JP4595202B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP4595202B2
JP4595202B2 JP2001002129A JP2001002129A JP4595202B2 JP 4595202 B2 JP4595202 B2 JP 4595202B2 JP 2001002129 A JP2001002129 A JP 2001002129A JP 2001002129 A JP2001002129 A JP 2001002129A JP 4595202 B2 JP4595202 B2 JP 4595202B2
Authority
JP
Japan
Prior art keywords
water
amount
heat exchanger
bypass
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001002129A
Other languages
Japanese (ja)
Other versions
JP2002206806A (en
Inventor
真也 中島
Original Assignee
パロマ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パロマ工業株式会社 filed Critical パロマ工業株式会社
Priority to JP2001002129A priority Critical patent/JP4595202B2/en
Publication of JP2002206806A publication Critical patent/JP2002206806A/en
Application granted granted Critical
Publication of JP4595202B2 publication Critical patent/JP4595202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バーナへのガスの供給量を調整するガス量調整手段と、通水量を調整することによって給湯温度を調節する水量調整手段を備えた湯沸器に関する。
【0002】
【従来の技術】
従来から、主に台所で使用される元止め式瞬間湯沸器の出湯温の調節方法は、次の様な2通りの方法で行われている。
1つめの方法は、バーナへの供給ガス量は変化させずに、熱交換器をバイパスするバイパス管への通水量(以下、バイパス水量)を調節する方法である。つまり、熱交換器への通水量(以下、内胴通過水量)は一定に保ち、バイパス水量を変化させることによって出湯温を調節する方法である。この方法では、出湯温を高くした時にはバイパス水量が少ないため、トータルの出湯量は減少し、出湯温を低くした時には逆に出湯量は増加する。
【0003】
2つめの方法は、内胴通過水量とバイパス水量はいずれも一定に保ち、バーナへの供給ガス量を増減させる方法である。この場合、夏場等の入水温が高い時には、ガス量を増加させすぎると内胴通過水が沸騰してしまうという問題があり、また冬場等の入水温が低い時には、ガス量を絞りすぎると熱交換器でドレンが発生してしまうという問題があった。
このため、従来の湯沸器では、内胴通過水量は、ガス供給能力最大時(例えば、9600kcal/h)で入水温が30℃の時に内胴通過水が沸騰しないように設計されている。そしてガス供給能力最小値は、この内胴通過水量で入水温が5℃の時にドレンが発生しない限界値となるように設計されている。
【0004】
【発明が解決しようとする課題】
しかしながら、最近では湯沸器の熱効率を向上させたいという要求が高まり、この要求に応えようとするとさらにドレンの発生しないガス供給調整範囲が狭くなってしまう。すなわち、熱効率を向上させるためには、熱交換器の伝熱面積、つまりフィン枚数を増やせばよいが、従来の湯沸器では、内胴通過水量がガス供給量に関係なく常に一定であるため、能力小(例えば、4800kcal/h)の時には能力大時に比べて内胴通過水量に対する相対的な加熱量が小さいことから、フィンの温度が低くなり特に低入水温(例えば、5℃)時にドレンが発生しやすくなっている。このため、ドレンを発生させることなく伝熱面積を広くしようとすると、能力小時の加熱量を増加させなければならず、ガス供給調整範囲が狭くなり要求される出湯温調節の幅を確保できない。この結果、熱効率向上の要求に応えることができなかった。
本発明の湯沸器は上記課題を解決し、ドレンの発生と内胴通過水の沸騰を防止しつつ、熱効率向上の要求に応えることを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1記載の湯沸器は、バーナの燃焼熱により通水を加熱する熱交換器と、該熱交換器へ水を供給する給水路と、該熱交換器から湯を送出する出湯路と、該熱交換器をバイパスして給水路と出湯路とを連通するバイパス路と、該バーナへのガスの供給量を調整するガス量調整手段と、通水量を調整することによって給湯温度を調節する水量調整手段とを備えた湯沸器において、
上記バーナへの供給ガス量に応じて、上記熱交換器への通水量と上記バイパス路への通水量との総量は変化させずに、上記熱交換器と上記バイパス路への通水量の比率を調整する水量比率調整手段を設けたことことを要旨とする。
【0006】
また、本発明の請求項2記載の湯沸器は、上記請求項1記載の湯沸器において、
上記ガス量調整手段の操作に連動して、上記水量比率調整手段を作動させる連動手段を備えたことを要旨とする。
【0007】
また、本発明の請求項3記載の湯沸器は、上記請求項1又は請求項2記載の湯沸器において、
上記水量調整手段は、絞り操作に連動して上記熱交換器への通水量を一定に保ったまま上記バイパス路への通水量を絞っていき、該バイパス路への通水が略停止される状態に達すると、該熱交換器への通水量の絞り動作を開始することを要旨とする。
【0008】
上記構成を有する本発明の請求項1記載の湯沸器は、水量比率調整手段が、バーナへ供給するガス量の変化に応じて、熱交換器とバイパス路への通水量の総量は変化させずに、その比率のみを変化させる。例えば、ガス量を絞って出湯温を下げる場合には、熱交換器への通水量を減少させバイパス路への通水量を増加させることによって、低入水温時であっても熱交換器でのドレン発生を抑制する。また、ガス量を増加させて出湯温を上げる場合には、熱交換器への通水量を増加させバイパス路への通水量を減少させることによって、高入水温時であっても熱交換器内での沸騰を抑制する。
【0009】
また、本発明の請求項2記載の湯沸器は、ガス量調整手段を操作することによってバーナへの供給ガス量が変化するのに応じて、連動手段が水量比率調整手段を調整し、自動的に、熱交換器への通水量とバイパス路への通水量との総量は変化させずに、その比率のみを変化させる。
【0010】
また、本発明の請求項3記載の湯沸器は、水量調整手段により、熱交換器への通水量を一定に保ったままバイパス路への通水量を調整することによって、給湯温度を調節するため、水量調整によっても、ドレンの発生や沸騰といった問題は生じない。さらに、熱交換器への通水量を一定に保ったままバイパス路への通水量を絞っていき、バイパス路への通水が略停止される状態に達すると、水量調整手段が熱交換器への通水量の絞り動作を開始する。このため、バイパス路への通水を停止し、さらに熱交換器への通水量を減少させることによって、より高温の出湯いわゆるボイリング出湯が可能となる。
【0011】
【発明の実施の形態】
以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の湯沸器の好適な実施形態について説明する。
【0012】
図1は、一実施形態としての元止め式瞬間湯沸器100の概略構成図であり、図2は、湯沸器100の外観図である。
器具正面には、点消火操作,水量調整及び出湯温調節するための操作ボタン1と、ガス量調節レバー21とが設けられる。操作ボタン1は、プッシュ式ボタンではあるものの回動自在に設けられ、点消火操作はプッシュ操作により、出湯温調節及び水量調整は回し操作により行われる。器具本体ケースには、操作ボタン1の周囲に温調用の目盛りが印刷されており、操作ボタン1のツマミ1aをあわすことにより出湯温及び水量が無段階調節される。
器具本体内には、図1に示すように操作ボタン1のプッシュ操作に連動して動作するレバー2と、このレバー2の動作のよりON/OFFするレバースイッチ28が設けられる。
水入口9からの給水経路には、操作ボタン1による手動操作によってレバー2を介して流路を開閉する水栓8が設けられ、その下流には水圧応動装置10が設けられる。水圧応動装置10には、前後に移動自在なダイアフラム22が設けられ、このダイアフラム22で仕切って一次圧室12と二次圧室17とが形成される。
また、水圧応動装置10の一次圧室12への入路には、ダイアフラム22と同軸上に、給水圧の変動が生じても一定流量以下に制限する水ガバナ11が設けられる。
また、一次圧室12から続く流路には、水量調整部25が設けられる。この水量調整部25についての詳細は後述する。
水量調整部25で流路は2方向に分岐され、一方には熱交換器16への給水管33が、もう一方には熱交換器16からの出湯管35に接続されるバイパス管34が設けられる。
【0013】
給水管33の途中にはベンチュリー15が設けられる。ベンチュリー15は、流路を絞ると共に、流路と直角方向に横孔が設けられ水圧応動装置10の二次圧室17に通じている。ベンチュリー15へ通水されると、ベンチュリー効果によって横孔の水圧に応じて二次圧室17の圧力が低下する。
従って、一次圧室12と二次圧室17間に差圧が生じて、前後に変位自在なダイアフラム22に変位力(前進力)を(図の左方向へ)発生させる。
また、ダイアフラム22には、その変位を伝える突棒18がダイアフラム22に当接して設けられる。そして、突棒18の両側には突棒18の動作に連動して、ON/OFFする水圧スイッチA26,水圧スイッチB27が設けられる。
【0014】
熱交換器16を加熱するメインバーナ20へのガス供給経路には、燃焼中に1次熱電対23と2次熱電対24の合成熱起電力によって開弁状態を保ち、燃焼異常が発生すれば合成熱起電力が低下することにより閉弁するマグネット安全弁3が設けられる。また、この下流には、水圧応動装置10と連動してガス流路を開閉する水圧応動弁19が設けられ、更に下流には、操作ボタン1のプッシュ操作によってガス流路を開閉する器具栓4が設けられる。
また、器具栓4下流の流路は分岐され、燃焼状態を検出するセンシングバーナ7への流路と、メインバーナ20に通じる流路とが設けられる。メインバーナ20へ通じる流路には、供給ガス圧の変動が生じてもガス流量を一定に保つガスガバナ29とメインバーナ20への供給ガス量を調節するガス量調節軸31が設けられる。ガス量調節軸31はガス量調節レバー21を左側の能力小の位置から右側の能力大の位置まで動かすことによって無段階で操作される。
また、メインバーナ20には、連続スパークによりメインバーナ20に点火する電極5と点火を検知するフレームロッド30が設けられる。
【0015】
次に、出湯操作について説明する。
操作ボタン1を押すと、レバースイッチ28がONしレバー2に連動して器具栓4及び水栓8が開き通水が開始される。
水入口9より流入した水はストレーナ6、水ガバナ11、一次圧室12を通り水量制御部25より、一方は給水管33を経て熱交換器16へ、他方はバイパス管34を通って出湯管35からの湯と混合される。
【0016】
ベンチュリー15を通ることにより二次圧室17の圧力を下げ一次圧室12との差圧によりダイアフラム22が二次圧室17側に動作し、突棒18を押し、これに係止されたマグネット開弁機構14によりマグネット安全弁3が開弁すると同時に水圧スイッチA26がONする。マグネット安全弁3が全開になるとマグネット開弁機構14は突棒18より離脱しマグネット安全弁3の閉弁時に邪魔にならない所定の位置まで戻る。更に突棒18が押されると水圧応動弁19が開き、それと同時に水圧スイッチB27がONし電極5からの連続スパークによりメインバーナ20及びセンシングバーナ7に着火する。メインバーナ20に着火すれば点火初期にはフレームロッド30が検知してマグネット安全弁3の開弁状態を維持し、一定時間経過後には1次熱電対23と2次熱電対24の合成熱起電力によって開弁状態が維持され、燃焼が維持される。
出湯状態において再度、操作ボタン1を押すと、レバー2に連動している器具栓4及び水栓8が閉じ、ガス通路及び水通路を遮断し出湯を停止する。
【0017】
次に、水量調整部25について詳述する。
水量調整部25は、図3に示すように、内側に円筒状の水量調節軸13、外側に円筒状の比率調節軸32を同軸上に回動可能に重ね合わせた2重管を分岐管として給水管33とバイパス管34とを備えた水路管36内に収納して構成され、水量調節軸13の内側が給水経路の一部となる。そして、水量調節軸13と比率調節軸32との間にOリング13Bを、比率調節軸32と水路管36との間にOリング32Bをはめこむことにより水密が保たれる。また、水量調節軸13と比率調節軸32には、水路管36とは反対側の先端にそれぞれ水量ギヤ13Aと比率ギヤ32Aが設けられる。この水量ギヤ13Aは、操作ボタン1に設けられたギヤ1Aと噛合しており、操作ボタン1のまわし操作に連動して水量調節軸13を回転させる。一方、比率ギヤ32Aは、ガス量調節レバー21に設けられたギヤ21Aと噛合しており、ガス量調節レバー21を左右に手動操作するのと連動して比率調節軸32を回転させる。つまり、比率調節軸32は、ガス量調節軸31と連動して動作する。
水量調節軸13には、給水管33への開口(以下、給水開口)面積を調節する水量給水スリット13aと、バイパス管34への開口(以下バイパス開口)面積を調節する水量バイパススリット13bが設けられる。同様に比率調節軸32には、給水開口面積を調節する比率給水スリット32aと、バイパス開口面積を調節する比率バイパススリット32bが設けられる。水量給水スリット13aと比率給水スリット32aと給水管33の開口とが重なり合うことによって給水開口面積が規定される。また、水量バイパススリット13bと比率バイパススリット32bとバイパス管34の開口とが重なり合うことによってバイパス開口面積が規定される。
【0018】
次に、水量調節軸13と比率調節軸32と給水管33との重なりの変化による給水開口面積とバイパス開口面積の変化の様子を図4(能力大時)及び図5(能力小時)を用いて説明する。
図4と図5は、能力大時と能力小時とにおいて、操作ボタン1をまわしてツマミ1a位置を低温から熱湯冬まで変化させた時に水量調節軸13が回転し給水開口面積とバイパス開口面積が変化する様子を示している。また、ガス量調節レバー21を能力大から能力小に動作させ、比率調節軸32を回転させると、給水開口面積とバイパス開口面積は図4の状態から図5の状態に変化する。つまり、その総和は変らずにその比率のみが変化する。
給水管への流量は、水量給水スリット13a、比率給水スリット32a、給水管33が内側から外側に向かって重なり合っているため、水量給水スリット13aと比率給水スリット32aの重なりと比率給水スリット32aと給水管33の重なりとの小さい方の面積によって規定される。この流量を規定する面積が、給水開口面積である。また、バイパス管への流量も同様に考えられ、この流量を規定する面積がバイパス開口面積である。図4,5中のスリットの重なり中の斜線部が開口面積である。
【0019】
まず、比率調節軸32は動かさずに、水量調節軸13を回転させた時について説明する。ガス量調節レバー21を能力大で固定し、操作ボタン1を低温側から高温側に回していくと水量調節軸13のみが回転し、図4に示す様に比率調節軸32に設けられた比率給水スリット32aと比率バイパススリット32bは動かずに、水量調節軸13に設けられた水量給水スリット13aと水量バイパススリット13bが移動する。この時、図4の低温→1→3の欄に示すように水量給水スリット13aと比率給水スリット32aとの重なりの面積は減少していくが、比率給水スリット32aと給水管33との重なりの面積は変化せず、後者の重なりの方が小さいために給水開口面積は変化しない。そして、水量バイパススリット13bと比率バイパススリット32bとの重なりの面積は減少していき、比率バイパススリット32bとバイパス管34との重なりの面積は変らないが前者重なりの方が小さいのでバイパス開口面積は減少していく。(但し、ツマミ1a位置が低温の場合には、後者の重なりの方が小さくなるので、後者の重なりがバイパス開口面積となる。)すなわち、内胴通過水量は変化せずにバイパス水量が減らされることによって、出湯量が少なくなり、出湯温は高くなる。さらに、バイパス開口面積が0になった後にさらに操作ボタン1を回転させ熱湯まで持っていくと、熱湯夏と熱湯冬の欄に示すように給水開口面積が減少することによって内胴通過水量が減少し更に高温の湯を得ることができ、いわゆるボイリング出湯ができる。
【0020】
次に、操作ボタン1による水量調整は行わずに、ガス量調節レバー21を操作して比率調節軸32を回転させた場合について説明する。
ガス量調節レバー21を能力大の位置(図4)から能力小の位置(図5)に動かしてガス量を絞ると、出湯量は変化させずに出湯温を低くすることができる。この時、連動して比率調節軸32が回転し、図4の状態から図5の状態へと比率給水スリット32aと比率バイパススリット32bが移動して、給水開口面積とバイパス開口面積の合計はかわらずに、給水開口面積は減少しバイパス開口面積は増加することによって、内胴通過水量が減少しバイパス水量が増加する。この内胴通過水量の減少分は供給ガス量の減少分に対応しているため、内胴出口温を一定の高温にたもったまま出湯温を低くできる。
これによって、ガス量を変化させても内胴通過水量とバイパス管34への通過水量が変化しない従来の湯沸器における課題、つまり、ガス量を絞って出湯温を低くすると内胴通過水量が一定であるから内胴出口温も低くなってしまい能力小時の特に低入水温時にフィン温度が低下しドレンが発生しやすいという課題を解決できる。このようにしてドレン発生を抑制することによってドレン発生に対する余裕度が広がるので、熱交換器16のフィンの枚数を増やし伝熱面積を増やすことができ熱効率を向上させることが可能となる。
また、ガス量が多い能力大時には、内胴通過水量を多くしバイパス水量を減らすことによって熱交換器16での沸騰を抑制することができる。このため、沸騰に対する余裕度が広がり、熱交換器16のフィンの枚数を増やし伝熱面積を増やすことができ熱効率を向上させることが可能となる。
また、ガス量は5号〜2.5号の能力範囲で無段階に調節することができ、給水開口面積とバイパス開口面積の比もガス量の変化に応じて無段階に調節される。この時の変化の比率は、ガス量によって内胴出口温が変化しないようにあらかじめ決められている。
【0021】
以上説明したように、本実施形態の湯沸器によれば、ガス量調節レバー21を手動操作してガス量調節軸31を動かし、ガス量が変化するのに連動して、比率調節軸32が動き、内胴通過水量とバイパス水量の総和は変化せずに、その比率のみが変化することによって内胴出口温を一定に保ったまま出湯温を変化させることができる。したがって、ガス量が少ない時には、内胴通過水量を増やしバイパス水量を減らすことによって熱交換器16でのドレンの発生を抑制することができ、ガス量が多い時には、内胴通過水量を減らしバイパス水量を増やすことによって熱交換器16での沸騰するのを抑制することができる。すなわち、ドレンの発生と熱交換器16での沸騰に対する余裕度が広がるので、熱交換器16の伝熱面積を増やすことができ熱効率向上の要求に応えることができる。
【0022】
また、ガス量一定のままで操作ボタン1を手動操作して水量調節軸13を動かすことによって、内胴通過水量を一定に保ったままバイパス水量を変化させて出湯温を変えることができる。この場合には、出湯量も高温出湯の時には多くなり低温出湯の時には少なくなるように変化する。さらに、バイパス開口面積が0になった後にさらに操作ボタン1を回転させ熱湯まで持っていくと、給水開口面積が減少することによって内胴通過水量が減少し更に高温の湯を得ることができ、いわゆるボイリング出湯ができる。
【0023】
以上本発明の実施形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
【0024】
【発明の効果】
以上詳述したように、本発明の請求項1記載の湯沸器によれば、バーナへの供給ガス量を変化させ、熱交換器への通水量とバイパス路への通水量の総和は一定に保ったままその比率を変化させることによって出湯温が調節できる。そして、バーナへの供給ガス量を少なくして出湯温を低くする場合には、熱交換器への通水量を減少させバイパス路への通水量を増加させることによって、特に低入水温時の熱交換器でのドレン発生を抑制できる。また、供給ガス量を多くして出湯温を高くする場合には、熱交換器への通水量を増加させバイパス路への通水量を減少させることによって、特に高入水温時の熱交換器での沸騰を抑制できる。このため、ドレンの発生と沸騰に対する余裕度が広がるので、熱交換器の伝熱面積を増やすことができ、熱効率を向上させることが可能となる。
【0025】
更に、本発明の請求項2記載の湯沸器によれば、ガス量調整手段を操作するだけで、自動的に、熱交換器への通水量とバイパス路への通水量の比率が変化するため、操作が非常に簡単である。
【0026】
更に、本発明の請求項3記載の小型湯沸器によれば、熱交換器への通水量を一定に保ったままバイパス路への通水量を変化させることにより出湯温調節ができる。さらに、バイパス路への通水を停止した後に、熱交換器への通水量を減少させることができ、より高温の出湯いわゆるボイリング出湯が可能となる。これらによってより使い勝手が良い湯沸器となる。
【図面の簡単な説明】
【図1】本実施形態としての小型湯沸器の概略構成図である。
【図2】本実施形態としての小型湯沸器の外観図である。
【図3】本実施形態の水量調整部の構成図である。
【図4】本実施形態の水量調節軸と比率調節軸と給水管及びバイパス管との重なりの変化を示した説明図である。
【図5】本実施形態の水量調節軸と比率調節軸と給水管及びバイパス管との重なりの変化を示した説明図である。
【符号の説明】
1…操作ボタン、1a…ツマミ、13…水量調節軸、13a…水量給水スリット、13b…水量バイパススリット、16…熱交換器、20…メインバーナ、21…ガス量調節レバー、25…水量制御部、31…ガス量調節軸、32…比率調節軸、32a…比率給水スリット、32b…比率バイパススリット、33…給水管、34…バイパス管、35…出湯管、36…水路管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water heater equipped with a gas amount adjusting means for adjusting a gas supply amount to a burner and a water amount adjusting means for adjusting a hot water supply temperature by adjusting a water flow rate.
[0002]
[Prior art]
Conventionally, the adjustment method of the tapping temperature of a stop-type instant water heater mainly used in the kitchen has been performed by the following two methods.
The first method is a method of adjusting the amount of water flow to the bypass pipe that bypasses the heat exchanger (hereinafter referred to as bypass water amount) without changing the amount of gas supplied to the burner. That is, this is a method of adjusting the tapping temperature by changing the amount of bypass water while keeping the amount of water flowing to the heat exchanger (hereinafter, the amount of water passing through the inner trunk) constant. In this method, since the amount of bypass water is small when the hot water temperature is raised, the total amount of hot water is reduced, and when the hot water temperature is lowered, the amount of hot water is increased.
[0003]
The second method is a method of increasing or decreasing the amount of gas supplied to the burner while keeping both the inner cylinder passing water amount and the bypass water amount constant. In this case, when the incoming water temperature is high in summer, etc., there is a problem that if the amount of gas is increased too much, the water passing through the inner trunk will boil, and when the incoming water temperature is low in winter, etc. There was a problem that drain was generated in the exchanger.
For this reason, in the conventional water heater, the amount of water passing through the inner cylinder is designed so that the inner cylinder passing water does not boil when the gas supply capacity is maximum (for example, 9600 kcal / h) and the incoming water temperature is 30 ° C. The minimum value of the gas supply capacity is designed to be a limit value at which no drain is generated when the incoming water temperature is 5 ° C. with this inner cylinder passing water amount.
[0004]
[Problems to be solved by the invention]
However, recently, there has been an increasing demand for improving the thermal efficiency of the water heater, and the gas supply adjustment range in which no drain is generated becomes narrower in order to meet this demand. That is, in order to improve the thermal efficiency, the heat transfer area of the heat exchanger, that is, the number of fins may be increased. However, in the conventional water heater, the amount of water passing through the inner cylinder is always constant regardless of the gas supply amount. When the capacity is small (for example, 4800 kcal / h), the relative heating amount with respect to the amount of water passing through the inner trunk is small compared to when the capacity is large. Is prone to occur. For this reason, if it is going to enlarge a heat transfer area without generating drain, the amount of heating at the time of a small capacity must be increased, and the range of gas supply adjustment will become narrow and the width of the required hot water temperature adjustment cannot be secured. As a result, it was not possible to meet the demand for improved thermal efficiency.
An object of the present invention is to solve the above-mentioned problems and to meet the demand for improved thermal efficiency while preventing the generation of drainage and the boiling of water passing through the inner cylinder.
[0005]
[Means for Solving the Problems]
The water heater according to claim 1 of the present invention for solving the above-mentioned problems is a heat exchanger that heats water by the combustion heat of a burner, a water supply passage that supplies water to the heat exchanger, and the heat exchanger. A hot water supply passage for delivering hot water from the heat exchanger, a bypass passage for bypassing the heat exchanger to connect the water supply passage and the hot water supply passage, a gas amount adjusting means for adjusting a gas supply amount to the burner, and a water flow amount In a water heater provided with a water amount adjusting means for adjusting the hot water supply temperature by adjusting,
Depending on the amount of gas supplied to the burner, the total amount of the water flow rate to the heat exchanger and the water flow rate to the bypass channel is not changed, and the ratio of the water flow rate to the heat exchanger and the bypass channel is not changed. The gist of the invention is that a water amount ratio adjusting means for adjusting the water amount is provided.
[0006]
Moreover, the water heater according to claim 2 of the present invention is the water heater according to claim 1,
The gist is provided with interlocking means for operating the water amount ratio adjusting means in conjunction with the operation of the gas amount adjusting means.
[0007]
The water heater according to claim 3 of the present invention is the water heater according to claim 1 or 2,
The water amount adjusting means throttles the water flow amount to the bypass passage while keeping the water flow amount to the heat exchanger constant in conjunction with the throttle operation, and the water flow to the bypass passage is substantially stopped. When the state is reached, the gist is to start the operation of reducing the amount of water flow to the heat exchanger.
[0008]
The water heater according to claim 1 of the present invention having the above-described configuration is such that the total amount of water flow to the heat exchanger and the bypass passage is changed by the water amount ratio adjusting means in accordance with the change of the gas amount supplied to the burner. Instead, only the ratio is changed. For example, when reducing the hot water temperature by reducing the amount of gas, by reducing the amount of water flowing to the heat exchanger and increasing the amount of water flowing to the bypass, the heat exchanger Suppresses drain generation. Also, when increasing the amount of gas to increase the temperature of the tapping water, increasing the amount of water flow to the heat exchanger and decreasing the amount of water flow to the bypass passage allows the inside of the heat exchanger even at high inlet temperatures. Suppresses boiling at
[0009]
Further, in the water heater according to claim 2 of the present invention, the interlocking means adjusts the water amount ratio adjusting means in response to a change in the amount of gas supplied to the burner by operating the gas amount adjusting means, Specifically, the total amount of the water flow to the heat exchanger and the water flow to the bypass is not changed, but only the ratio is changed.
[0010]
Moreover, the water heater according to claim 3 of the present invention adjusts the hot water supply temperature by adjusting the water flow rate to the bypass passage while keeping the water flow rate to the heat exchanger constant by the water amount adjusting means. Therefore, problems such as generation of drain and boiling do not occur even when the amount of water is adjusted. Further, the water flow rate to the heat exchanger is kept constant, the water flow rate to the bypass channel is reduced, and when the flow rate to the bypass channel is substantially stopped, the water volume adjusting means is turned to the heat exchanger. Start the throttle operation of the water flow rate. For this reason, by stopping the water flow to the bypass passage and further reducing the amount of water flow to the heat exchanger, a hotter hot water so-called boiling hot water becomes possible.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In order to further clarify the configuration and operation of the present invention described above, preferred embodiments of the water heater of the present invention will be described below.
[0012]
FIG. 1 is a schematic configuration diagram of a stop-type instantaneous water heater 100 as an embodiment, and FIG. 2 is an external view of the water heater 100.
On the front side of the appliance, there are provided an operation button 1 for point-extinguishing operation, water amount adjustment and hot water temperature adjustment, and a gas amount adjustment lever 21. Although the operation button 1 is a push type button, it is provided so as to be rotatable, the point-extinguishing operation is performed by a push operation, and the tapping temperature adjustment and the water amount adjustment are performed by a turning operation. A scale for temperature adjustment is printed around the operation button 1 in the instrument body case, and the hot water temperature and the amount of water are adjusted steplessly by turning the knob 1a of the operation button 1.
As shown in FIG. 1, a lever 2 that operates in conjunction with a push operation of the operation button 1 and a lever switch 28 that is turned ON / OFF by the operation of the lever 2 are provided in the instrument body.
A water supply path from the water inlet 9 is provided with a faucet 8 that opens and closes the flow path via the lever 2 by manual operation with the operation button 1, and a water pressure responsive device 10 is provided downstream thereof. The water pressure responsive device 10 is provided with a diaphragm 22 that is movable back and forth, and a primary pressure chamber 12 and a secondary pressure chamber 17 are formed by being partitioned by the diaphragm 22.
In addition, a water governor 11 is provided on the passage to the primary pressure chamber 12 of the water pressure responsive device 10 so as to be concentric with the diaphragm 22 and restrict the flow rate to a predetermined flow rate or less even if the feed water pressure fluctuates.
Further, a water amount adjusting unit 25 is provided in the flow path that continues from the primary pressure chamber 12. Details of the water amount adjusting unit 25 will be described later.
The flow path is branched in two directions by the water amount adjusting unit 25, one side is provided with a water supply pipe 33 to the heat exchanger 16, and the other side is provided with a bypass pipe 34 connected to the hot water outlet pipe 35 from the heat exchanger 16. It is done.
[0013]
A venturi 15 is provided in the middle of the water supply pipe 33. The venturi 15 squeezes the flow path and is provided with a horizontal hole in a direction perpendicular to the flow path and communicates with the secondary pressure chamber 17 of the hydraulic pressure actuator 10. When water is passed through the venturi 15, the pressure in the secondary pressure chamber 17 is reduced according to the water pressure in the horizontal hole due to the venturi effect.
Accordingly, a differential pressure is generated between the primary pressure chamber 12 and the secondary pressure chamber 17, and a displacement force (forward force) is generated (to the left in the figure) in the diaphragm 22 that is displaceable back and forth.
The diaphragm 22 is provided with a projecting rod 18 that transmits the displacement in contact with the diaphragm 22. A water pressure switch A26 and a water pressure switch B27 that are turned ON / OFF in conjunction with the operation of the protrusion rod 18 are provided on both sides of the protrusion rod 18.
[0014]
In the gas supply path to the main burner 20 that heats the heat exchanger 16, if the valve is opened by the combined thermoelectromotive force of the primary thermocouple 23 and the secondary thermocouple 24 during combustion, and a combustion abnormality occurs A magnet safety valve 3 is provided that is closed when the combined thermoelectromotive force is reduced. Further, downstream of this, a water pressure responsive valve 19 that opens and closes the gas flow path in conjunction with the water pressure responsive device 10 is provided, and further downstream, an instrument plug 4 that opens and closes the gas flow path by a push operation of the operation button 1. Is provided.
Further, the flow path downstream of the instrument plug 4 is branched, and a flow path to the sensing burner 7 for detecting the combustion state and a flow path to the main burner 20 are provided. The flow path leading to the main burner 20 is provided with a gas governor 29 that keeps the gas flow rate constant even when the supply gas pressure fluctuates, and a gas amount adjusting shaft 31 that adjusts the amount of gas supplied to the main burner 20. The gas amount adjusting shaft 31 is operated in a stepless manner by moving the gas amount adjusting lever 21 from a position having a small capacity on the left side to a position having a large capacity on the right side.
Further, the main burner 20 is provided with an electrode 5 that ignites the main burner 20 by continuous spark and a frame rod 30 that detects ignition.
[0015]
Next, the hot water operation will be described.
When the operation button 1 is pressed, the lever switch 28 is turned ON, and the instrument plug 4 and the faucet 8 are opened in conjunction with the lever 2 to start water passage.
Water flowing from the water inlet 9 passes through the strainer 6, the water governor 11, and the primary pressure chamber 12, and from the water amount control unit 25, one through the water supply pipe 33 to the heat exchanger 16, and the other through the bypass pipe 34 to the hot water pipe. Mixed with hot water from 35.
[0016]
The pressure of the secondary pressure chamber 17 is lowered by passing through the venturi 15, and the diaphragm 22 is moved to the secondary pressure chamber 17 side by the differential pressure with the primary pressure chamber 12, pushing the projecting rod 18, and the magnet locked to this As the magnet safety valve 3 is opened by the valve opening mechanism 14, the water pressure switch A26 is turned ON. When the magnet safety valve 3 is fully opened, the magnet valve opening mechanism 14 is detached from the projecting rod 18 and returns to a predetermined position where it does not get in the way when the magnet safety valve 3 is closed. When the rod 18 is further pressed, the water pressure responsive valve 19 is opened, and at the same time, the water pressure switch B27 is turned on to ignite the main burner 20 and the sensing burner 7 by the continuous spark from the electrode 5. When the main burner 20 is ignited, the flame rod 30 detects at the initial stage of ignition and maintains the opened state of the magnet safety valve 3, and after a certain period of time, the combined thermoelectromotive force of the primary thermocouple 23 and the secondary thermocouple 24 Thus, the valve open state is maintained and combustion is maintained.
When the operation button 1 is pushed again in the hot water state, the instrument plug 4 and the water tap 8 interlocked with the lever 2 are closed, the gas passage and the water passage are shut off, and the hot water is stopped.
[0017]
Next, the water amount adjusting unit 25 will be described in detail.
As shown in FIG. 3, the water amount adjustment unit 25 has a double pipe in which a cylindrical water amount adjustment shaft 13 on the inner side and a cylindrical ratio adjustment shaft 32 on the outer side are overlapped so as to be rotatable coaxially. The water supply pipe 33 and the bypass pipe 34 are housed in a water pipe 36, and the inside of the water amount adjusting shaft 13 is a part of the water supply path. And watertightness is maintained by inserting the O-ring 13B between the water amount adjusting shaft 13 and the ratio adjusting shaft 32 and the O-ring 32B between the ratio adjusting shaft 32 and the water channel pipe 36. Further, the water amount adjusting shaft 13 and the ratio adjusting shaft 32 are respectively provided with a water amount gear 13A and a ratio gear 32A at the tip opposite to the water channel pipe 36. The water amount gear 13A meshes with a gear 1A provided on the operation button 1, and rotates the water amount adjustment shaft 13 in conjunction with the turning operation of the operation button 1. On the other hand, the ratio gear 32A meshes with a gear 21A provided on the gas amount adjusting lever 21, and rotates the ratio adjusting shaft 32 in conjunction with the manual operation of the gas amount adjusting lever 21 left and right. That is, the ratio adjustment shaft 32 operates in conjunction with the gas amount adjustment shaft 31.
The water amount adjusting shaft 13 is provided with a water amount water supply slit 13a for adjusting an opening area (hereinafter referred to as a water supply opening) to the water supply pipe 33 and a water amount bypass slit 13b for adjusting an opening area (hereinafter referred to as a bypass opening) to the bypass pipe 34. It is done. Similarly, the ratio adjustment shaft 32 is provided with a ratio water supply slit 32a for adjusting the water supply opening area and a ratio bypass slit 32b for adjusting the bypass opening area. A water supply opening area is prescribed | regulated by the amount of water supply slit 13a, the ratio water supply slit 32a, and the opening of the water supply pipe 33 overlapping. Further, the bypass opening area is defined by the overlap of the water amount bypass slit 13b, the ratio bypass slit 32b, and the opening of the bypass pipe 34.
[0018]
Next, FIG. 4 (when capacity is large) and FIG. 5 (when capacity is small) are used to show changes in the water supply opening area and the bypass opening area due to changes in the overlap of the water amount adjusting shaft 13, the ratio adjusting shaft 32 and the water supply pipe 33. I will explain.
4 and 5 show that the water adjustment shaft 13 rotates and the water supply opening area and the bypass opening area are changed when the operation button 1 is turned to change the position of the knob 1a from the low temperature to the hot water winter when the capacity is large and when the capacity is small. It shows how it changes. Further, when the gas amount adjusting lever 21 is operated from a large capacity to a small capacity and the ratio adjusting shaft 32 is rotated, the water supply opening area and the bypass opening area change from the state of FIG. 4 to the state of FIG. In other words, the sum does not change, only the ratio changes.
The flow rate to the water supply pipe is such that the water supply water slit 13a, the ratio water supply slit 32a, and the water supply pipe 33 overlap from the inside to the outside. It is defined by the smaller area with the overlap of the tube 33. The area that defines this flow rate is the water supply opening area. Similarly, the flow rate to the bypass pipe is also considered, and the area that defines this flow rate is the bypass opening area. The hatched area in the overlap of the slits in FIGS. 4 and 5 is the opening area.
[0019]
First, the case where the water amount adjusting shaft 13 is rotated without moving the ratio adjusting shaft 32 will be described. When the gas amount adjusting lever 21 is fixed at a large capacity and the operation button 1 is turned from the low temperature side to the high temperature side, only the water amount adjusting shaft 13 rotates, and the ratio provided on the ratio adjusting shaft 32 as shown in FIG. The water supply slit 32a and the water bypass slit 13b provided on the water adjustment shaft 13 move without moving the water supply slit 32a and the ratio bypass slit 32b. At this time, as shown in the column of low temperature → 1 → 3 in FIG. 4, the overlapping area of the water supply slit 13a and the ratio water supply slit 32a decreases, but the overlap of the ratio water supply slit 32a and the water supply pipe 33 is reduced. The area does not change, and the water supply opening area does not change because the latter overlap is smaller. Then, the area of overlap between the water amount bypass slit 13b and the ratio bypass slit 32b decreases and the area of overlap between the ratio bypass slit 32b and the bypass pipe 34 does not change, but the former overlap is smaller, so the bypass opening area is smaller. Decrease. (However, when the position of the knob 1a is low, the latter overlap becomes smaller, so the latter overlap becomes the bypass opening area.) That is, the amount of bypass water is reduced without changing the inner body passing water amount. As a result, the amount of tapping water decreases, and the tapping temperature increases. Furthermore, if the operation button 1 is further rotated to bring hot water after the bypass opening area becomes 0, the water supply opening area decreases as shown in the hot water summer and hot water winter fields, thereby reducing the amount of water passing through the inner trunk. Moreover, hot water can be obtained, so-called boiling hot water can be obtained.
[0020]
Next, a case where the ratio adjustment shaft 32 is rotated by operating the gas amount adjustment lever 21 without adjusting the water amount by the operation button 1 will be described.
If the gas amount adjusting lever 21 is moved from the position with the large capacity (FIG. 4) to the position with the small capacity (FIG. 5) to reduce the amount of gas, the temperature of the discharged water can be lowered without changing the amount of the hot water. At this time, the ratio adjusting shaft 32 rotates in conjunction with the ratio water supply slit 32a and the ratio bypass slit 32b from the state of FIG. 4 to the state of FIG. 5, and the total of the water supply opening area and the bypass opening area is not changed. Instead, the water supply opening area is decreased and the bypass opening area is increased, so that the inner trunk passing water amount is decreased and the bypass water amount is increased. Since the decrease in the amount of water passing through the inner cylinder corresponds to the decrease in the amount of supply gas, the temperature of the discharged hot water can be lowered while the inner cylinder outlet temperature is kept at a constant high temperature.
As a result, the problem with the conventional water heater in which the amount of water passing through the inner cylinder and the amount of water passing through the bypass pipe 34 does not change even when the amount of gas is changed, that is, the amount of water passing through the inner cylinder is reduced by lowering the hot water temperature by reducing the amount of gas. Since it is constant, the temperature at the inner trunk outlet is also lowered, and the problem that the fin temperature is lowered and drainage is likely to be generated can be solved particularly when the capacity is low, especially at the low water inlet temperature. By suppressing the generation of the drain in this manner, the margin for the generation of the drain is widened, so that the number of fins of the heat exchanger 16 can be increased, the heat transfer area can be increased, and the thermal efficiency can be improved.
Further, when the capacity is large with a large amount of gas, boiling in the heat exchanger 16 can be suppressed by increasing the amount of water passing through the inner trunk and reducing the amount of bypass water. For this reason, the margin with respect to boiling spreads, the number of fins of the heat exchanger 16 can be increased, the heat transfer area can be increased, and the thermal efficiency can be improved.
Further, the gas amount can be adjusted steplessly within the capacity range of No. 5 to 2.5, and the ratio of the water supply opening area and the bypass opening area is also adjusted steplessly according to the change in the gas amount. The rate of change at this time is determined in advance so that the inner cylinder outlet temperature does not change depending on the amount of gas.
[0021]
As described above, according to the water heater of the present embodiment, the gas amount adjusting lever 21 is manually operated to move the gas amount adjusting shaft 31, and the ratio adjusting shaft 32 is interlocked with the change in the gas amount. The sum of the amount of water passing through the inner trunk and the amount of bypass water does not change, and only the ratio changes, so that the temperature of the hot water can be changed while keeping the inner trunk outlet temperature constant. Therefore, when the amount of gas is small, the generation of drain in the heat exchanger 16 can be suppressed by increasing the amount of water passing through the inner cylinder and reducing the amount of bypass water. When the amount of gas is large, the amount of bypass water is reduced by reducing the amount of water passing through the inner cylinder. It is possible to suppress boiling in the heat exchanger 16 by increasing. That is, since the margin for the generation of drain and the boiling in the heat exchanger 16 is widened, the heat transfer area of the heat exchanger 16 can be increased and the demand for improved thermal efficiency can be met.
[0022]
Further, by manually operating the operation button 1 with the gas amount kept constant and moving the water amount adjusting shaft 13, the bypass water amount can be changed while the inner body passing water amount is kept constant to change the tapping temperature. In this case, the amount of tapping water changes so as to increase when hot tapping and decreases when tapping cold. Furthermore, if the operation button 1 is further rotated and brought to hot water after the bypass opening area becomes zero, the amount of water passing through the inner trunk is reduced by reducing the water supply opening area, and hot water having a higher temperature can be obtained. So-called boiling hot water can be made.
[0023]
Although the embodiment of the present invention has been described above, the present invention is not limited to such an embodiment, and it is needless to say that the present invention can be implemented in various modes without departing from the gist of the present invention.
[0024]
【The invention's effect】
As described above in detail, according to the water heater according to claim 1 of the present invention, the amount of gas supplied to the burner is changed, and the total amount of water flow to the heat exchanger and water flow to the bypass is constant. The hot water temperature can be adjusted by changing the ratio while maintaining the temperature. And when reducing the amount of gas supplied to the burner and lowering the temperature of the tapping water, reducing the amount of water flowing to the heat exchanger and increasing the amount of water flowing to the bypass, Drain generation in the exchanger can be suppressed. Also, when increasing the amount of supplied gas and raising the temperature of the tapping water, increasing the amount of water flow to the heat exchanger and decreasing the amount of water flow to the bypass passage, especially in heat exchangers at high inlet temperatures. Can suppress boiling. For this reason, since the margin with respect to generation | occurrence | production of drain and boiling spreads, the heat-transfer area of a heat exchanger can be increased, and it becomes possible to improve thermal efficiency.
[0025]
Furthermore, according to the water heater according to claim 2 of the present invention, the ratio of the amount of water flowing to the heat exchanger and the amount of water flowing to the bypass passage changes automatically only by operating the gas amount adjusting means. Therefore, the operation is very simple.
[0026]
Furthermore, according to the small water heater according to claim 3 of the present invention, the temperature of the tapping water can be adjusted by changing the amount of water flowing to the bypass passage while keeping the amount of water flowing to the heat exchanger constant. Furthermore, after stopping water flow to the bypass passage, the amount of water flow to the heat exchanger can be reduced, so that hotter hot water, so-called boiling hot water can be obtained. These make the water heater more convenient to use.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a small water heater as an embodiment of the present invention.
FIG. 2 is an external view of a small water heater as the present embodiment.
FIG. 3 is a configuration diagram of a water amount adjusting unit of the present embodiment.
FIG. 4 is an explanatory view showing a change in overlap of a water amount adjusting shaft, a ratio adjusting shaft, a water supply pipe and a bypass pipe according to the present embodiment.
FIG. 5 is an explanatory view showing a change in overlap of a water amount adjusting shaft, a ratio adjusting shaft, a water supply pipe and a bypass pipe according to the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Operation button, 1a ... Knob, 13 ... Water quantity adjustment shaft, 13a ... Water quantity water supply slit, 13b ... Water quantity bypass slit, 16 ... Heat exchanger, 20 ... Main burner, 21 ... Gas quantity adjustment lever, 25 ... Water quantity control part 31 ... Gas amount adjusting shaft, 32 ... Ratio adjusting shaft, 32a ... Ratio water supply slit, 32b ... Ratio bypass slit, 33 ... Water supply pipe, 34 ... Bypass pipe, 35 ... Outlet pipe, 36 ... Water pipe.

Claims (3)

バーナの燃焼熱により通水を加熱する熱交換器と、該熱交換器へ水を供給する給水路と、該熱交換器から湯を送出する出湯路と、該熱交換器をバイパスして給水路と出湯路とを連通するバイパス路と、該バーナへのガスの供給量を調整するガス量調整手段と、通水量を調整することによって給湯温度を調節する水量調整手段とを備えた湯沸器において、
上記バーナへの供給ガス量に応じて、上記熱交換器への通水量と上記バイパス路への通水量との総量は変化させずに、上記熱交換器と上記バイパス路への通水量の比率を調整する水量比率調整手段を設けたことを特徴とする湯沸器。
A heat exchanger that heats water through the combustion heat of the burner, a water supply passage that supplies water to the heat exchanger, a hot water supply passage that sends out hot water from the heat exchanger, and water that bypasses the heat exchanger A water heater comprising a bypass passage communicating the passage and the hot water passage, a gas amount adjusting means for adjusting a gas supply amount to the burner, and a water amount adjusting means for adjusting a hot water supply temperature by adjusting the water passage amount In the vessel
Depending on the amount of gas supplied to the burner, the total amount of the water flow rate to the heat exchanger and the water flow rate to the bypass channel is not changed, and the ratio of the water flow rate to the heat exchanger and the bypass channel is not changed. A water heater provided with a water amount ratio adjusting means for adjusting the water content.
上記ガス量調整手段の操作に連動して、上記水量比率調整手段を作動させる連動手段を備えたことを特徴とする請求項1記載の湯沸器。The water heater according to claim 1, further comprising interlocking means for operating the water amount ratio adjusting means in conjunction with operation of the gas amount adjusting means. 上記水量調整手段は、絞り操作に連動して上記熱交換器への通水量を一定に保ったまま上記バイパス路への通水量を絞っていき、該バイパス路への通水が略停止される状態に達すると、該熱交換器への通水量の絞り動作を開始することを特徴とする請求項1又は請求項2記載の湯沸器。The water amount adjusting means throttles the water flow amount to the bypass passage while keeping the water flow amount to the heat exchanger constant in conjunction with the throttle operation, and the water flow to the bypass passage is substantially stopped. The water heater according to claim 1 or 2, wherein when the state is reached, the operation of restricting the amount of water flow to the heat exchanger is started.
JP2001002129A 2001-01-10 2001-01-10 Water heater Expired - Lifetime JP4595202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002129A JP4595202B2 (en) 2001-01-10 2001-01-10 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002129A JP4595202B2 (en) 2001-01-10 2001-01-10 Water heater

Publications (2)

Publication Number Publication Date
JP2002206806A JP2002206806A (en) 2002-07-26
JP4595202B2 true JP4595202B2 (en) 2010-12-08

Family

ID=18870679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002129A Expired - Lifetime JP4595202B2 (en) 2001-01-10 2001-01-10 Water heater

Country Status (1)

Country Link
JP (1) JP4595202B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296564A (en) * 1992-04-17 1993-11-09 Rinnai Corp Hot water supply controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296564A (en) * 1992-04-17 1993-11-09 Rinnai Corp Hot water supply controller

Also Published As

Publication number Publication date
JP2002206806A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
JP4595202B2 (en) Water heater
JP4625916B2 (en) Water heater
JP2002310504A (en) Hot water heater
JP3703620B2 (en) Water heater
JPS5869349A (en) Hot water temperature adjusting device in capacity switching type instantaneous water heater
JP2019199987A (en) Composite heat source machine
CN220601820U (en) Flow regulating device and gas water heater comprising same
JPH102609A (en) Hot-water supply apparatus
JP2584196B2 (en) Hot water supply control device
JPH0249480Y2 (en)
JPS5911309Y2 (en) Mixing type water heater
JP3932226B2 (en) Bypass mixing water heater
JP2624109B2 (en) Water heater
JP2002228261A (en) Water heater
JPH086193Y2 (en) Water heater
JP3184240B2 (en) Water heater and water flow control method
JPS5916760Y2 (en) instant water heater
JP3932227B2 (en) Bypass mixing water heater
JP2864605B2 (en) Fluid control valve device
JPS6113866Y2 (en)
JPH0330755Y2 (en)
JPH08136046A (en) Water heater
JPS5911808B2 (en) Water heater safety device
JPH07332763A (en) Hot water/water switching type gas water heater
JPS61291825A (en) Temperature adjusting device of gas water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4595202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term