide an exhaust gas treatment apparatus and a method therefor in which the exhaust gas flow path in the heat exchanger is less likely to be clogged and the generated dust can be easily cleaned.
[0007]
[Means for Solving the Problems]
The present invention that has solved the above-mentioned problems is an exhaust gas in which exhaust gas from a combustion furnace is sequentially distributed to a plurality of stages of indirect heat exchangers connected in series via an exhaust gas communication passage, and exhaust heat of exhaust gas is recovered in multiple stages. A processing device comprising:
A dust discharge path having a lower constriction discharge path and a discharge port connected to the lower constriction discharge path is formed in each of the lower portions of the vertical upper heat exchanger and the lower heat exchanger that are adjacent to each other at an interval.
The lower part of the upper stage heat exchanger and the lower part of the lower stage heat exchanger are connected by a horizontal duct that circulates exhaust gas in the horizontal direction,
The lower side wall of the horizontal duct is continuously bordered between the lower end of the upper heat exchanger and the upper end of the lower heat exchanger, and one side continuously faces down to the lower end outlet of the upper heat exchanger. And the other side is continuously inclined downward to the lower end outlet of the lower heat exchanger,
A dust trapping space was formed on the inlet side and the outlet side of the exhaust gas communication passage, at which the flow rate of exhaust gas flowing through the exhaust gas passage is at least lower than that in the upper heat exchanger,
This is an exhaust gas treatment apparatus.
[0008]
In this invention, it is preferable to comprise so that the flow velocity in the said dust capture | acquisition space may become low speed rather than the inside of all the exhaust gas flow paths upstream from the said dust capture | acquisition space. Further, it is preferable that the exhaust gas communication passage has a discharge port at a lower end portion, and substantially the entire lower portion of the inner surface of the passage is inclined downward continuously to the discharge port.
[0009]
On the other hand, according to the exhaust gas treatment method of the present invention, the exhaust gas of the combustion furnace is sequentially distributed to a plurality of stages of indirect heat exchangers connected in series via the exhaust gas communication passage, and the exhaust heat of the exhaust gas is recovered in a plurality of stages. Hits the,
A dust discharge path having a lower constricted discharge path and a discharge port connected to the lower constricted discharge path is formed in the lower part of the vertically adjacent upper heat exchanger and lower heat exchanger, respectively.
The lower part of the upper heat exchanger and the lower part of the lower heat exchanger are connected by a horizontal duct that circulates the exhaust gas in the horizontal direction,
The lower side wall of this horizontal duct is bordered between the lower end of the upper heat exchanger and the upper end of the lower heat exchanger, and one side continuously faces downward to the lower end outlet of the upper heat exchanger. And the other side is continuously inclined to the lower end discharge port of the lower heat exchanger,
A dust trapping space for trapping dust is formed on the inlet side and outlet side of the exhaust gas communication path at a lower flow rate of exhaust gas than at least in the upper heat exchanger,
The exhaust gas is circulated in the dust capturing space to capture exhaust gas dust,
It is characterized by this.
[0010]
(Function and effect)
In the present invention, the flow rate of the exhaust gas accompanied by dust is reduced in the dust trapping space in the exhaust gas communication path connecting the heat exchangers, and the dust contained therein is concentrated and trapped in the trapping space. Therefore, dust hardly adheres to the heat exchanger after the exhaust gas communication path, and the risk of blockage of the flow path is reduced, and the cleaning operation is remarkably facilitated.
[0011]
In particular, when the exhaust gas communication passage has a discharge port at the lower end and substantially the entire lower part of the inner surface of the passage is inclined downward continuously to the discharge port, the flow velocity is reduced and the lower surface of the passage is lowered. This has the advantage that all of the dust that has been slid down to the outlet is collected.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to an example of sewage sludge treatment equipment.
FIG.1 and FIG.2 has shown the flowchart of the example of the sewage sludge processing equipment to which this invention is applied. Reference numeral 1 in FIG. 1 denotes a sludge pit, and the sludge S stored therein is transferred to a hopper (not shown) by a crane (not shown) and supplied to a dryer 3 by a sludge supply pump 2 attached thereto. The
[0013]
In the dryer 3, the sludge is dried using heated steam of about 400 ° C. as a drying heat source. The dryer 3 is not of a steam direct drying type in which steam and water-containing waste are directly brought into contact as shown in the illustrated example as long as a heat medium such as steam can be circulated as a drying heat source. May be. The circulating heat medium is not limited to steam.
[0014]
The steam reduced in temperature by heat exchange with the sludge is supplied to the dust collector 3C at about 150 ° C. After the dried sludge dust is separated and recovered here, the first-stage steam described later by the steam circulation fan 3F. It is supplied to the heater 8. As the dust collector 3C, it is preferable to provide a plurality of stages of bag filters or cyclones.
[0015]
The dried sludge dried and discharged by the dryer 3 and the dried sludge dust collected by the dust collector 3C are then supplied to the melting furnace 5 by pneumatic transportation by the dried sludge transportation blower 4, and are burned and melted. Although the combustion melting furnace 5 is not particularly limited in the present invention, in the illustrated example, a vertical swirl type preliminary combustion furnace 50, a horizontal main combustion furnace 51 having one end connected to the lower end, and a slag chute at the other end. This is a naturally-cooled type composed of a saddle-type mixing cooler 53 connected via 52, and the dried sludge is blown into the upper portion of the preliminary combustion furnace 50. A burner 54 is provided in the upper portion of the pre-combustion furnace 50, and fuel such as city gas, heavy oil, kerosene, waste oil, and combustion air from the fan 55 are supplied to the burner 54. The dried sludge blown into the pre-combustion furnace 50 along the swirl direction is burned and melted by the combustion frame by the burner 54 while swirling down, and is discharged from the slag chute 52 as molten slag through the main combustion furnace 51. . The discharged molten slag is taken out after being cooled and solidified by the water-cooled slag conveyor 6.
[0016]
On the other hand, the exhaust gas from the melting furnace 5 is about 1350 to 1450 ° C., and after this is cooled to about 850 ° C. through the mixing cooler 53, the air preheater 7 and the multistage steam heaters 8 to 10 are cooled. It is sent to the exhaust heat recovery unit consisting of In this example, the air preheater 7 and the first stage steam heater 8 are each composed of a radiant heat exchanger, and the second and third stage steam heaters 9 and 10 are each composed of a shell and tube heat exchanger. However, the present invention is not limited to such types and combinations, and other known heat exchangers can also be used.
[0017]
The air preheater 7 is preheated by heat exchange with the melting furnace exhaust gas in advance in order to avoid an extreme temperature drop when blowing air of about 20 to 200 ° C. into the main combustion furnace 51 to prevent overheating in the furnace. More specifically, as shown in FIG. 3, a vertically-arranged cylindrical portion 7T (for example, an inner diameter 1500) through which melting furnace exhaust gas is circulated from the upper supply port 7i toward the lower end discharge port 7e. ˜2500 mm) and a cylindrical jacket portion 7J which is provided so as to surround the circulating exhaust gas in the cylindrical portion 7T and through which combustion air flows from the upper end supply port 7m to the lower end discharge port 7n. . For example, as shown in the drawing, the atmospheric air is directly supplied to the air preheater 7, and the supplied air flows in the jacket portion 7J in the downward direction, and the melting furnace exhaust gas flows in parallel in the cylindrical portion 7T. Is preheated to about 500 ° C. by indirect heat exchange, and then sent to the main combustion furnace 51 to suppress the furnace temperature to an appropriate temperature. This preheated air can also be supplied to the precombustion furnace 50. Further, the cooling air of about 200 ° C. taken out from the upper cooling jacket of the pre-combustion furnace 50 can be supplied to the air preheater 7 alone or in place of the air.
[0018]
The melting furnace exhaust gas that has passed through the air preheater 7 reaches about 811 ° C. and is supplied to the first stage steam heater 8 via the exhaust gas communication passage 70. The first stage steam heater 8 has basically the same structure as the air preheater 7. That is, as shown in detail in FIG. 3, the first stage steam heater 8 includes a vertically disposed cylindrical portion 8 </ b> T through which melting furnace exhaust gas flows from the lower end supply port 8 i to the upper discharge port 8 e, and the cylindrical portion. It arrange | positions so that the distribution | circulation waste gas in 8T may be surrounded, and it is comprised from the cylindrical jacket part 8J through which the vapor | steam discharged | emitted from the dryer 3 distribute | circulates from the lower end part supply port 8m toward the upper end part discharge port 8n. The steam of about 150 ° C. discharged from the dryer 3 is heated to about 181 ° C. by indirect heat exchange with the melting furnace exhaust gas flowing in the cylindrical portion 8T in the process of circulating in the jacket portion 8J. . On the other hand, the melting furnace exhaust gas is cooled to about 750 degrees.
[0019]
Next, in this example, the steam that has passed through the first stage steam heater 8 is circulated in the order of the second stage steam heater 9 and the third stage steam heater 10, and conversely, the melting furnace exhaust gas is the third stage steam. The heater 10 and the second-stage steam heater 9 are circulated in this order, and indirect heat exchange is performed in such a manner that they flow backward to each other. These second-stage and third-stage steam heaters 9 and 10 are, as shown in detail in FIG. 3, a so-called shell-and-tube heat exchange having a large number of tubes 9T and 10T in the shells 9S and 10S. Steam is circulated between the inner surface of the shell 9S, 10S and the outer surface of the tubes 9T, 10T, and the melting furnace exhaust gas is circulated in the tubes 9T, 10T. In the process, the steam is indirectly heat exchanged with the melting furnace exhaust gas. Is heated by.
[0020]
To explain in detail along the flow of the steam, first, with respect to the second stage steam heater 9, the steam of about 181 ° C. that has been heated in the first stage steam heater 8 is passed through the steam communication path 80. The melting furnace exhaust gas at about 400 ° C. after the heat exchange in the third stage steam heater 10 is supplied through the exhaust gas communication path 72. Thereby, the vapor | steam which distribute | circulates the inside of the shell 9S is heated to about 232 degreeC by indirect heat exchange with the waste gas which distribute | circulates the inside of the tube 9T. The melting furnace exhaust gas is cooled to about 250 ° C. Next, in the third stage steam heater 10, the steam of about 232 ° C. that has been heated in the second stage steam heater 9 passes through the steam communication path 81 and the first stage steam heater 8. The melting furnace exhaust gas at about 750 ° C. after the heat exchange is supplied through the exhaust gas communication passage 71. Thereby, the vapor | steam which distribute | circulates the inside of the shell 10S is heated to about 369 degreeC by indirect heat exchange with the waste gas which distribute | circulates the inside of the tube 10T. The melting furnace exhaust gas is cooled to about 400 ° C.
[0021]
On the other hand, the dust contained in the melting furnace exhaust gas accumulates and collects at the lower end of the air preheater 7 and the first to third steam heaters 8 to 10, and removes foreign matter etc. with a fly ash treatment facility (not shown). It stabilizes after processing, and it disposes outside or returns to the entrance side of dry sludge transport blower 4, and mixes in dry sludge.
[0022]
As described above, in this example, among the heat exchangers 7 to 10 that sequentially recover the exhaust heat of the melting furnace exhaust gas, the front heat exchanger (air preheater 7) that easily generates dust due to re-solidification of the evaporated metal. In addition, by using the radiant heat exchanger having the above-described configuration as the first stage steam heater 8), even if some dust adheres to the inner peripheral surface of the cylindrical portion, the flow of the exhaust gas is inhibited or blocked. It is difficult to reach a serious situation, cleaning is easy, and high temperature resistance is sufficiently secured. Moreover, simply using such a radiant heat exchanger results in a low heat exchange efficiency, and therefore the installation space of the entire exhaust heat recovery unit becomes excessive. In this example, the latter stage is further difficult to generate dust due to evaporated metal. Combined as a side heat exchanger (second and third stage steam heaters 9 and 10) is a shell and tube heat exchanger with very high heat exchange efficiency per unit installation area and sufficient high-temperature resistance As a result, it is possible to minimize the installation space of the exhaust heat recovery unit while reducing the risk of blockage of the exhaust gas circulation system due to dust.
[0023]
However, even if such a combined configuration is adopted, dust cannot be completely prevented from adhering in the heat exchangers 7 to 10, and regular cleaning is required. However, even if cleaning is necessary, cleaning work becomes very complicated if dust adheres to all of the heat exchangers in a plurality of stages.
[0024]
Therefore, in this example, as shown in FIG. 4, according to the present invention, exhaust gas from the most upstream heat exchanger (air preheater 7) that is liable to generate dust due to evaporated metal is used as the next stage heat exchanger (first stage). In the exhaust gas communication passage 70 fed to the steam heater 8), for example, the cross-sectional area with respect to the exhaust gas circulation direction has an upstream cross section with respect to the upstream side of the heat exchanger 7 so that the internal exhaust gas is slower than the upstream heat exchanger 7. It is desirable to form a larger dust capturing space 70S, 70S. Particularly preferably, the flow rates in the dust trapping spaces 70S and 70S are all exhaust gas passages upstream of the dust trapping spaces 70S and 70S (that is, in this example, the heat exchanger 7 and the mixed cooler). It is desirable that the speed is lower than that in the communication path 72) with 53. The degree of decrease in the flow velocity in the dust trapping spaces 70S and 70S cannot be generally specified, but is preferably about 2 to 5 m / second, for example. More specifically, the flow velocity in the communication path 72 is 5 to 10 m / second, the flow velocity in the heat exchanger 7 is 3 to 6 m / second, and the flow velocity in the dust trapping space 70S is 2 to 5 m / second. It is desirable to design.
[0025]
Thereby, the flow velocity of the exhaust gas accompanied by dust generated by cooling in the heat exchanger 7 on the most upstream side is lowered in the dust trapping spaces 70S and 70S in the exhaust gas communication passage 70 to the next stage, and the dust contained therein is reduced. The trapping spaces 70S and 70S are trapped in a concentrated manner. Therefore, some dust may adhere to the heat exchanger 7 on the most upstream side, but it is difficult for dust to adhere to the heat exchangers 8 to 10 after the exhaust gas communication passage 70, which may block the flow path. And the cleaning operation becomes remarkably easy. This configuration is particularly suitable when the downstream exhaust gas circulation system has a narrow flow path that may be clogged, such as a tube of a shell-and-tube heat exchanger, as in this example.
[0026]
Further, as shown in the drawing, a sideways exhaust gas communication path (duct) 70 connecting the air preheater 7 and the steam heater 8 is provided at the lower end discharge port 7e of the cylindrical portion of the air preheater 7 at the supply port 70i on the upper end wall. When the exhaust port 70e is connected to the lower end supply port 8i of the tubular portion of the steam heater 8 at the discharge port 70e on the upper wall of the other end, there is an advantage that the exhaust gas communication passage 70 can be easily cleaned. .
[0027]
In particular, as shown in detail in FIG. 4, the exhaust gas communication passage 70 has a cylindrical upper portion t1 connected in series with the lower end discharge port 7e of the air preheater 7, and a conical lower side having a dust discharge port x1 at the lower end vertex. A conical lower portion c2 having an inlet side cylindrical portion 70A composed of a portion c1, a cylindrical upper portion t2 connected in series to the lower end supply port 8i of the steam heater 8, and a dust discharge port x2 at the lower end apex portion. The entrance side saddle-shaped cylindrical portion 70B is connected to the side of the entrance-side saddle-shaped cylindrical portion 70A and the exit side is connected to the side of the exit-side saddle-shaped cylindrical portion 70B. A lateral duct portion 70C in which the lower surface en is continuously inclined downward to the lower end discharge port x1 of the entry side saddle-shaped cylindrical portion and the lower surface ex in the exit side portion is continuously inclined downward to the lower end discharge port x2 of the exit side saddle-shaped cylindrical portion; Are preferably formed integrally. In the exhaust gas communication passage 70, the entire sides of the reduced diameter portion ce at the center of the lateral duct portion 70C serve as dust capturing spaces. With this configuration, not only the entire communication path 70 excluding the reduced diameter portion ce becomes a dust capturing space, but also substantially all of the lower portion c1, en, ex, c2 are formed with downward inclined surfaces. Therefore, there is no horizontal surface over substantially the entire lower surface, and almost all of the dust that has fallen due to a decrease in the flow velocity slides down to one of the discharge ports x1 and x2. Therefore, the dust capturing ability in the exhaust gas communication passage 70 is further increased, and substantially all of the descending dust can be collected and discharged at the discharge ports x1 and x2.
[0028]
On the other hand, the steam heated by heat exchange with the melting furnace exhaust gas is circulated and supplied to the dryer 3. At this time, in the auxiliary heater 11 (indirect heat exchanger) as necessary, after heating to a predetermined temperature, for example, 400 ° C. by heat exchange with the clean exhaust gas from the auxiliary furnace 12 that burns fuel such as city gas, It is desirable to supply to the dryer 3. For this reason, although not shown, a temperature measuring device for measuring the temperature of the steam returned to the dryer 3 is provided, and the amount of clean exhaust gas blown to the heater 11 and the auxiliary furnace 12 based on the measurement result by the temperature measuring device. The degree of combustion can be adjusted. Reference numeral 13 denotes an auxiliary furnace fan that feeds combustion air to the auxiliary furnace.
[0029]
As shown in the drawing, it is also preferable to supply a part of the steam returned to the dryer 3 into the melting furnace 5 to prevent overheating. That is, when the steam is brought into direct contact with the sludge and dried as in this example, the circulating steam increases with time due to the evaporation of moisture during sludge drying, and therefore it is necessary to discharge it outside the system as necessary. . On the other hand, when the melting furnace 5 is a natural cooling type as described above, a large amount of air must be supplied into the furnace in order to prevent overheating. However, by blowing a part of the circulating steam into the furnace 5 according to the present invention, not only can the amount of circulating steam be adjusted, but also the specific heat of the steam is about four times that of air, so compared with the case of only air. Thus, the furnace temperature can be adjusted with a remarkably small blowing amount. The circulating steam contains a large amount of malodorous components, but there is a secondary advantage that when the steam is blown into the melting furnace 5, the malodorous components are thermally decomposed. However, when the steam blown into the melting furnace 5 is at a low temperature (about 370 ° C.) as in this example, the temperature in the furnace is drastically lowered and the temperature adjustment is hindered. Thus, it is preferable to mix with the air blown into the melting furnace 5 from the preheater 7 and then blow it into the furnace. In the case of the melting furnace 5 of this example, in order to obtain the above advantages, it is desirable to blow the circulating steam into the main combustion furnace 51 and the remainder into the mixing cooler 53. Although not shown, a pressure gauge for measuring the internal pressure of the dryer 3 and means for controlling the amount of the circulating steam supplied to the melting furnace 5 according to the measurement result of the pressure gauge are provided for adjusting the amount of the circulating steam. Is desirable.
[0030]
On the other hand, the melting furnace exhaust gas cooled to about 250 ° C. by heat exchange with steam is cooled to about 200 ° C. by spraying cooling water and cooling air in the exhaust gas cooler 100, and then removed by the bag filter 101. . The dust collected by the exhaust gas cooler 100 and the bag filter 101 is also stabilized and disposed of after being subjected to foreign matter removal or the like in a fly ash treatment facility (not shown), or on the inlet side of the dry sludge transport blower 4 And mix with dry sludge. The exhaust gas that has passed through the bag filter 101 is then supplied to the flue gas treatment tower 102 (scrubber) and cleaned and collected with cleaning water. Further, after being cooled to about 50 ° C. in the process, it is introduced into the denitration processing unit 110 by the induction fan 103.
[0031]
The denitration processing unit 110 preheats the melting furnace exhaust gas to about 250 ° C. in advance by heat exchange with exhaust heat in a denitration preheater (indirect heat exchanger) 111, and then heats about 350 by the heating furnace 112 using a fuel such as city gas. After heating to the reaction tower supply temperature of 0 ° C., urea water, air, dilution water, and the like are added, and denitration treatment by denitration reaction is performed in the reaction tower 113. As the exhaust heat medium used in the preheater 111, in this example, the clean exhaust gas used in the auxiliary heater 11 of the steam circulation system has an appropriate temperature (about 400 ° C.), all of which (or a part thereof), and denitration treatment. Since the later exhaust gas has an appropriate temperature (about 350 ° C.), all of the exhaust gas is combined and mixed for use. Of course, either one is ok. The mixed gas is released into the atmosphere from the chimney 114 after heat exchange in the preheater 111. In particular, by mixing the clean exhaust gas used in the auxiliary heater 11 into the exhaust gas after the denitration treatment, there is an advantage that the generation of white smoke when released into the atmosphere can be prevented. Reference numeral 115 denotes an air fan that feeds air into the heating furnace.
[0032]
<Others>
(A) In the above example, four stages of heat exchangers using melting furnace exhaust gas as a heating medium are provided, but the number of stages of heat exchangers can be determined as appropriate according to the degree of exhaust heat recovery.
[0033]
(B) The above example is an example of equipment for recovering exhaust heat with circulating steam as a drying heat source. However, in the present invention, if heat recovery is performed from the melting furnace exhaust gas by a multi-stage heat exchanger, It is also possible to recover exhaust heat with the heat medium or to use the recovered exhaust heat for other purposes.
[0034]
(C) Further, the above example is an application example to a sewage sludge melting treatment facility, but the present invention is not limited to this, and can be applied to other waste and non-waste treatments, and until melting. It can also be applied to combustion treatment equipment such as incineration equipment that is not performed.
[0035]
(D) Although not shown, the entrance-side lower surface en and the exit-side lower surface ex may be extended at an acute angle so that the horizontal surface of the inner lower surface is eliminated in the central reduced diameter portion ce of the exhaust gas communication passage 70 of the above example. it can. As a result, the entire inner surface of the communication path has a completely downwardly inclined surface.
[0036]
【The invention's effect】
As described above, according to the present invention, the exhaust gas passage in the heat exchanger is less likely to be blocked, and the generated dust can be easily cleaned.
[Brief description of the drawings]
FIG. 1 is a front-stage flow diagram of an example of a sludge treatment facility according to the present invention.
FIG. 2 is a latter-stage flow diagram.
FIG. 3 is an enlarged view of an exhaust heat recovery unit.
FIG. 4 is an enlarged perspective view of an exhaust gas communication path.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sludge pit, 2 ... Sludge supply pump, 3 ... Dryer, 4 ... Dry sludge transport blower, 5 ... Melting furnace, 6 ... Water-cooled slag conveyor, 7 ... Air preheater, 8, 9, 10 ... Steam heater, DESCRIPTION OF SYMBOLS 11 ... Auxiliary heater, 12 ... Auxiliary furnace, 70, 71, 72 ... Exhaust gas communication channel, 80, 81 ... Steam communication channel, 100 ... Exhaust gas cooler, 101 ... Bag filter, 102 ... Smoke treatment tower, 111 ... Denitration Preheater, 112 ... heating furnace, 113 ... reaction tower, 114 ... chimney.

Claims (3)

燃焼炉の排ガスを、排ガス連通路を介して直列接続された複数段の間接熱交換器に順次流通させ、排ガスの排熱を複数段階に分けて回収する排ガス処理装置であって、
間隔を置いて隣接する縦向きの上段熱交換器及び下段熱交換器の下部にそれぞれ、下窄まりの排出路及びこれに連なる排出口を有するダスト排出経路が形成され、
前記上段熱交換器の下方と下段熱交換器の下方とが水平方向に排ガスを流通させる横向きダクトによりつながっており、
この横向きダクトの下側壁が、上段熱交換器の下段側端部と下段熱交換器の上段側端部の間を境にして、一方側が前記上段熱交換器の下端排出口まで連続的に下向きに傾斜し、かつ他方側が前記下段熱交換器の下端排出口まで連続的に下向きに傾斜し、
前記排ガス連通路の入側及び出側に、内部を流通する排ガスの流速が少なくとも前記上段熱交換器内よりも低速となるダスト捕捉スペースを形成した、
ことを特徴とする排ガス処理装置。
An exhaust gas treatment apparatus that sequentially distributes exhaust gas of a combustion furnace to a plurality of stages of indirect heat exchangers connected in series via an exhaust gas communication path, and collects exhaust heat of exhaust gas in multiple stages,
A dust discharge path having a lower constriction discharge path and a discharge port connected to the lower constriction discharge path is formed in each of the lower portions of the vertical upper heat exchanger and the lower heat exchanger that are adjacent to each other at an interval.
The lower part of the upper stage heat exchanger and the lower part of the lower stage heat exchanger are connected by a horizontal duct that circulates exhaust gas in the horizontal direction,
The lower side wall of the horizontal duct is continuously bordered between the lower end of the upper heat exchanger and the upper end of the lower heat exchanger, and one side continuously faces down to the lower end outlet of the upper heat exchanger. And the other side is continuously inclined downward to the lower end outlet of the lower heat exchanger,
A dust trapping space was formed on the inlet side and the outlet side of the exhaust gas communication passage, at which the flow rate of exhaust gas flowing through the exhaust gas passage is at least lower than that in the upper heat exchanger,
An exhaust gas treatment apparatus characterized by that.
前記ダスト捕捉スペース内における流速が、前記ダスト捕捉スペースよりも上流の全ての排ガス流路内よりも低速となるように構成された、請求項1記載の排ガス処理装置。The exhaust gas treatment apparatus according to claim 1, wherein a flow velocity in the dust trapping space is configured to be lower than that in all exhaust gas passages upstream of the dust trapping space. 燃焼炉の排ガスを、排ガス連通路を介して直列接続された複数段の間接熱交換器に順次流通させ、排ガスの排熱を複数段階に分けて回収するにあたり、
間隔をおいて隣接する縦向きの上段熱交換器及び下段熱交換器の下部にそれぞれ、下窄まりの排出路及びこれに連なる排出口を有するダスト排出経路を形成し、
前記上段熱交換器の下方と下段熱交換器の下方とを水平方向に排ガスを流通させる横向きダクトにより接続し、
この横向きダクトの下側壁を、上段熱交換器の下段側端部と下段熱交換器の上段側端部の間を境にして、一方側が前記上段熱交換器の下端排出口まで連続的に下向きに傾斜するよう形成し、かつ他方側が前記下段熱交換器の下端排出口まで連続的に下向きに傾斜するよう形成し、
前記排ガス連通路の入側及び出側に、排ガスの流速を少なくとも前記上段熱交換器内よりも低速にしてダストを捕捉するダスト捕捉スペースを形成し、
前記ダスト捕捉スペースに排ガスを流通させて排ガスのダストを捕捉する、
ことを特徴とする排ガス処理方法。
When exhaust gas from a combustion furnace is sequentially distributed to a plurality of stages of indirect heat exchangers connected in series via an exhaust gas communication passage, and exhaust gas exhaust heat is recovered in multiple stages,
A dust discharge path having a lower constricted discharge path and a discharge port connected to the lower constricted discharge path is formed in the lower part of the vertically adjacent upper heat exchanger and lower heat exchanger, respectively.
The lower part of the upper heat exchanger and the lower part of the lower heat exchanger are connected by a horizontal duct that circulates the exhaust gas in the horizontal direction,
The lower side wall of this horizontal duct is bordered between the lower end of the upper heat exchanger and the upper end of the lower heat exchanger, and one side continuously faces downward to the lower end outlet of the upper heat exchanger. And the other side is continuously inclined to the lower end discharge port of the lower heat exchanger,
A dust trapping space for trapping dust is formed on the inlet side and outlet side of the exhaust gas communication path at a lower flow rate of exhaust gas than at least in the upper heat exchanger,
The exhaust gas is circulated in the dust capturing space to capture exhaust gas dust,
An exhaust gas treatment method characterized by that.
JP2001179532A 2001-06-14 2001-06-14 Exhaust gas treatment apparatus and method Expired - Lifetime JP4596505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179532A JP4596505B2 (en) 2001-06-14 2001-06-14 Exhaust gas treatment apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179532A JP4596505B2 (en) 2001-06-14 2001-06-14 Exhaust gas treatment apparatus and method

Publications (3)

Publication Number Publication Date
JP2002372219A JP2002372219A (en) 2002-12-26
JP2002372219A5 JP2002372219A5 (en) 2008-04-24
JP4596505B2 true JP4596505B2 (en) 2010-12-08

Family

ID=19020084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179532A Expired - Lifetime JP4596505B2 (en) 2001-06-14 2001-06-14 Exhaust gas treatment apparatus and method

Country Status (1)

Country Link
JP (1) JP4596505B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5322142B2 (en) * 2007-03-15 2013-10-23 アルストム テクノロジー リミテッド 2-tower exhaust heat recovery system
JP6629085B2 (en) * 2016-02-02 2020-01-15 株式会社クボタ Melting system and method of controlling the melting system
CN110422988A (en) * 2019-09-02 2019-11-08 宝莹环保科技(杭州)有限公司 Calcirm-fluoride wet mud process for producing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310801A (en) * 1996-05-20 1997-12-02 Nippon Steel Corp Recovery of waste heat from boiler for sludge-melting furnace and structure of boiler
JP2000111020A (en) * 1998-09-30 2000-04-18 Hosokawa Micron Corp Heat recovery device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310801A (en) * 1996-05-20 1997-12-02 Nippon Steel Corp Recovery of waste heat from boiler for sludge-melting furnace and structure of boiler
JP2000111020A (en) * 1998-09-30 2000-04-18 Hosokawa Micron Corp Heat recovery device

Also Published As

Publication number Publication date
JP2002372219A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
CZ297796A3 (en) Purification of gas combustion products and apparatus for making the same
CN110882611A (en) Boiler flue gas whitening system
JP4392820B2 (en) Hydrous substance combustion treatment equipment and method
US4478574A (en) Scrap preheating system for an electric furnace
US5022330A (en) Garbage melter
JPH0868596A (en) Rotary type heat transfer and heating type purifier applied to exhaust gas
CN110925775A (en) Comprehensive treatment box for waste incineration flue gas
JP4596505B2 (en) Exhaust gas treatment apparatus and method
KR100976971B1 (en) Heat recovery steam generator
JP2002372215A5 (en)
JP4841011B2 (en) Hydrous substance combustion treatment equipment and method
JP4390173B2 (en) Combustion treatment equipment and method
JP4321797B2 (en) Hydrous substance combustion treatment equipment and method
JP2002372219A5 (en)
CN115301014A (en) Cement raw meal grinds high temperature flue gas purification device and cement production system
KR100974323B1 (en) A reactor for heat recovery steam generator
JP2002250514A (en) Exhaust gas disposer, and its operation method
JP2001286727A (en) Method and equipment for treating exhaust gas
JP3054259B2 (en) Incinerator
CN218348683U (en) Compact biomass power plant flue gas purification system
KR101151812B1 (en) A boiler using wasteheating
JPH11248142A (en) Method and device for treating waste gas of combustion furnace
JP2006023052A (en) Exhaust gas processing method for ash melting furnace, and processing facility therefor
CN208320270U (en) High temperature chimney filter deduster
JP3107544B2 (en) Swirl combustion furnace

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

R150 Certificate of patent or registration of utility model

Ref document number: 4596505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141001

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term