JP4593964B2 - Method for dry purification of pyrolysis gas - Google Patents

Method for dry purification of pyrolysis gas Download PDF

Info

Publication number
JP4593964B2
JP4593964B2 JP2004131432A JP2004131432A JP4593964B2 JP 4593964 B2 JP4593964 B2 JP 4593964B2 JP 2004131432 A JP2004131432 A JP 2004131432A JP 2004131432 A JP2004131432 A JP 2004131432A JP 4593964 B2 JP4593964 B2 JP 4593964B2
Authority
JP
Japan
Prior art keywords
pyrolysis gas
pyrolysis
substances
tar
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004131432A
Other languages
Japanese (ja)
Other versions
JP2005154722A (en
Inventor
義雄 小林
Original Assignee
義雄 小林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義雄 小林 filed Critical 義雄 小林
Priority to JP2004131432A priority Critical patent/JP4593964B2/en
Publication of JP2005154722A publication Critical patent/JP2005154722A/en
Application granted granted Critical
Publication of JP4593964B2 publication Critical patent/JP4593964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Industrial Gases (AREA)

Description

本発明は、低コストでダイオキシン等の環境に有害な物質の発生を抑制しつつ、高効率発電をすることを目的とする廃棄物処理技術等に有用に採用し得る熱分解ガスの乾式精製方法に関わる。   The present invention relates to a dry purification method of pyrolysis gas that can be effectively used in waste treatment technology and the like for the purpose of high-efficiency power generation while suppressing generation of substances harmful to the environment such as dioxins at low cost. Involved.

廃棄物はダイオキシンやHCl、SO2、NOxと有害重金属の発生源として嫌われ、減量化のために焼却し、その際に発生するダイオキシンやHCl、SO2、NOxと有害
金属の対処療法的な後始末に多くの労力を注いで来たが、これらを一元的に処理し、廃棄物を有用な資源として積極的に活用するための技術は未だ開発されていない。
ダイオキシンと飛灰・焼却灰の究極的な処理方法として、1400〜1500℃の高温で処理する事が推奨され、そのために廃棄物を一旦熱分解して燃焼性のよいガスに変換して低い過剰空気率で燃やし、1400〜1500℃の高温を発生させる方式(ガス化溶融炉方式)が一般化している。
Waste is disliked as a source of dioxins, HCl, SO 2 , NOx and toxic heavy metals, and is incinerated for reduction, and it is a therapeutic treatment for dioxins, HCl, SO 2 , NOx and toxic metals generated at that time. Much effort has been devoted to the cleanup, but no technology has yet been developed to treat these centrally and to actively use waste as a useful resource.
As the ultimate treatment method for dioxin and fly ash / incinerated ash, it is recommended to treat at a high temperature of 1400-1500 ° C. For this purpose, waste is once pyrolyzed and converted into a gas with good combustibility. A method (gasification melting furnace method) that burns at an air rate and generates a high temperature of 1400 to 1500 ° C. has become common.

しかし、この方式は処理工程が複雑であり、且つ1400〜1500℃の過酷な温度条件下での操作を含むために、炉材の寿命が短かったり、また除塵工程での所謂de novo合成を避けるために一旦排ガス温度を急冷し、その後NOxを除去するために排ガス温度を再度上げると言った煩雑な操作が必要である。そのために建設費のみならず維持管理費も高くつき、見かけ以上にコスト高になる。   However, this method has a complicated processing process and includes operation under severe temperature conditions of 1400 to 1500 ° C., so that the life of the furnace material is short and so-called de novo synthesis in the dust removal process is avoided. Therefore, it is necessary to perform a complicated operation such as rapidly cooling the exhaust gas temperature and then raising the exhaust gas temperature again to remove NOx. As a result, not only construction costs but also maintenance costs are high, which is more expensive than it seems.

近年厄介物の廃棄物からエネルギ−資源として見直そうと言う動きがあるが、その際の最大の問題点は廃棄物から発生するHCl によるボイラ伝熱管の高温腐蝕のために発電効率が10数%を越えられないことである。このガス化溶融炉方式でもボイラ伝熱管の高温腐蝕問題が改善されることなく、また力ずくでダイオキシン・焼却灰を押さえ込もうとするためにエネルギ−多消費型の技術となっている。   In recent years, there has been a movement to review from troublesome waste as an energy resource, but the biggest problem at that time is that the power generation efficiency is reduced to more than 10% due to high temperature corrosion of boiler heat transfer tubes by HCl generated from waste. It cannot be exceeded. Even in this gasification melting furnace system, the high temperature corrosion problem of the boiler heat exchanger tube is not improved, and it is an energy-intensive technology in order to forcefully suppress dioxin and incinerated ash.

第12回日本エネルギー学会大会講演要旨集(03年7月30〜31日)216〜217、220〜221、404〜405ページAbstracts of the 12th Annual Meeting of the Japan Institute of Energy (30-31 July 2003) 216-217, 220-221, 404-405

ダイオキシン等の有害物質の環境中へのゼロエミッションと高効率発電を実現するためには、廃棄物をガス化した後のガス精製(塩化水素、硫化水素や固形分の除去)が必須であるが、そのガス精製の障害になっているのが熱分解ガス中の高沸点成分・タ−ル状物質の存在である。本発明はこの障害を克服しつつゼロエミッションと高効率発電に好適な熱分解ガスの精製を目指すものである。   Gas purification (removal of hydrogen chloride, hydrogen sulfide and solids) after gasification of waste is indispensable in order to realize zero emission into the environment of hazardous substances such as dioxin and high-efficiency power generation. The obstacle to gas purification is the presence of high-boiling components and tar-like substances in the pyrolysis gas. The present invention aims to purify pyrolysis gas suitable for zero emission and high-efficiency power generation while overcoming this obstacle.

本発明者は焼却炉におけるダイオキシン生成メカニズムを研究する中で、ダイオキシンの生成量は炉内のHCl濃度の2〜3乗に比例すること、また、燃焼ガス中のHClによるボイラ伝熱管の高温腐蝕のために発電効率が上がらない事はよく知られているが、伝熱管の腐蝕速度もダイオキシン同様HCl濃度の2〜3乗に比例することを見いだした。数式で表すと次式の関係になる。   The present inventor studied the mechanism of dioxin generation in an incinerator. The amount of dioxin generated was proportional to the second to third power of the HCl concentration in the furnace, and the high temperature corrosion of the boiler heat transfer tube by HCl in the combustion gas. It is well known that the power generation efficiency does not increase because of this, but the corrosion rate of the heat transfer tube was found to be proportional to the second to the third power of the HCl concentration like dioxin. When expressed in mathematical formulas, the relationship is as follows.

[ダイオキシンの生成量] ∝ [ HCl濃度 ]2〜3
[伝熱管の腐蝕速度] ∝ [ HCl濃度 ]2〜3
ガス化熔融法ではダイオキシン抑制は1400〜1500℃の過酷な温度条件下で強引に焼き尽くすことによって、ようやく0.01ng(TEQ)/mNのレベルが達成されるのであるが、本発明者の研究によると極く普通の焼却炉において炉内のHCl濃度を迅速に1/10にするだけの方法で、ダイオキシン排出量は0.01〜0.001になり、ボイラ伝熱管の寿命は100〜1000倍に延びる。この原理を廃棄物処理に応用すれば環境に優しい廃棄物の資源化が実現できる。
[Dioxin production] ∝ [HCl concentration] 2-3
[Corrosion rate of heat transfer tube] ∝ [HCl concentration] 2-3
In the gasification melting method, dioxin suppression is finally achieved at a level of 0.01 ng (TEQ) / m 3 N by forcibly burning out under severe temperature conditions of 1400 to 1500 ° C. According to this study, dioxin emissions were reduced to 0.01 to 0.001 and the life of the boiler heat transfer tube was 100 by simply reducing the HCl concentration in the furnace to 1/10 in an ordinary incinerator. Extend 1000 times. If this principle is applied to waste disposal, environmentally friendly waste recycling can be realized.

熱分解では、可燃性の熱分解ガスの他に、塩化水素、硫化水素、煤塵、高沸点成分・タ−ル状物質、金属、その他不燃物などが発生する。熱分解ガスを高効率発電用の燃料ガスとして利用するためには排水処理コストの負担と熱エネルギ−の損失を伴わない乾式法で、これらの夾雑物を除去する必要がある。   In pyrolysis, hydrogen chloride, hydrogen sulfide, dust, high-boiling components, tar-like substances, metals, and other non-combustible substances are generated in addition to combustible pyrolysis gas. In order to use the pyrolysis gas as a fuel gas for high-efficiency power generation, it is necessary to remove these contaminants by a dry process that does not involve the burden of wastewater treatment costs and loss of heat energy.

塩化水素や硫化水素等の酸性ガスの除去には、炉内に重炭酸ソ−ダ、炭酸ソ−ダ、生石灰、消石灰などのアルカリ性物質を吹き込んでアルカリ塩として固定し、煤塵と共に集塵機で除去すればよいが、この方法の最大の問題点は熱分解ガスに含まれる高沸点成分・タ−ル状物質のために除塵操作に支障を来すことであった。   For removal of acid gases such as hydrogen chloride and hydrogen sulfide, alkaline substances such as bicarbonate soda, carbonate soda, quicklime and slaked lime are blown into the furnace, fixed as alkali salts, and removed with a dust collector together with soot dust. However, the biggest problem with this method is that it interferes with the dust removal operation due to the high boiling point components and tar-like substances contained in the pyrolysis gas.

高温集塵機はセラミック・フィルタ−の高温に対する信頼性の点でガス温度を500℃以下に下げることが好ましいとされているが、650℃の分解温度から500℃以下に下げた場合に高温集塵でもタ−ル状物質による障害が考えられる。また通常のバグフィルタ−ではガス温度を200℃以下に下げる必要があるためにタール状物質以外にも凝縮してミスト化する高沸点成分があり、それが熱回収と集塵操作の障害になる。   It is said that the high temperature dust collector is preferable to reduce the gas temperature to 500 ° C or less from the viewpoint of the reliability of the ceramic filter to the high temperature, but even when the temperature is reduced from the decomposition temperature of 650 ° C to 500 ° C or less, Possible damage due to tar-like substances. In addition, since a normal bag filter needs to lower the gas temperature to 200 ° C. or lower, there is a high boiling point component that condenses and mists in addition to tar-like substances, which hinders heat recovery and dust collection operations. .

本発明者はこの高沸点成分・タ−ル状物質を除去する目的で珪藻土や軽石で吸着させる方法を研究していたが、最近類似の研究が日本エネルギー学会で発表された(第12回日本エネルギー学会大会講演要旨集(03年7月30〜31日)216〜217、220〜221、404〜405ページ)。   The present inventor has been studying a method of adsorbing with diatomaceous earth and pumice for the purpose of removing this high boiling point component and tar-like substance, but a similar study was recently presented at the Japan Institute of Energy (12th Japan). Abstracts of Annual Conference of the Japan Institute of Energy (July 30-31, 2003) 216-217, 220-221, 404-405).

講演要旨によるとバイオマス・プラスティクの熱分解において熱分解炉の流動媒体に多孔質の活性アルミナや活性ボーキサイトを用いることによってタ−ル状物質の発生量を約75%抑制することが出来る。活性アルミナ上に析出したコークは再生塔で焼却することによって除去することが出来る。そしてその排ガスを熱分解炉の熱源にすると言うものである。活性アルミナ・ボーキサイト以外の多孔質物質も同様の特性があると述べているが、具体的な実験データは示されていない。上記技術では活性アルミナ・ボーキサイトの分解触媒能でタ−ル状物質を分解することを期待して、活性アルミナ・ボーキサイトを高温の熱分解炉での流動媒体として用いているためにタ−ル状物質の抑制率は75%止まりになっていると推察される。一方、本発明では後述の実験から得られた多孔質物質の油吸収特性に基づいて、多孔質物質を熱回収器に充填して比較的低い温度範囲で操作し、99%以上の高い抑制率を得る点で上記技術とは本質的に異なっている。   According to the summary of the lecture, the amount of tar-like substances generated can be suppressed by about 75% by using porous activated alumina or activated bauxite as the fluidized medium of the pyrolysis furnace in the thermal decomposition of biomass plastic. The coke deposited on the activated alumina can be removed by incineration in a regeneration tower. The exhaust gas is used as a heat source for the pyrolysis furnace. Porous materials other than activated alumina and bauxite have been described as having similar properties, but no specific experimental data has been shown. In the above technology, since the activated alumina / bauxite is used as a fluid medium in a high-temperature pyrolysis furnace in the hope of decomposing the tar-like substance with the catalytic activity of decomposition of the activated alumina / bauxite, It is estimated that the suppression rate of substances is only 75%. On the other hand, in the present invention, based on the oil absorption characteristics of the porous material obtained from the experiment described later, the porous material is filled in the heat recovery device and operated in a relatively low temperature range, and a high suppression rate of 99% or more is achieved. Is essentially different from the above technique.

本発明者は高沸点成分・タール状物質の代わりに重質油・アスファルトを用いて各種多孔質物質の吸収特性に関する実験を行った。その結果、活性アルミナやゼオライトは油吸収速度が小さく且つ分解・コーキングを伴い、再生には通常700℃近い温度を要するのに対し珪藻土は油吸収速度が大きく、油を吸収した珪藻土を空気中で加熱すると500〜600℃で炎を上げて燃えてヴァージン並の吸収力を回復し再生できること、また重質油・アスファルトを吸収した活性アルミナ、ゼオライト、珪藻土、軽石はいずれも表面がサラサラの乾燥状態であり油でベタ付くことはないが、シリカゲルは油吸収速度が小さく且つ表面が油でベタベタ状態であること、活性アルミナ、ゼオライト、シリカゲルの油吸収速度が小さく、分解・コーキングを伴うのは細孔径が分子オーダ(10〜1ナノメータ)であるためであり、就中シリカゲルは細孔径が特に小さいために表面がベタベタ状態になっていること、特に分子量の大きいアスファルトやタール状物質を除去する目的には細孔径が小さい活性アルミナ、ゼオライト、就中シリカゲルよりも
細孔径がミクロンオーダである珪藻土が最も適していることを見出した。
The present inventor conducted experiments on the absorption characteristics of various porous materials using heavy oil and asphalt instead of high boiling point components and tar-like materials. As a result, activated alumina and zeolite have a low oil absorption rate and are accompanied by decomposition and coking. Regeneration usually requires a temperature close to 700 ° C, whereas diatomaceous earth has a high oil absorption rate. When heated, it raises flames at 500-600 ° C and burns to recover and recover the absorption capacity similar to that of virgin, and activated alumina, zeolite, diatomaceous earth, and pumice that have absorbed heavy oil and asphalt all have a dry surface. However, silica gel has a low oil absorption rate and has a solid surface with oil, and the activated carbon, zeolite, and silica gel have a low oil absorption rate and are not susceptible to decomposition and coking. This is because the pore size is in the molecular order (10 to 1 nanometer). In particular, silica gel has a particularly small surface because the pore size is particularly small. For the purpose of removing asphalt and tar-like substances with high molecular weight, activated alumina and zeolite with a small pore size, and diatomaceous earth with a pore size of micron order than silica gel are most suitable for the purpose of removing solid asphalt and tar-like substances. I found out.

また、多孔質物質単位重量当たりの油吸収率は温度上昇と共に著しく低下すること、一方、高沸点成分ミストは高温の熱分解工程よりも集塵温度にまで下がる熱回収工程でより多く発生するので熱分解工程よりもむしろ熱回収工程での高沸点成分・タール状物質の除去操作が重要であることを明らかにした。   In addition, the oil absorption rate per unit weight of the porous material decreases remarkably with increasing temperature, while high boiling point component mist is generated more in the heat recovery process where the temperature is reduced to the dust collection temperature than in the high temperature pyrolysis process. It was clarified that the operation of removing high-boiling components and tar-like substances in the heat recovery process rather than the pyrolysis process is important.

つまり、高沸点成分・タール状物質の熱回収・集塵操作への悪影響を排除するためには伝熱管を備えた容器に多孔質物質からなる吸着剤を充填した熱回収器で熱を回収してガス温度を下げながら、凝縮する高沸点成分・タール状物質を多孔質物質に吸収させることが特に重要であることを見出した。   In other words, in order to eliminate the adverse effects on heat recovery and dust collection operations of high-boiling components and tar-like substances, heat is recovered with a heat recovery device in which a container equipped with a heat transfer tube is filled with an adsorbent composed of a porous material. Thus, it has been found that it is particularly important that the porous substance absorbs the high-boiling components and tar-like substances that condense while lowering the gas temperature.

本発明の方法によると、熱エネルギーを損失することなく完全にクリーンな燃料ガスに転換することが出来る。このことによってダイオキシン問題に煩わされることなく廃棄物による高効率発電が可能となる。この技術は一般に熱分解ガスの乾式精製に有効であり、その波及効果は大変大きい。   According to the method of the present invention, a completely clean fuel gas can be converted without loss of thermal energy. This enables high-efficiency power generation with waste without bothering with the dioxin problem. This technique is generally effective for dry purification of pyrolysis gas, and its ripple effect is very large.

本発明者はタール状物質の吸着除去には分子オーダの細孔を持つ活性アルミナ、ゼオライト、シリカゲルなどよりもミクロンオーダの細孔を持つ多孔質物質すなわち珪藻土、軽石や微粉炭燃焼の飛灰などを焼結したものなどの方が適していること、並びに油吸収率は温度上昇と共に著しく低下することを油吸収特性に関する実験で明らかにし、その油吸収特性を活かすために多孔質物質を充填した熱回収器でガス温度を下げながら凝縮する高沸点成分・タ−ル状物質吸収を吸収除去する方法を考案した。   The present inventor removes tar-like substances by adsorption and removal of porous substances having pores on the order of microns rather than activated alumina, zeolite, silica gel, etc., such as diatomaceous earth, pumice, and pulverized coal fly ash. It has been clarified through experiments on oil absorption characteristics that oil-sintered materials are more suitable, and that the oil absorption rate decreases remarkably with increasing temperature, and a porous material is filled to make use of the oil absorption characteristics. We have devised a method for absorbing and removing absorption of high-boiling components and tar-like substances that condense while lowering the gas temperature with a heat recovery device.

この方法によると、高沸点成分・タ−ル状物質の除去率が99%以上になることが期待できる。かくして熱エネルギ−の損失のない熱分解ガスの乾式精製技術を確立した。   According to this method, it can be expected that the removal rate of high boiling point components and tar-like substances is 99% or more. Thus, a dry refining technology for pyrolysis gas with no loss of heat energy was established.

この原理を工業的に利用して、廃棄物を400〜650℃の還元雰囲気下の熱分解炉で分解するに際して、発生する高沸点成分・タ−ル状物質を多孔質物質で吸着除去すると共にアルカリ性物質を吹き込み、HCl、H2S等の酸性ガスを固定した後、集塵装置を通して塩化水素、硫化水素等を含まないクリ−ンガスと固形分に分け、得られたクリ−ンガスは発電用に供して30%以上の効率で発電を行う一方、固形物は水洗等でアルカリ塩を除去した後、セメント原材料等とし、酸化されていない金属類は資源として回収する有害物質ゼロエミッションの画期的な廃棄物処理方法が可能である。 Utilizing this principle industrially, when the waste is decomposed in a pyrolysis furnace in a reducing atmosphere at 400 to 650 ° C., the generated high-boiling components and tar-like substances are adsorbed and removed with a porous substance. After injecting an alkaline substance and fixing acidic gas such as HCl and H 2 S, it is divided into clean gas and solid content not containing hydrogen chloride, hydrogen sulfide, etc. through a dust collector, and the obtained clean gas is used for power generation. In addition to generating electricity with an efficiency of 30% or more, solid materials are washed with water to remove alkali salts, and then used as raw materials for cement. Non-oxidized metals are recovered as resources. Efficient waste disposal methods are possible.

本発明において、対象となる熱分解ガスは、高沸点成分・タ−ル状物質を含有するガスであれば特に限定されることなく、如何なるガスにも適用できる。特に廃棄物の熱分解ガスが好適である。   In the present invention, the target pyrolysis gas is not particularly limited as long as it is a gas containing a high-boiling component / tar-like substance, and can be applied to any gas. In particular, waste pyrolysis gas is preferred.

対象となる廃棄物としては、一般の都市ごみや産業廃棄物などである。具体的な廃棄物の種類としては厨芥、食品残飯、塵埃、繊維類、紙類、草木、木材、汚泥、プラスチック類、廃油等が挙げられる。   The target waste includes general municipal waste and industrial waste. Specific types of waste include rice cake, food waste, dust, fibers, papers, vegetation, wood, sludge, plastics, waste oil, and the like.

これらの廃棄物は熱分解炉への投入に先立ち、あらかじめ一般に用いられる破砕機等を用いて細片化、粒状化し、調整槽で均一化しておくことが好ましい。   Prior to the introduction into the pyrolysis furnace, these wastes are preferably fragmented and granulated in advance using a crusher or the like that is generally used, and made uniform in a regulating tank.

熱分解炉は、流動床方式、キルン方式、シャフト炉方式の何れでもよく、熱分解炉の出口側には熱回収器(多孔質吸着剤を充填した熱交換器)を設ける。熱分解炉の加熱方式には間接加熱方式と炉内での部分燃焼方式があるが仕組みの簡単な部分燃焼方式が適している。   The pyrolysis furnace may be a fluidized bed system, a kiln system, or a shaft furnace system, and a heat recovery unit (a heat exchanger filled with a porous adsorbent) is provided on the outlet side of the pyrolysis furnace. There are an indirect heating method and a partial combustion method in the furnace as the heating method of the pyrolysis furnace, but a simple partial combustion method is suitable.

廃棄物を熱分解して生じる熱分解ガスには、通常、水素、一酸化炭素、塩化水素や硫化水素等の酸性ガス、メタン、エタン等の軽質可燃ガスの他に高沸点成分・タ−ル状物質が含まれているが、熱分解ガスから熱を回収し、固形分を除去する際にこの高沸点成分・タ−ル状物質が障害になる。特に通常のバグフィルタで除塵を行う場合には高沸点成分・タ−ル状物質を除去しなければならない。   Pyrolysis gas generated by pyrolyzing waste usually includes high-boiling components and tar, in addition to acidic gases such as hydrogen, carbon monoxide, hydrogen chloride and hydrogen sulfide, and light flammable gases such as methane and ethane. Although high-boiling components and tar-like substances are obstructed when heat is recovered from the pyrolysis gas and the solid content is removed. In particular, when dust is removed with a normal bag filter, high boiling point components and tar-like substances must be removed.

そのために本発明では高沸点成分・タ−ル状物質を珪藻土、軽石、ゼオライト、活性アルミナなどの多孔質物質、好ましくはミクロンオーダの細孔径を持つ多孔質物質すなわち珪藻土、軽石、微粉炭燃焼の飛灰などを焼結したものなどを主体とする吸着剤に吸収させる。これら多孔質物質の中でも、高沸点成分・タ−ル状物質の吸収能やその再生能の点で特に珪藻土が好ましい。   Therefore, in the present invention, high boiling point components and tar-like substances are porous substances such as diatomaceous earth, pumice, zeolite, activated alumina, preferably porous substances having a pore size of micron order, that is, diatomaceous earth, pumice, pulverized coal combustion. It is absorbed by an adsorbent mainly composed of sintered fly ash. Among these porous materials, diatomaceous earth is particularly preferable in terms of the ability to absorb high-boiling components and tar-like materials and their regeneration ability.

高沸点成分・タ−ル状物質を吸収した多孔質物質は熱分解工程で発生したチャ−と共に再生工程で空気で燃焼させて再生する。再生は500℃以上で行われるが、その排ガスは熱分解炉に吹き込んで、熱分解炉の熱源の一部とすることが好ましい。   The porous material that has absorbed the high-boiling component and tar-like material is regenerated by burning it with air in the regeneration process together with the char generated in the pyrolysis process. Regeneration is performed at 500 ° C. or higher, but the exhaust gas is preferably blown into a pyrolysis furnace and used as a part of the heat source of the pyrolysis furnace.

多孔質物質を充填した熱回収器の充填様式としては流動床、移動床、固定床があるが、熱分解ガス精製システムの構成要素として考えると、移動床は流動床に比べて機械操作が多くなる欠点はあるが、負荷変動への追随性、所要動力、吸収剤の摩耗、高除去率の点で優れている。また固定床では移動床よりも機械操作が更に複雑になる欠点があり、吸収剤の摩耗の点では優れているものの負荷変動への追随性、所要動力、高除去率の点では同等である。従って熱分解ガス精製システムとしては移動床式の熱回収器が最も優れている。熱回収器が移動床の場合、多孔質物質の再生工程はキルン方式等で行われるが、固定床の場合には内部に伝熱管を備えた複数の固定床を吸収→再生→スタンバイ工程を切り替えながら運用する。   There are fluidized bed, moving bed, and fixed bed as heat filling devices filled with porous materials, but moving bed has more machine operation than fluidized bed when considered as a component of pyrolysis gas purification system. However, it is excellent in terms of followability to load fluctuation, required power, wear of the absorbent, and high removal rate. In addition, the fixed bed has the disadvantage that the machine operation is more complicated than the moving bed. Although it is superior in terms of wear of the absorbent, it is equivalent in terms of followability to load fluctuation, required power, and high removal rate. Therefore, the moving bed type heat recovery unit is the best as the pyrolysis gas purification system. When the heat recovery unit is a moving bed, the regeneration process of the porous material is performed by a kiln method, etc., but in the case of a fixed bed, a plurality of fixed beds with heat transfer tubes are absorbed → regenerated → switched to the standby process While operating.

熱回収器で熱分解ガス温度を集塵機の操作温度域、例えば180℃以下に下げた後集塵機に導いて微粒子を除去する。集塵機で回収した飛灰・脱塩剤などの微粒子は熱分解炉の炉底から回収した粗大不燃物(Fe、Al、Cu などの金属以外の)と共に水洗によって水溶性分を除去した後にセメント原材料等として利用することができる。   The pyrolysis gas temperature is lowered to the operating temperature range of the dust collector, for example, 180 ° C. or less by the heat recovery device, and then guided to the dust collector to remove the fine particles. Fine particles such as fly ash and desalting agent collected by dust collectors are used as raw materials for cement after washing with water together with coarse incombustibles (other than metals such as Fe, Al, Cu, etc.) collected from the bottom of the pyrolysis furnace. Etc. can be used.

熱分解炉の操作温度は熱分解ガス中の夾雑物の特性、例えばAlの融点(660.2℃)、NaやKと炉材のSiO2との反応温度(約800℃)を考慮して決められるべきであるが、有機性塩素量を1%以下にするためには熱分解温度は450℃以上である事が好ましい。従って、操作温度は450〜650℃が特に好ましい。従来法による高沸点成分・タ−ル状物質による障害の回避策は1000℃近い温度で熱分解を行うことであったが、本発明では多孔質物質からなる吸着剤を充填した熱回収器を組み込む事によって熱エネルギ−の損失を伴うことなく高沸点成分・タ−ル状物質を除去することが出来る。このことによって冷ガス効率は大幅に向上する。 The operating temperature of the pyrolysis furnace takes into account the characteristics of impurities in the pyrolysis gas, such as the melting point of Al (660.2 ° C), the reaction temperature of Na and K with the furnace SiO 2 (about 800 ° C). Although it should be determined, in order to reduce the amount of organic chlorine to 1% or less, the thermal decomposition temperature is preferably 450 ° C. or higher. Therefore, the operation temperature is particularly preferably 450 to 650 ° C. The conventional method of avoiding obstacles due to high boiling point components and tar-like substances was to perform thermal decomposition at a temperature close to 1000 ° C. In the present invention, a heat recovery device filled with an adsorbent made of a porous substance is used. By incorporating it, high boiling point components and tar-like substances can be removed without any loss of heat energy. This greatly improves the cold gas efficiency.

一方集塵操作では集塵機の技術的制約(フィルタ−の高温に対する信頼性、固体物質の融着トラブル)とガスの取扱い量(集塵機の容量に関係する)および塩化水素除去率(Ca系のアルカリ性物質を用いる場合)の点では温度が低い方が有利である。つまり集塵機として通常のバグフィルタ−を使う場合には180℃以下で且つ、熱分解ガスの露点(熱分解ガス中の水蒸気濃度が30%の時には70℃)以上にしなければならないし、セラミックフィルタ−の場合でも500℃以下が好ましいとされている。   On the other hand, in the dust collection operation, technical restrictions of the dust collector (reliability of the filter at high temperature, fusing trouble of solid substances), gas handling amount (related to the capacity of the dust collector), and hydrogen chloride removal rate (Ca-based alkaline substance) The lower the temperature, the more advantageous in terms of In other words, when a normal bag filter is used as a dust collector, the temperature must be 180 ° C. or less and the dew point of the pyrolysis gas (70 ° C. when the water vapor concentration in the pyrolysis gas is 30%) or more. Even in this case, 500 ° C. or less is preferable.

そこで本発明では熱分解ガス中の高沸点成分・タ−ル状物質を除去する目的で伝熱管を備えた容器に多孔質物質を充填した熱回収器を400〜650℃の熱分解炉の出口に設けて、熱分解ガス温度を70〜500℃に下げる。この熱回収器で熱回収と高沸点成分・タ−ル状物質の除去が同時に達成出来る。   Therefore, in the present invention, a heat recovery device in which a porous material is filled in a container equipped with a heat transfer tube for the purpose of removing high boiling point components and tar-like substances in the pyrolysis gas is provided at the outlet of the pyrolysis furnace at 400 to 650 ° C. The pyrolysis gas temperature is lowered to 70 to 500 ° C. With this heat recovery device, heat recovery and removal of high boiling point components and tar-like substances can be achieved simultaneously.

熱分解ガスが特に塩化水素ガス等の酸性ガスを含むガスの場合には、ダイオキシンの発生を効果的に抑制するために熱分解炉またはその出口にアルカリ性物質をエアロゾル状で添加することが好ましい。なお、アルカリ性物質の添加方法はこれに限定されるものではない。   In the case where the pyrolysis gas is a gas containing an acidic gas such as hydrogen chloride gas, it is preferable to add an alkaline substance in the form of an aerosol to the pyrolysis furnace or its outlet in order to effectively suppress the generation of dioxins. In addition, the addition method of an alkaline substance is not limited to this.

アルカリ性物質とは、重炭酸ナトリウム、炭酸ナトリウム、水酸化ナトリウム、重炭酸カリウム、炭酸カリウム、水酸化カリウム、酸化カルシウム及び水酸化カルシウム等のアルカリ性を示すアルカリ金属の炭酸塩、水酸化物、酸化物であり、これらは単独でのみならず、数種混合して用いてもよく、更に、これらを含む鉱物資源、例えば石灰石、ドロマイト、天然ソーダなどであってもよい。   Alkaline substances include sodium bicarbonate, sodium carbonate, sodium hydroxide, potassium bicarbonate, potassium carbonate, potassium hydroxide, calcium oxide and calcium hydroxide, alkali metal carbonates, hydroxides and oxides that exhibit alkalinity. These may be used not only alone but also in a mixture of several kinds, and further may be a mineral resource containing them, such as limestone, dolomite, natural soda, and the like.

また多孔質物質の一部を鉄鉱石粒に置き換えることによって(1)式の反応に従って熱分解ガス中のH2Sを硫化鉄として除去することが出来る。 Further, by replacing a part of the porous material with iron ore grains, H 2 S in the pyrolysis gas can be removed as iron sulfide according to the reaction of the formula (1).

FeO + H2S = FeS + H2O (1)
更に廃棄物中に含まれる微量のZn、Pb、Mn、Cu、Cr、Ni、Cdなどは従来の廃棄物焼却炉では揮発性の塩化物になるために通常の乾式HCl除去装置では除去することが困難であったが、H2S が存在し、HCl 濃度が低く且つ温度が比較的低い集塵機の中では例えば揮発性の塩化鉛は(2)、(3)式の様に不揮発性の硫化鉛、酸化鉛になる。
FeO + H 2 S = FeS + H 2 O (1)
Furthermore, trace amounts of Zn, Pb, Mn, Cu, Cr, Ni, Cd, etc. contained in the waste are volatile chlorides in conventional waste incinerators, so they must be removed with a normal dry HCl removal system. However, in the dust collector where H 2 S is present, the HCl concentration is low, and the temperature is relatively low, for example, volatile lead chloride is a non-volatile sulfide like the formulas (2) and (3) Becomes lead and lead oxide.

PbCl2 + H2S = PbS + 2 HCl (2)
PbCl2 + H2O = PbO + 2 HCl (3)
Zn、Mn、Cu、Cr、Ni、Cdについても(2)、(3)式と同様の反応で不揮発性の硫化物や酸化物になるために煤塵として集塵機で除去することができる。これらの重金属類の大気中への放出量を低くするためには集塵機の温度は可能な限り低い温度、つまり70℃(熱分解ガスの露点)近くであることが好ましい。
PbCl 2 + H 2 S = PbS + 2 HCl (2)
PbCl 2 + H 2 O = PbO + 2 HCl (3)
Zn, Mn, Cu, Cr, Ni, and Cd can also be removed as dust by a dust collector because they become non-volatile sulfides and oxides in the same reaction as in formulas (2) and (3). In order to reduce the release amount of these heavy metals into the atmosphere, the temperature of the dust collector is preferably as low as possible, that is, close to 70 ° C. (decomposition point of pyrolysis gas).

熱分解ガスから回収された固形分中には分解残滓、粉化した多孔質物質の他、酸性ガス除去を目的にアルカリ性物質を添加した場合には未反応アルカリ性物質およびアルカリ塩が含まれるが、この未反応アルカリ性物質およびアルカリ塩を除去して工業用原料として利用することができる。   The solid content recovered from the pyrolysis gas contains decomposition residue, powdered porous material, and unreacted alkaline material and alkali salt when an alkaline material is added for the purpose of removing acidic gas. This unreacted alkaline substance and alkali salt can be removed and used as an industrial raw material.

アルカリ塩の除去方法は特に限定されないが、これらは水溶性であるので、水洗により取り除くことが出来る。水洗の方法も何んら制限がなく適宜条件を設定して実施すればよい。アルカリ塩を除去した固形分はセメントの原材料等に利用できる。   The method for removing the alkali salt is not particularly limited, but since these are water-soluble, they can be removed by washing with water. The washing method is not limited at all and may be carried out by setting appropriate conditions. The solid content from which the alkali salt has been removed can be used as a raw material for cement.

熱分解炉底から回収される粗大不燃物は、酸化されていない金属類を資源として回収した後、熱分解ガスから回収された飛灰と同様に水洗処理してセメントの原材料等に利用することが出来る。   Coarse incombustibles recovered from the bottom of the pyrolysis furnace must be recovered from non-oxidized metals as resources, then washed with water in the same manner as fly ash recovered from pyrolysis gas and used as raw materials for cement. I can do it.

本発明を応用した他の発明は、以下のとおりである。
1.廃棄物を400〜650℃の還元雰囲気下の熱分解炉で分解するに際して、アルカリ性物質を添加して熱分解ガス中に含まれる塩化水素等の酸性ガスをアルカリ塩として固定する一方、熱分解ガスを熱回収器に導いて熱エネルギ−を回収しながら熱分解ガス中の高沸点成分・タ−ル状物質を多孔質物質で吸着除去して、70〜500℃の集塵機の操作温度域まで温度を下げ、次いで集塵機を用いて熱分解ガス中の固形分を除去し、得られたクリ−ンガス成分を発電用燃料とすることによって高効率発電を行うことを特徴とする廃棄物の資源化方法である。
Other inventions to which the present invention is applied are as follows.
1. When waste is decomposed in a pyrolysis furnace under a reducing atmosphere at 400 to 650 ° C., an alkaline substance is added to fix acidic gas such as hydrogen chloride contained in the pyrolysis gas as an alkali salt, while pyrolysis gas The high boiling point components and tar-like substances in the pyrolysis gas are adsorbed and removed with a porous substance while collecting the thermal energy by introducing it into a heat recovery device, and the temperature is raised to the operating temperature range of the dust collector at 70 to 500 ° C And then removing solids in the pyrolysis gas using a dust collector, and using the obtained clean gas component as fuel for power generation, high-efficiency power generation is performed. It is.

2.熱分解炉出口に多孔質物質を充填した熱回収伝熱管付き移動床を設置する事を特徴とする上記1.記載の廃棄物の資源化方法である。   2. 1. A moving bed with a heat recovery heat transfer tube filled with a porous material at the outlet of the pyrolysis furnace is installed. This is a waste recycling method described.

3.熱分解炉出口に多孔質物質を充填した熱回収伝熱管付き固定床を設置する事を特徴とする上記1.記載の廃棄物の資源化方法である。   3. 1. A fixed bed with a heat recovery heat transfer tube filled with a porous substance at the outlet of the pyrolysis furnace is installed. This is a waste recycling method described.

4.多孔質物質が、ミクロンオーダの細孔径を持つ多孔質物質であることを特徴とする上記1.2.又は3.記載の廃棄物の資源化方法である。
5.高沸点成分・タ−ル状物質を吸着した多孔質物質を、500〜750℃の空気(酸素富化空気)で燃焼させて再生し、発生した高温の燃焼排ガスを熱分解炉の熱源とすることを特徴とする上記1.2.3.又は4.記載の廃棄物の資源化方法である。
4). The porous material is a porous material having a pore size on the order of microns, which is described in 1.2. Or 3. This is a waste recycling method described.
5). Porous material that adsorbs high-boiling components and tar-like substances is regenerated by burning with air (oxygen-enriched air) at 500 to 750 ° C., and the generated high-temperature combustion exhaust gas is used as the heat source for the pyrolysis furnace. The above 1.2.3. Or 4. This is a waste recycling method described.

本発明の応用例として流動床式熱回収器を用いた場合の熱分解ガス精製システムの概念図を図1に示す。また、移動床式熱回収器を用いた場合の熱分解ガス精製システムの概念図を図2に示す。   A conceptual diagram of a pyrolysis gas purification system when a fluidized bed heat recovery unit is used as an application example of the present invention is shown in FIG. Moreover, the conceptual diagram of the pyrolysis gas purification system at the time of using a moving bed type | mold heat recovery device is shown in FIG.

従来の廃棄物焼却方式と比べると、燃焼工程が熱分解部(低温部)と主燃焼部(高温部)の二段に分かれていて仕組みがやや複雑であるが、熱分解部の出口に熱回収部を設けて熱分解ガスを70〜200℃に冷却する点と、過剰空気率が従来のスト−カ炉よりも遙かい小さいために設備がコンパクトになる。本発明方法ではそのために設備の建設費は従来のスト−カ−炉方式とあまり差がない。   Compared with the conventional waste incineration system, the combustion process is divided into two stages, the pyrolysis section (low temperature section) and the main combustion section (high temperature section), and the mechanism is somewhat complicated. Since the recovery unit is provided to cool the pyrolysis gas to 70 to 200 ° C., and the excess air ratio is much smaller than that of a conventional stoker furnace, the equipment becomes compact. Therefore, in the method of the present invention, the construction cost of the equipment is not so different from the conventional stoker furnace system.

一方ダイオキシン、HCl、SOx、Zn 、Pb、Mn、Cu、Cr、Ni、Cd の環境への排出量が極めて低く、エネルギ−回収効率が高いのが本発明の特徴である。
廃棄物には可燃成分以外の各種の夾雑物が含まれているが、以上は環境とエネルギ−回収に特に有害と思われる物質(Cl,S,Pb,Zn)を含む廃棄物から発生する熱分解ガスの精製法について説明した。しかし、その様な有害物質を含まないか或いはほんの微量しか含まない廃棄物については当然のことながら以上の操作の幾つかは不要となる。例えば塩素を含まない繊維類、紙類、草木、木材、汚泥、プラスチック類、廃油の場合には熱分解炉またはその出口にアルカリ性物質を吹き込む操作は不要となる。
On the other hand, the feature of the present invention is that the amount of dioxin, HCl, SOx, Zn, Pb, Mn, Cu, Cr, Ni, and Cd emitted to the environment is extremely low and the energy recovery efficiency is high.
Waste contains various types of contaminants other than combustible components, but the heat generated from waste containing substances (Cl, S, Pb, Zn) that are considered particularly harmful to the environment and energy recovery. A method for purifying cracked gas has been described. However, as a matter of course, some of the above operations are unnecessary for wastes that do not contain such harmful substances or contain only a very small amount. For example, in the case of fibers not containing chlorine, papers, vegetation, wood, sludge, plastics, and waste oil, the operation of blowing an alkaline substance into the pyrolysis furnace or its outlet is not required.

油吸収特性に関する実験
1.実験方法
30mm径×200mmのパイレックス(登録商標)試験管に油(重質油+アスファルト)を注入し、この試験管を環状電気炉に入れて所定温度に加熱する。金網製の籠に秤量した吸着剤(多孔質物質)を入れて、試験管の油に浸けて一定時間後に引き上げて、油を吸収させたサンプルを秤量する。サンプル量は約3.5gとした。
2.実験条件
(1)吸着剤(多孔質物質)の種類
珪藻土CG4A(イソライト工業製、約4mmに成形し1150℃で焼成したもの、
嵩比重:0.68g/cm3
珪藻土CG4 (イソライト工業製、約4mmに成形し1000℃で焼成したもの
嵩比重:0.55g/cm3、細孔容積:0.57cm3/g、平均細孔径:1000nm)
磁器微粉焼結品(岩尾磁器工業製、粉砕して約4mmに篩分したもの、嵩比重
:1.65g/cm3、細孔容積:0.27cm3/g、平均細孔径:210nm)
シルビードN(水澤化学製、約2mm球状シリカゲル、嵩比重:0.82g/cm3
細孔容積:0.30cm3/g、平均細孔径:2nm )
活性アルミナ(住友化学製球状活性アルミナKHO-46、サイズ:約4mm、
嵩比重:0.80g/cm3、細孔容積:0.43cm3/g、平均細孔径:10nm)
(2)吸収油の種類
重質油(減圧蒸留留出油 脱硫済み)+10%アスファルトの混合物
重質油(減圧蒸留留出油 脱硫済み)+20%アスファルトの混合物
(3)試験温度
180℃、 260℃、350℃、420℃、460℃
3.実験結果
実験結果を表1〜4にまとめて示す。
油吸収率の算出方法
油吸収率(B−A)/A =[ 油吸収後 B(g)− 吸着剤 A(g)]/吸着剤 A(g)
Experiments on oil absorption characteristics experimental method
Oil (heavy oil + asphalt) is injected into a Pyrex (registered trademark) test tube having a diameter of 30 mm and 200 mm, and the test tube is placed in an annular electric furnace and heated to a predetermined temperature. A weighed adsorbent (porous material) is placed in a wire mesh cage, dipped in oil in a test tube, pulled up after a certain time, and a sample that has absorbed oil is weighed. The sample amount was about 3.5 g.
2. Experimental conditions (1) Type of adsorbent (porous material) Diatomaceous earth CG4A (made by Isolite Industry, molded into approximately 4mm and fired at 1150 ° C,
Bulk specific gravity: 0.68g / cm 3 )
Diatomaceous earth CG4 (made by Isolite Industry, molded into approximately 4mm and fired at 1000 ° C
Bulk specific gravity: 0.55 g / cm 3 , pore volume: 0.57 cm 3 / g, average pore diameter: 1000 nm)
Porcelain fine powder sintered product (manufactured by Iwao Porcelain Kogyo, crushed and sieved to about 4 mm, bulk specific gravity: 1.65 g / cm 3 , pore volume: 0.27 cm 3 / g, average pore diameter: 210 nm)
Silveed N (Mizusawa Chemical, approx. 2mm spherical silica gel, bulk specific gravity: 0.82g / cm 3 ,
Pore volume: 0.30cm 3 / g, average pore diameter: 2nm)
Activated alumina (Spherical activated alumina KHO-46 manufactured by Sumitomo Chemical, size: approx. 4 mm,
Bulk specific gravity: 0.80 g / cm 3 , pore volume: 0.43 cm 3 / g, average pore diameter: 10 nm)
(2) Type of absorbing oil Heavy oil (vacuum distilled distillate desulfurized) + 10% asphalt mixture Heavy oil (vacuum distillate desulfurized) + 20% asphalt mixture (3) Test temperature 180 ° C, 2600 ℃, 350 ℃, 420 ℃, 460 ℃
3. Experimental results The experimental results are summarized in Tables 1 to 4.
Calculation method of oil absorption rate Oil absorption rate (B-A) / A = [After oil absorption B (g)-Adsorbent A (g)] / Adsorbent A (g)

Figure 0004593964
Figure 0004593964

Figure 0004593964
Figure 0004593964

Figure 0004593964
Figure 0004593964

Figure 0004593964
Figure 0004593964

4.考察
(1)重質油-10%アスファルトを珪藻土CG4Aに吸収させる実験では180℃、260℃、350℃、420℃、460℃の4段階の温度で測定したが、温度が上がるに従って重質油-アスファルトの吸収量は著しく少なくなった。温度と吸収量の関係を図3に示した。また油吸収率はアスファルトの%に関係なく180℃、260℃、350℃、420℃、460℃の値は一つの線上に乗ることが分かった。
(2)多孔性物質の吸収特性の違い
珪藻土に対する重質油-アスファルトの吸収は1〜3分で飽和点に達する。また180℃での吸収率は1000℃で焼成した珪藻土で約49%、1150℃で焼成した珪藻土(対摩耗性が大きい)で約33%に達する。活性アルミナ、シリカゲルでは吸収速度が遅く20分経っても飽和点に達しないが、平衡吸収率は約30%と推定される。時間と吸収量の関係を図4に示した。なお、油を吸収した珪藻土と活性アルミナの表面は粘着性がなくサラサラ状態であったがシリカゲルの表面はベトベトしていた。
4). Discussion (1) Heavy oil-In the experiment to absorb 10% asphalt in diatomaceous earth CG4A, it was measured at four temperatures of 180 ° C, 260 ° C, 350 ° C, 420 ° C, 460 ° C. -The amount of asphalt absorbed was significantly reduced. The relationship between temperature and absorption is shown in FIG. It was also found that the oil absorptivity values of 180 ° C., 260 ° C., 350 ° C., 420 ° C. and 460 ° C. are on one line regardless of the asphalt percentage.
(2) Absorption characteristics of porous materials Absorption of heavy oil-asphalt to diatomaceous earth reaches the saturation point in 1 to 3 minutes. The absorption rate at 180 ° C. reaches about 49% for diatomaceous earth calcined at 1000 ° C. and reaches about 33% for diatomaceous earth calcined at 1150 ° C. (high wear resistance). Activated alumina and silica gel have a slow absorption rate and do not reach the saturation point even after 20 minutes, but the equilibrium absorption rate is estimated to be about 30%. The relationship between time and absorption is shown in FIG. The surfaces of the diatomaceous earth and activated alumina that had absorbed the oil were not sticky and smooth, but the surface of the silica gel was sticky.

珪藻土と活性アルミナ、シリカゲルの吸収特性のこの差は珪藻土の細孔径がミクロン(メータ)オーダであるのに対して活性アルミナ、シリカゲルの細孔径がナノメータオ−ダであることによるものと思われる。油吸収後のシリカゲルの表面がベトベトしているのは細孔径が特に小さく吸収速度が小さいことによるものと思われる。
(3)油種の影響
重質油+10%アスファルトと重質油+20%アスファルトの吸収特性は変わらないことが分かった。つまり180℃以上ではアスファルトも重質油並の充分な流動性を持っていると言うことである。
(4)再生について
活性アルミナやゼオライトの細孔は分子オーダ(10〜1ナノメータ)であるのに対して珪藻土の細孔はミクロンオーダである。活性アルミナやゼオライトは化学吸着のウエイトが大きく、分解・コーキングを伴う。コークが表面に析出した活性アルミナやゼオライトの再生には通常700℃近い温度を要するが、重質油・アスファルトを吸収した珪藻土は空気中で加熱すると500〜600℃で炎を上げて燃えて元の重量とヴァージン並みの吸収力を回復し、再生が完了することが分かった。これは珪藻土が化学吸着力の弱い物理吸着が主体であることによるものと思われる。
This difference in the absorption characteristics of diatomaceous earth, activated alumina, and silica gel seems to be due to the fact that the pore diameter of diatomaceous earth is on the order of microns (meters), whereas the pore diameter of activated alumina and silica gel is on the order of nanometers. The surface of the silica gel after oil absorption is considered to be sticky because the pore diameter is particularly small and the absorption rate is low.
(3) Effect of oil type It was found that the absorption characteristics of heavy oil + 10% asphalt and heavy oil + 20% asphalt did not change. In other words, at 180 ° C or higher, asphalt has sufficient fluidity as heavy oil.
(4) Regeneration The pores of activated alumina and zeolite are on the molecular order (10 to 1 nanometer), whereas the pores of diatomaceous earth are on the order of microns. Activated alumina and zeolite have a large chemisorption weight and are accompanied by decomposition and coking. Regeneration of activated alumina and zeolite with coke deposited on the surface usually requires temperatures close to 700 ° C, but diatomaceous earth that has absorbed heavy oil and asphalt burns with a flame at 500-600 ° C when heated in air. It was found that the regeneration was completed after recovering the weight and absorbency of the virgin. This seems to be due to the fact that diatomaceous earth is mainly based on physical adsorption with weak chemical adsorption.

本発明の応用例:流動床式熱回収器を用いた場合の熱分解ガス精製システムの概念図Application example of the present invention: Conceptual diagram of a pyrolysis gas purification system using a fluidized bed heat recovery device 本発明の応用例:移動床式熱回収器を用いた場合の熱分解ガス精製システムの概念図Application example of the present invention: Conceptual diagram of a pyrolysis gas purification system using a moving bed heat recovery unit 温度と油吸収量の関係を示した図Diagram showing the relationship between temperature and oil absorption 時間と油吸収量の関係を示した図Diagram showing the relationship between time and oil absorption

Claims (5)

高沸点成分・タ− ル状物質を含有する熱分解ガスを、210nm以上の平均細孔径を持つ多孔質物質が充填された熱回収器に導き、熱分解ガスの温度を集塵機の操作温度域まで下げながら凝縮する高沸点成分・タ− ル状物質を多孔質物質に吸着させて除去し、次いで当該熱分解ガス中の微粒子は集塵機を用いて除去することを特徴とする熱分解ガスの乾式精製方法。 The pyrolysis gas containing high-boiling components and tar-like substances is led to a heat recovery unit filled with a porous material having an average pore diameter of 210 nm or more, and the temperature of the pyrolysis gas reaches the operating temperature range of the dust collector. Dry purification of pyrolysis gas, characterized in that high-boiling components and tar-like substances that condense while being lowered are adsorbed and removed by a porous substance, and then fine particles in the pyrolysis gas are removed using a dust collector. Method. 高沸点成分・タ− ル状物質を吸着した多孔質物質を熱分解炉で生成したチャ− と共に再生器で燃焼させて再生し、燃焼によって生じる熱を熱分解炉の熱源とすることを特徴とする請求項1記載の熱分解ガスの乾式精製方法。   A porous material that adsorbs high-boiling components and tar-like substances is burned in a regenerator together with a char generated in a pyrolysis furnace, and the heat generated by the combustion is used as a heat source for the pyrolysis furnace. The method for dry purification of pyrolysis gas according to claim 1. 熱分解ガスとアルカリ性物質とを接触させ、熱分解ガス中の酸性ガスをアルカリ塩として固定することを特徴とする請求項1 、または2 記載の熱分解ガスの乾式精製方法。 The method for dry purification of pyrolysis gas according to claim 1 or 2, wherein the pyrolysis gas and an alkaline substance are brought into contact with each other, and the acidic gas in the pyrolysis gas is fixed as an alkali salt. 熱回収器が移動床式熱回収器であることを特徴とする請求項1 、2 または3 記載の熱分解ガスの乾式精製方法。   The method for dry purification of pyrolysis gas according to claim 1, wherein the heat recovery unit is a moving bed type heat recovery unit. 多孔質物質がミクロンオーダの平均細孔径を持つ多孔質物質であることを特徴とする請求項1 、2 、3 または4 記載の熱分解ガスの乾式精製方法。   The method for dry purification of pyrolysis gas according to claim 1, wherein the porous material is a porous material having an average pore size on the order of microns.
JP2004131432A 2003-11-06 2004-04-27 Method for dry purification of pyrolysis gas Expired - Fee Related JP4593964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131432A JP4593964B2 (en) 2003-11-06 2004-04-27 Method for dry purification of pyrolysis gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003376999 2003-11-06
JP2004131432A JP4593964B2 (en) 2003-11-06 2004-04-27 Method for dry purification of pyrolysis gas

Publications (2)

Publication Number Publication Date
JP2005154722A JP2005154722A (en) 2005-06-16
JP4593964B2 true JP4593964B2 (en) 2010-12-08

Family

ID=34741446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131432A Expired - Fee Related JP4593964B2 (en) 2003-11-06 2004-04-27 Method for dry purification of pyrolysis gas

Country Status (1)

Country Link
JP (1) JP4593964B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320421B2 (en) * 2006-04-07 2013-10-23 新日鐵住金株式会社 Gasification gas purification method and purification device
JP4636048B2 (en) * 2007-04-10 2011-02-23 株式会社Ihi Method and apparatus for removing tar from gasification gas
JP5772136B2 (en) 2011-03-28 2015-09-02 株式会社Ihi Tar removal device
JP5601597B2 (en) * 2012-10-22 2014-10-08 国立大学法人秋田大学 Method for producing fine silicon carbide, fine silicon nitride, metal silicon, silicon chloride
US9828247B2 (en) * 2013-12-16 2017-11-28 Renergi Pty Ltd Process and apparatus for cleaning raw product gas
CN108525639B (en) * 2018-04-27 2019-07-30 福州大学 The preparation method and applications of chlorine adsorbent material in a kind of waste incineration
JP7149864B2 (en) * 2019-01-28 2022-10-07 積水化学工業株式会社 Method for reusing zeolite adsorbent and regenerated adsorbent
WO2020158748A1 (en) * 2019-01-28 2020-08-06 積水化学工業株式会社 Ethanol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443901A (en) * 1977-09-14 1979-04-06 Kawasaki Heavy Ind Ltd Purificaton of high temperature gas
JPS56106993A (en) * 1980-01-29 1981-08-25 Babcock Hitachi Kk Method for dust removal and cooling of coal decomposition gas
JPH09328690A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Multi-functional heat recovery type coal gasification system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443901A (en) * 1977-09-14 1979-04-06 Kawasaki Heavy Ind Ltd Purificaton of high temperature gas
JPS56106993A (en) * 1980-01-29 1981-08-25 Babcock Hitachi Kk Method for dust removal and cooling of coal decomposition gas
JPH09328690A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Multi-functional heat recovery type coal gasification system

Also Published As

Publication number Publication date
JP2005154722A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
CN108097703B (en) Plasma gasification melting system for centralized treatment of solid wastes
CN1033689C (en) Process of purifying loaded waste gases from oil burning device
TW412434B (en) Process of removing mercury, mercury compounds, and polyhalogenated hydrocarbons from oxygen-containing exhaust gases produced by the combustion of garbage, industrial waste materials, and sewage sludge
JP3723061B2 (en) Complete resource recycling method for waste without chimney using oxygen-enriched gas
US20090031929A1 (en) APPARATUS FOR OIL SHALE POLLUTANT SORPTION/NOx REBURNING MULTI-POLLUTANT CONTROL
CN106987275A (en) The high-temperature plasma gasification and melting processing system and method for trade waste
KR20090035547A (en) Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same
MX2007003723A (en) Composition and method for oxidizing mercury in combustion processes.
CN107261788A (en) The removal methods and device of a kind of high-temperature flue gas Zhong bioxin
US4701212A (en) Recovery of mercury and heat energy from waste using fluidized beds
CN101112669A (en) Multilevel purifier for disacidifying using dry and wet method and for removing dust by using cloth bag
CN206385096U (en) The high-temperature plasma gasification and melting processing system of trade waste
JP4593964B2 (en) Method for dry purification of pyrolysis gas
CN103292339A (en) Comprehensive processing recycling process and device of bromine-contained high temperature flue gas
WO2005030641A1 (en) Highly activated coke powder and process for producing the same
WO2008144122A1 (en) Oil shale based method and apparatus for emission reduction in gas streams
JP2007528974A (en) Gasification system
JP4723922B2 (en) Manufacturing method of carbonaceous adsorbent, removal method of environmental pollutant using the same, and removal apparatus
JP2003286020A (en) Highly activated active coke powder and manufacturing method thereof
JP2004002587A (en) Ecofriendry method for recycling refuse
HU210398B (en) Method for purifying polluted gases, in particular those from waste-incineration plants
CN109839010B (en) Large submerged arc furnace flue gas waste heat recycling system for removing dioxin
US7052661B1 (en) Method for abatement of mercury emissions from combustion gases
JPH11257619A (en) City refuse combustion device
Gulyurtlu et al. Pollutant emissions and their control in fluidised bed combustion and gasification

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

LAPS Cancellation because of no payment of annual fees