JP4593699B2 - Flux-cored wire for self-shielded arc welding - Google Patents

Flux-cored wire for self-shielded arc welding Download PDF

Info

Publication number
JP4593699B2
JP4593699B2 JP06622799A JP6622799A JP4593699B2 JP 4593699 B2 JP4593699 B2 JP 4593699B2 JP 06622799 A JP06622799 A JP 06622799A JP 6622799 A JP6622799 A JP 6622799A JP 4593699 B2 JP4593699 B2 JP 4593699B2
Authority
JP
Japan
Prior art keywords
weight
weld metal
flux
toughness
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06622799A
Other languages
Japanese (ja)
Other versions
JP2000263288A (en
Inventor
山本  明
房樹 輿石
剛志 黒川
啓之 森本
等 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP06622799A priority Critical patent/JP4593699B2/en
Publication of JP2000263288A publication Critical patent/JP2000263288A/en
Application granted granted Critical
Publication of JP4593699B2 publication Critical patent/JP4593699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、軟鋼・490N/mm2 級高張力鋼の溶接に用いられるセルフシールドアーク溶接用フラックス入りワイヤに関し、溶接作業性及び耐気孔性に優れ、かつ、靱性の高い溶接金属を得ることができるようにしたセルフシールドアーク溶接用フラックス入りワイヤに関するものである。
【0002】
【従来の技術】
周知のように、セルフシールドアーク溶接用フラックス入りワイヤ(以下、セルフシールドワイヤという)は、鋼製外皮内にフラックスを充填してなるもので、外部からのシールドガスを必要とせず簡便であることから、土木・建築分野での屋外溶接を中心に用いられてきた。
【0003】
ところが、セルフシールドワイヤは、そのフラックス中に、スラグを形成して溶接金属を被包するとともにアーク熱で一部気化してアーク雰囲気及び溶融池を大気から遮蔽するためのシールド剤を多く含むことから、ガスシールドアーク溶接用フラックス入りワイヤに比べ、溶接作業性(スパッタ、アーク安定性)が劣る。また、シールド剤としてAl、Mg等を多く含むことから、溶接金属の結晶粒が粗大化し、溶接金属の靱性が低い。
【0004】
そのため、セルフシールドワイヤの適用拡大を図るべく、これまでもアークの安定性向上やスパッタ発生量の低減という溶接作業性の改良や、高靱性化への取り組みがなされてきた。例えば、特開平3−118993号公報、特開平4−13497号公報では、フラックス中に含有させる金属フッ化物,Al,Mg,Cなどの成分値を調整することにより、溶接作業性を改良するようにしたセルフシールドワイヤが提案されている。また、例えば特公昭62−25479号公報、特開平5−393号公報では、フラックス中にLi酸化物,鉄系酸化物などを含有させることにより、溶接金属の靱性の向上を図ったセルフシールドワイヤが提案されている。しかしながら、これらのセルフシールドワイヤも、溶接作業性、耐気孔性および靱性をともに満足させるという点で改善の余地があった。
【0005】
【発明が解決しようとする課題】
本発明は、かかる事情のもとでなされたものであって、溶接作業性及び耐気孔性に優れ、かつ、靱性の高い溶接金属を得ることができるセルフシールドアーク溶接用フラックス入りワイヤを提供することをその課題とする。
【0006】
【課題を解決するための手段】
(1) 本発明者らは前記課題を解決すべく研究を重ねた結果、耐気孔性(溶接金属にブローホール、ピットなどの気孔欠陥の発生し難さの度合い)を良好にするための因子として、(イ)溶接金属中の窒素固定、(ロ)アーク雰囲気中の窒素分圧の低減、(ハ)溶融金属中への窒素溶解反応の抑制が大切であることがわかった。さらに、各々の因子に最も有効に寄与する成分元素については、(イ)の溶接金属中の窒素固定にはAl、(ロ)の窒素分圧の低減にはMg、(ハ)の窒素溶解反応の抑制にはLiが効果のあることがわかった。
【0007】
(2) 次に、溶接作業性の改善に寄与する成分元素について検討の結果、Alについては添加量が多いほどアーク安定性の向上、スパッタ発生量の低減に有効であること、Ca,Sr,Baの添加がアーク安定性の向上に有効であること、Fの添加がスパッタ発生量の低減に有効であることがわかった。
【0008】
(3) また、溶接金属の高靱性化については、Cu,Ni,Mn,C,Moなどの添加が有効であることを見出した。これについて以下詳しく説明する。前述のようにAlの添加は、耐気孔性及び溶接作業性の向上に効果がある。しかし、Alはその添加量が多いほど溶接金属中に必要以上に歩留り、溶接金属の組織を粗大化させ靱性を大きく低下させる。この原因を検討したところ、Alが溶接金属中に固溶することにより、フェライトが安定となり、凝固時に生成する粗大なδフェライトが冷却後も残存するために、靱性が低下することがわかった。
【0009】
鋼の溶接金属は通常、凝固時に粗大なδフェライトが生成するが、その後の冷却過程において一旦完全にオーステナイトに変態し、さらにオーステナイトから微細なフェライトへと変態するため、溶接金属の組織は最終的には微細となり、靱性も良好となる。この点から、Alが溶接金属中に固溶した場合においても、靱性を悪化させないためには、δフェライトを残存させなければよいこと、逆にいえば、完全にオーステナイトに変態させればよいことを見出した。
【0010】
またさらに、Alの添加により、結晶の再熱微細化領域が小さくなることがわかった。通常、溶接金属上に次層の溶接を行うと、前層の溶接金属は熱影響を受けて結晶粒が微細化する。Alを含有しないワイヤによる溶接では、この再熱微細化領域が大きく、溶接金属の靱性確保に有効となっている。ところが、Alが多量に固溶すると、再熱微細化領域が小さく、溶接金属の靱性が低いことがわかった。さらに、この現象は、Alの固溶によりAC3点(オーステナイトが単相化する最低温度)が高温側に移動することに起因していることがわかった。
【0011】
このような結果から、Alの存在下において靱性向上を図るべく、δフェライトの残存を抑制し、またAC3点を下げるには、溶接金属のマトリックス組成のバランスが重要であることを見出した。
【0012】
すなわち、具体的には、δフェライトを残存させないための手段について検討した結果、前述のように冷却過程で完全にオーステナイトに変態させればよいが、これは溶接金属中のマトリックス組織によって決定され、フェライトを安定させるAlが多量に存在する場合は、オーステナイトを安定化するNi,Mn,Cなどの元素を適量添加することが効果的であることがわかった。また、AC3点を下げるための検討した結果、CuとNiの複合添加が効果的であることがわかった。このCuとNiはAC3点を下げるだけでなく、オーステナイトの安定化にも寄与してδフェライトの残存を抑制することで溶接金属の靱性向上をもたらす効果もある。
【0013】
(4) さらに、完全にオーステナイトに変態させるための溶接金属組成について、熱力学的解析及び実験により研究した結果、下記式(1) で決められる指標FPの値が0以上の場合に完全にオーステナイトに変態することを見出した。すなわち、FP≧0とする溶接金属組成にすることにより、溶接金属の靱性をより良好にできることがわかった。ここで、式(1) において、[C] :C含有量(重量%)、[Si]:Si含有量(重量%)、[Mn]:Mn含有量(重量%)、[Al]:Al含有量(重量%)、[Ni]:Ni含有量(重量%)、[Cu]:Cu含有量(重量%)である。いずれも、ワイヤ全重量(鋼製外皮とフラックスの合計重量)に対する重量%である。
【0014】
【数1】

Figure 0004593699
【0015】
(5) また、δフェライトの残存の有無の他に、オーステナイトからの変態組織も影響を与えていることも突き止め、Moを微量添加することにより、オーステナイトからの変態組織が微細化し、溶接金属の靱性をより良好にできることも見出した。
【0016】
以上の知見に基づき本発明を完成したものである。すなわち、請求項1の発明は、炭素鋼製外皮内にフラックスを充填してなり、軟鋼・490N/mm2 級高張力鋼の溶接に用いられるセルフシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全重量に対する重量%で、C:0.01〜0.30重量%、Si:0.01〜0.20重量%、Mn:0.1〜3.0重量%、Cu:0.05〜2.0重量%、Ni:0.1〜3.0重量%、Al:1.5〜4.0重量%、Mg:0.5〜2.0重量%、Ca,Sr,Baの1種以上:3.0〜7.0重量%、Li:0.05〜0.30重量%、F:0.5〜3.0重量%をそれぞれ含有し、残部がFe及び不可避的不純物からなり、かつ、前記式(1) で定義される指標FPが0以上であることを特徴とするセルフシールドアーク溶接用フラックス入りワイヤである。
【0017】
請求項2の発明は、前記請求項1記載のセルフシールドアーク溶接用フラックス入りワイヤにおいて、C:0.01〜0.10重量%、Mn:1.0〜2.5重量%、Cu:0.1〜1.0重量%、Ni:1.0〜2.0重量%であることを特徴とするものである。
【0018】
請求項3の発明は、前記請求項1又は2記載のセルフシールドアーク溶接用フラックス入りワイヤにおいて、さらに、Mo:0.001〜0.25重量%を含有することを特徴とするものである。
【0019】
以下、ワイヤ化学成分等の限定理由を説明する。
【0020】
Cはオーステナイト安定化元素の1つで、δフェライトの残存を抑制する効果がある他、溶接金属の強度に影響を与える元素でもある。Cの含有量が0.01重量%未満ではδフェライトの残存を抑制し溶接金属の靱性を高める効果がなく、また、0.30重量%を超えると溶接金属の強度上昇により靱性が低下する。したがって、C量は0.01〜0.30重量%の範囲とするのがよく、確実な高靱性化の点から、0.01〜0.10重量%の範囲がより好ましい。
【0021】
Siは溶接金属の粘性を良好にし、母材と溶接金属とのなじみを良くし溶接ビード形状を良好にする効果がある。また、固溶強化元素である一方、フェライト安定化元素でもある。Siの含有量が0.01重量%未満では溶接ビード形状を良くする効果が発揮されない。一方、0.20重量%を超えると溶接金属の強度が過大となって靱性が低下する。したがって、Si量は0.01〜0.20重量%とする。
【0022】
MnはCと同じくオーステナイト安定化元素の1つで、δフェライトの残存を抑制する効果があり、又、オーステナイトからの変態組織を微細にして溶接金属の靱性を高める効果もある。Mnの含有量が0.1重量%未満ではこれらの効果が発揮されず、一方、3.0重量%を超えると強度が高くなりすぎて逆に靱性を悪化させる。したがって、Mn量は0.1〜3.0重量%の範囲とするのがよく、確実な高靱性化の点から、1.0〜2.5重量%の範囲がより好ましい。
【0023】
CuはAC3点を下げて溶接金属の再熱微細化領域が狭まることを防ぐとともに、オーステナイト安定化元素の1つで、δフェライトの残存を抑制し靱性を高める効果がある。Cuの含有量が0.05重量%未満ではこのような効果が発揮されず、一方、2.0重量%を超えると溶接金属の強度が過大となって逆に靱性が低下する。したがって、Cu量は0.05〜2.0重量%の範囲とするのがよく、確実な高靱性化の点から、0.1〜1.0重量%の範囲がより好ましい。
【0024】
NiはAC3点を下げて溶接金属の再熱微細化領域が狭まることを防ぐとともに、オーステナイト安定化元素の1つで、Cuに比べより効果的にδフェライトの残存を抑制し靱性を高める効果がある。Niの含有量が0.1重量%未満ではこのような効果が発揮されず、一方、3.0重量%を超えると溶接金属の強度が過大となって逆に靱性が低下する。したがって、Ni量は0.1〜3.0重量%の範囲とするのがよく、確実な高靱性化の点から、1.0〜2.0重量%の範囲がより好ましい。
【0025】
Alはアークの安定性を高めスパッタ発生量を減らし、よって溶接作業性を向上させる効果があり、また、溶接金属中の窒素を固定してブローホール、ピットなどの発生を抑制する効果もある。かかる点からセルフシールドワイヤでは最も重要な元素である。Alの含有量が1.5重量%未満ではこれらの効果が得られず、一方、4.0重量%を超えると溶接金属中に粗大なδフェライトが析出し、靱性が低下する。したがって、Al量は1.5〜4.0重量%とする。
【0026】
Mgは高蒸気圧金属で、高温のアーク中で容易に気化し金属蒸気となる。その結果、アーク内の窒素分圧を下げ、溶接金属中に溶解する窒素量を減らすことによりブローホールなどの発生を抑制する優れたシールド効果がある。Mgの含有量が0.5重量%未満ではこうした効果が得られず、一方、2.0重量%を超えるとMgが爆発的に気化するため、アークが乱れて溶接作業性が悪化する。したがって、Mg量は0.5〜2.0重量%とする。
【0027】
Ca,Sr,Baは、いずれも、アークの安定性を高めスパッタ発生量を減らし、よって溶接作業性を向上させる効果があり、また、スラグの形成にも寄与してビード形状を整えて安定化させる効果もある。Ca,Sr,Baの量の合計が3.0重量%未満ではこれらの効果が得られず、一方、7.0重量%を超えるとスラグ生成量が過剰になってアークが不安定となり、さらにスラグの粘度上昇によってスラグ流動性が悪くなるためビードを安定して覆うことができず、ビード形状が不安定になる。したがって、Ca,Sr,Baの1種又は2種以上の量の合計は、3.0〜7.0重量%とする。これらの元素は、通常、フッ化物,炭酸塩,酸化物の形態でフラックス中に添加されるが、このいずれの形態で用いても効果は同じであり、特には、CaF2 ,SrF2 ,BaFのような金属フッ化物の形態で添加するのが好ましい。
【0028】
Liはスラグを低融点化し、スラグの粘性も下げ、また、溶接金属との界面エネルギーも小さくするため溶接金属表面や溶滴表面を均一に覆い、その結果、溶融金属中への窒素溶解反応を抑制して耐気孔性を良好にするという効果がある。Liの含有量が0.05重量%未満ではこうした効果が発揮されず、0.30重量%を超えるとアークが乱れ、溶接作業性が悪化する。したがって、Li量は0.05〜0.30重量%の範囲とする。なお、Li源としては、合金あるいは複合酸化物の形態があるが、最も好ましいのはLiフェライト(LiFeO2 )などのような複合酸化物である。
【0029】
Fはアークの安定性を高めスパッタ発生量を減らし、よって溶接作業性を向上させる効果がある。Fの含有量が0.5重量%未満ではこの溶接作業性向上効果が得られず、一方、3.0重量%を超えるとアークが乱れて逆に溶接作業性が悪化する。したがって、F量は0.5〜3.0重量%の範囲とする。なお、F源としては各種フッ化物が考えられるが、Ca,Sr,Baとのフッ化物が最も好ましい。
【0030】
Moはオーステナイトからの変態組織を微細にして靱性を高める効果がある。Moの含有量が0.001重量%未満ではこの靱性向上効果が発揮されず、一方、0.25重量%を超えると溶接金属の強度上昇により逆に靱性が悪化する。したがって、Mo量は0.001〜0.25重量%の範囲とする。
【0031】
指標FPは、前記の(1) 式より求められ値であり、溶接金属が冷却中に完全にオーステナイトに変態するか否かの指標である。この指標FPの値が0以上の場合に完全にオーステナイトに変態し、溶接金属の靱性をより高くすることができる。FPの値が0未満の場合は、オーステナイトへの完全な変態が起こり難くδフェライトが少し残存するため、靱性は低下する傾向がある。このような点から、FPが0以上となるようにしておくことがよい。
【0032】
【発明の実施の形態】
以下、この発明の実施の形態について説明する。
【0033】
【実施例】
表2及び表3に示す諸元の各セルフシールドワイヤを常法により作製した。一般にセルフシールドワイヤのワイヤ断面形状には図1に示す4つのタイプのものがあるが、本実施例及び比較例のワイヤの断面形状は図1(c)に示すラップ型構造のものとした。図1中、符号Mは鋼製外皮、符号FLXはフラックスをそれぞれ示す。鋼製外皮は通常の炭素鋼(JIS G3141 SPCC)を使用し、その鋼製外皮成分(重量%)はC:0.04%、Si:0.01%、Mn:0.19%、P:0.008%、S:0.008%である。また、本実施例及び比較例のワイヤいずれも、ワイヤ径はφ1.4mm、フラックス充填率は20重量%である。
【0034】
これらのワイヤによるセルフシールドアーク溶接を行い、溶接作業性、耐気孔性及び溶接金属の靱性について調べた。表1に示す試験板及び溶接条件で溶接を行った。そして、溶接作業性については、溶接中のアークの安定性及びスパッタ発生状況を目視観察し、良好(○),不良(×)の評価を行った。耐気孔性は、溶接された継手試験片についてJIS Z 3104に従ってX線透過試験を行い、分類が1種1類のものを良好(○)とし、それ以外のものは不良(×)とした。溶接金属の靱性については、JIS Z 3111に従って試験を行い、0℃での衝撃値が70J以上のものを良好(○)とした。表4,5に試験結果を示す。
【0035】
【表1】
Figure 0004593699
【0036】
【表2】
Figure 0004593699
【0037】
【表3】
Figure 0004593699
【0038】
【表4】
Figure 0004593699
【0039】
【表5】
Figure 0004593699
【0040】
試験結果から、No.11〜30の比較例では本発明で規定する要件の何れかを欠くため、次のような問題があった。No.11はC量が下限値を下回り、No.12はC量が逆に上限値を上回り、両方とも溶接金属の靱性が低かった。No.13はSi量が下限値を下回るために溶接ビード形状が悪く、No.14はSi量が上限値を上回るために靱性が低かった。No.15はMn量が下限値を下回り、No.16はMn量が逆に上限値を上回り、両方とも溶接金属の靱性が低かった。No.17はCu量が下限値を下回り、No.18はCu量が逆に上限値を上回り、両方とも溶接金属の靱性が低かった。No.19はNi量が下限値を下回り、No.20はNi量が逆に上限値を上回り、両方とも溶接金属の靱性が低かった。
【0041】
また、No.21はAl量が下限値を下回るために溶接作業性及び耐気孔性が悪く、一方、No.22は逆にAl量が上限値を上回るためにMoの添加にもかかわらず靱性が極めて悪かった。No.23はMg量が下限値を下回るために耐気孔性が悪く、No.24はMg量が上限値を上回るためにアーク安定性が悪かった。No.25はCa,Sr,Baの合計量が下限値を下回り、No.26は逆に上限値を上回り、両方とも溶接作業性が悪かった。No.27はLi量が下限値を下回るために耐気孔性が悪く、No.28はLi量が上限値を上回るためにアーク安定性が悪かった。No.29はF量が下限値を下回り、No.30は逆に上限値を上回り、両方とも溶接作業性が悪かった。
【0042】
これに対して、No.1〜No.10の本発明例の各セルフシールドワイヤは、溶接作業性、耐気孔性及び溶接金属の靱性のいずれも良好であった。
【0043】
【発明の効果】
以上述べたように、本発明によると、溶接作業性及び耐気孔性に優れ、かつ、靱性の高い溶接金属を得ることができるセルフシールドアーク溶接用フラックス入りワイヤを提供することができ、これによりセルフシールドワイヤの適用拡大を図ることができる。
【図面の簡単な説明】
【図1】セルフシールドアーク溶接用フラックス入りワイヤの断面形状の例を模式的に示す図である。
【符号の説明】
M…鋼製外皮 FLX…フラックス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flux-cored wire for self-shielded arc welding used for welding mild steel and 490 N / mm class 2 high-strength steel, and can obtain a weld metal having excellent welding workability and porosity resistance and high toughness. The present invention relates to a flux-cored wire for self-shielded arc welding that is made possible.
[0002]
[Prior art]
As is well known, a flux-cored wire for self-shielded arc welding (hereinafter referred to as a self-shielded wire) is formed by filling a steel outer shell with flux and is simple and does not require an external shielding gas. Since then, it has been used mainly for outdoor welding in the field of civil engineering and architecture.
[0003]
However, the self-shielding wire contains a large amount of a shielding agent for shielding the arc atmosphere and the molten pool from the atmosphere by forming slag and encapsulating the weld metal in the flux and partially evaporating with arc heat. Therefore, the welding workability (sputtering, arc stability) is inferior to that of the flux-cored wire for gas shielded arc welding. Moreover, since it contains many Al, Mg, etc. as a shielding agent, the crystal grain of a weld metal coarsens and the toughness of a weld metal is low.
[0004]
For this reason, in order to expand the application of self-shielding wires, efforts have been made to improve welding workability and increase toughness by improving arc stability and reducing spatter generation. For example, in JP-A-3-118993 and JP-A-4-13497, welding workability is improved by adjusting component values of metal fluoride, Al, Mg, C and the like contained in the flux. Self-shielded wires have been proposed. Further, for example, in Japanese Patent Publication No. 62-25479 and Japanese Patent Application Laid-Open No. 5-393, a self-shielded wire in which the toughness of the weld metal is improved by including Li oxide, iron-based oxide, etc. in the flux. Has been proposed. However, these self-shielded wires also have room for improvement in that they satisfy both welding workability, porosity resistance and toughness.
[0005]
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and provides a flux-cored wire for self-shielded arc welding capable of obtaining a weld metal having excellent welding workability and porosity resistance and high toughness. That is the issue.
[0006]
[Means for Solving the Problems]
(1) The present inventors have made researches to solve the above problems, and as a result, factors for improving the porosity resistance (the degree of difficulty in generating pore defects such as blowholes and pits in the weld metal). It was found that (i) nitrogen fixation in the weld metal, (b) reduction of the nitrogen partial pressure in the arc atmosphere, and (c) suppression of nitrogen dissolution reaction in the molten metal were important. In addition, for most effective component contributing elements to each factor, nitrogen dissolution reaction of Al, the nitrogen fixation of the weld metal of (a) Mg, in reducing the nitrogen partial pressure, (b), and (c) It was found that Li is effective in suppressing the above.
[0007]
(2) Next, as a result of examination of component elements that contribute to the improvement of welding workability, the larger the amount of Al added, the more effective it is to improve arc stability and reduce the amount of spatter generated, and Ca, Sr, It has been found that the addition of Ba is effective in improving the arc stability, and the addition of F is effective in reducing the amount of spatter generated.
[0008]
(3) Further, it has been found that the addition of Cu, Ni, Mn, C, Mo, etc. is effective for increasing the toughness of the weld metal. This will be described in detail below. As described above, the addition of Al is effective in improving the pore resistance and welding workability. However, the larger the amount of Al added, the higher the yield in the weld metal, the coarser the weld metal structure and the lower the toughness. As a result of examining the cause, it was found that when Al dissolves in the weld metal, the ferrite becomes stable, and coarse δ ferrite formed during solidification remains after cooling, resulting in a decrease in toughness.
[0009]
The steel weld metal usually produces coarse δ-ferrite during solidification, but once it is completely transformed into austenite during the cooling process and then transformed from austenite to fine ferrite, the structure of the weld metal is final. Becomes fine and has good toughness. From this point, even when Al is dissolved in the weld metal, in order not to deteriorate the toughness, it is not necessary to leave δ ferrite, and conversely, it is necessary to completely transform to austenite. I found.
[0010]
Furthermore, it has been found that the reheat refinement region of the crystal is reduced by the addition of Al. Usually, when the next layer is welded onto the weld metal, the weld metal of the previous layer is affected by heat and the crystal grains become finer. In welding with a wire that does not contain Al, this reheat refinement region is large, which is effective in ensuring the toughness of the weld metal. However, it was found that when Al is dissolved in a large amount, the reheat refinement region is small and the toughness of the weld metal is low. Further, it was found that this phenomenon was caused by the movement of the A C3 point (the lowest temperature at which austenite becomes a single phase) to the high temperature side due to the solid solution of Al.
[0011]
From these results, in order to improve toughness in the presence of Al, it was found that the balance of the matrix composition of the weld metal is important for suppressing the remaining of δ ferrite and lowering the AC 3 point.
[0012]
That is, specifically, as a result of studying means for preventing the δ ferrite from remaining, as described above, it may be completely transformed into austenite in the cooling process, which is determined by the matrix structure in the weld metal, It has been found that when a large amount of Al that stabilizes ferrite exists, it is effective to add an appropriate amount of elements such as Ni, Mn, and C that stabilize austenite. Further, as a result of studies for lowering the A C3 point, it was found that the combined addition of Cu and Ni is effective. This Cu and Ni not only lower the A C3 point, but also contribute to the stabilization of austenite and have the effect of improving the toughness of the weld metal by suppressing the remaining δ ferrite.
[0013]
(4) Furthermore, as a result of studying the weld metal composition for completely transforming into austenite by thermodynamic analysis and experiment, it is found that when the value of the index FP determined by the following formula (1) is 0 or more, it is completely austenite. I found out that it was transformed. That is, it was found that the toughness of the weld metal can be improved by using a weld metal composition with FP ≧ 0. Here, in the formula (1), [C]: C content (% by weight), [Si]: Si content (% by weight), [Mn]: Mn content (% by weight), [Al]: Al Content (% by weight), [Ni]: Ni content (% by weight), [Cu]: Cu content (% by weight). All are weight percentages with respect to the total weight of the wire (the total weight of the steel sheath and the flux).
[0014]
[Expression 1]
Figure 0004593699
[0015]
(5) In addition to the presence or absence of residual δ ferrite, it was also determined that the transformation structure from austenite had an effect. By adding a small amount of Mo, the transformation structure from austenite was refined, and the weld metal It has also been found that the toughness can be improved.
[0016]
The present invention has been completed based on the above findings. That is, the invention of claim 1 is a flux-cored wire for self-shielded arc welding in which a carbon steel outer shell is filled with a flux and used for welding mild steel and 490 N / mm 2 grade high strength steel. C: 0.01 to 0.30 wt%, Si: 0.01 to 0.20 wt%, Mn: 0.1 to 3.0 wt%, Cu: 0.05 to 2.0 Wt%, Ni: 0.1-3.0 wt%, Al: 1.5-4.0 wt%, Mg: 0.5-2.0 wt%, one or more of Ca, Sr, Ba: 3 0.0 to 7.0% by weight, Li: 0.05 to 0.30% by weight, F: 0.5 to 3.0% by weight, respectively, with the balance consisting of Fe and inevitable impurities, self-shielded arc welding hula, wherein the indicator FP defined by formula (1) is 0 or more It is a box-cored wire.
[0017]
The invention according to claim 2 is the flux-cored wire for self-shielded arc welding according to claim 1, wherein C: 0.01 to 0.10 wt%, Mn: 1.0 to 2.5 wt%, Cu: 0 0.1 to 1.0% by weight, Ni: 1.0 to 2.0% by weight.
[0018]
The invention of claim 3 is characterized in that the flux-cored wire for self-shielded arc welding according to claim 1 or 2 further contains Mo: 0.001 to 0.25% by weight .
[0019]
Hereinafter, the reasons for limitation of the wire chemical components and the like will be described.
[0020]
C is one of the austenite stabilizing elements and has an effect of suppressing the remaining of δ ferrite and is also an element that affects the strength of the weld metal. If the C content is less than 0.01% by weight, there is no effect of suppressing the remaining of δ ferrite and increasing the toughness of the weld metal, and if it exceeds 0.30% by weight, the toughness decreases due to an increase in the strength of the weld metal. Therefore, the C content is preferably in the range of 0.01 to 0.30% by weight, and more preferably in the range of 0.01 to 0.10% by weight from the viewpoint of sure toughening.
[0021]
Si has the effect of improving the viscosity of the weld metal, improving the familiarity between the base metal and the weld metal, and improving the weld bead shape. Moreover, while being a solid solution strengthening element, it is also a ferrite stabilization element. When the Si content is less than 0.01% by weight, the effect of improving the weld bead shape is not exhibited. On the other hand, if it exceeds 0.20% by weight, the strength of the weld metal becomes excessive and the toughness is lowered. Therefore, the Si amount is set to 0.01 to 0.20% by weight.
[0022]
Mn is an austenite stabilizing element like C, and has the effect of suppressing the remaining of δ ferrite, and also has the effect of increasing the toughness of the weld metal by making the transformation structure from austenite fine. If the Mn content is less than 0.1% by weight, these effects are not exhibited. On the other hand, if it exceeds 3.0% by weight, the strength becomes too high and the toughness is worsened. Therefore, the amount of Mn is preferably in the range of 0.1 to 3.0% by weight, and more preferably in the range of 1.0 to 2.5% by weight from the viewpoint of sure toughening.
[0023]
Cu lowers the A C3 point to prevent the reheat refinement region of the weld metal from narrowing, and is one of the austenite stabilizing elements, and has the effect of suppressing residual δ ferrite and increasing toughness. If the Cu content is less than 0.05% by weight, such an effect is not exhibited. On the other hand, if the Cu content exceeds 2.0% by weight, the strength of the weld metal becomes excessive and the toughness is reduced. Therefore, the amount of Cu is preferably in the range of 0.05 to 2.0% by weight, and more preferably in the range of 0.1 to 1.0% by weight from the viewpoint of sure toughening.
[0024]
Ni lowers the A C3 point to prevent the reheat refinement region of the weld metal from narrowing, and is one of the austenite stabilizing elements, and more effectively suppresses the residual δ ferrite and increases the toughness compared to Cu. There is. If the Ni content is less than 0.1% by weight, such an effect is not exhibited. On the other hand, if the Ni content exceeds 3.0% by weight, the strength of the weld metal becomes excessive and the toughness is reduced. Therefore, the amount of Ni is preferably in the range of 0.1 to 3.0% by weight, and more preferably in the range of 1.0 to 2.0% by weight from the viewpoint of sure toughening.
[0025]
Al has the effect of improving the stability of the arc and reducing the amount of spatter generated, thereby improving the workability of welding, and also has the effect of suppressing the generation of blowholes, pits, etc. by fixing nitrogen in the weld metal. From this point, it is the most important element in self-shielding wires. If the Al content is less than 1.5% by weight, these effects cannot be obtained. On the other hand, if the Al content exceeds 4.0% by weight, coarse δ ferrite is precipitated in the weld metal and the toughness is lowered. Therefore, the Al amount is set to 1.5 to 4.0% by weight.
[0026]
Mg is a high vapor pressure metal and easily vaporizes into a metal vapor in a high temperature arc. As a result, there is an excellent shielding effect that suppresses the generation of blow holes and the like by lowering the nitrogen partial pressure in the arc and reducing the amount of nitrogen dissolved in the weld metal. If the Mg content is less than 0.5% by weight, such an effect cannot be obtained. On the other hand, if the Mg content exceeds 2.0% by weight, Mg explosively vaporizes, so that the arc is disturbed and welding workability is deteriorated. Therefore, the Mg amount is 0.5 to 2.0% by weight.
[0027]
Ca, Sr, and Ba all have the effect of increasing arc stability and reducing spatter generation, thereby improving welding workability, and also contributing to slag formation and stabilizing the bead shape. There is also an effect. When the total amount of Ca, Sr, and Ba is less than 3.0% by weight, these effects cannot be obtained. On the other hand, when the amount exceeds 7.0% by weight, the slag generation amount becomes excessive and the arc becomes unstable. Since the slag fluidity deteriorates due to the increase in viscosity of the slag, the beads cannot be stably covered, and the bead shape becomes unstable. Accordingly, the total amount of one or more of Ca, Sr, and Ba is set to 3.0 to 7.0% by weight. These elements are usually added to the flux in the form of fluoride, carbonate or oxide, but the effect is the same even if used in any form. In particular, CaF 2 , SrF 2 , BaF. It is preferable to add in the form of a metal fluoride such as
[0028]
Li lowers the melting point of the slag, lowers the viscosity of the slag, and also reduces the interfacial energy with the weld metal to uniformly cover the surface of the weld metal and droplets, resulting in a nitrogen dissolution reaction in the molten metal. This has the effect of suppressing the pore resistance. If the Li content is less than 0.05% by weight, such an effect is not exhibited. If the Li content exceeds 0.30% by weight, the arc is disturbed and the welding workability is deteriorated. Therefore, the Li amount is in the range of 0.05 to 0.30% by weight. The Li source may be in the form of an alloy or a complex oxide, but the most preferred is a complex oxide such as Li ferrite (LiFeO 2 ).
[0029]
F has the effect of increasing the stability of the arc and reducing the amount of spatter generated, thereby improving the workability of welding. If the F content is less than 0.5% by weight, this welding workability improvement effect cannot be obtained. On the other hand, if it exceeds 3.0% by weight, the arc is disturbed and the welding workability is deteriorated. Therefore, the F amount is in the range of 0.5 to 3.0% by weight. Various fluorides are conceivable as the F source, and fluorides with Ca, Sr, and Ba are most preferable.
[0030]
Mo has the effect of increasing the toughness by making the transformation structure from austenite fine. If the Mo content is less than 0.001% by weight, the effect of improving toughness is not exhibited. On the other hand, if the Mo content exceeds 0.25% by weight, the toughness is worsened due to an increase in the strength of the weld metal. Therefore, the Mo amount is in the range of 0.001 to 0.25% by weight.
[0031]
The index FP is a value obtained from the above equation (1), and is an index of whether or not the weld metal is completely transformed into austenite during cooling. When the value of this index FP is 0 or more, it completely transforms into austenite, and the toughness of the weld metal can be further increased. When the value of FP is less than 0, complete transformation to austenite hardly occurs and a little δ ferrite remains, so that the toughness tends to decrease. From such a point, it is preferable to set FP to be 0 or more.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0033]
【Example】
Each self-shielding wire having the specifications shown in Tables 2 and 3 was produced by a conventional method. In general, there are four types of wire cross-sectional shapes of self-shielded wires as shown in FIG. 1, but the cross-sectional shapes of the wires of this example and the comparative example are of the wrap type structure shown in FIG. 1 (c). In FIG. 1, the code | symbol M shows a steel outer shell and the code | symbol FLX shows a flux, respectively. As the steel outer shell, ordinary carbon steel (JIS G3141 SPCC) is used, and the steel outer shell component (% by weight) is C: 0.04%, Si: 0.01%, Mn: 0.19%, P: 0.008%, S: 0.008%. In addition, both the wires of the present example and the comparative example have a wire diameter of φ1.4 mm and a flux filling rate of 20% by weight.
[0034]
Self-shielded arc welding with these wires was performed, and the welding workability, porosity resistance, and weld metal toughness were investigated. Welding was performed using the test plates and welding conditions shown in Table 1. And about welding workability | operativity, the stability of the arc during welding and the sputter | spatter generation | occurrence | production condition were observed visually, and favorable ((circle)) and defect (x) were evaluated. As for the porosity resistance, an X-ray transmission test was performed on the welded joint specimen according to JIS Z 3104, and the classification of one kind and one kind was determined as good (◯), and the others were determined as poor (×). The toughness of the weld metal was tested in accordance with JIS Z 3111, and an impact value at 0 ° C. of 70 J or more was evaluated as good (◯). Tables 4 and 5 show the test results.
[0035]
[Table 1]
Figure 0004593699
[0036]
[Table 2]
Figure 0004593699
[0037]
[Table 3]
Figure 0004593699
[0038]
[Table 4]
Figure 0004593699
[0039]
[Table 5]
Figure 0004593699
[0040]
From the test results, no. Since the comparative examples 11 to 30 lack any of the requirements defined in the present invention, there are the following problems. No. No. 11 has a C amount lower than the lower limit. In No. 12, the C content exceeded the upper limit, and the toughness of the weld metal was low in both cases. No. No. 13 has a poor weld bead shape because the Si amount is below the lower limit. No. 14 had low toughness because the Si amount exceeded the upper limit. No. No. 15 has a Mn content below the lower limit. In No. 16, the amount of Mn was over the upper limit, and the toughness of the weld metal was low in both cases. No. In No. 17, the amount of Cu is lower than the lower limit. In No. 18, the amount of Cu exceeded the upper limit, and the toughness of the weld metal was low in both cases. No. In No. 19, the amount of Ni is below the lower limit. In No. 20, the Ni content exceeded the upper limit, and the toughness of the weld metal was low in both cases.
[0041]
No. No. 21 has poor welding workability and pore resistance because the Al content is below the lower limit value. On the contrary, the toughness of No. 22 was extremely poor despite the addition of Mo because the Al amount exceeded the upper limit. No. No. 23 has poor porosity resistance because the Mg amount is lower than the lower limit. No. 24 had poor arc stability because the Mg amount exceeded the upper limit. No. No. 25, the total amount of Ca, Sr and Ba is below the lower limit value. In contrast, No. 26 exceeded the upper limit, and both had poor welding workability. No. No. 27 has poor pore resistance because the Li content is below the lower limit. No. 28 had poor arc stability because the Li content exceeded the upper limit. No. In No. 29, the F amount is below the lower limit value. On the contrary, 30 exceeded the upper limit, and both had poor welding workability.
[0042]
In contrast, no. 1-No. Each of the 10 self-shielded wires of the present invention had good welding workability, porosity resistance, and weld metal toughness.
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a flux-cored wire for self-shielded arc welding that is capable of obtaining a weld metal having excellent welding workability and porosity resistance and high toughness. The application of self-shielding wires can be expanded.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a cross-sectional shape of a flux-cored wire for self-shielded arc welding.
[Explanation of symbols]
M ... Steel outer shell FLX ... Flux

Claims (3)

炭素鋼製外皮内にフラックスを充填してなり、軟鋼・490N/mm2 級高張力鋼の溶接に用いられるセルフシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全重量に対する重量%で、C:0.01〜0.30重量%、Si:0.01〜0.20重量%、Mn:0.1〜3.0重量%、Cu:0.05〜2.0重量%、Ni:0.1〜3.0重量%、Al:1.5〜4.0重量%、Mg:0.5〜2.0重量%、Ca,Sr,Baの1種以上:3.0〜7.0重量%、Li:0.05〜0.30重量%、F:0.5〜3.0重量%をそれぞれ含有し、残部がFe及び不可避的不純物からなり、かつ、下記式(1) で定義される指標FPが0以上であることを特徴とするセルフシールドアーク溶接用フラックス入りワイヤ。
FP=[C] −0.145 ×[Si]+0.013 ×[Mn]−0.3 ×[Al]
+0.196 ×[Ni]+0.35×[Cu]+0.393 ……(1)
In a flux-cored wire for self-shielded arc welding, which is formed by filling a carbon steel outer shell with a flux and used for welding mild steel / 490 N / mm 2 grade high-strength steel, C = 0. 01 to 0.30 wt%, Si: 0.01 to 0.20 wt%, Mn: 0.1 to 3.0 wt%, Cu: 0.05 to 2.0 wt%, Ni: 0.1 to 0.1 wt% 3.0 wt%, Al: 1.5 to 4.0 wt%, Mg: 0.5 to 2.0 wt%, one or more of Ca, Sr, and Ba: 3.0 to 7.0 wt%, Li: 0.05 to 0.30% by weight, F: 0.5 to 3.0% by weight , the balance being Fe and inevitable impurities, and an index defined by the following formula (1) A flux-cored wire for self-shielded arc welding , wherein FP is 0 or more .
FP = [C] -0.145 x [Si] + 0.013 x [Mn] -0.3 x [Al]
+0.196 x [Ni] + 0.35 x [Cu] + 0.393 (1)
C:0.01〜0.10重量%、Mn:1.0〜2.5重量%、Cu:0.1〜1.0重量%、Ni:1.0〜2.0重量%である請求項1記載のセルフシールドアーク溶接用フラックス入りワイヤ。  C: 0.01 to 0.10 wt%, Mn: 1.0 to 2.5 wt%, Cu: 0.1 to 1.0 wt%, Ni: 1.0 to 2.0 wt% Item 2. A flux-cored wire for self-shielded arc welding according to item 1. さらに、Mo:0.001〜0.25重量%を含有するものである請求項1又は2記載のセルフシールドアーク溶接用フラックス入りワイヤ。 The flux-cored wire for self-shielded arc welding according to claim 1 or 2, further comprising Mo: 0.001 to 0.25 wt% .
JP06622799A 1999-03-12 1999-03-12 Flux-cored wire for self-shielded arc welding Expired - Lifetime JP4593699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06622799A JP4593699B2 (en) 1999-03-12 1999-03-12 Flux-cored wire for self-shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06622799A JP4593699B2 (en) 1999-03-12 1999-03-12 Flux-cored wire for self-shielded arc welding

Publications (2)

Publication Number Publication Date
JP2000263288A JP2000263288A (en) 2000-09-26
JP4593699B2 true JP4593699B2 (en) 2010-12-08

Family

ID=13309758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06622799A Expired - Lifetime JP4593699B2 (en) 1999-03-12 1999-03-12 Flux-cored wire for self-shielded arc welding

Country Status (1)

Country Link
JP (1) JP4593699B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11426824B2 (en) * 2017-09-29 2022-08-30 Lincoln Global, Inc. Aluminum-containing welding electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122073A (en) * 1992-05-08 1994-05-06 Mitsui Eng & Shipbuild Co Ltd Upward arc welding method by self-shield wire
JPH0994695A (en) * 1995-09-29 1997-04-08 Kobe Steel Ltd Flux cored wire for self-shielded arc welding
JPH10180487A (en) * 1996-12-27 1998-07-07 Kobe Steel Ltd Flux cored wire for self shield arc welding
JP2000126893A (en) * 1998-10-22 2000-05-09 Kobe Steel Ltd Flux-cored wire for self-shield welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122073A (en) * 1992-05-08 1994-05-06 Mitsui Eng & Shipbuild Co Ltd Upward arc welding method by self-shield wire
JPH0994695A (en) * 1995-09-29 1997-04-08 Kobe Steel Ltd Flux cored wire for self-shielded arc welding
JPH10180487A (en) * 1996-12-27 1998-07-07 Kobe Steel Ltd Flux cored wire for self shield arc welding
JP2000126893A (en) * 1998-10-22 2000-05-09 Kobe Steel Ltd Flux-cored wire for self-shield welding

Also Published As

Publication number Publication date
JP2000263288A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
JP5138242B2 (en) Flux-cored wire for duplex stainless steel welding
JPWO2009145347A1 (en) Flux-cored wire for welding duplex stainless steel to refine solidified grains
WO2018051823A1 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP3934399B2 (en) Flux-cored wire for austenitic stainless steel welding that refines solidified crystal grains
JP4261647B2 (en) Flux cored wire for self-shielding welding
JP2003033895A (en) Flux cored wire for gas shielded metal arc welding for high tensile steel
JP3026899B2 (en) Low hydrogen coated arc welding rod
EP3511111A1 (en) Flux cored wire for gas shield arc welding and welding metal
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
WO2018047880A1 (en) Flux-cored wire for gas shield arc welding, and weld metal
JPH044079B2 (en)
JP3566131B2 (en) Flux cored wire for self-shielded welding
KR19990015625A (en) Flux Filling Wire for Arc Welding
JPH11347790A (en) Coated electrode for ni group high cr alloy
JPH0577086A (en) Flux cored wire for gas shielded arc welding for 0.5 mo steel, mn-mo steel and mn-mo-ni steel
JP4593699B2 (en) Flux-cored wire for self-shielded arc welding
JPH08257791A (en) Low hydrogen covered electrode
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
WO2018047879A1 (en) Flux cored wire for gas shield arc welding and welding metal
JPH10272594A (en) Low hydrogen type coated electrode
JPH09253886A (en) Flux cored wire for gas shielded metal arc welding for 690mpa class high tensile steel
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JP3718323B2 (en) Flux-cored wire for multi-electrode vertical electrogas arc welding for extra heavy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term