JP4591293B2 - Liquid-liquid heat exchanger for water heater - Google Patents

Liquid-liquid heat exchanger for water heater Download PDF

Info

Publication number
JP4591293B2
JP4591293B2 JP2005272795A JP2005272795A JP4591293B2 JP 4591293 B2 JP4591293 B2 JP 4591293B2 JP 2005272795 A JP2005272795 A JP 2005272795A JP 2005272795 A JP2005272795 A JP 2005272795A JP 4591293 B2 JP4591293 B2 JP 4591293B2
Authority
JP
Japan
Prior art keywords
ave
liquid
heat exchanger
inner pipe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005272795A
Other languages
Japanese (ja)
Other versions
JP2007085595A (en
Inventor
賢 堀口
隆一 小林
守 法福
賢一 菊地
克己 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005272795A priority Critical patent/JP4591293B2/en
Publication of JP2007085595A publication Critical patent/JP2007085595A/en
Application granted granted Critical
Publication of JP4591293B2 publication Critical patent/JP4591293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、給湯機用の液−液熱交換器に関し、特に、熱交換効率が高く、かつ可撓性に優れフレキシブルな配管施工が可能である高性能な給湯機用の液−液熱交換器に関する。   The present invention relates to a liquid-liquid heat exchanger for a water heater, and in particular, a liquid-liquid heat exchanger for a high-performance water heater that has high heat exchange efficiency and excellent flexibility and enables flexible piping construction. Related to the vessel.

給湯暖房機等の給湯機には、熱交換媒体である高温水で被熱交換媒体である低温水を加熱する液−液熱交換器が備えられている。このような液−液熱交換器は、例えば、風呂の浴槽に溜められた低温水を再加熱して追焚きするために利用されている。   2. Description of the Related Art A hot water heater such as a hot water heater is provided with a liquid-liquid heat exchanger that heats low temperature water that is a heat exchange medium with high temperature water that is a heat exchange medium. Such a liquid-liquid heat exchanger is used, for example, for reheating and reheating low-temperature water stored in a bath tub.

この液−液熱交換器は、内管と外管からなる二重管構造であり、内管の内側流路には熱交換媒体となる高温水もしくは被熱交換媒体となる低温水が通され、内管と外管の間の外側流路には被熱交換媒体となる低温水もしくは熱交換媒体となる高温水が通される。   This liquid-liquid heat exchanger has a double tube structure consisting of an inner tube and an outer tube, and high temperature water serving as a heat exchange medium or low temperature water serving as a heat exchange medium is passed through the inner flow path of the inner tube. The outer flow path between the inner tube and the outer tube passes low temperature water that is a heat exchange medium or high temperature water that is a heat exchange medium.

従来の給湯機に備えられた液−液熱交換器の例を図9および図10を用いて説明する。図9は従来の液−液熱交換器の全体の概観図である。また、図10は図9の断面図(B−B線)であり、(a)は内管が平滑円管の場合、(b)は内管が多葉状管の場合である。   The example of the liquid-liquid heat exchanger with which the conventional hot water heater was equipped is demonstrated using FIG. 9 and FIG. FIG. 9 is an overall view of a conventional liquid-liquid heat exchanger. FIG. 10 is a cross-sectional view (BB line) of FIG. 9, where (a) shows a case where the inner tube is a smooth circular tube, and (b) shows a case where the inner tube is a multi-leafy tube.

従来の液−液熱交換器70は、内管71と外管72からなる二重管構造である。内管71と外管72の間に熱媒体が通され、この熱媒体により内管71の内部に通された水が加熱される。   The conventional liquid-liquid heat exchanger 70 has a double tube structure including an inner tube 71 and an outer tube 72. A heat medium is passed between the inner pipe 71 and the outer pipe 72, and the water passed through the inner pipe 71 is heated by the heat medium.

図10(b)に記載の液−液熱交換器70では、内管71を多葉(6葉)状管とすることで、内管71が図10(a)の平滑円管である場合に比べ、伝熱面積が拡大され、熱交換効率を上げる工夫がなされている(非特許文献1参照)。   In the liquid-liquid heat exchanger 70 illustrated in FIG. 10B, the inner tube 71 is a multi-leaf (six-leaf) tube so that the inner tube 71 is the smooth circular tube of FIG. Compared to the above, the heat transfer area is expanded, and a device for increasing the heat exchange efficiency has been devised (see Non-Patent Document 1).

従来の液−液熱交換器の他の例としては、特許文献1の図9記載の二重管式熱交換器がある。当該二重管式熱交換器は、内管と外管の間を流れる水の流路を、内管の外表面に設けた伝熱促進体で螺旋状に仕切ることによって、内外管間の流路の流路長を増大させるとともに、この流路を流れる水の流速および乱流化を増加させ、内管内を流れる冷媒から内外管間を流れる水への伝熱を促進させる。また、特許文献1には、熱交換器全体のコンパクト化を目的として、二重管式熱交換器の曲げ加工(配管施工)を容易にするために、外管にスパイラル状コルゲート管を適用することが記載されている。
平成16年度 神奈川県産学公交流研究発表会要旨集、平成16年10月20日口頭発表の部、「多葉状伝熱管を用いた二重管熱交換器の伝熱特性」、(株)西山製作所、片野伊佐雄、http://www.kanagawa-iri.go.jp/kitri/kouhou/program/H16/1701.pdf 特開2005−9832号公報
As another example of the conventional liquid-liquid heat exchanger, there is a double-pipe heat exchanger described in FIG. The double-pipe heat exchanger is configured such that the flow path of water flowing between the inner tube and the outer tube is partitioned by a heat transfer facilitator provided on the outer surface of the inner tube in a spiral manner, thereby allowing the flow between the inner and outer tubes to flow. While increasing the flow path length of the path, the flow velocity and turbulence of the water flowing through the flow path are increased, and heat transfer from the refrigerant flowing in the inner pipe to the water flowing between the inner and outer pipes is promoted. Further, in Patent Document 1, a spiral corrugated pipe is applied to the outer pipe in order to facilitate the bending process (pipe construction) of the double pipe heat exchanger for the purpose of downsizing the entire heat exchanger. It is described.
Summary of Kanagawa Prefectural Industry-Academia Public Exchange Presentation Meeting, October 20, 2004 Oral Presentation, “Heat Transfer Characteristics of Double-Tube Heat Exchanger Using Multileaf Heat Transfer Tubes”, Nishiyama Co., Ltd. Works, Isao Katano, http://www.kanagawa-iri.go.jp/kitri/kouhou/program/H16/1701.pdf JP 2005-9832 A

しかしながら、非特許文献1記載の内管71は、平滑な管を多葉状のダイスに通す(引き抜く)ことで成形されるため、多葉フィンは管軸方向とほぼ平行になる。従って、熱交換・被熱交換媒体(流体)の乱流効果が少ないため、熱交換効率は、伝熱面積拡大分しか増加しない。また、管軸方向とほぼ平行な多葉フィンであるために可撓性に劣る短所を有する。一方、特許文献1に記載の熱交換器は、内管の管内伝熱面積が拡大していないため、大きな伝熱性能向上効果は期待できない。また、特許文献1には外管に可撓性を付与した熱交換器が記載されているが、内管は外管の両端部のみで固定されているため、曲げ加工を施した場合に、常に外管の中心に内管が固定される保障が無く、両管の間に存在する熱交換媒体の流れを妨げて熱交換効率が低下する可能性がある。   However, since the inner tube 71 described in Non-Patent Document 1 is formed by passing a smooth tube through a multi-leaf die (pulling out), the multi-leaf fin is substantially parallel to the tube axis direction. Therefore, since the turbulent flow effect of the heat exchange / heat exchange medium (fluid) is small, the heat exchange efficiency is increased only by the heat transfer area expansion. Moreover, since it is a multi-leaf fin substantially parallel to the tube axis direction, it has a disadvantage inferior in flexibility. On the other hand, the heat exchanger described in Patent Document 1 cannot be expected to have a significant effect of improving heat transfer performance because the heat transfer area of the inner pipe is not expanded. Moreover, although the heat exchanger which provided the flexibility to the outer pipe | tube is described in patent document 1, since the inner pipe | tube is being fixed only at the both ends of an outer pipe | tube, when performing a bending process, There is no guarantee that the inner tube is always fixed at the center of the outer tube, and the flow of the heat exchange medium existing between the two tubes may be hindered and the heat exchange efficiency may be reduced.

従って、本発明の目的は、内管を流れる流体及び、内管と外管の間を流れる流体の伝熱面積を共に増加させ、かつ両流体に作用する乱流効果によっても熱交換効率を向上させることができ、さらに可撓性に優れフレキシブルな配管施工が可能な給湯機用の高性能液−液熱交換器を提供することにある。   Therefore, the object of the present invention is to increase the heat transfer area of the fluid flowing through the inner pipe and the fluid flowing between the inner pipe and the outer pipe, and to improve the heat exchange efficiency by the turbulent effect acting on both fluids. It is another object of the present invention to provide a high-performance liquid-liquid heat exchanger for a hot water heater that can be made to have excellent flexibility and enables flexible piping construction.

本発明は、上記目的を達成するため、被熱交換媒体となる水および前記被熱交換媒体となる水よりも高温の熱交換媒体となる水の一方を通す第1の流路を有する内管と、前記内管の外側に配置され、前記内管との間に前記被熱交換媒体となる水および前記熱交換媒体となる水の他方を通す第2の流路を有する外管とを備え、前記内管は、ねじり力により壁面座屈させて形成されたスパイラル状のひだ形中空フィンを有し、
前記外管は内面が平滑な円管であり、前記第1の流路における流路方向に垂直な断面積をS、前記内管の平均内径をID i-ave =(4S/π) 0.5 、前記内管の肉厚をTW i 、前記内管の平均外径をOD i-ave =ID i-ave +2TW i 、前記第1の流路を流れる流体の体積流量をV i 、前記第2の流路を流れる流体の体積流量をV o とすると、前記外管の内径ID o は、((V o /2V i )×ID i-ave 2 +OD i-ave 2 ) 0.5 <ID o <((2V o /V i )×ID i-ave 2 +OD i-ave 2 ) 0.5 を満たすことを特徴とする給湯機用の液−液熱交換器を提供する。
In order to achieve the above object, the present invention provides an inner tube having a first flow path through which one of water serving as a heat exchange medium and water serving as a heat exchange medium having a higher temperature than water serving as the heat exchange medium passes. And an outer tube having a second flow path that is disposed outside the inner tube and passes the other of the water to be the heat exchange medium and the water to be the heat exchange medium between the inner tube and the inner tube. , the inner tube, the twisting force by have a spiral pleat-shaped hollow fins formed by buckled wall seat,
The outer tube is a circular tube with a smooth inner surface, the cross-sectional area perpendicular to the flow direction in the first flow path is S, and the average inner diameter of the inner pipe is ID i-ave = (4S / π) 0.5 , The wall thickness of the inner pipe is TW i , the average outer diameter of the inner pipe is OD i-ave = ID i-ave + 2TW i , the volume flow rate of the fluid flowing through the first flow path is V i , and the second When the volume flow rate of the fluid flowing through the flow path is V o , the inner diameter ID o of the outer tube is ((V o / 2V i ) × ID i-ave 2 + OD i-ave 2 ) 0.5 <ID o <(( 2V o / V i) × ID i-ave 2 + OD i-ave 2) liquid for water heater and satisfies the 0.5 - providing a liquid heat exchanger.

本発明によれば、可撓性に優れフレキシブルな配管施工が可能で、熱交換効率が高く高性能な給湯機用の液−液熱交換器が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in flexibility, flexible piping construction is possible, and the liquid-liquid heat exchanger for hot water heaters with high heat exchange efficiency and high performance can be provided.

〔本発明の第1の実施の形態〕
(液−液熱交換器の構成)
図1は、本発明の第1の実施の形態に係る液−液熱交換器の全体を示す一部断面概略図である。また、図2は、本発明の第1の実施の形態に係る液−液熱交換器の内管を示す一部断面概略図である。図3は、図2の断面図(A−A線)であり、(a)はひだ形中空フィンの条数N=3の場合、(b)はひだ形中空フィンの条数N=2の場合である。
[First embodiment of the present invention]
(Configuration of liquid-liquid heat exchanger)
FIG. 1 is a partial cross-sectional schematic view showing the entire liquid-liquid heat exchanger according to the first embodiment of the present invention. FIG. 2 is a partial cross-sectional schematic view showing the inner tube of the liquid-liquid heat exchanger according to the first embodiment of the present invention. 3 is a cross-sectional view (AA line) of FIG. 2, where (a) shows the number of pleated hollow fins N = 3, and (b) shows the number of pleated hollow fins N = 2. Is the case.

液−液熱交換器10は、低温の水(被熱交換媒体)および高温の水(熱交換媒体)の一方を通す流路A(第1の流路)を有する内管1と、内管1の外側に配置され、内管1との間に低温の水(被熱交換媒体)および高温の水(熱交換媒体)の他方を通す流路B(第2の流路)を有する外管2とを備えて構成される。外管2は、平滑な内面を有する円管であり、外管2の端部にはそれぞれ、水の流入口2Aと流出口2Bが設けられている。ここで、低温の水(被熱交換媒体)とは、高温の水(熱交換媒体)よりも低い温度の水であり、高温の水(熱交換媒体)とは、低温の水(被熱交換媒体)よりも高い温度の水である。   The liquid-liquid heat exchanger 10 includes an inner pipe 1 having a flow path A (first flow path) through which one of low-temperature water (heat exchange medium) and high-temperature water (heat exchange medium) passes, and an inner pipe 1 and an outer pipe having a flow path B (second flow path) through which the other of low-temperature water (heat exchange medium) and high-temperature water (heat exchange medium) passes between the inner pipe 1 and the inner pipe 1. 2 and configured. The outer tube 2 is a circular tube having a smooth inner surface, and an inlet 2A and an outlet 2B of water are provided at the ends of the outer tube 2, respectively. Here, low-temperature water (heat exchange medium) is water at a lower temperature than high-temperature water (heat exchange medium), and high-temperature water (heat exchange medium) is low-temperature water (heat exchange medium). It is water at a higher temperature than the medium.

内管1は、ねじり力により壁面座屈させて形成されたスパイラル状のひだ形中空フィン3を有する。「ねじり力により壁面座屈させて形成」するとは、例えば、内管1の一方の端末部1Aを固定し、反対側の端末部1Bをねじり、その中間部を壁面座屈させてスパイラル部1Cを形成することができる。ひだ形中空フィン3の条数を所望の条数とするために、材料となる平滑円管に対して所望の条数と同数箇所に力を加えながら、ねじり加工を施す。   The inner tube 1 has a spiral pleated hollow fin 3 formed by buckling a wall surface by a torsional force. “To be formed by wall-buckling by torsional force” means, for example, fixing one end portion 1A of the inner tube 1, twisting the opposite end portion 1B, and wall-buckling the intermediate portion to spiral the portion 1C. Can be formed. In order to set the number of the pleated hollow fins 3 to a desired number, twisting is applied to the smooth circular pipe as a material while applying force to the same number of places as the desired number.

形成されたひだ形中空フィン3の中空は、内管1の内側の中空と一体を成し、流路Aの一部を構成する。   The formed hollow of the pleated hollow fin 3 is integrated with the hollow inside the inner tube 1 and constitutes a part of the flow path A.

内管1の山部の最大外径をODi−max、内管1の谷部の最小内径をIDi−min、スパイラル状のひだ形中空フィン3の条数をNとすると、ひだ形中空フィン3の条数NはN=2〜6であることが望ましく、より望ましくは3〜4である。 If the maximum outer diameter of the crest of the inner pipe 1 is OD i-max , the minimum inner diameter of the valley of the inner pipe 1 is ID i-min , and the number of spiral pleated hollow fins 3 is N, the pleated hollow The number N of the fins 3 is preferably N = 2 to 6, more preferably 3 to 4.

条数NがN=3〜6であれば、ODi−max/IDi−minは約1/cos(π/N)(具体的には、[1/cos(π/N)] × (0.9〜1.1)程度)であり、例えば、図3(a)に示す断面(3角形状)のように断面は多角形形状となる。また、条数NがN=2であれば、ODi−max/IDi−minは約2(具体的には、1.8〜2.2程度)であり、図3(b)のように断面は楕円形状となる。伝熱面積を増加させ、熱交換効率を向上させるためには、流路面積あたりの伝熱面積すなわち濡れ縁長さを増加させることが効果的である。条数Nは、原理的に7以上も可能であるが、七角形より多角形の場合、円管と比較した場合の流路面積あたりの伝熱面積増加率は5%を下回り、有意差が少なくなる。 If the number N is 3 = 6, OD i−max / ID i−min is about 1 / cos (π / N) (specifically, [1 / cos (π / N)] × ( For example, the cross section is a polygonal shape as shown in FIG. 3A (triangular shape). If the number N of stripes is N = 2, OD i-max / ID i-min is about 2 (specifically, about 1.8 to 2.2), as shown in FIG. The cross section is elliptical. In order to increase the heat transfer area and improve the heat exchange efficiency, it is effective to increase the heat transfer area per channel area, that is, the wet edge length. In principle, the number of strips N can be 7 or more. However, in the case of polygons rather than heptagons, the rate of increase in heat transfer area per channel area compared to a circular pipe is less than 5%, and there is a significant difference. Less.

内管1の内側の流路A(第1の流路)における流路方向に垂直な断面積をS、内管1の平均内径(内管1の流路Aの断面積Sと同一の断面積を有する円管の内径、等価内径)をIDi−ave=(4S/π)0.5、内管1の肉厚をTW、内管1の平均外径(内管1の流路Aの断面積Sと同一の断面積を有する円管の外径、等価外径)をODi−ave=IDi−ave+2TWi、ひだ形中空フィン3のピッチをpとすると、ピッチと平均外径の比p/ODi−aveは、その製造性上、およそ4以下となるが、0.2<p/ODi−ave<1.5を満たすことが望ましい。 The cross-sectional area perpendicular to the flow path direction in the flow path A (first flow path) inside the inner pipe 1 is S, and the average inner diameter of the inner pipe 1 (the same cross-sectional area S as the flow path A of the inner pipe 1 is cut). ID i-ave = (4S / π) 0.5 , the inner tube 1 has a wall thickness TW i , and the inner tube 1 has an average outer diameter (flow path of the inner tube 1). The outer diameter of the circular tube having the same cross-sectional area as the cross-sectional area S of A is equal to OD i-ave = ID i-ave +2 TWi, and the pitch of the pleated hollow fins 3 is p. The diameter ratio p / OD i-ave is about 4 or less in terms of manufacturability, but it is desirable that 0.2 <p / OD i-ave <1.5.

また、内管1の内側の流路A(第1の流路)を流れる流体の体積流量Vと内管1と外管2の間の流路B(第2の流路)を流れる流体の体積流量Vが予め分かっている場合は、内管1の内側の流路A(第1の流路)の断面積(流路と垂直)をS、内管1の平均内径(等価内径)をIDi−ave=(4S/π)0.5、内管1の肉厚をTW、内管1の平均外径(等価外径)をODi−ave=IDi−ave+2TWとすると、外管2の内径IDは、((V/2V)×IDi−ave +ODi−ave )0.5<ID<((2V/V)×IDi−ave +ODi−ave )0.5を満たすことが望ましい。これにより、両流体の流速をほぼ同じにすることできる。流体が液体などの単相流の場合、熱伝達性能は、ほぼ流速に依存する。また、熱交換器の性能は、両流体の熱抵抗(熱伝達率と伝熱面積の積の逆数)の差が小さいときに、全体の熱抵抗を最小化できる。本実施の形態では、両流体の伝熱面積は、ほとんど同じであるため、両流体の流速をほぼ同じにすることで、熱交換効率が最適化される。 The fluid flowing inside the flow path A of the inner tube 1 flow path B between the (first flow path) volume flow V i and the inner tube 1 of the fluid flowing through the outer tube 2 (second flow path) volume if the flow rate V o is known in advance, an average inner diameter (equivalent inner diameter cross-sectional area (the flow path perpendicular) S, the inner tube 1 of the inner flow passage a of the inner tube 1 (the first flow path) of ) Is ID i-ave = (4S / π) 0.5 , the thickness of the inner tube 1 is TW i , and the average outer diameter (equivalent outer diameter) of the inner tube 1 is OD i-ave = ID i-ave + 2TW i Then, the inner diameter ID o of the outer tube 2 is ((V o / 2V i ) × ID i−ave 2 + OD i−ave 2 ) 0.5 <ID o <((2 V o / V i ) × ID i it is desirable to satisfy the -ave 2 + OD i-ave 2 ) 0.5. Thereby, the flow velocity of both fluids can be made substantially the same. When the fluid is a single-phase flow such as a liquid, the heat transfer performance substantially depends on the flow velocity. Moreover, the performance of the heat exchanger can minimize the overall thermal resistance when the difference between the thermal resistances of both fluids (the inverse of the product of the heat transfer coefficient and the heat transfer area) is small. In this embodiment, since the heat transfer areas of both fluids are almost the same, the heat exchange efficiency is optimized by making the flow rates of both fluids substantially the same.

一方、内管を所定のスパイラル状のひだ形中空フィンを有するものとしたため、内管自体は極めて可撓性の高いものとなる。さらに、熱交換器(二重管)に曲げ加工を施す場合に内管のスパイラル状のひだ形中空フィンが中子の役割を果たし、外管の塑性屈服(折れ)を防止することができ、フレキシブルな配管施工が可能となる。   On the other hand, since the inner tube has a predetermined spiral pleated hollow fin, the inner tube itself is extremely flexible. Furthermore, when bending the heat exchanger (double pipe), the spiral pleated hollow fin of the inner pipe plays the role of the core and can prevent plastic bending (bending) of the outer pipe, Flexible piping construction is possible.

〔本発明の第2の実施の形態〕
図4は、本発明の第2の実施の形態に係る液−液熱交換器の一部を示す断面概略図である。第2の実施の形態に係る液−液熱交換器20は、第1の実施の形態に係る液−液熱交換器10と外管の形状において相違している。本実施の形態における外管12は、波付形状を有し、これにより可撓性をさらに向上させている。
[Second Embodiment of the Present Invention]
FIG. 4 is a schematic cross-sectional view showing a part of the liquid-liquid heat exchanger according to the second embodiment of the present invention. The liquid-liquid heat exchanger 20 according to the second embodiment is different from the liquid-liquid heat exchanger 10 according to the first embodiment in the shape of the outer tube. The outer tube 12 in the present embodiment has a corrugated shape, thereby further improving flexibility.

波付形状を有する外管12には、例えば、波付形状として特許文献1記載のスパイラル状のコルゲート形状を有する外管を用いることができる。   For the outer tube 12 having a corrugated shape, for example, an outer tube having a spiral corrugated shape described in Patent Document 1 can be used as the corrugated shape.

〔本発明の液−液熱交換器を備えた給湯機のシステム〕
図5は、本発明の液−液熱交換器を備えたヒートポンプ式給湯機のシステム図である。圧縮機51で圧縮された高温高圧冷媒ガスは、水−冷媒熱交換器52で放熱し、高温水を作る。特に、二酸化炭素を冷媒としたヒートポンプ式給湯機の場合、90℃の高温水を得ることができる。その後、膨張弁53で、冷媒は低圧低温の気液二相流体となり、冷媒−空気熱交換器54で吸熱(55はファン)して、完全に蒸発してガスになり、圧縮機51に吸い込まれ、このサイクルを繰り返す。一方、貯湯タンク56に蓄えられた高温水は、必要に応じて、給湯57、風呂の追焚き(液−液熱交換機50)などに使用される。すなわち、本発明の液−液熱交換器は、ヒートポンプ式給湯機で沸かした高温水と風呂などの低温水を熱交換させ、追焚きするために設置される。貯湯タンク56に蓄えられた高温水は、高温を保つため、ポンプ58により水−冷媒熱交換器52へ送られ、そこで加熱されて、貯湯タンク56へ戻る。
[System of a water heater provided with the liquid-liquid heat exchanger of the present invention]
FIG. 5 is a system diagram of a heat pump type water heater provided with the liquid-liquid heat exchanger of the present invention. The high-temperature and high-pressure refrigerant gas compressed by the compressor 51 dissipates heat in the water-refrigerant heat exchanger 52 to produce high-temperature water. In particular, in the case of a heat pump type water heater using carbon dioxide as a refrigerant, high-temperature water at 90 ° C. can be obtained. Thereafter, the refrigerant becomes a low-pressure and low-temperature gas-liquid two-phase fluid at the expansion valve 53, absorbs heat (55 is a fan) by the refrigerant-air heat exchanger 54, completely evaporates into gas, and is sucked into the compressor 51. Repeat this cycle. On the other hand, the high temperature water stored in the hot water storage tank 56 is used for hot water supply 57, bathing (liquid-liquid heat exchanger 50), etc., as needed. That is, the liquid-liquid heat exchanger of the present invention is installed for exchanging heat by exchanging heat between hot water boiled by a heat pump type hot water heater and low-temperature water such as a bath. The high temperature water stored in the hot water storage tank 56 is sent to the water-refrigerant heat exchanger 52 by the pump 58 in order to maintain a high temperature, heated there, and returned to the hot water storage tank 56.

ヒートポンプ式給湯機は、ガス焚きなどの給湯機に比べ、省エネルギーであるが、貯湯式の場合、貯湯タンクが大きくなってしまうため、設置不可能な場合も多い。追焚き熱交換器は、この貯湯タンクユニット内に設置されるため、追焚き熱交換器の高性能化は、貯湯タンクユニットのコンパクト化につながる。本発明の液−液熱交換器は、このようなシステムに搭載されることで、システム全体の高効率化、コンパクト化に寄与することができる。   A heat pump type hot water heater is energy saving compared to a hot water heater such as a gas fired heater. However, in the case of a hot water storage type, since a hot water storage tank becomes large, it is often impossible to install. Since the reheating heat exchanger is installed in the hot water storage tank unit, the high performance of the reheating heat exchanger leads to a compact hot water storage tank unit. The liquid-liquid heat exchanger of the present invention can contribute to high efficiency and compactness of the entire system by being mounted in such a system.

〔実施の形態の効果〕
上記の本発明の実施の形態によれば、下記の効果を奏する。
(1)内管を所定のスパイラル状のひだ形中空フィンを有するものとしたため、内管の内側流路及び内管と外管の間の流路を流れる両流体の伝熱面積を大きくとることができると同時に、両流体の乱流効果によって熱交換効率を高効率にすることができる。
(2)熱交換効率を高め、高性能化できるため、液−液熱交換器をコンパクトにすることができる。
(3)内管を所定のスパイラル状のひだ形中空フィンを有するものとしたため、熱交換器に曲げ加工を施す場合に外管の塑性屈服(折れ)を防止することができ、フレキシブルな配管施工が可能となる。(給湯機内での配置の自由度が拡大する。)
(4)波付形状を有する外管を用いることにより、内管、外管とも可撓性に優れるため、よりフレキシブルな配管施工が可能となる。
[Effect of the embodiment]
According to the above embodiment of the present invention, the following effects can be obtained.
(1) Since the inner tube has a predetermined spiral pleated hollow fin, the heat transfer area of both fluids flowing through the inner channel of the inner tube and the channel between the inner tube and the outer tube is increased. At the same time, the heat exchange efficiency can be increased by the turbulent effect of both fluids.
(2) Since the heat exchange efficiency can be increased and the performance can be improved, the liquid-liquid heat exchanger can be made compact.
(3) Since the inner tube has a predetermined spiral pleated hollow fin, it is possible to prevent plastic bending (bending) of the outer tube when bending the heat exchanger, and flexible piping construction Is possible. (The degree of freedom of arrangement in the water heater increases.)
(4) By using an outer tube having a corrugated shape, both the inner tube and the outer tube are excellent in flexibility, so that more flexible piping construction is possible.

以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.

図6は、内管の多角形の角数(中空フィンの条数)と、流路断面積に対する伝熱面積の割合との関係を示す図である。伝熱面積の割合は、多角形の流路断面積に対する伝熱面積の割合を内管が円管である場合に対する比で示した。すなわち、内管が平滑円管である場合(1.00)と比較して、内管流路の同一断面積に対する伝熱面積の割合の増加率を確認した。なお、ひだ形中空フィンの条数NがN=2の場合は、内管の断面が楕円管(図3(b)参照)になるとして求めた。   FIG. 6 is a diagram showing the relationship between the number of polygonal corners of the inner tube (the number of hollow fins) and the ratio of the heat transfer area to the flow path cross-sectional area. For the ratio of the heat transfer area, the ratio of the heat transfer area to the polygonal channel cross-sectional area is shown as a ratio to the case where the inner pipe is a circular pipe. That is, the rate of increase in the ratio of the heat transfer area to the same cross-sectional area of the inner pipe channel was confirmed as compared with the case where the inner pipe was a smooth circular pipe (1.00). In addition, when the number N of the pleated hollow fins was N = 2, the cross section of the inner tube was determined to be an elliptical tube (see FIG. 3B).

図6より、本発明の液−液熱交換器の内管は、ひだ形中空フィンの条数が3の場合に、最も伝熱面積が大きくなる。N=2〜6の場合に、円管である場合との比が1.05以上となっていることが判る。さらには、N=3〜4の場合に、円管である場合との比が1.10以上となっていることが判る。   From FIG. 6, the inner pipe of the liquid-liquid heat exchanger of the present invention has the largest heat transfer area when the number of pleated hollow fins is three. It can be seen that in the case of N = 2 to 6, the ratio to the case of a circular pipe is 1.05 or more. Furthermore, it can be seen that when N = 3 to 4, the ratio of the circular pipe is 1.10 or more.

また、ひだ形中空フィンの条数が少ないほど、ひだ形中空フィンのスパイラルによるリード角が大きくなり、乱流効果も大きくなる。   In addition, the smaller the number of pleated hollow fins, the larger the lead angle by the spiral of the pleated hollow fins, and the greater the turbulence effect.

また、製造上(ねじり力により壁面座屈させて形成)は3条以上が容易となるため、実質的には3条の場合が最適となる。   Moreover, since 3 or more becomes easy on manufacture (it forms by buckling a wall surface with a torsion force), the case of 3 is practically optimal.

図7は、従来技術の平滑管で構成される熱交換器の伝熱性能に対する本発明の熱交換器の伝熱性能を比較評価した結果である。本発明の熱交換器は内管のスパイラル状のひだ形中空フィンの条数を3とし、スパイラルフィンのピッチpと内管の平均外径ODi−aveの比(p/ODi−ave)をパラメータとして、伝熱性能を測定した。比較となる二重管熱交換器は、内管外径が前記平均外径ODi−aveと同一の平滑円管とした。外管は全て同一仕様の平滑円管とした。なお、本発明の熱交換器において、内管の山部の最大外径をODi−max、谷部の最小内径をIDi−min、スパイラル状のひだ形中空フィンの条数を3とすると、ODi−max/IDi−minは約2となる。また、内管の平均外径をODi−ave、内管の平均内径をIDi−ave、内管の内側の流路を流れる流体の体積流量をV、内管と外管との間の流路を流れる流体の体積流量をVとした場合、外管内径IDは、((V/2V)×IDi−ave +ODi−ave )0.5<ID<((2V/V)×IDi−ave +ODi−ave )0.5を満たすものとした。 FIG. 7 is a result of comparative evaluation of the heat transfer performance of the heat exchanger of the present invention with respect to the heat transfer performance of a heat exchanger composed of a smooth tube of the prior art. In the heat exchanger of the present invention, the number of spiral pleated hollow fins in the inner tube is 3, and the ratio of the pitch p of the spiral fins to the average outer diameter OD i-ave of the inner tube (p / OD i-ave ). As a parameter, the heat transfer performance was measured. The double tube heat exchanger used as a comparison was a smooth circular tube having an inner tube outer diameter equal to the average outer diameter OD i-ave . All the outer tubes were smooth circular tubes with the same specifications. In the heat exchanger of the present invention, when the maximum outer diameter of the crest of the inner tube is OD i-max , the minimum inner diameter of the trough is ID i-min , and the number of spiral pleated hollow fins is three , OD i-max / ID i-min is about 2. Further, the average outer diameter of the inner tube is OD i-ave , the average inner diameter of the inner tube is ID i-ave , the volume flow rate of the fluid flowing in the flow path inside the inner tube is V i , and between the inner tube and the outer tube If the volume flow rate of the fluid flowing through the flow path is V o , the inner diameter ID o of the outer tube is ((V o / 2V i ) × ID i-ave 2 + OD i-ave 2 ) 0.5 <ID o < ((2V o / V i ) × ID i-ave 2 + OD i-ave 2 ) 0.5 was satisfied.

本発明の熱交換器の内管は、その製造性上、p/ODi−aveはおよそ4以下となるが、平滑二重管との性能比は2.1以上であり、特に、0.2〜1.5である場合に、性能比が2.2以上となり望ましいことが判る。 The inner tube of the heat exchanger of the present invention has a p / OD i-ave of about 4 or less due to its manufacturability, but the performance ratio with the smooth double tube is 2.1 or more, When the ratio is 2 to 1.5, the performance ratio is 2.2 or more, which is desirable.

一方、従来技術の多葉フィン形状の熱交換器の伝熱性能は、非特許文献1によれば平滑管比2倍程度であるので、図7より、本発明の熱交換器は、従来技術の多葉フィン形状の熱交換器よりさらに高性能化を図ることができることが判る。   On the other hand, according to Non-Patent Document 1, the heat transfer performance of the conventional multi-leaf fin-shaped heat exchanger is about twice that of the smooth tube. Therefore, from FIG. It can be seen that higher performance can be achieved than the multi-leaf fin heat exchanger.

図8は、本発明の熱交換器と、比較対象の熱交換器の伝熱性能を比較評価した結果である。本発明の熱交換器(実施例3)として、ねじり力により壁面座屈させて形成されたスパイラル状のひだ形中空フィンを有し、ひだ形中空フィンの条数Nが3であり、内管の山部の最大外径ODi−maxと前記内管の谷部の最小内径IDi−minの比ODi−max/IDi−minが2であり、内管のスパイラルフィンのピッチpと平均外径ODi−aveの比(p/ODi−ave)が0.5である内管と、内径IDがID=(IDi−ave +ODi−ave )0.5である外管で構成された熱交換器を用いた。一方、比較した熱交換器は、本発明の熱交換器(実施例3)と内径IDが同一である外管と、内管を非特許文献1記載の多葉(6条)管とした熱交換器(比較例1)、内管を特許文献1の図1記載の外管と同様の形状(スパイラル状コルゲート管)で構成した熱交換器(比較例2)、内管が平滑な円管で構成された熱交換器(比較例3)である。内管と外管の間の流路に流す流量、及び、内管と外管の入口温度差を固定し、内管に流す液の流量を変化させたときの、熱交換量を測定した。 FIG. 8 shows the result of comparative evaluation of the heat transfer performance of the heat exchanger of the present invention and the heat exchanger to be compared. The heat exchanger according to the present invention (Example 3) has spiral pleat-shaped hollow fins formed by wall-buckling by a torsional force, and the number N of the pleat-shaped hollow fins is 3, and the inner tube The ratio OD i-max / ID i-min of the maximum outer diameter OD i-max of the peak portion and the minimum inner diameter ID i-min of the valley portion of the inner pipe is 2, and the pitch p of the spiral fin of the inner pipe is An inner tube having an average outer diameter OD i-ave ratio (p / OD i-ave ) of 0.5, and an inner diameter ID o of ID o = (ID i-ave 2 + OD i-ave 2 ) 0.5 A heat exchanger composed of an outer tube was used. On the other hand, the compared heat exchangers are the outer tube having the same inner diameter ID o as the heat exchanger of the present invention (Example 3), and the inner tube is a multi-leaf (six-row) tube described in Non-Patent Document 1. A heat exchanger (Comparative Example 1), a heat exchanger (Comparative Example 2) in which the inner tube has the same shape (spiral corrugated tube) as the outer tube described in FIG. It is a heat exchanger (comparative example 3) comprised with the pipe | tube. The amount of heat exchange was measured when the flow rate flowing through the flow path between the inner tube and the outer tube and the inlet temperature difference between the inner tube and the outer tube were fixed and the flow rate of the liquid flowing through the inner tube was changed.

内管に流す液の流量が8l/min(リットル/分)のとき、従来、比較的高性能と評価されていた比較例1の熱交換器に対し、本発明の熱交換器(実施例3)の熱交換量差は20%以上高いことが判る。また、比較例2との比較から、波付形状によって明白な差が出ることが判る。また、比較例3よりも顕著に高性能であることが判る。   When the flow rate of the liquid flowing through the inner pipe is 8 l / min (liter / min), the heat exchanger of the present invention (Example 3) is compared with the heat exchanger of Comparative Example 1 that has been conventionally evaluated to be relatively high performance. It can be seen that the difference in the heat exchange amount of) is higher by 20% or more. In addition, it can be seen from the comparison with Comparative Example 2 that a clear difference appears depending on the wavy shape. It can also be seen that the performance is significantly higher than that of Comparative Example 3.

本発明の第1の実施の形態に係る液−液熱交換器の全体を示す一部断面概略図である。1 is a partial cross-sectional schematic view showing the entire liquid-liquid heat exchanger according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る液−液熱交換器の内管を示す一部断面概略図である。It is a partial cross section schematic diagram which shows the inner tube | pipe of the liquid-liquid heat exchanger which concerns on the 1st Embodiment of this invention. 図2の断面図(A−A線)であり、(a)はひだ形中空フィンの条数N=3の場合であり、(b)はひだ形中空フィンの条数N=2の場合である。It is sectional drawing (AA line) of FIG. 2, (a) is the case where the number N of pleated hollow fins is N = 3, (b) is the case where the number N of pleated hollow fins is N = 2. is there. 本発明の第2の実施の形態に係る液−液熱交換器の一部を示す断面概略図である。It is a cross-sectional schematic diagram which shows a part of liquid-liquid heat exchanger which concerns on the 2nd Embodiment of this invention. 本発明の液−液熱交換器を備えたヒートポンプ式給湯機のシステム図である。It is a system diagram of a heat pump type hot water heater provided with the liquid-liquid heat exchanger of the present invention. 内管の多角形の角数(中空フィンの条数)と、流路断面積に対する伝熱面積の割合との関係を示す図である。It is a figure which shows the relationship between the polygonal angle | corner number (the number of hollow fins) of an inner tube, and the ratio of the heat-transfer area with respect to flow-path cross-sectional area. 従来技術の平滑管で構成される熱交換器の伝熱性能に対する本発明の熱交換器の伝熱性能を比較評価した結果である。It is the result of comparing and evaluating the heat transfer performance of the heat exchanger of this invention with respect to the heat transfer performance of the heat exchanger comprised with the smooth tube of a prior art. 本発明の熱交換器と、比較対象の熱交換器の伝熱性能を比較評価した結果である。It is the result of comparing and evaluating the heat transfer performance of the heat exchanger of the present invention and the heat exchanger to be compared. 従来の液−液熱交換器の全体の概観図である。It is a general-view figure of the whole conventional liquid-liquid heat exchanger. 図9の断面図(B−B線)であり、(a)は内管が平滑円管の場合であり、(b)は内管が多葉状管の場合である。It is sectional drawing (BB line) of FIG. 9, (a) is a case where an inner tube is a smooth circular tube, (b) is a case where an inner tube is a multileaf tube.

符号の説明Explanation of symbols

10,20:液−液熱交換器
1:内管
1A,1B:端末部
1C:スパイラル部
2,12:外管
2A:流入口
2B:流出口
3:中空フィン
50:追い焚き熱交換器
51:圧縮機
52:水−冷媒熱交換器
53:膨張弁
54:冷媒−空気熱交換器
55:冷媒−空気熱交換器用ファン
56:貯湯タンク
57:給湯
58:ポンプ
59:給水
70:液−液熱交換器
71:内管
72:外管
10, 20: Liquid-liquid heat exchanger 1: Inner pipe 1A, 1B: Terminal part 1C: Spiral part 2, 12: Outer pipe 2A: Inlet 2B: Outlet 3: Hollow fin 50: Reheating heat exchanger 51 : Compressor 52: water-refrigerant heat exchanger 53: expansion valve 54: refrigerant-air heat exchanger 55: fan for refrigerant-air heat exchanger 56: hot water storage tank 57: hot water supply 58: pump 59: water supply 70: liquid-liquid Heat exchanger 71: Inner pipe 72: Outer pipe

Claims (4)

被熱交換媒体となる水および前記被熱交換媒体となる水よりも高温の熱交換媒体となる水の一方を通す第1の流路を有する内管と、前記内管の外側に配置され、前記内管との間に前記被熱交換媒体となる水および前記熱交換媒体となる水の他方を通す第2の流路を有する外管とを備え、
前記内管は、ねじり力により壁面座屈させて形成されたスパイラル状のひだ形中空フィンを有し、
前記外管は内面が平滑な円管であり、前記第1の流路における流路方向に垂直な断面積をS、前記内管の平均内径をID i-ave =(4S/π) 0.5 、前記内管の肉厚をTW i 、前記内管の平均外径をOD i-ave =ID i-ave +2TW i 、前記第1の流路を流れる流体の体積流量をV i 、前記第2の流路を流れる流体の体積流量をV o とすると、前記外管の内径ID o は、((V o /2V i )×ID i-ave 2 +OD i-ave 2 ) 0.5 <ID o <((2V o /V i )×ID i-ave 2 +OD i-ave 2 ) 0.5 を満たすことを特徴とする給湯機用の液−液熱交換器。
An inner pipe having a first flow path for passing one of water to be a heat exchange medium and water to be a heat exchange medium having a temperature higher than that of the water to be the heat exchange medium, and disposed outside the inner pipe, An outer pipe having a second flow path through which the water to be the heat exchange medium and the other water to be the heat exchange medium pass, between the inner pipe and the inner pipe;
The inner tube, the twisting force by have a spiral pleat-shaped hollow fins formed by buckled wall seat,
The outer tube is a circular tube with a smooth inner surface, the cross-sectional area perpendicular to the flow direction in the first flow path is S, the average inner diameter of the inner pipe is ID i-ave = (4S / π) 0.5 , The wall thickness of the inner pipe is TW i , the average outer diameter of the inner pipe is OD i-ave = ID i-ave + 2TW i , the volume flow rate of the fluid flowing through the first flow path is V i , and the second When the volume flow rate of the fluid flowing through the flow path is V o , the inner diameter ID o of the outer tube is ((V o / 2V i ) × ID i-ave 2 + OD i-ave 2 ) 0.5 <ID o <(( 2V o / V i ) × ID i-ave 2 + OD i-ave 2 ) A liquid-liquid heat exchanger for hot water heaters satisfying 0.5 .
前記内管の山部の最大外径をODi-max、前記内管の谷部の最小内径をIDi-min、前記ひだ形中空フィンの条数をNとすると、前記ひだ形中空フィンの条数NはN=2〜6であり、N=2の場合のODi-max/IDi-minが1.8〜2.2であり、N=3〜6の場合ODi-max/IDi-minが[1/cos(π/N)] × (0.9〜1.1)であることを特徴とする請求項1に記載の給湯機用の液−液熱交換器。 When the maximum outer diameter of the crest of the inner pipe is OD i-max , the minimum inner diameter of the valley of the inner pipe is ID i-min , and the number of strips of the pleated hollow fin is N, the pleated hollow fin The number N of stripes is N = 2 to 6, OD i-max / ID i-min when N = 2 is 1.8 to 2.2, and OD i-max / N when N = 3 to 6 ID i-min is [1 / cos (π / N)] × (0.9 to 1.1), The liquid-liquid heat exchanger for a hot water heater according to claim 1. 前記第1の流路における流路方向に垂直な断面積をS、前記内管の平均内径をIDi-ave=(4S/π)0.5、前記内管の肉厚をTWi、前記内管の平均外径をODi-ave=IDi-ave+2TWi、前記ひだ形中空フィンのピッチをpとすると、前記ピッチと前記平均外径の比p/ODi-aveは、0.2<p/ODi-ave<1.5を満たすことを特徴とする請求項1に記載の給湯機用の液−液熱交換器。 The cross-sectional area perpendicular to the flow path direction in the first flow path is S, the average inner diameter of the inner pipe is ID i-ave = (4S / π) 0.5 , the wall thickness of the inner pipe is TW i , and the inner pipe OD i-ave = ID i-ave + 2TW i , and p is the pitch of the pleated hollow fins, the ratio p / OD i-ave between the pitch and the average outer diameter is 0.2 < The liquid-liquid heat exchanger for a hot water heater according to claim 1, wherein p / OD i-ave <1.5 is satisfied. 前記外管は、壁面に波付形状が形成されていることを特徴とする請求項1に記載の給湯機用の液−液熱交換器。   The liquid-liquid heat exchanger for a hot water heater according to claim 1, wherein the outer tube has a corrugated shape on a wall surface.
JP2005272795A 2005-09-20 2005-09-20 Liquid-liquid heat exchanger for water heater Expired - Fee Related JP4591293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272795A JP4591293B2 (en) 2005-09-20 2005-09-20 Liquid-liquid heat exchanger for water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272795A JP4591293B2 (en) 2005-09-20 2005-09-20 Liquid-liquid heat exchanger for water heater

Publications (2)

Publication Number Publication Date
JP2007085595A JP2007085595A (en) 2007-04-05
JP4591293B2 true JP4591293B2 (en) 2010-12-01

Family

ID=37972739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272795A Expired - Fee Related JP4591293B2 (en) 2005-09-20 2005-09-20 Liquid-liquid heat exchanger for water heater

Country Status (1)

Country Link
JP (1) JP4591293B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019550A (en) * 2013-11-22 2014-09-03 郑州大学 Double-side strengthened heat transfer smoke tube of vertical gas-fired hot water boiler
US20140262185A1 (en) * 2013-03-15 2014-09-18 Turbotedc Products, Inc. Heat Exchanger Containing Multiple Tubes, and Method of Making and Using Same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261566A (en) * 2007-04-12 2008-10-30 Sumitomo Light Metal Ind Ltd Double-pipe heat exchanger
JP5184631B2 (en) * 2008-06-02 2013-04-17 東京エレクトロン株式会社 Fluid heater, manufacturing method thereof, substrate processing apparatus provided with fluid heater, and substrate processing method
JP4756711B2 (en) * 2008-06-13 2011-08-24 ヨシダエルシス株式会社 Water supply equipment for poultry farming facilities
JP5194035B2 (en) * 2010-01-04 2013-05-08 日立アプライアンス株式会社 Heat pump water heater
JP2012007767A (en) * 2010-06-23 2012-01-12 Sumitomo Light Metal Ind Ltd Double tube for heat exchanger
IT1408604B1 (en) * 2010-10-20 2014-06-27 Metro Internat S R L HEAT EXCHANGER FOR ELICA
CN102818360B (en) * 2012-09-10 2014-11-05 成都恒新源暖通工程有限公司 Water heater
JP5898651B2 (en) * 2013-07-03 2016-04-06 タニコー株式会社 Boiled noodle machine
CN105258400B (en) * 2014-07-18 2018-01-02 上海交通大学 Coaxial threaded pipe leaks flow heat exchanger
CN106288873A (en) * 2015-06-05 2017-01-04 南京工业大学 A kind of double pipe heat exchanger being applicable to highly filled sewage
CN105066760A (en) * 2015-08-04 2015-11-18 王丙康 Condensing pipe for heat exchanger of water heater
JP6479695B2 (en) * 2016-01-27 2019-03-06 株式会社日本サーモエナー Vacuum water heater with smoke pipe
KR101797176B1 (en) * 2016-03-21 2017-11-13 주식회사 평산 Dual pipe structure for internal heat exchanger
KR101759110B1 (en) 2016-08-10 2017-07-19 주식회사 화승알앤에이 Double pipe heat exchanger and method for manufacturing the same
KR102015302B1 (en) * 2019-04-15 2019-08-28 주식회사 스마트파워 Air conditioning and heating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038491A (en) * 1996-07-23 1998-02-13 Toyo Radiator Co Ltd Double tube type heat exchanger
JP2001289583A (en) * 2000-04-10 2001-10-19 Usui Internatl Ind Co Ltd Egr gas cooler
JP2004012114A (en) * 2002-06-03 2004-01-15 Atago Seisakusho:Kk Heat exchanger
JP2005009832A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Double pipe type heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038491A (en) * 1996-07-23 1998-02-13 Toyo Radiator Co Ltd Double tube type heat exchanger
JP2001289583A (en) * 2000-04-10 2001-10-19 Usui Internatl Ind Co Ltd Egr gas cooler
JP2004012114A (en) * 2002-06-03 2004-01-15 Atago Seisakusho:Kk Heat exchanger
JP2005009832A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Double pipe type heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140262185A1 (en) * 2013-03-15 2014-09-18 Turbotedc Products, Inc. Heat Exchanger Containing Multiple Tubes, and Method of Making and Using Same
CN104019550A (en) * 2013-11-22 2014-09-03 郑州大学 Double-side strengthened heat transfer smoke tube of vertical gas-fired hot water boiler
CN104019550B (en) * 2013-11-22 2016-08-17 郑州大学 A kind of bilateral augmentation of heat transfer smoke pipe of Verticle gas hot-water boiler

Also Published As

Publication number Publication date
JP2007085595A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4591293B2 (en) Liquid-liquid heat exchanger for water heater
ES2354437T3 (en) HEAT TRANSFER TUBE TO SUPPLY HOT WATER.
US20090250198A1 (en) Hot water corrugated heat transfer tube
US20200284528A1 (en) Finned heat exchanger tube
DE602004003422D1 (en) Internal finned tubes for heat exchangers for single-phase, aqueous fluids
RU2411410C2 (en) Pipe of steam generator, once-through steam generator and manufacturing method of steam generator pipe
JP2009174833A (en) Heat transfer tube for heat exchanger and heat exchanger using the same
WO2004099698A1 (en) Intensive heat exchange tube with discontinuous ribs
CN201173719Y (en) Spiral screw thread winding type heat exchanger
KR101436079B1 (en) Combustion gas pipe for heat exchange
JP6032585B2 (en) Triple tube structure and heat exchanger
CN201242373Y (en) Composite casing tube double helix heat exchanger
TW200419120A (en) Heat exchanger
JP4501446B2 (en) Heat exchanger for hot water supply
JP4572662B2 (en) Heat exchanger
JP4437487B2 (en) Twisted tube heat exchanger and heat pump water heater
WO2005026638A1 (en) Heat exchanger
JP2007071426A (en) Heat pump type water heater and heat exchanger used in the same
JP2008096043A5 (en)
JP5642462B2 (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP2009174832A (en) Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same
US20200182561A1 (en) Corrugated tube-in-tube heat exchangers
JP2006207936A (en) Heat exchanger
JP2001124480A (en) Heat exchanger and heat-exchanging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees