JP2002372219A - Processing apparatus for waste gas, and its method - Google Patents

Processing apparatus for waste gas, and its method

Info

Publication number
JP2002372219A
JP2002372219A JP2001179532A JP2001179532A JP2002372219A JP 2002372219 A JP2002372219 A JP 2002372219A JP 2001179532 A JP2001179532 A JP 2001179532A JP 2001179532 A JP2001179532 A JP 2001179532A JP 2002372219 A JP2002372219 A JP 2002372219A
Authority
JP
Japan
Prior art keywords
exhaust gas
communication passage
dust
heat exchanger
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001179532A
Other languages
Japanese (ja)
Other versions
JP2002372219A5 (en
JP4596505B2 (en
Inventor
Hisashi Endo
久 遠藤
Hiroyuki Yokomaku
宏幸 横幕
Kiyoshi Kojima
喜代志 小島
Masaichi Bando
政一 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2001179532A priority Critical patent/JP4596505B2/en
Publication of JP2002372219A publication Critical patent/JP2002372219A/en
Publication of JP2002372219A5 publication Critical patent/JP2002372219A5/ja
Application granted granted Critical
Publication of JP4596505B2 publication Critical patent/JP4596505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide equipment wherein a waste gas flow passage in a heat exchanger is unlikely to close and produced dust is cleaned with ease. SOLUTION: Waste gas from a melting furnace 5 for melting a waste is flowed through a plurality of stages of indirect heat exchangers 7 to 10 connected in series via waste gas communication passages 70, 71, and 72, and waste heat of waste gas is recovered by dividing the operation into a plurality of steps. Thereupon, the waste gas communication passage 70 connecting at least the uppermost stream heat exchanger 7 and the next stage heat exchanger 8 is formed to include dust capture spaces 70S, 70S where a waste gas flow speed flowing the inside is lower than that in the uppermost stream heat exchanger 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼却や溶融処理等
の燃焼処理に先立って乾燥を要する下水汚泥や生ごみ等
の含水廃棄物に好適な排ガス処理装置及びその方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment apparatus and method suitable for hydrated waste such as sewage sludge or garbage which needs to be dried prior to combustion treatment such as incineration or melting treatment.

【0002】[0002]

【従来の技術】近年の廃棄物処理設備においては、省エ
ネルギー化の要請により、焼却や溶融に伴って発生する
排熱を回収し、同設備内の熱源として又は発電機により
電気エネルギーとして有効利用している。
2. Description of the Related Art In recent waste treatment facilities, in response to a demand for energy saving, waste heat generated by incineration and melting is recovered and effectively used as a heat source in the facility or as electric energy by a generator. ing.

【0003】例えば含水廃棄物処理設備において排熱の
有効利用を図るものとしては、特公平7−24733号
公報に開示される技術がある。この従来技術は、蒸気と
含水廃棄物とを直接接触させて乾燥を行う蒸気直接乾燥
機と、この乾燥機により乾燥した乾燥廃棄物を焼却また
は溶融する処理炉とを備え、熱交換器を用いて乾燥機に
より使用した使用済み蒸気を処理炉の排ガスとの熱交換
により加熱し、再び乾燥機に循環供給するように構成し
たものである。
[0003] For example, a technique disclosed in Japanese Patent Publication No. 7-24733 discloses an effective use of waste heat in a water-containing waste treatment facility. This conventional technology includes a steam direct dryer that directly contacts steam and water-containing waste to perform drying, and a processing furnace that incinerates or melts the dried waste dried by the dryer, and uses a heat exchanger. The used steam used by the dryer is heated by heat exchange with the exhaust gas from the processing furnace, and is again supplied to the dryer by circulation.

【0004】実際には、熱交換器は一つでは排熱回収が
十分になされないので、溶融炉の排ガスを、排ガス連通
路を介して直列接続された複数段の間接熱交換器に順次
流通させ、複数段階に分けて排ガスの排熱を回収する構
成を採用することとなる。
In practice, exhaust heat recovery cannot be sufficiently performed by using only one heat exchanger. Therefore, the exhaust gas of the melting furnace is sequentially passed through a plurality of indirect heat exchangers connected in series via an exhaust gas communication passage. Then, a configuration for recovering the exhaust heat of the exhaust gas in a plurality of stages is adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、かかる
複数段の熱交換を行う場合、例えば廃棄物の溶融処理に
際しては溶融炉内の運転温度が約1300〜1500℃
もの高温に達するため、排ガス中には蒸発した金属類が
混入し、これが熱交換器により順次冷却される過程で再
固化してダストが発生し、このダストが熱交換器内に付
着して排ガス流路が閉塞する虞がある。またそのため、
定期的な清掃が必要であるが、複数段ある熱交換器の全
てにおいてダストが付着するのでは、清掃作業が非常に
煩雑となる。特に熱交換器の伝熱面にダストが付着生成
すると、その清掃作業は容易ではない。また、他の燃焼
処理においても、ダストの発生・付着およびその清掃は
避けられない。
However, in the case of performing such a multi-stage heat exchange, for example, when melting waste, the operating temperature in the melting furnace is about 1300-1500 ° C.
Since the exhaust gas reaches a high temperature, the evaporated metals are mixed into the exhaust gas, and are re-solidified in the process of being sequentially cooled by the heat exchanger to generate dust. The flow path may be blocked. Also,
Periodic cleaning is required, but if dust adheres to all of the heat exchangers in a plurality of stages, the cleaning operation becomes very complicated. In particular, if dust adheres to the heat transfer surface of the heat exchanger, the cleaning operation is not easy. In other combustion treatments, generation and adhesion of dust and cleaning thereof are inevitable.

【0006】そこで、本発明の主たる課題は、熱交換器
内の排ガス流路が閉塞しにくく、また発生したダストの
清掃が容易な排ガス処理装置及びその方法を提供するこ
とにある。
Accordingly, it is a main object of the present invention to provide an exhaust gas treatment apparatus and a method thereof, in which an exhaust gas passage in a heat exchanger is not easily blocked and generated dust can be easily cleaned.

【0007】[0007]

【課題を解決するための手段】上記課題を解決した本発
明は、燃焼炉の排ガスを、排ガス連通路を介して直列接
続された複数段の間接熱交換器に順次流通させ、排ガス
の排熱を複数段階に分けて回収する排ガス処理装置であ
って、前記熱交換器相互をつなぐ排ガス連通路に、内部
を流通する排ガスの流速が少なくとも上流側の熱交換器
内よりも低速となるダスト捕捉スペースを形成した、こ
とを特徴とする排ガス処理装置である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an exhaust gas from a combustion furnace which is sequentially circulated through a plurality of indirect heat exchangers connected in series via an exhaust gas communication passage. An exhaust gas treatment device for collecting waste gas in a plurality of stages, wherein the exhaust gas communication passage connecting the heat exchangers has a dust trap in which the flow rate of exhaust gas flowing through the exhaust gas communication passage is lower than at least in the upstream heat exchanger. An exhaust gas treatment device, wherein a space is formed.

【0008】本発明においては、前記ダスト捕捉スペー
ス内における流速が、前記ダスト捕捉スペースよりも上
流の全ての排ガス流路内よりも低速となるように構成す
るのが好ましい。また、前記排ガス連通路が、下端部に
排出口を有するとともに、通路内面の下側部分の実質的
に全体が前記排出口まで連続的に下向き傾斜しているの
が好ましい。
In the present invention, it is preferable that the flow rate in the dust trapping space is lower than that in all the exhaust gas channels upstream of the dust trapping space. Preferably, the exhaust gas communication passage has a discharge port at a lower end, and substantially the entire lower portion of the inner surface of the passage is continuously downwardly inclined to the discharge port.

【0009】他方、本発明の排ガス処理方法は、燃焼炉
の排ガスを、排ガス連通路を介して直列接続された複数
段の間接熱交換器に順次流通させ、排ガスの排熱を複数
段階に分けて回収するにあたり、前記熱交換器相互をつ
なぐ排ガス連通路にて、排ガスの流速を少なくとも上流
側の熱交換器内よりも低速にしてダストを捕捉する、こ
とを特徴とするものである。
On the other hand, in the exhaust gas treatment method of the present invention, the exhaust gas from the combustion furnace is sequentially passed through a plurality of indirect heat exchangers connected in series via an exhaust gas communication passage, and the exhaust heat of the exhaust gas is divided into a plurality of stages. When collecting the dust, the exhaust gas communication passage connecting the heat exchangers captures dust at a flow rate of the exhaust gas at least lower than that in the upstream heat exchanger.

【0010】(作用効果)本発明においては、ダストを
伴う排ガスの流速が、熱交換器相互をつなぐ排ガス連通
路内のダスト捕捉スペースにおいて低下し、そこに含ま
れるダストが捕捉スペース内において集中的に降下捕捉
される。よって、当該排ガス連通路以降の熱交換器内に
はダストが付着しにくく、流路閉塞のおそれも少なくな
り、また清掃作業が著しく容易になる。
(Function and Effect) In the present invention, the flow rate of the exhaust gas accompanied by the dust is reduced in the dust trapping space in the exhaust gas communication passage connecting the heat exchangers, and the dust contained therein is concentrated in the trapping space. It is captured by descent. Therefore, dust hardly adheres to the heat exchanger after the exhaust gas communication passage, the possibility of blockage of the flow passage is reduced, and the cleaning operation is significantly facilitated.

【0011】特に、排ガス連通路が、下端部に排出口を
有するとともに、通路内面の下側部分の実質的に全体が
排出口まで連続的に下向き傾斜していると、流速が低下
し通路内下面に降下したダストの全部が排出口に滑り落
ち収集される利点がある。
In particular, if the exhaust gas communication passage has a discharge port at the lower end and substantially the entire lower portion of the inner surface of the passage is continuously downwardly inclined to the discharge port, the flow velocity decreases and the flow rate in the passage decreases. There is an advantage that all the dust that has fallen to the lower surface slides to the discharge port and is collected.

【0012】[0012]

【発明の実施の形態】以下、本発明について、下水汚泥
処理設備の例を引いて詳説する。図1及び図2は、本発
明を適用した下水汚泥処理設備例のフロー図を示してい
る。図1中の符号1は、汚泥ピットを示しており、ここ
に貯留された汚泥Sは、図示しないクレーン等により図
示しないホッパーに移送されそこに付属する汚泥供給ポ
ンプ2により乾燥機3に供給される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to examples of sewage sludge treatment equipment. 1 and 2 show a flow chart of an example of sewage sludge treatment equipment to which the present invention is applied. Reference numeral 1 in FIG. 1 denotes a sludge pit, and the sludge S stored therein is transferred to a hopper (not shown) by a crane or the like (not shown) and supplied to a dryer 3 by a sludge supply pump 2 attached thereto. You.

【0013】乾燥機3には、加熱済みの約400℃程度
の蒸気を乾燥熱源として汚泥が乾燥される。乾燥機3と
しては、乾燥熱源として蒸気等の熱媒を循環利用できる
ものであれば、図示例のように蒸気と含水廃棄物とを直
接接触させて乾燥を行う蒸気直接乾燥タイプのものでな
くても良い。また循環熱媒としては蒸気に限られない。
The sludge is dried in the dryer 3 using heated steam of about 400 ° C. as a drying heat source. As long as the dryer 3 can use a heat medium such as steam as a drying heat source in a circulating manner, it is not a steam direct drying type in which steam and water-containing waste are brought into direct contact to perform drying as in the illustrated example. May be. The circulation heat medium is not limited to steam.

【0014】汚泥との熱交換により減温した蒸気は、約
150℃程度となって集塵機3Cに対して供給され、こ
こで乾燥汚泥ダストが分離回収された後、蒸気循環ファ
ン3Fにより後述の一段目の蒸気加熱器8に供給され
る。なお、なお、集塵機3Cとしてはバグフィルタまた
はサイクロンを複数段設けるのが好ましい。
The steam whose temperature has been reduced by the heat exchange with the sludge is supplied to the dust collector 3C at about 150 ° C., where the dried sludge dust is separated and recovered, and then the next step is performed by the steam circulation fan 3F. It is supplied to the steam heater 8 of the eye. In addition, it is preferable to provide a bag filter or a cyclone in multiple stages as the dust collector 3C.

【0015】乾燥機3により乾燥され排出された乾燥汚
泥、および集塵機3Cにより回収した乾燥汚泥ダスト
は、次いで乾燥汚泥輸送ブロワ4による空気輸送にて溶
融炉5へ供給され、燃焼溶融される。燃焼溶融炉5は、
本発明では特に限定されないが、図示例の場合、竪型旋
回式の予備燃焼炉50と、その下端に一端が接続された
横型主燃焼炉51と、その他端にスラグシュート52を
介して接続された竪型の混合冷却器53とから構成され
た自然放冷式のものであり、乾燥汚泥は予備燃焼炉50
の上部に吹き込まれる。予備燃焼炉50の上部にはバー
ナー54が設けられ、このバーナー54に対して都市ガ
ス、重油、灯油、廃油等の燃料、ならびにファン55か
らの燃焼空気が供給されるように構成されており、予備
燃焼炉50内に旋回方向に沿って吹き込まれた乾燥汚泥
は、旋回降下しながらバーナー54による燃焼フレーム
により燃焼溶融され、主燃焼炉51内を経て、スラグシ
ュート52から溶融スラグとして排出される。排出した
溶融スラグは、水冷スラグコンベヤ6により冷却固化さ
れた後に取り出される。
The dried sludge dried and discharged by the dryer 3 and the dried sludge dust collected by the dust collector 3C are then supplied to the melting furnace 5 by pneumatic transport by the dry sludge transport blower 4, where they are burned and melted. The combustion melting furnace 5
Although not particularly limited in the present invention, in the case of the illustrated example, a vertical swirling type preliminary combustion furnace 50, a horizontal main combustion furnace 51 having one end connected to its lower end, and a slag chute 52 connected to the other end are provided. And a vertical mixing cooler 53, which is a natural cooling type.
Is blown into the top of A burner 54 is provided on the upper part of the preliminary combustion furnace 50, and the burner 54 is configured to be supplied with fuel such as city gas, heavy oil, kerosene, and waste oil, and combustion air from a fan 55, The dried sludge blown in the pre-combustion furnace 50 along the swirling direction is burned and melted by the combustion frame by the burner 54 while swirling and descending, and is discharged from the slag chute 52 as molten slag through the main combustion furnace 51. . The discharged molten slag is taken out after being cooled and solidified by the water-cooled slag conveyor 6.

【0016】他方、溶融炉5の排ガスは約1350〜1
450℃となっており、これが混合冷却器53を経て約
850℃程度まで放冷された後に、空気予熱器7および
複数段の蒸気加熱器8〜10からなる排熱回収部に送ら
れる。本例では、空気予熱器7および一段目の蒸気加熱
器8がそれぞれ輻射式熱交換器からなり、二段目および
三段目の蒸気加熱器9,10がシェルアンドチューブ式
熱交換器からなるものとされているが、本発明において
はかかる種類及び組み合わせに限定されず、他の公知の
熱交換器を用いることもできる。
On the other hand, the exhaust gas of the melting furnace 5 is about 1350 to 1
After being cooled to about 850 ° C. through the mixing cooler 53, it is sent to an exhaust heat recovery section including an air preheater 7 and a plurality of stages of steam heaters 8 to 10. In this example, the air preheater 7 and the first-stage steam heater 8 are each composed of a radiant heat exchanger, and the second and third-stage steam heaters 9 and 10 are each composed of a shell-and-tube heat exchanger. However, the present invention is not limited to such types and combinations, and other known heat exchangers may be used.

【0017】空気予熱器7は、約20〜200℃程度の
空気を炉内過熱防止のために主燃焼炉51内に吹き込む
にあたり極端な温度低下を避けるべく、予め溶融炉排ガ
スとの熱交換により予熱するための熱交換器であり、よ
り詳細には図3に示すように、上部供給口7iから下端
排出口7eへ向けて溶融炉排ガスが流通される縦置き配
置の筒状部7T(例えば、内径1500〜2500mm
程度)と、筒状部7T内の流通排ガスを取り囲むように
設けられ、燃焼空気が上端部供給口7mから下端部排出
口7nへ流通される筒状ジャケット部7Jとから構成さ
れている。そして、例えば図示のように大気を空気予熱
器7に対して直接供給し、供給された空気はジャケット
部7J内を下側へ流通する過程で、筒状部7T内を並流
する溶融炉排ガスとの間接熱交換により、約500℃程
度まで予熱された後、主燃焼炉51に送られ、炉内温度
が適温に抑制される。この予熱空気は予備燃焼炉50に
対しても供給することができる。また、予備燃焼炉50
の上部冷却ジャケットから取り出した約200℃程度の
冷却空気を、大気とともに或いは大気に代えて単独で空
気予熱器7に対して供給することもできる。
The air preheater 7 has a heat exchange with exhaust gas of the melting furnace in advance in order to avoid an extreme temperature drop when blowing air of about 20 to 200 ° C. into the main combustion furnace 51 to prevent overheating in the furnace. This is a heat exchanger for preheating. More specifically, as shown in FIG. 3, a vertically disposed cylindrical portion 7T through which the melting furnace exhaust gas flows from an upper supply port 7i to a lower end discharge port 7e (for example, , 1500 ~ 2500mm inside diameter
) And a cylindrical jacket portion 7J provided so as to surround the exhaust gas in the cylindrical portion 7T, and through which the combustion air flows from the upper end supply port 7m to the lower end discharge port 7n. Then, for example, as shown in the figure, the atmosphere is directly supplied to the air preheater 7, and the supplied air flows downward in the jacket portion 7J, and the exhaust gas of the melting furnace flows in the cylindrical portion 7T in parallel. After being preheated to approximately 500 ° C. by indirect heat exchange with the main combustion furnace 51, the temperature inside the furnace is suppressed to an appropriate temperature. This preheated air can also be supplied to the pre-combustion furnace 50. In addition, the preliminary combustion furnace 50
The cooling air of about 200 ° C. taken out from the upper cooling jacket can be supplied alone to the air preheater 7 together with or instead of the atmosphere.

【0018】空気予熱器7を通過した溶融炉排ガスは、
約811℃程度となって排ガス連通路70を介して一段
目の蒸気加熱器8に供給される。一段目の蒸気加熱器8
は、空気予熱器7と基本的には同様の構造とされてい
る。すなわち一段目の蒸気加熱器8は、図3に詳細示す
ように、下端供給口8iから上部排出口8eへ向けて溶
融炉排ガスが流通される縦置き配置の筒状部8Tと、筒
状部8T内の流通排ガスを取り囲むように配置され、乾
燥機3から排出された蒸気が下端部供給口8mから上端
部排出口8nへ向けて流通される筒状ジャケット部8J
とから構成されている。乾燥機3から排出された約15
0℃程度の蒸気は、ジャケット部8J内を流通する過程
で、筒状部8T内を流通する溶融炉排ガスとの間接熱交
換により約181℃程度に加熱される。一方、これによ
り溶融炉排ガスは約750度程度まで冷却される。
The melting furnace exhaust gas that has passed through the air preheater 7 is:
The temperature becomes approximately 811 ° C. and is supplied to the first-stage steam heater 8 through the exhaust gas communication passage 70. First stage steam heater 8
Has basically the same structure as the air preheater 7. That is, as shown in detail in FIG. 3, the first-stage steam heater 8 includes a vertically arranged tubular portion 8T through which the melting furnace exhaust gas flows from the lower end supply port 8i to the upper discharge port 8e, and a tubular portion. The cylindrical jacket portion 8J is disposed so as to surround the exhaust gas in the 8T, and the steam discharged from the dryer 3 flows from the lower end supply port 8m to the upper end discharge port 8n.
It is composed of About 15 discharged from the dryer 3
The steam at about 0 ° C. is heated to about 181 ° C. by indirect heat exchange with the melting furnace exhaust gas flowing through the cylindrical portion 8T in the process of flowing through the jacket portion 8J. On the other hand, the melting furnace exhaust gas is thereby cooled to about 750 degrees.

【0019】次いで本例では、一段目の蒸気加熱器8を
通過した蒸気は二段目の蒸気加熱器9、三段目の蒸気加
熱器10の順に流通され、反対に溶融炉排ガスは三段目
の蒸気加熱器10、二段目の蒸気加熱器9の順に流通さ
れ、相互に逆流する形態で間接熱交換がなされるように
なっている。そしてこれら二段目及び三段目の蒸気加熱
器9,10は、図3に詳細に示すように、シェル9S,
10S内に多数のチューブ9T,10Tを備えたいわゆ
るシェルアンドチューブ式の熱交換器であり、蒸気がシ
ェル9S,10S内面とチューブ9T,10T外面との
間に、および溶融炉排ガスがチューブ9T,10T内に
それぞれ流通され、その過程で蒸気が溶融炉排ガスとの
間接熱交換により加熱されるようになっている。
Next, in this embodiment, the steam that has passed through the first-stage steam heater 8 is circulated in the order of the second-stage steam heater 9 and the third-stage steam heater 10, and conversely, the exhaust gas from the melting furnace is passed through the third stage The in-situ steam heater 10 and the second-stage steam heater 9 are circulated in this order, and indirect heat exchange is performed in such a manner as to flow back to each other. As shown in detail in FIG. 3, the second and third steam heaters 9 and 10 are provided with shells 9S,
This is a so-called shell-and-tube type heat exchanger having a large number of tubes 9T, 10T in the 10S. The steam is between the inner surfaces of the shells 9S, 10S and the outer surfaces of the tubes 9T, 10T, and the exhaust gas of the melting furnace is the tubes 9T, 10T. The steam is respectively circulated in the 10T, and in the process, the steam is heated by indirect heat exchange with the melting furnace exhaust gas.

【0020】蒸気の流れに沿って詳説すると、先ず二段
目の蒸気加熱器9に対しては、一段目の蒸気加熱器8に
おいて加熱を終えた約181℃程度の蒸気が蒸気連通路
80を介して、および三段目の蒸気加熱器10において
熱交換を終えた約400℃程度の溶融炉排ガスが排ガス
連通路72を介してそれぞれ供給される。これにより、
シェル9S内を流通する蒸気が、チューブ9T内を流通
する排ガスとの間接熱交換により約232℃程度まで加
熱される。また溶融炉排ガスは約250℃程度まで冷却
される。次に、三段目の蒸気加熱器10には、二段目の
蒸気加熱器9において加熱を終えた約232℃程度の蒸
気が蒸気連通路81を介して、および一段目の蒸気加熱
器8において熱交換を終えた約750℃程度の溶融炉排
ガスが排ガス連通路71を介してそれぞれ供給される。
これにより、シェル10S内を流通する蒸気が、チュー
ブ10T内を流通する排ガスとの間接熱交換により約3
69℃程度まで加熱される。また溶融炉排ガスは約40
0℃程度まで冷却される。
More specifically, the steam at about 181 ° C. which has been heated in the first-stage steam heater 8 passes through the steam communication passage 80 to the second-stage steam heater 9. The melting furnace exhaust gas of about 400 ° C. which has completed the heat exchange in the third-stage steam heater 10 is supplied through the exhaust gas communication passage 72. This allows
The steam flowing in the shell 9S is heated to about 232 ° C. by indirect heat exchange with the exhaust gas flowing in the tube 9T. The melting furnace exhaust gas is cooled to about 250 ° C. Next, the steam at about 232 ° C., which has been heated in the second-stage steam heater 9, is supplied to the third-stage steam heater 10 via the steam communication passage 81 and the first-stage steam heater 8. In this case, the melting furnace exhaust gas of about 750 ° C. after the heat exchange is supplied through the exhaust gas communication passage 71, respectively.
As a result, the steam flowing in the shell 10S is reduced by about 3 times by indirect heat exchange with the exhaust gas flowing in the tube 10T.
Heated to about 69 ° C. The melting furnace exhaust gas is about 40
It is cooled to about 0 ° C.

【0021】他方、溶融炉排ガスに含まれるダストは、
空気予熱器7、一段目〜3段目の蒸気加熱器8〜10の
下端部に堆積して回収され、図示しない飛灰処理設備で
異物除去等の処理を行った後に安定化して外部処分する
か、あるいは乾燥汚泥輸送ブロワ4の入側に戻し、乾燥
汚泥に混入する。
On the other hand, dust contained in the melting furnace exhaust gas is as follows:
The air preheater 7 is deposited and collected at the lower ends of the first to third-stage steam heaters 8 to 10, and after being subjected to processing such as foreign matter removal by a fly ash treatment facility (not shown), is stabilized and externally disposed. Alternatively, it is returned to the inlet side of the dry sludge transport blower 4 and mixed with the dry sludge.

【0022】このように、本例では溶融炉排ガスの排熱
回収を順次行う複数段の熱交換器7〜10のうち、蒸発
金属の再固化によるダストが発生し易い前段側熱交換器
(空気予熱器7及び一段目の蒸気加熱器8)として、前
述構成の輻射式熱交換器を用いたことにより、筒状部の
内周面に多少ダストが付着しても、排ガスの流通を阻害
又は閉塞するような事態までは至りにくく、清掃も容易
であり、かつ高温耐性も十分に確保される。しかも、単
にかかる輻射式熱交換器を用いるだけでは熱交換効率が
低いために排熱回収部全体の設置スペースが過大となっ
てしまうが、本例では更に、蒸発金属によるダストが発
生しにくい後段側熱交換器(二段目及び三段目の蒸気加
熱器9,10)として、単位設置面積あたりの熱交換効
率が非常に高くかつ高温耐性も十分にあるシェルアンド
チューブ式熱交換器を組み合わせることによって、ダス
トによる排ガス流通系の閉塞のおそれを少なくしながら
も、排熱回収部の設置スペースを最小限に抑えることが
できる。
As described above, in this embodiment, of the multistage heat exchangers 7 to 10 for sequentially recovering the exhaust heat of the melting furnace exhaust gas, the former heat exchanger (air) in which dust due to re-solidification of the evaporated metal is likely to be generated. By using the radiant heat exchanger having the above-described configuration as the preheater 7 and the first-stage steam heater 8), even if some dust adheres to the inner peripheral surface of the cylindrical portion, the flow of exhaust gas is obstructed or prevented. It is difficult to reach a situation in which blockage occurs, cleaning is easy, and high temperature resistance is sufficiently ensured. Moreover, simply using such a radiant heat exchanger results in a low heat exchange efficiency, resulting in an excessively large installation space for the exhaust heat recovery unit. As side heat exchangers (second-stage and third-stage steam heaters 9 and 10), a shell-and-tube type heat exchanger having extremely high heat exchange efficiency per unit installation area and sufficiently high temperature resistance is combined. Thereby, the installation space of the exhaust heat recovery unit can be minimized while reducing the possibility of dust blocking the exhaust gas distribution system.

【0023】しかし、以上のような組み合わせ構成を採
用したとしても、熱交換器7〜10内にダストが付着す
るのを完全に抑えることはできず、定期的な清掃が必要
である。しかし清掃が必要であるとしても、複数段ある
熱交換器の全てにダストが付着するのでは、清掃作業が
非常に煩雑となる。
However, even if the above combination is adopted, it is not possible to completely prevent dust from adhering to the inside of the heat exchangers 7 to 10, and regular cleaning is required. However, even if cleaning is necessary, if dust adheres to all of the heat exchangers in a plurality of stages, the cleaning operation becomes very complicated.

【0024】そこで本例では、図4に示すように、本発
明に従って少なくとも蒸発金属によるダストが発生し易
い最上流側の熱交換器(空気予熱器7)からの排ガスを
次段の熱交換器(一段目蒸気加熱器8)へ送給する排ガ
ス連通路70に、内部の排ガス流速がその上流側の熱交
換器7よりも低速となるように、例えば排ガス流通方向
に対する横断面積が上流側の熱交換器7よりも大きいダ
スト捕捉スペース70S,70Sを形成するのが望まし
い。特に好適には、ダスト捕捉スペース70S,70S
内における流速が、当該ダスト捕捉スペース70S,7
0Sよりも上流の全ての排ガス流路(すなわち本例の場
合、熱交換器7、およびこれと混合冷却器53との連通
路72)内よりも低速となるように構成するのが望まし
い。このダスト捕捉スペース70S,70Sにおける流
速低下度合いは、一概にはいえないが例えば約2〜5m
/秒であるのが望ましい。より具体的には、連通路72
内の流速が5〜10m/秒、熱交換器7内の流速が3〜
6m/秒、およびダスト捕捉スペース70S内の流速が
2〜5m/秒となるように設計するのが望ましい。
Therefore, in this embodiment, as shown in FIG. 4, exhaust gas from the heat exchanger (air preheater 7) on the most upstream side where at least dust due to the evaporated metal is easily generated according to the present invention is used as the heat exchanger in the next stage. In the exhaust gas communication passage 70 to be fed to the (first-stage steam heater 8), for example, the cross-sectional area with respect to the exhaust gas flow direction is set so that the internal exhaust gas flow speed is lower than that of the upstream heat exchanger 7. It is desirable to form dust capture spaces 70S, 70S larger than the heat exchanger 7. Particularly preferably, the dust trapping space 70S, 70S
The flow velocity in the space is determined by the dust trapping space 70S, 7
It is desirable that the exhaust gas flow path be lower than all the exhaust gas flow paths upstream of 0S (that is, in this example, the heat exchanger 7 and the communication passage 72 between the heat exchanger 7 and the mixing cooler 53). The degree of decrease in the flow velocity in the dust trapping spaces 70S, 70S is, for example, about 2 to 5 m.
/ S is desirable. More specifically, the communication path 72
Flow rate in the heat exchanger 7 is 3 to 10 m / sec.
It is desirable to design so as to be 6 m / sec and the flow velocity in the dust trapping space 70S is 2 to 5 m / sec.

【0025】これにより、最上流側の熱交換器7におけ
る冷却により発生したダストを伴う排ガスの流速が、次
段への排ガス連通路70内のダスト捕捉スペース70
S,70Sにおいて低下し、そこに含まれるダストが捕
捉スペース70S,70S内において集中的に捕捉され
る。よって、最上流側の熱交換器7内にはダストが多少
付着するかもしれないが、当該排ガス連通路70以降の
熱交換器8〜10内にはダストが付着しにくく、流路閉
塞のおそれも少なくなり、また清掃作業が著しく容易に
なる。この構成は、特に本例のように下流側の排ガス流
通系にシェルアンドチューブ式熱交換器のチューブのよ
うな閉塞のおそれがある細い流路を有する場合に特に好
適なものである。
As a result, the flow rate of the exhaust gas accompanying the dust generated by cooling in the heat exchanger 7 on the most upstream side is reduced by the dust trapping space 70 in the exhaust gas communication passage 70 to the next stage.
S, 70S, and the dust contained therein is intensively captured in the capturing spaces 70S, 70S. Therefore, some dust may adhere to the heat exchanger 7 on the most upstream side, but it is difficult for the dust to adhere to the heat exchangers 8 to 10 after the exhaust gas communication passage 70, and the flow passage may be blocked. And the cleaning operation becomes remarkably easy. This configuration is particularly suitable when the downstream exhaust gas flow system has a narrow flow path that may be blocked, such as a tube of a shell-and-tube heat exchanger, as in this example.

【0026】また図示のように、空気予熱器7と蒸気加
熱器8とをつなぐ横向き排ガス連通路(ダクト)70
が、一端部上壁の供給口70iにおいて空気予熱器7の
筒状部の下端排出口7eと着脱自在に接続され、他端部
上壁の排出口70eにおいて蒸気加熱器8の筒状部の下
端供給口8iと接続されていると排ガス連通路70内の
清掃が容易となる利点がある。
As shown in the figure, a lateral exhaust gas communication passage (duct) 70 connecting the air preheater 7 and the steam heater 8 is provided.
Is removably connected to a lower end discharge port 7e of the tubular portion of the air preheater 7 at a supply port 70i of the upper wall at one end, and to a tubular section of the steam heater 8 at a discharge port 70e of the upper wall at the other end. When connected to the lower end supply port 8i, there is an advantage that cleaning in the exhaust gas communication passage 70 becomes easy.

【0027】特に排ガス連通路70は、図4に詳細に示
すように、空気予熱器7の下端排出口7eと直列接続さ
れる筒状上側部分t1および下端頂点部にダスト排出口
x1を有する円錐状下側部分c1からなる入側竪型筒状
部70Aと、蒸気加熱器8の下端供給口8iに直列接続
される筒状上側部分t2および下端頂点部にダスト排出
口x2を有する円錐状下側部分c2からなる出側竪型筒
状部70Bと、入側が入側竪型筒状部70Aの側部に及
び出側が出側竪型筒状部70Bの側部にそれぞれ連通さ
れ、入側部分内の下面enが入側竪型筒状部の下端排出
口x1まで及び出側部分内の下面exが出側竪型筒状部
の下端排出口x2までそれぞれ連続的に下向き傾斜した
横向きダクト部70Cとを一体的に形成したものが好ま
しい。この排ガス連通路70では、横向きダクト部70
C中央の縮径部ceの両側全体がそれぞれダスト捕捉ス
ペースとなる。このように構成するとで、縮径部ceを
除く連通路70の略全体がダスト捕捉スペースとなるだ
けでなく、下側部分の略全てc1,en,ex,c2が
下向き傾斜面で形成されるため、下面の略全体にわたり
水平面がなく、流速が低下し降下したダストの略全部が
いずれかの排出口x1,x2に滑り落ちることになる。
よって、排ガス連通路70内でのダスト捕捉能力がより
高くなるとともに、降下ダストの略全てを排出口x1,
x2に収集して排出させることができるようになる。
In particular, as shown in detail in FIG. 4, the exhaust gas communication passage 70 has a cylindrical upper portion t1 connected in series with a lower end outlet 7e of the air preheater 7 and a conical having a dust outlet x1 at the lower end apex. A conical lower portion having an inlet-side vertical cylindrical portion 70A composed of a lower portion c1 and a cylindrical upper portion t2 connected in series to a lower end supply port 8i of the steam heater 8 and a dust discharge port x2 at the lower end apex. The outlet side vertical cylindrical portion 70B composed of the side portion c2, the inlet side communicates with the side portion of the inlet side vertical cylindrical portion 70A, and the outlet side communicates with the side portion of the outlet vertical cylindrical portion 70B. The horizontal duct in which the lower surface en in the portion is continuously inclined downward to the lower end discharge port x1 of the entrance-side vertical cylindrical portion and the lower surface ex in the output side portion is continuously lowered to the lower end discharge port x2 of the output-side vertical cylindrical portion. The one formed integrally with the portion 70C is preferable. In the exhaust gas communication passage 70, the horizontal duct 70
The entire both sides of the reduced diameter portion ce at the center of the C serve as dust capturing spaces. With this configuration, not only the entire communication path 70 except the reduced diameter portion ce serves as a dust capturing space, but also substantially all of the lower part c1, en, ex, and c2 are formed by downward inclined surfaces. For this reason, there is no horizontal surface over substantially the entire lower surface, and the flow velocity decreases, and substantially all of the dust that has fallen falls down to one of the outlets x1 and x2.
Therefore, the dust trapping ability in the exhaust gas communication passage 70 is further improved, and almost all of the falling dust is discharged from the exhaust port x1,
x2 and can be collected and discharged.

【0028】他方、溶融炉排ガスとの熱交換により加熱
された蒸気は乾燥機3に対して循環供給される。この
際、必要に応じて補助加熱器11(間接熱交換器)にお
いて、都市ガス等の燃料を燃焼する補助炉12からのク
リーン排ガスとの熱交換により所定温度、例えば400
℃まで加熱した後に、乾燥機3に対して供給するのが望
ましい。このため、図示しないが、乾燥機3に対して戻
される蒸気の温度を測定する温度測定装置を設け、この
温度測定装置による測定結果に基づいて加熱器11への
クリーン排ガス送風量や補助炉12の燃焼度合いを調節
するように構成することができる。符号13は、補助炉
へ燃焼空気を送り込む補助炉ファンを示している。
On the other hand, the steam heated by heat exchange with the exhaust gas from the melting furnace is circulated and supplied to the dryer 3. At this time, if necessary, the auxiliary heater 11 (indirect heat exchanger) exchanges heat with the clean exhaust gas from the auxiliary furnace 12 that burns fuel such as city gas, etc., to a predetermined temperature, for example, 400
It is desirable to supply to the dryer 3 after heating to the temperature. For this reason, although not shown, a temperature measuring device for measuring the temperature of the steam returned to the dryer 3 is provided, and based on the measurement result by this temperature measuring device, the amount of the clean exhaust gas blown to the heater 11 and the auxiliary furnace 12 Can be configured to adjust the degree of combustion. Reference numeral 13 denotes an auxiliary furnace fan that feeds combustion air to the auxiliary furnace.

【0029】また図示するように、乾燥機3に対して戻
される蒸気の一部を溶融炉5内に供給し、過熱防止を図
るのも好適である。すなわち本例のように汚泥に蒸気を
直接接触させて乾燥する場合、汚泥乾燥時の水分の蒸発
により循環蒸気は経時的に増加するため、これを必要に
応じて系外に排出する必要がある。他方、前述のように
溶融炉5が自然放冷式の場合、過熱を防ぐためには多量
の空気を炉内に供給しなければならない。しかるに、本
発明に従って炉5内に循環蒸気の一部を吹き込むことに
より、循環蒸気量の調節を行えるだけでなく、蒸気の比
熱が空気の約4倍程度あるために、空気のみの場合と比
較して著しく少ない吹き込み量で炉内温度を調節できる
のである。また循環蒸気には多量の悪臭成分が含まれて
いるが、溶融炉5内に吹き込まれると悪臭成分が熱分解
されるという副次的な利点もある。ただし、本例のよう
に溶融炉5内に吹き込む蒸気が低温(約370℃程度)
の場合には、炉内温度が急激に下がり温度調節に支障が
生じるので、そのような場合には図示のように予熱器7
から溶融炉5内に吹き込まれる空気と混合してから炉内
に吹き込むのが好ましい。本例の溶融炉5の場合、上記
利点を得るためには、循環蒸気を主燃焼炉51に吹き込
みその余りを混合冷却器53に吹き込むようにするのが
望ましい。また図示しないが、循環蒸気量の調節のため
に、乾燥機3内圧を測定する圧力計と、この圧力計の測
定結果に応じて溶融炉5へ供給する循環蒸気量を制御す
る手段とを設けるのが望ましい。
As shown in the figure, it is also preferable to supply a part of the steam returned to the dryer 3 into the melting furnace 5 to prevent overheating. That is, when the steam is directly contacted with the sludge and dried as in this example, the circulating steam increases with time due to evaporation of the water during the drying of the sludge, and it is necessary to discharge this to the outside of the system as necessary. . On the other hand, when the melting furnace 5 is a natural cooling system as described above, a large amount of air must be supplied into the furnace in order to prevent overheating. However, by blowing a part of the circulating steam into the furnace 5 according to the present invention, not only the amount of the circulating steam can be adjusted, but also the specific heat of the steam is about four times that of the air. As a result, the furnace temperature can be adjusted with an extremely small blowing amount. Further, although a large amount of malodorous components are contained in the circulating steam, there is also a secondary advantage that the malodorous components are thermally decomposed when blown into the melting furnace 5. However, the steam blown into the melting furnace 5 has a low temperature (about 370 ° C.) as in this example.
In the case of (1), the temperature inside the furnace drops rapidly, and the temperature control is hindered. In such a case, the preheater 7
It is preferable to mix with the air blown into the melting furnace 5 before blowing into the furnace. In the case of the melting furnace 5 of this example, in order to obtain the above-mentioned advantages, it is desirable to blow the circulating steam into the main combustion furnace 51 and blow the remainder into the mixing cooler 53. Although not shown, a pressure gauge for measuring the internal pressure of the dryer 3 and means for controlling the amount of circulating steam supplied to the melting furnace 5 in accordance with the measurement result of the pressure gauge are provided for adjusting the amount of circulating steam. It is desirable.

【0030】他方、蒸気との熱交換により約250℃程
度まで冷却した溶融炉排ガスは、排ガス冷却器100に
おいて冷却水および冷却エアの噴霧により、約200℃
程度まで冷却され、次いでバグフィルタ101により除
塵される。またこれら排ガス冷却器100およびバグフ
ィルタ101で回収されるダストも、図示しない飛灰処
理設備で異物除去等の処理を行った後に安定化して外部
処分するか、あるいは乾燥汚泥輸送ブロワ4の入側に戻
し、乾燥汚泥に混入する。バグフィルタ101を経た排
ガスは、次いで排煙処理塔102(スクラバー)に供給
され、洗浄水により洗浄集塵される。またその過程で約
50℃程度まで冷却された後、誘引ファン103により
脱硝処理部110に導入される。
On the other hand, the melting furnace exhaust gas cooled to about 250 ° C. by heat exchange with steam is cooled to about 200 ° C. by spraying cooling water and cooling air in the exhaust gas cooler 100.
After cooling to the extent, dust is removed by the bag filter 101. The dust collected by the exhaust gas cooler 100 and the bag filter 101 is also subjected to a treatment such as foreign matter removal by a fly ash treatment facility (not shown) and then stabilized and externally disposed of. And mixed with dry sludge. The exhaust gas that has passed through the bag filter 101 is then supplied to a flue gas treatment tower 102 (scrubber), where the exhaust gas is washed and collected by washing water. After being cooled to about 50 ° C. in the process, the air is introduced into the denitration processing unit 110 by the attraction fan 103.

【0031】脱硝処理部110は、溶融炉排ガスを脱硝
予熱器(間接熱交換器)111において排熱との熱交換
により予め250℃程度まで予熱し、次いで都市ガス等
の燃料を用いる加熱炉112により約350℃の反応塔
供給温度まで加熱した後、尿素水、エア及び希釈水等を
添加して反応塔113内において脱硝反応による脱硝処
理を行うものである。予熱器111で用いる排熱媒体と
しては、本例では、蒸気循環系の補助加熱器11におい
て使用したクリーン排ガスが適温(約400℃)となる
のでその全部(一部でも良い)と、脱硝処理後の排ガス
が適温(約350℃)となるのでその全部とを合流混合
した後に用いるように構成されている。もちろん、いず
れか一方でも良い。この混合ガスは、予熱器111での
熱交換後、煙突114から大気放出される。特に、この
ように補助加熱器11において使用したクリーン排ガス
を脱硝処理後の排ガスに混入することにより、大気放出
する際の白煙の発生を防止することができる利点があ
る。なお、符号115は加熱炉に空気を送り込む空気フ
ァンを示している。
The denitration processing section 110 preheats the melting furnace exhaust gas to about 250 ° C. in a denitration preheater (indirect heat exchanger) 111 by heat exchange with waste heat, and then heats the furnace 112 using fuel such as city gas. After heating to a reaction tower supply temperature of about 350 ° C., urea water, air, dilution water, and the like are added to perform denitration treatment in the reaction tower 113 by a denitration reaction. In this example, as the exhaust heat medium used in the preheater 111, the clean exhaust gas used in the auxiliary heater 11 of the steam circulation system has an appropriate temperature (about 400 ° C.). Since the subsequent exhaust gas has an appropriate temperature (about 350 ° C.), the entire exhaust gas is used after being mixed and mixed. Of course, either one may be good. This mixed gas is released to the atmosphere from the chimney 114 after heat exchange in the preheater 111. In particular, by mixing the clean exhaust gas used in the auxiliary heater 11 into the exhaust gas after the denitration treatment, there is an advantage that generation of white smoke at the time of release to the atmosphere can be prevented. Reference numeral 115 indicates an air fan that feeds air into the heating furnace.

【0032】<その他> (イ)上記例では溶融炉排ガスを加熱媒体とする熱交換
器は4段設けられているが、熱交換機の段数は排熱回収
度合いに応じて適宜定めることができる。
<Others> (a) In the above example, four stages of heat exchangers using the melting furnace exhaust gas as a heating medium are provided, but the number of stages of the heat exchanger can be determined as appropriate according to the degree of exhaust heat recovery.

【0033】(ロ)また上記例は、乾燥熱源としての循
環蒸気により排熱回収を行う設備例であるが、本発明で
は溶融炉排ガスから複数段の熱交換器により熱回収を行
うものであれば、他の熱媒により排熱回収したり、回収
排熱を他の用途に利用したりすることもできる。
(B) The above example is an example of equipment for recovering exhaust heat using circulating steam as a drying heat source. In the present invention, heat recovery is performed from exhaust gas of a melting furnace using a multi-stage heat exchanger. For example, waste heat can be recovered by another heat medium, or the recovered waste heat can be used for other purposes.

【0034】(ハ)さらに上記例は下水汚泥の溶融処理
設備への適用例であるが、本発明はこれに限定されず、
他の廃棄物や非廃棄物などの処理にも適用でき、また溶
融までは行わない焼却設備等の燃焼処理設備にも適用す
ることができる。
(C) The above example is an example of application to a sewage sludge melting treatment facility, but the present invention is not limited to this.
The present invention can be applied to the treatment of other wastes and non-wastes, and can also be applied to combustion treatment equipment such as incineration equipment that does not perform melting.

【0035】(ニ)図示しないが、上記例の排ガス連通
路70の中央縮径部ceにおいて、内部下面の水平面が
無くなるように、入側下面enおよび出側下面exを延
長して鋭角に形成することもできる。これにより、連通
路内下面の全体が完全に下向き傾斜面のみからなる構造
となる。
(D) Although not shown, the entrance lower surface en and the exit lower surface ex are formed at an acute angle at the central reduced diameter portion ce of the exhaust gas communication passage 70 of the above example so that the horizontal surface of the internal lower surface is eliminated. You can also. Thus, the entire lower surface of the communication passage is completely composed of only the downward inclined surface.

【0036】[0036]

【発明の効果】以上のとおり本発明によれば、熱交換器
内の排ガス流路が閉塞しにくく、また発生したダストの
清掃が容易な設備となる。
As described above, according to the present invention, the exhaust gas passage in the heat exchanger is hardly clogged and the generated dust can be easily cleaned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る汚泥処理設備例の前段フロー図で
ある。
FIG. 1 is a first-stage flow chart of an example of a sludge treatment facility according to the present invention.

【図2】後段フロー図である。FIG. 2 is a post-stage flow chart.

【図3】排熱回収部の拡大図である。FIG. 3 is an enlarged view of an exhaust heat recovery unit.

【図4】排ガス連通路の拡大斜視図である。FIG. 4 is an enlarged perspective view of an exhaust gas communication passage.

【符号の説明】[Explanation of symbols]

1…汚泥ピット、2…汚泥供給ポンプ、3…乾燥機、4
…乾燥汚泥輸送ブロワ、5…溶融炉、6…水冷スラグコ
ンベヤ、7…空気予熱器、8,9,10…蒸気加熱器、
11…補助加熱器、12…補助炉、70,71,72…
排ガス連通路、80,81…蒸気連通路、100…排ガ
ス冷却器、101…バグフィルタ、102…排煙処理
塔、111…脱硝予熱器、112…加熱炉、113…反
応塔、114…煙突。
1: Sludge pit, 2: Sludge supply pump, 3: Dryer, 4
... dry sludge transport blower, 5 ... melting furnace, 6 ... water cooled slag conveyor, 7 ... air preheater, 8,9,10 ... steam heater,
11: auxiliary heater, 12: auxiliary furnace, 70, 71, 72 ...
Exhaust gas communication passage, 80, 81: Steam communication passage, 100: Exhaust gas cooler, 101: Bag filter, 102: Smoke exhaust treatment tower, 111: Denitration preheater, 112: Heating furnace, 113: Reaction tower, 114: Chimney.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 喜代志 東京都中央区佃2丁目17番15号 月島機械 株式会社内 (72)発明者 坂東 政一 東京都中央区佃2丁目17番15号 月島機械 株式会社内 Fターム(参考) 3K065 AB03 AC01 AC02 BA05 BA06 HA03 JA05 JA18 3K070 DA07 DA27 4D059 AA03 AA07 BB01 BB04 BB11 BF02 CA01 CB01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoji Kojima 2-17-15 Tsukushima, Chuo-ku, Tokyo Tsukishima Machinery Co., Ltd. (72) Inventor Seiichi Bando 2-17-15 Tsukushima, Chuo-ku, Tokyo Machinery Co., Ltd. F-term (reference) 3K065 AB03 AC01 AC02 BA05 BA06 HA03 JA05 JA18 3K070 DA07 DA27 4D059 AA03 AA07 BB01 BB04 BB11 BF02 CA01 CB01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】燃焼炉の排ガスを、排ガス連通路を介して
直列接続された複数段の間接熱交換器に順次流通させ、
排ガスの排熱を複数段階に分けて回収する排ガス処理装
置であって、 前記熱交換器相互をつなぐ排ガス連通路に、内部を流通
する排ガスの流速が少なくとも上流側の熱交換器内より
も低速となるダスト捕捉スペースを形成した、 ことを特徴とする排ガス処理装置。
1. An exhaust gas from a combustion furnace is sequentially passed through a plurality of indirect heat exchangers connected in series via an exhaust gas communication passage,
An exhaust gas treatment device that recovers exhaust heat of exhaust gas in a plurality of stages, wherein the flow rate of exhaust gas flowing inside the exhaust gas communication passage connecting the heat exchangers is lower than at least in the upstream heat exchanger. An exhaust gas treatment device characterized by forming a dust trapping space.
【請求項2】前記ダスト捕捉スペース内における流速
が、前記ダスト捕捉スペースよりも上流の全ての排ガス
流路内よりも低速となるように構成された、請求項1記
載の排ガス処理装置。
2. The exhaust gas treatment apparatus according to claim 1, wherein a flow velocity in said dust trapping space is lower than in all exhaust gas passages upstream of said dust trapping space.
【請求項3】前記排ガス連通路が、下端部に排出口を有
するとともに、通路内面の下側部分の実質的に全体が前
記排出口まで連続的に下向き傾斜している、請求項1記
載の排ガス処理装置。
3. The exhaust gas communication passage according to claim 1, wherein the exhaust gas communication passage has a discharge port at a lower end, and substantially the entire lower portion of the inner surface of the passage is continuously downwardly inclined to the discharge port. Exhaust gas treatment equipment.
【請求項4】燃焼炉の排ガスを、排ガス連通路を介して
直列接続された複数段の間接熱交換器に順次流通させ、
排ガスの排熱を複数段階に分けて回収するにあたり、 前記熱交換器相互をつなぐ排ガス連通路にて、排ガスの
流速を少なくとも上流側の熱交換器内よりも低速にして
ダストを捕捉する、 ことを特徴とする排ガス処理方法。
4. An exhaust gas from the combustion furnace is sequentially passed through a plurality of indirect heat exchangers connected in series via an exhaust gas communication passage,
In recovering the exhaust heat of the exhaust gas in a plurality of stages, the exhaust gas communication passage connecting the heat exchangers captures dust at a flow rate of the exhaust gas that is at least lower than that in the upstream heat exchanger. An exhaust gas treatment method comprising:
JP2001179532A 2001-06-14 2001-06-14 Exhaust gas treatment apparatus and method Expired - Lifetime JP4596505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179532A JP4596505B2 (en) 2001-06-14 2001-06-14 Exhaust gas treatment apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179532A JP4596505B2 (en) 2001-06-14 2001-06-14 Exhaust gas treatment apparatus and method

Publications (3)

Publication Number Publication Date
JP2002372219A true JP2002372219A (en) 2002-12-26
JP2002372219A5 JP2002372219A5 (en) 2008-04-24
JP4596505B2 JP4596505B2 (en) 2010-12-08

Family

ID=19020084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179532A Expired - Lifetime JP4596505B2 (en) 2001-06-14 2001-06-14 Exhaust gas treatment apparatus and method

Country Status (1)

Country Link
JP (1) JP4596505B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224173A (en) * 2007-03-15 2008-09-25 Alstom Technology Ltd Two-tower type exhaust heat recovery system
WO2017135134A1 (en) * 2016-02-02 2017-08-10 株式会社クボタ Melting system and method for controlling melting system
CN110422988A (en) * 2019-09-02 2019-11-08 宝莹环保科技(杭州)有限公司 Calcirm-fluoride wet mud process for producing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310801A (en) * 1996-05-20 1997-12-02 Nippon Steel Corp Recovery of waste heat from boiler for sludge-melting furnace and structure of boiler
JP2000111020A (en) * 1998-09-30 2000-04-18 Hosokawa Micron Corp Heat recovery device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310801A (en) * 1996-05-20 1997-12-02 Nippon Steel Corp Recovery of waste heat from boiler for sludge-melting furnace and structure of boiler
JP2000111020A (en) * 1998-09-30 2000-04-18 Hosokawa Micron Corp Heat recovery device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224173A (en) * 2007-03-15 2008-09-25 Alstom Technology Ltd Two-tower type exhaust heat recovery system
WO2017135134A1 (en) * 2016-02-02 2017-08-10 株式会社クボタ Melting system and method for controlling melting system
EP3412969A4 (en) * 2016-02-02 2019-07-17 Kubota Corporation Melting system and method for controlling melting system
CN110422988A (en) * 2019-09-02 2019-11-08 宝莹环保科技(杭州)有限公司 Calcirm-fluoride wet mud process for producing device

Also Published As

Publication number Publication date
JP4596505B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
CN115301014A (en) Cement raw meal grinds high temperature flue gas purification device and cement production system
US4478574A (en) Scrap preheating system for an electric furnace
JP4392820B2 (en) Hydrous substance combustion treatment equipment and method
KR100976971B1 (en) Heat recovery steam generator
JPH0868596A (en) Rotary type heat transfer and heating type purifier applied to exhaust gas
JP2002372215A5 (en)
JP2002372219A (en) Processing apparatus for waste gas, and its method
CN211475960U (en) Waste incineration waste heat treatment system
JP4841011B2 (en) Hydrous substance combustion treatment equipment and method
JP2002372219A5 (en)
JP4390173B2 (en) Combustion treatment equipment and method
JP4321797B2 (en) Hydrous substance combustion treatment equipment and method
JP2004154683A (en) Exhaust gas treatment equipment and its operation method
JP2020139696A (en) Device and method of processing combustion exhaust
CN115671910A (en) High-temperature flue gas purification device of cement burning clinker cooling machine and cement production system
KR100974323B1 (en) A reactor for heat recovery steam generator
JP2007240093A (en) Solid fuel combustion device
JP2002162021A (en) Gas cooler
JP2002250514A (en) Exhaust gas disposer, and its operation method
KR101151812B1 (en) A boiler using wasteheating
JPH054565B2 (en)
JPH1054522A (en) Refuse incineration plant
CN218348683U (en) Compact biomass power plant flue gas purification system
JPH1047631A (en) Waste incineration treatment apparatus
JPH05141637A (en) Fluidized bed incineration plant and operating method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

R150 Certificate of patent or registration of utility model

Ref document number: 4596505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141001

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term