JP4590946B2 - Porous potassium carbonate having a specific pore structure, method for producing the same, and method for storing the same - Google Patents

Porous potassium carbonate having a specific pore structure, method for producing the same, and method for storing the same Download PDF

Info

Publication number
JP4590946B2
JP4590946B2 JP2004183713A JP2004183713A JP4590946B2 JP 4590946 B2 JP4590946 B2 JP 4590946B2 JP 2004183713 A JP2004183713 A JP 2004183713A JP 2004183713 A JP2004183713 A JP 2004183713A JP 4590946 B2 JP4590946 B2 JP 4590946B2
Authority
JP
Japan
Prior art keywords
potassium carbonate
porous
potassium
carbonate
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004183713A
Other languages
Japanese (ja)
Other versions
JP2005035880A (en
Inventor
八朗 平野
保徳 山口
美奈子 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004183713A priority Critical patent/JP4590946B2/en
Publication of JP2005035880A publication Critical patent/JP2005035880A/en
Application granted granted Critical
Publication of JP4590946B2 publication Critical patent/JP4590946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特定の細孔構造の多孔質炭酸カリウム、その製造方法およびその保存方法に関する。   The present invention relates to porous potassium carbonate having a specific pore structure, a production method thereof, and a storage method thereof.

炭酸カリウムは、特殊ガラス、せっけんや洗剤の製造、かん水などの食品工業および顔料の製造など幅広い用途に使用されているほか、有機薬品の製造における触媒や中間体原料として使用されることも多い。これら用途では、溶解速度の速い炭酸カリウムや反応性に関してより活性が高い炭酸カリウムの提供が求められている。例えば、特許文献1や特許文献2には特定の粒径をもった比表面積の大きい炭酸カリウム粉末を使用することが開示されているが、反応性に対する活性のさらなる改良が望まれている。   Potassium carbonate is used in a wide range of applications such as the production of special glasses, soaps and detergents, the food industry such as brine, and the production of pigments, and is often used as a catalyst or intermediate material in the production of organic chemicals. In these applications, it is required to provide potassium carbonate having a high dissolution rate and potassium carbonate having higher activity with respect to reactivity. For example, Patent Document 1 and Patent Document 2 disclose the use of potassium carbonate powder having a specific particle size and a large specific surface area, but further improvement in activity against reactivity is desired.

炭酸カリウムは、直接炭酸カリウムを得る直接法と、いったん炭酸水素カリウムを得た後に、これをか焼によって分解し炭酸カリウムとする炭酸水素カリウム法の、主に二通りにより製造されている。   Potassium carbonate is produced mainly in two ways: a direct method for directly obtaining potassium carbonate and a potassium bicarbonate method in which potassium hydrogen carbonate is obtained and then decomposed by calcination to obtain potassium carbonate.

直接法としては、水酸化カリウム水溶液に二酸化炭素含有ガスを反応させて炭酸カリウムとし、濃縮して炭酸カリウムの1.5水塩(KCO・1.5HO)を得て、これをか焼し炭酸カリウムを得る方法がある。この直接法は、製造設備の機器点数が少なく、かつ生産性が良いために幅広く採用されている。この方法では含水炭酸カリウム結晶を得た後に乾燥させる際、しばしば非常に細かい粒子(ダスト)が発生し、取り扱いが困難となる。そこで、水酸化カリウム水溶液を直接流動床乾燥装置内部に噴霧し、加熱した二酸化炭素含有ガスを吹き込むことで、比重が高く球形に近い結晶が得られることが知られている。しかしこのようして得られた炭酸カリウムでは細孔径0.1〜1μmの細孔はほとんど観測することができない。 As a direct method, a carbon dioxide-containing gas is reacted with a potassium hydroxide aqueous solution to form potassium carbonate, and concentrated to obtain a potassium carbonate 1.5 hydrate (K 2 CO 3 .1.5H 2 O). There is a method of calcining and obtaining potassium carbonate. This direct method is widely used because it has a small number of manufacturing equipment and high productivity. In this method, when water-containing potassium carbonate crystals are obtained and then dried, very fine particles (dust) are often generated, which makes handling difficult. Therefore, it is known that a crystal having a high specific gravity and a nearly spherical shape can be obtained by spraying an aqueous potassium hydroxide solution directly into the fluidized bed dryer and blowing in a heated carbon dioxide-containing gas. However, in the potassium carbonate thus obtained, pores having a pore diameter of 0.1 to 1 μm can hardly be observed.

また、特許文献3には、イオン交換法によって塩化カリウムから直接炭酸カリウム水溶液を得る方法が開示されているが、この方法によって得られる該水溶液は希薄であるため、炭酸カリウムを取り出す際には大型機器を用いた濃縮工程を経なければならないほか、その後の晶析によって活性の高い炭酸カリウム結晶を得ることは困難であった。   Patent Document 3 discloses a method for obtaining a potassium carbonate aqueous solution directly from potassium chloride by an ion exchange method. However, since the aqueous solution obtained by this method is dilute, a large size is required when potassium carbonate is taken out. In addition to having to go through a concentration step using equipment, it was difficult to obtain highly active potassium carbonate crystals by subsequent crystallization.

炭酸水素カリウム法は、直接法ほど生産性は高くないが、多孔質で比表面積が大きく、他の薬剤との反応性が高く、溶解速度も速いなど比較的活性の高い炭酸カリウム結晶を得ることができる。しかし、より活性の高い多孔質炭酸カリウムおよびその製造方法に関しては知られていなかった。   The potassium bicarbonate method is not as productive as the direct method, but it is porous, has a large specific surface area, is highly reactive with other chemicals, and has a relatively high dissolution rate. Can do. However, it has not been known about highly active porous potassium carbonate and a method for producing the same.

特開平10−279535号公報(請求項1)JP-A-10-279535 (Claim 1) 特開平9−188690号公報(請求項1、2)JP-A-9-188690 (Claims 1 and 2) 米国特許第5449506号明細書(請求項1)US Pat. No. 5,449,506 (Claim 1)

本発明は、特定の細孔構造を有する、活性の高い多孔質炭酸カリウムおよびその製造方法を提供することを課題とする。   An object of the present invention is to provide a highly active porous potassium carbonate having a specific pore structure and a method for producing the same.

(1)平均粒子径100〜1000μmの炭酸水素カリウム結晶を、被か焼物の流れと逆方向から露点0℃以下かつ温度が10〜50℃の乾燥ガスを導入しながら、100〜500℃の被か焼物温度で連続式でか焼する方法であって、炭酸水素カリウムが炭酸カリウムとなる部分を外熱式ロータリーキルンの外部より衝撃を加えて炭酸カリウムの付着を防止し、細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.08mL/g以上である多孔質炭酸カリウムを得ることを特徴とする多孔質炭酸カリウムの製造方法。
(2)導入される乾燥ガスの容量が、か焼して得られる多孔質炭酸カリウム1kgあたり0.5m以上である(1)に記載の多孔質炭酸カリウムの製造方法。
(3)か焼して得られる多孔質炭酸カリウムを粉砕する(1)または(2)に記載の多孔質炭酸カリウムの製造方法
)細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.10mL/g以上である平均粒子径1〜30μmの、医薬若しくは農薬若しくは工業薬品の合成原料、有機合成等で使用される触媒、pH調整剤または洗剤用の多孔質炭酸カリウム。
)平均粒子径が30μm以下の炭酸水素カリウムをか焼し()に記載の多孔質炭酸カリウムを得る多孔質炭酸カリウムの製造方法。
)前記炭酸水素カリウムを100〜500℃のガス中に噴霧する()に記載の多孔質炭酸カリウムの製造方法。
)(1)、(2)、(3)、(5)または(6)のいずれか一項に記載の製造方法により得られるかまたは(4)の多孔質炭酸カリウムを、JIS K 7129で規定する水蒸気透過度が40℃、相対湿度差90%RHで5g/(m・24h)以下である、アルミナまたはシリカで蒸着処理された包装材料で密閉する多孔質炭酸カリウムの保存方法。

(1) A potassium hydrogen carbonate crystal having an average particle diameter of 100 to 1000 μm is applied to a 100 to 500 ° C. coating while introducing a dry gas having a dew point of 0 ° C. or less and a temperature of 10 to 50 ° C. from the direction opposite to the flow of the calcined product. It is a method of continuous calcination at the calcined temperature, the portion where potassium hydrogen carbonate becomes potassium carbonate is applied from the outside of the externally heated rotary kiln to prevent the adhesion of potassium carbonate , the pore diameter of 0.1 to A method for producing porous potassium carbonate, comprising obtaining porous potassium carbonate having a total pore volume of 1.0 μm pores of 0.08 mL / g or more .
(2) The method for producing porous potassium carbonate according to (1), wherein the capacity of the introduced dry gas is 0.5 m 3 or more per 1 kg of porous potassium carbonate obtained by calcination.
(3) The method for producing porous potassium carbonate according to (1) or (2), wherein the porous potassium carbonate obtained by calcination is pulverized .
( 4 ) Synthetic raw materials for organic medicines, pharmaceuticals, agricultural chemicals or industrial chemicals having an average particle diameter of 1 to 30 μm, in which the total pore volume of pores having a pore diameter of 0.1 to 1.0 μm is 0.10 mL / g Porous potassium carbonate for catalysts, pH adjusters or detergents used in
( 5 ) A method for producing porous potassium carbonate, comprising calcining potassium hydrogen carbonate having an average particle diameter of 30 μm or less to obtain porous potassium carbonate according to ( 4 ).
( 6 ) The method for producing porous potassium carbonate according to ( 5 ), wherein the potassium hydrogen carbonate is sprayed into a gas at 100 to 500C.
( 7 ) The porous potassium carbonate obtained by the production method according to any one of (1), (2), (3), (5) or (6) or the porous potassium carbonate of (4) is converted into JIS K 7129. A method for preserving porous potassium carbonate, which is sealed with a packaging material vapor-deposited with alumina or silica, having a water vapor permeability of 40 ° C. and a relative humidity difference of 90% RH of 5 g / (m 2 · 24 h) or less.

本発明によれば、特定の細孔構造を有し、他の薬剤との反応性が高く、水等への溶解速度が良好で、活性の高い多孔質炭酸カリウムが得られる。   According to the present invention, porous potassium carbonate having a specific pore structure, high reactivity with other drugs, good dissolution rate in water or the like, and high activity can be obtained.

以下に、本発明の実施の形態について図面を参照して説明する。図1は、本発明における多孔質炭酸カリウムの製造方法の好適な例の概要を示したものである。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an outline of a preferred example of the method for producing porous potassium carbonate in the present invention.

(炭酸水素カリウム結晶の製造)
炭酸水素カリウムは、水酸化カリウムおよび/または炭酸カリウムを含む水溶液と二酸化炭素含有ガスを反応させて得たものが好ましい。具体的には、次式(1−1)、(1−2)に示す反応が生じている。
2KOH+CO → KCO+HO (1−1)
CO+CO+HO → 2KHCO (1−2)。
(Production of potassium hydrogen carbonate crystals)
The potassium hydrogen carbonate is preferably obtained by reacting an aqueous solution containing potassium hydroxide and / or potassium carbonate with a carbon dioxide-containing gas. Specifically, reactions represented by the following formulas (1-1) and (1-2) occur.
2KOH + CO 2 → K 2 CO 3 + H 2 O (1-1)
K 2 CO 3 + CO 2 + H 2 O → 2KHCO 3 (1-2).

平均粒子径100〜1000μmの炭酸水素カリウム結晶は、水酸化カリウムおよび/または炭酸カリウムを含む水溶液の濃度および液温、さらに、該水溶液に吹き込む二酸化炭素含有ガス中の二酸化炭素濃度を、好適には以下に示す条件に調節して反応させることによって得られる。この炭酸水素カリウムの晶析工程を二次炭酸化工程という。   The potassium hydrogen carbonate crystal having an average particle diameter of 100 to 1000 μm preferably has a concentration and a liquid temperature of an aqueous solution containing potassium hydroxide and / or potassium carbonate, and a carbon dioxide concentration in a carbon dioxide-containing gas blown into the aqueous solution. It can be obtained by adjusting the reaction under the following conditions. This crystallization process of potassium hydrogen carbonate is called a secondary carbonation process.

まず、水酸化カリウムおよび/または炭酸カリウムを含む水溶液はKO換算濃度で15〜53質量%であることが好ましい。ここで、KO換算濃度とは水溶液中に含まれる全てのカリウム分(KOH、KCO、KHCO)をKOとして計算したときの濃度(質量%)をいう。また、該水溶液の濃度はKO換算で20〜50質量%であることがより好ましく、30〜47質量%であることが特に好ましい。KO換算濃度が15質量%以上であると、該水溶液の体積あたりの炭酸水素カリウム結晶析出量が適切であり、生産性の点で優れる。KO換算濃度が53質量%以下であると、平均粒子径100〜1000μmの結晶が得られやすい。 First, the aqueous solution containing potassium hydroxide and / or potassium carbonate is preferably 15 to 53% by mass in terms of K 2 O equivalent. Here, the K 2 O concentration in terms refers to all potassium component contained in the aqueous solution concentration (% by mass) when the (KOH, K 2 CO 3, KHCO 3) , calculated as K 2 O. The concentration of the aqueous solution is more preferably 20 to 50% by mass in terms of K 2 O, and particularly preferably 30 to 47% by mass. When the K 2 O equivalent concentration is 15% by mass or more, the amount of precipitated potassium hydrogen carbonate crystals per volume of the aqueous solution is appropriate, which is excellent in productivity. When the K 2 O equivalent concentration is 53% by mass or less, crystals having an average particle diameter of 100 to 1000 μm are easily obtained.

ここで平均粒子径100〜1000μmの大きな結晶が求められる理由のひとつは、晶析して得た炭酸水素カリウム結晶を母液から分離する際に、母液の付着量を少なくできるからである。例えば炭酸水素カリウム結晶と母液のスラリは遠心分離機を用いて分離すると炭酸水素カリウム結晶への母液の付着量が低減できるが、この際、炭酸水素カリウムの平均粒子径が大きいほど母液の付着量が低減できる。母液の付着量が低減できることで、得られた結晶の純度を高く維持でき、後の工程の乾燥やか焼が容易となる。母液の付着量は、乾燥量基準(乾燥後の炭酸水素カリウムに対する水分の割合)で20質量%以下が好ましく、10質量%以下がより好ましい。よって、平均粒子径が30μm以下の炭酸水素カリウムや炭酸カリウムを得るには、一旦、平均粒子径100〜1000μmの大きな炭酸水素カリウム結晶を得た後、これを乾燥、か焼した後粉砕する、またはこれを乾燥、粉砕した後か焼するのが望ましい。   Here, one of the reasons why a large crystal having an average particle size of 100 to 1000 μm is required is that when the potassium hydrogencarbonate crystal obtained by crystallization is separated from the mother liquor, the amount of the mother liquor attached can be reduced. For example, if the slurry of potassium hydrogen carbonate crystals and mother liquor is separated using a centrifuge, the amount of mother liquor attached to potassium hydrogen carbonate crystals can be reduced. In this case, the larger the average particle size of potassium hydrogen carbonate, the larger the amount of mother liquor attached. Can be reduced. Since the amount of mother liquor can be reduced, the purity of the obtained crystals can be maintained high, and subsequent drying and calcination can be facilitated. The adhesion amount of the mother liquor is preferably 20% by mass or less, more preferably 10% by mass or less, based on the dry amount standard (the ratio of moisture to potassium bicarbonate after drying). Therefore, in order to obtain potassium hydrogen carbonate or potassium carbonate having an average particle size of 30 μm or less, after obtaining a large potassium hydrogen carbonate crystal having an average particle size of 100 to 1000 μm, this is dried, calcined and then pulverized. Or it is desirable to calcine after drying and crushing this.

次に、二次炭酸化工程で水酸化カリウムおよび/または炭酸カリウムを含む水溶液を二酸化炭素含有ガスと反応させる際、水溶液の液温は20〜90℃であることが好ましく、40〜80℃であることがより好ましい。液温が当該範囲であると、平均粒子径100〜1000μmの結晶が得られやすくなる。また90℃超過の場合は反応設備の接液部分が腐食しやすくなり、製品の反応設備の材料に由来する不純物が増加することがある。   Next, when the aqueous solution containing potassium hydroxide and / or potassium carbonate is reacted with the carbon dioxide-containing gas in the secondary carbonation step, the liquid temperature of the aqueous solution is preferably 20 to 90 ° C, and 40 to 80 ° C. More preferably. When the liquid temperature is within this range, crystals having an average particle diameter of 100 to 1000 μm are easily obtained. When the temperature exceeds 90 ° C., the wetted part of the reaction facility tends to corrode, and impurities derived from the material of the product reaction facility may increase.

さらに、吹き込む二酸化炭素含有ガスの濃度は10〜100体積%であることが好ましい。濃度が10体積%未満であると反応や晶析の進行に時間がかかり、生産性が低くなるため好ましくない。これは二酸化炭素の濃度が低いと、原料液中の水酸化カリウムおよび/または炭酸カリウムの炭酸水素カリウムへの化学変化の割合が低下し、反応終了時の母液中の炭酸カリウム濃度が高くなり、単位体積あたりの炭酸水素カリウム結晶の収率が低下するためである。   Furthermore, the concentration of the carbon dioxide-containing gas to be blown is preferably 10 to 100% by volume. If the concentration is less than 10% by volume, it takes time for the reaction and crystallization to proceed and the productivity is lowered, which is not preferable. If the concentration of carbon dioxide is low, the rate of chemical change of potassium hydroxide and / or potassium carbonate to potassium hydrogen carbonate in the raw material liquid decreases, and the potassium carbonate concentration in the mother liquor at the end of the reaction increases. This is because the yield of potassium hydrogen carbonate crystals per unit volume decreases.

ここで、水酸化カリウムおよび/または炭酸カリウムを含む水溶液と二酸化炭素含有ガスの反応は、強く撹拌することなしに二酸化炭素含有ガスを水酸化カリウムおよび/または炭酸カリウムを含む水溶液中に吹き込む形で行われることが、平均粒子径100〜1000μmの結晶を得る上で好ましい。撹拌すると晶析時の核発生量が増加して炭酸水素カリウムの平均粒子径が低下するからである。二酸化炭素含有ガスの吹き込みは、炭酸水素カリウム結晶の平均粒子径が100μm以上、さらに好ましくは250μm以上に成長するまで続けられるのが好ましい。具体的には、炭酸化設備に準備した10mの水酸化カリウムおよび/または炭酸カリウムを含む水溶液に対して、毎時100m(二酸化炭素ガス100%換算)以上の流量で、5〜20時間、より好ましくは8〜12時間吹き込むことが好ましい。 Here, the reaction between the aqueous solution containing potassium hydroxide and / or potassium carbonate and the carbon dioxide-containing gas is carried out by blowing the carbon dioxide-containing gas into the aqueous solution containing potassium hydroxide and / or potassium carbonate without vigorous stirring. It is preferable to obtain the crystal having an average particle diameter of 100 to 1000 μm. This is because stirring increases the amount of nucleation during crystallization and decreases the average particle size of potassium hydrogen carbonate. The blowing of the carbon dioxide-containing gas is preferably continued until the average particle size of the potassium hydrogen carbonate crystal grows to 100 μm or more, more preferably 250 μm or more. Specifically, for an aqueous solution containing 10 m 3 of potassium hydroxide and / or potassium carbonate prepared in the carbonation facility, at a flow rate of 100 m 3 (converted to carbon dioxide gas 100%) or more for 5 to 20 hours, More preferably, it is preferably blown for 8 to 12 hours.

(分離・循環)
上述の方法によって析出した炭酸水素カリウム結晶は、分離工程において、フィルタープレス等による加圧濾過分離、オリバーフィルター等による真空濾過分離、デカンターや円筒型遠心分離機等による遠心分離、シックナー等による沈降分離など、通常の固液分離操作によって結晶と母液とに分離できる。固液分離機としては炭酸水素カリウム結晶に付着する母液量を低減しやすい遠心分離機が好適に採用できる。この母液は以下に示す工程を経ることによって精製され、二酸化炭素含有ガスを吹き込んで反応させる二次炭酸化工程へと循環して再使用することができる。
(Separation / circulation)
In the separation process, the potassium hydrogen carbonate crystals precipitated by the above method are separated by pressure filtration using a filter press, vacuum filtration separation using an Oliver filter, etc., centrifugation using a decanter or a cylindrical centrifuge, sedimentation separation using a thickener, etc. For example, it can be separated into crystals and mother liquor by a normal solid-liquid separation operation. As the solid-liquid separator, a centrifuge that can easily reduce the amount of the mother liquor adhering to the potassium hydrogen carbonate crystal can be suitably employed. This mother liquor is purified by going through the steps shown below, and can be circulated and reused in a secondary carbonation step in which a carbon dioxide-containing gas is blown and reacted.

まず、母液を濃縮し、さらに水酸化カリウムを添加することにより、液中の水酸化カリウム濃度がKO換算濃度で0.01〜10質量%(KOH換算濃度で0.01〜12質量%)、より好ましくはKO換算濃度で0.1〜5質量%(KOH換算濃度で0.1〜6質量%)となるように調節する。ここで得られる水溶液を以下では調合液という。母液中にはカリウムイオン、炭酸イオン、炭酸水素イオンが存在するが、ここに水酸化カリウムを添加し、液中の水酸化カリウムのKO換算濃度が0.01%以上となるように調節すれば、不純物である鉄、ニッケル、鉛、クロム等の重金属またはマグネシウムを水酸化物として析出させ、続くフィルタープレス等による固液分離操作によって除去することができる。この重金属等の除去工程を精製工程という。特に、鉄の除去に有効である。このとき同時に、マグネシウムイオンも同様に水酸化物として除去できる。 First, by concentrating the mother liquor and further adding potassium hydroxide, the potassium hydroxide concentration in the liquid is 0.01 to 10% by mass in terms of K 2 O (0.01 to 12% by mass in terms of KOH). ), More preferably 0.1 to 5% by mass in terms of K 2 O (0.1 to 6% by mass in terms of KOH). The aqueous solution obtained here is hereinafter referred to as a preparation solution. Potassium ions in the mother liquor, carbonate ions, hydrogen carbonate ions are present, here was added potassium hydroxide, adjusted to K 2 O concentration in terms of potassium hydroxide in the solution is 0.01% or more In this case, impurities such as heavy metals such as iron, nickel, lead, and chromium or magnesium can be precipitated as hydroxides, and then removed by solid-liquid separation operation using a filter press or the like. This removal process of heavy metals and the like is called a purification process. In particular, it is effective for removing iron. At the same time, magnesium ions can be similarly removed as hydroxides.

一方、液中の水酸化カリウム濃度がKO換算濃度で10質量%を超える場合、析出する前記重金属等の水酸化物の結晶が小さくなりやすく、固液分離操作上好ましくない。したがって、水酸化カリウムのKO換算濃度を10質量%以下に調節し、前記重金属等の水酸化物の種結晶を含有する液の一部を炭酸水素カリウム結晶を分離した後の母液に添加し、水酸化物を種晶として作用させることにより、大きな水酸化物の結晶を得ることが好ましい。大きな水酸化物の結晶を得ることで、フィルタープレスによる濾過等による固液分離が容易となる。ここでさらに大きな水酸化物の結晶を得る方法として、水酸化物の種結晶を添加した母液に水酸化カリウムを添加し、1分間以上経過した後に固液分離すると、この間に結晶が大きくなるのでより好適である。 On the other hand, when the potassium hydroxide concentration in the liquid exceeds 10% by mass in terms of K 2 O, the precipitated crystals of hydroxides such as heavy metals tend to be small, which is not preferable for solid-liquid separation operation. Therefore, the K 2 O equivalent concentration of potassium hydroxide is adjusted to 10% by mass or less, and a part of the liquid containing a seed crystal of hydroxide such as heavy metal is added to the mother liquor after separating the potassium hydrogen carbonate crystals. However, it is preferable to obtain a large hydroxide crystal by allowing the hydroxide to act as a seed crystal. By obtaining large hydroxide crystals, solid-liquid separation by filtration with a filter press or the like is facilitated. Here, as a method of obtaining a larger hydroxide crystal, when potassium hydroxide is added to the mother liquor to which a hydroxide seed crystal is added and solid-liquid separation is performed after 1 minute or more has elapsed, the crystal grows during this time. More preferred.

さらに、フィルタープレスによって調合液を濾過分離する場合、液中の水酸化カリウムがKO換算濃度で10質量%を超えると濾布の劣化が著しく進行し、好ましくないため、二酸化炭素ガスを吹き込んで水酸化カリウムの一部を炭酸カリウムに変換することにより10質量%以下に調節する工程を精製工程の前に設置することが好ましい。ここで、二酸化炭素ガスとして、炭酸水素カリウム結晶の製造工程(二次炭酸化工程)から排出されるガスを使用すれば、二酸化炭素ガスの有効利用が可能である。この工程を一次炭酸化工程という。 Further, when the prepared solution is separated by filtration with a filter press, if the potassium hydroxide in the solution exceeds 10% by mass in terms of K 2 O, the filter cloth deteriorates significantly, which is not preferable. It is preferable to install the step of adjusting to 10% by mass or less by converting a part of potassium hydroxide to potassium carbonate before the purification step. Here, if the gas discharged | emitted from the manufacturing process (secondary carbonation process) of a potassium hydrogencarbonate crystal | crystallization is used as carbon dioxide gas, carbon dioxide gas can be effectively utilized. This process is called a primary carbonation process.

一次炭酸化工程での二酸化炭素吹き込み後、液中の炭酸カリウム濃度をKO換算濃度で10〜53質量%、より好ましくは35〜50質量%とすることが好ましい。KO換算濃度が53質量%以下、より好ましくは50質量%以下であれば、液の粘度が高くなりすぎるのを防ぐことができ、精製工程での固液分離上好ましい。一方、KO換算濃度が10質量%以上、より好ましくは35質量%以上とすることが、続く二次炭酸化工程での炭酸水素カリウム結晶の製造において、不必要に大きな設備を用いる必要がないので好ましい。 After blowing carbon dioxide in the primary carbonation step, the potassium carbonate concentration in the liquid is preferably 10 to 53% by mass, more preferably 35 to 50% by mass in terms of K 2 O. If the K 2 O equivalent concentration is 53% by mass or less, more preferably 50% by mass or less, the viscosity of the liquid can be prevented from becoming too high, which is preferable for solid-liquid separation in the purification step. On the other hand, when the K 2 O equivalent concentration is 10% by mass or more, more preferably 35% by mass or more, it is necessary to use an unnecessarily large facility in the production of potassium hydrogencarbonate crystals in the subsequent secondary carbonation step. It is preferable because it is not.

上述の精製工程での固液分離操作後の濃度に応じて、純度の高い水酸化カリウムをさらに添加することもできる。また、一連の操作を通じて、母液と調合液は外気に触れず、外部からの異物混入のないように取り扱うことが好ましい。   Depending on the concentration after the solid-liquid separation operation in the above-described purification step, high-purity potassium hydroxide can be further added. Moreover, it is preferable to handle the mother liquor and the preparation liquid so as not to come into contact with the outside air and to prevent foreign matters from entering through a series of operations.

<多孔質炭酸カリウムIの製造ルート>
(か焼)
炭酸水素カリウムをか焼すると、次式(2)に示す熱分解により二酸化炭素と水蒸気を放出して炭酸カリウムとなる。この炭酸水素カリウムを焼いて炭酸カリウムとする工程をか焼工程という。
2KHCO → KCO+CO+HO (2)。
<Production route for porous potassium carbonate I>
(Calcination)
When potassium bicarbonate is calcined, carbon dioxide and water vapor are released by the thermal decomposition shown in the following formula (2) to become potassium carbonate. The process of baking this potassium hydrogen carbonate to form potassium carbonate is called a calcination process.
2KHCO 3 → K 2 CO 3 + CO 2 + H 2 O (2).

炭酸水素カリウム結晶から二酸化炭素と水蒸気が抜け出すことにより細孔が生じるが、この細孔の比表面積と容積を制御することにより活性の高い炭酸カリウムを得ることができる。ここで、か焼によって形成される細孔の構造は、炭酸水素カリウムの結晶径、付着水分量またはか焼工程における温度、昇温速度、滞留時間、雰囲気ガスの組成等に大きく依存し、これらの条件をうまく制御することが、特定の細孔構造を有する反応性や溶解速度の高い多孔質炭酸カリウムを得るために必要不可欠である。   Pores are generated by the escape of carbon dioxide and water vapor from the potassium hydrogen carbonate crystal. Highly active potassium carbonate can be obtained by controlling the specific surface area and volume of the pores. Here, the structure of the pores formed by calcination largely depends on the crystal diameter of potassium hydrogen carbonate, the amount of adhering water or the temperature in the calcination process, the temperature rise rate, the residence time, the composition of the atmospheric gas, etc. It is essential to obtain a porous potassium carbonate having a specific pore structure and a high reactivity and high dissolution rate.

良好な細孔を生じさせるには、か焼前の炭酸水素カリウム結晶の粒子径が100〜1000μmであることが必要とされ、250〜550μmあることがより好ましく、300〜500μmであることが特に好ましい。100μm未満では晶析後の固液分離が困難なため、含水率の高い炭酸水素カリウムケーキをか焼炉に投入することとなり、活性の高い多孔質炭酸カリウムが得られない。逆に、平均粒子径が1000μm超過の場合はか焼に時間を要し、生産性が低下する。   In order to produce good pores, the particle size of the potassium hydrogen carbonate crystals before calcination is required to be 100 to 1000 μm, more preferably 250 to 550 μm, and particularly preferably 300 to 500 μm. preferable. If it is less than 100 μm, solid-liquid separation after crystallization is difficult, so that a potassium hydrogen carbonate cake having a high water content is put into a calcining furnace, and porous potassium carbonate having high activity cannot be obtained. On the other hand, when the average particle size exceeds 1000 μm, it takes time for calcination, and the productivity is lowered.

ここで、良好な細孔を生じさせるためには、か焼の条件を適切にする必要がある。か焼炉の一端から連続的に炭酸水素カリウム結晶を投入し、か焼炉を加熱すると、炉内の炭酸水素カリウム結晶は式(2)の反応によって炭酸カリウムとなり、他端より取り出される。このとき、か焼工程において、雰囲気ガスの条件を好適に設定することが、炭酸カリウム結晶の良好な細孔の形成に重要である。この方法としては、乾燥ガスを向流、すなわち被か焼物の流れと逆方向からか焼炉に導入し、か焼によって発生する二酸化炭素と水蒸気をパージすることが好適に採用できる。(2)の反応式は化学平衡式であり右辺へ進行させるには二酸化炭素と水蒸気を除去する必要があるためである。ここで使用する乾燥ガスは、窒素ガス、燃焼ガスまたは乾燥空気が例示できる。乾燥空気は入手が容易で取り扱いに便利であるので特に好ましい。   Here, in order to produce good pores, it is necessary to make the calcination conditions appropriate. When potassium hydrogen carbonate crystals are continuously charged from one end of the calcination furnace and the calcination furnace is heated, the potassium hydrogen carbonate crystals in the furnace become potassium carbonate by the reaction of formula (2), and are taken out from the other end. At this time, in the calcination step, it is important for the formation of favorable pores of the potassium carbonate crystal to appropriately set the conditions of the atmospheric gas. As this method, it is preferable to introduce a dry gas into the calcination furnace countercurrently, that is, in a direction opposite to the flow of the object to be calcined, and purge carbon dioxide and water vapor generated by calcination. This is because the reaction formula (2) is a chemical equilibrium formula and it is necessary to remove carbon dioxide and water vapor in order to proceed to the right side. Examples of the dry gas used here include nitrogen gas, combustion gas, and dry air. Dry air is particularly preferred because it is readily available and convenient to handle.

乾燥ガスは、露点が0℃以下かつ温度が10〜50℃であることが必要とされる。乾燥ガスの露点が0℃を超えると式(2)の反応が進みにくくなるばかりでなく、か焼して得られる多孔質炭酸カリウムが水分を吸収する可能性がある。か焼の際に発生する分解ガスは高湿度であり、速やかに乾燥ガスに置き換えることにより、製造された炭酸カリウムの吸湿を防ぐことができる。また、低温の乾燥ガスを導入することにより、か焼によって高温となっているため取り扱うことが困難である多孔質炭酸カリウムの温度を低下させる役割も果たしている。例えば炭酸カリウムが高温のままでは包装時に包装材料であるポリエチレン等のプラスチックスが溶融してしまったり、炭酸カリウムが固結してしまったりする。したがって、乾燥ガスの投入時の温度を10〜50℃とすることにより、キルン内の温度が適切に保たれ、キルンから取り出した炭酸カリウムが冷却され、その後の包装充填等での取り扱いが容易となる。さらに乾燥ガスは、二酸化炭素濃度が低いことが好ましい。二酸化炭素の濃度が高いと反応式(2)が右辺に進まないためである。乾燥ガス中の二酸化炭素の濃度は5%以下が好ましく、より好ましくは1%以下である。   The dry gas is required to have a dew point of 0 ° C. or lower and a temperature of 10 to 50 ° C. When the dew point of the dry gas exceeds 0 ° C., the reaction of the formula (2) does not easily proceed, and porous potassium carbonate obtained by calcination may absorb moisture. The decomposition gas generated during calcination has a high humidity, and moisture absorption of the produced potassium carbonate can be prevented by quickly replacing it with a dry gas. In addition, by introducing a low-temperature drying gas, the temperature of porous potassium carbonate, which is difficult to handle because it is high temperature by calcination, also plays a role. For example, if potassium carbonate remains at a high temperature, plastics such as polyethylene, which is a packaging material, melts during packaging, or potassium carbonate solidifies. Therefore, by setting the temperature at the time of charging the dry gas to 10 to 50 ° C., the temperature in the kiln is appropriately maintained, the potassium carbonate taken out from the kiln is cooled, and subsequent handling such as packaging filling is easy. Become. Further, the dry gas preferably has a low carbon dioxide concentration. This is because the reaction formula (2) does not proceed to the right side when the concentration of carbon dioxide is high. The concentration of carbon dioxide in the dry gas is preferably 5% or less, more preferably 1% or less.

また、100〜500℃の被か焼物温度で炭酸水素カリウムをか焼する必要がある。被か焼物温度は、150〜500℃とすることが好ましく、200〜450℃とすることがより好ましい。被か焼物温度が100℃未満であると、式(2)の反応が速やかに進まない。一方、被か焼物温度が500℃を超過すると式(2)の反応の完了後に、形成された細孔が潰れ、活性の高い多孔質炭酸カリウムが得られない。発明者らは、この現象は温度の上昇によって炭酸カリウム表面の物質移動が急速に進みすぎ、か焼により形成された細孔を潰すためであると推測している。   Moreover, it is necessary to calcine potassium hydrogen carbonate at the calcined material temperature of 100-500 degreeC. The calcined material temperature is preferably 150 to 500 ° C, more preferably 200 to 450 ° C. When the calcined product temperature is less than 100 ° C., the reaction of the formula (2) does not proceed promptly. On the other hand, when the calcined product temperature exceeds 500 ° C., the formed pores are crushed after completion of the reaction of formula (2), and porous potassium carbonate having high activity cannot be obtained. The inventors speculate that this phenomenon is caused by the mass transfer on the surface of the potassium carbonate proceeding too rapidly due to an increase in temperature and crushing the pores formed by calcination.

なお、被か焼物がか焼炉内に滞留する時間は1〜10時間であることが好ましく、2〜5時間であることがより好ましい。上述の温度範囲では、1時間以上であるとか焼が十分に進行し、未反応の炭酸水素カリウムの残存による炭酸カリウムの純分の低下を防ぐことができる。また、10時間以内であると形成された細孔のつぶれを防止でき、良好な細孔構造の多孔質炭酸カリウムを得ることができる。   In addition, it is preferable that it is 1 to 10 hours, and it is more preferable that it is 2 to 5 hours for the calcination thing to stay in a calcination furnace. In the above-mentioned temperature range, calcination proceeds sufficiently if it is 1 hour or longer, and a decrease in the pure content of potassium carbonate due to the remaining unreacted potassium hydrogen carbonate can be prevented. Further, when the time is within 10 hours, the formed pores can be prevented from being crushed, and porous potassium carbonate having a good pore structure can be obtained.

か焼炉としては、外熱式ロータリーキルン、内熱式ロータリーキルン、トンネル炉、ローラーハースキルン等があるが、ロータリーキルンが好適に使用できる。ロータリーキルンでは炉内の粉体が常に転動し撹拌されているため均一にか焼できるからである。また、温度管理、滞留時間管理が容易であり、不純物が混入しにくいことから、外熱式ロータリーキルンを使うことが好ましい。外熱式ロータリーキルンを使用する場合、被か焼物温度を100〜500℃とするにはキルン外壁部の加熱温度を600℃以上に保つことが好ましい。   As the calcining furnace, there are an external heating type rotary kiln, an internal heating type rotary kiln, a tunnel furnace, a roller hearth kiln, and the like, and a rotary kiln can be preferably used. This is because in a rotary kiln, the powder in the furnace is always rolled and stirred, so that it can be calcined uniformly. In addition, it is preferable to use an externally heated rotary kiln because temperature management and residence time management are easy and impurities are hardly mixed. When using an externally heated rotary kiln, it is preferable to keep the heating temperature of the outer wall of the kiln at 600 ° C or higher in order to set the calcined product temperature to 100 to 500 ° C.

さらに、か焼して得られる多孔質炭酸カリウム1kgあたり標準状態で0.5m以上の乾燥ガスを外熱式ロータリーキルンに導入しながらか焼することが好ましい。導入される乾燥ガスの容量がか焼して得られる多孔質炭酸カリウム1kgあたり0.5m以上であることにより、式(2)の反応が速やかに進行し、生産性が向上し、均一で良好な細孔構造の多孔質炭酸カリウムが得られやすい。より好ましくはか焼して得られる多孔質炭酸カリウム1kgあたり標準状態で0.7m以上の乾燥ガスを外熱式ロータリーキルンに導入する。 Furthermore, it is preferable to calcine while introducing a dry gas of 0.5 m 3 or more into the externally heated rotary kiln in a standard state per 1 kg of porous potassium carbonate obtained by calcination. When the volume of the introduced dry gas is 0.5 m 3 or more per 1 kg of porous potassium carbonate obtained by calcination, the reaction of the formula (2) proceeds rapidly, the productivity is improved, and it is uniform. It is easy to obtain porous potassium carbonate having a good pore structure. More preferably, a dry gas of 0.7 m 3 or more is introduced into an externally heated rotary kiln in a standard state per 1 kg of porous potassium carbonate obtained by calcination.

外熱式ロータリーキルンで炭酸水素カリウムをか焼する場合、炭酸水素カリウムが炭酸カリウムとなる部分で、キルン内部の接粉部に炭酸カリウムが付着し、キルン内部の粉体の移動を阻害する。これを防止する方法としては、一般に、炭酸水素カリウムに製品の炭酸カリウムを混合してキルンに投入する、戻し灰と呼ばれる方法が適用可能であるが、キルンに再投入した炭酸カリウムの細孔がつぶれ、良好な細孔構造の多孔質炭酸カリウムを得ることができない。よって、炭酸水素カリウムが炭酸カリウムとなる部分を外熱式ロータリーキルンの回転円筒部分の外部より衝撃を加えて炭酸カリウムの付着を防止する方法が好適に採用できる。外部より衝撃を加える方法としては、可動式のハンマーをキルン炉体本体あるいはキルンの近傍に設置して自動的にキルン炉体本体を叩くことが例示できる。キルン炉体本体を叩く頻度は炉が一回転する間に一回以上叩くことが好適であり、二回以上叩くことがより好適である。またキルンの内側の炭酸カリウムが接する表面を平滑に加工することも効果的である。   When calcining potassium hydrogen carbonate with an external heat type rotary kiln, potassium carbonate adheres to the powder contact part inside the kiln at the part where the potassium hydrogen carbonate becomes potassium carbonate, thereby inhibiting the movement of the powder inside the kiln. As a method for preventing this, a method called back ash is generally applicable, in which the product potassium carbonate is mixed with potassium hydrogen carbonate and charged into the kiln, but the pores of the potassium carbonate recharged into the kiln are applicable. It is crushed and porous potassium carbonate having a good pore structure cannot be obtained. Therefore, a method of preventing the adhesion of potassium carbonate by applying an impact from the outside of the rotating cylindrical portion of the externally heated rotary kiln to the portion where potassium hydrogen carbonate becomes potassium carbonate can be suitably employed. An example of a method of applying an impact from the outside is to automatically hit the kiln furnace body by installing a movable hammer in the kiln furnace body or in the vicinity of the kiln. The frequency with which the kiln furnace body is struck is preferably struck one or more times during one revolution of the furnace, and more preferably struck twice or more. It is also effective to process the surface that is in contact with the potassium carbonate inside the kiln smoothly.

(粉砕・分級)
上述の方法により活性の高い多孔質炭酸カリウムを得ることができるが、さらに反応に対する活性や反応原料や溶媒への分散性を改良するために粉砕し、粒子の比表面積をさらに大きくしたり単位質量あたりの粒子個数を増加させたりすることも可能である。
(Crushing and classification)
Highly active porous potassium carbonate can be obtained by the above-mentioned method, but it is further pulverized to improve the reaction activity and dispersibility in reaction raw materials and solvents, and the specific surface area of the particles is further increased or the unit mass is increased. It is also possible to increase the number of per particle.

炭酸カリウムは、好ましくは平均粒子径1〜30μmである。より好ましくは平均粒子径1〜20μmである。1μm未満では凝集しやすく分散性が低下する。   The potassium carbonate preferably has an average particle size of 1 to 30 μm. More preferably, the average particle size is 1 to 20 μm. If it is less than 1 μm, it tends to aggregate and the dispersibility decreases.

粉砕方法としては、衝撃式粉砕機(高速回転するピンや溝つきハンマー等を用いる粉砕機)による粉砕、ジェットミル(衝突気流による粉砕機)による粉砕、ボールミルによる粉砕、炭酸カリウムを実質的に溶解しない溶媒中での湿式粉砕など、通常の粉砕方法を用いることができる。中でも風力式分級機を備えた衝撃式粉砕機を用い、粉砕機から排出される粒子を分級し、粗粒子は再度粉砕機に戻しながら粉砕する場合、高い収率で目的の粒径の多孔質炭酸カリウムを得ることができるのでより好ましい。また、ジェットミルを用いる場合にも、ふるい分けによる粗粒子除去が不要であるなど微粒子化に適しており、高い収率で目的の粒径の多孔質炭酸カリウムを得ることができるので好ましい。なお、粉砕もか焼時と同様に粉砕中の吸湿を防止するために、露点が0℃以下かつ温度が10〜50℃の乾燥ガス中で行うことが好ましい。乾燥ガスとしては、窒素ガスや乾燥空気が好適に使用できる。   The pulverization methods include pulverization using an impact pulverizer (a pulverizer using a pin that rotates at high speed, a grooved hammer, etc.), pulverization using a jet mill (pulverizer using a collision airflow), pulverization using a ball mill, and substantially dissolving potassium carbonate. Conventional pulverization methods such as wet pulverization in a non-solvent can be used. In particular, when using an impact pulverizer equipped with a wind classifier, the particles discharged from the pulverizer are classified, and the coarse particles are pulverized while returning to the pulverizer again. Since potassium carbonate can be obtained, it is more preferable. Further, the use of a jet mill is also preferable because it is suitable for microparticulation such that the removal of coarse particles by sieving is unnecessary, and porous potassium carbonate having a desired particle diameter can be obtained with a high yield. In addition, pulverization is preferably performed in a dry gas having a dew point of 0 ° C. or lower and a temperature of 10 to 50 ° C. in order to prevent moisture absorption during pulverization as in calcination. Nitrogen gas and dry air can be suitably used as the dry gas.

上記の100〜1000μmの炭酸水素カリウムのか焼(および粉砕、分級)によって得られる多孔質炭酸カリウムは、特定の細孔を多数有していることを特徴とする。流動層で水酸化カリウムと二酸化炭素を反応させて炭酸カリウムを得る直接法によって製造された炭酸カリウムではほとんど観測することができない、細孔径0.1〜1μmの細孔を数多く有している。加えて、単位質量あたりの細孔容積が大きいほど活性の高い炭酸カリウムとなることから、細孔径0.1〜1μmの細孔容積の合計が0.08mL/gであることが好ましく、0.1mL/g以上であることがより好ましい。ここで細孔径は細孔の直径のことをいう。発明者らは、細孔径0.1〜1μmの細孔が発達することによって、反応相手となる気体や液体の炭酸カリウム細孔内での物質移動が容易となるため、炭酸カリウムの反応活性や溶解速度が向上すると推測している。細孔径0.1μm未満の微細な細孔では、比表面積が大きくとも、反応相手となる気体や液体の物質移動速度が遅くなり、反応活性や溶解速度が低下すると推測している。   The porous potassium carbonate obtained by calcination (and pulverization and classification) of 100 to 1000 μm of potassium hydrogen carbonate has a number of specific pores. It has a large number of pores having a pore diameter of 0.1 to 1 μm, which can hardly be observed with potassium carbonate produced by a direct method of obtaining potassium carbonate by reacting potassium hydroxide and carbon dioxide in a fluidized bed. In addition, the larger the pore volume per unit mass, the higher the activity of potassium carbonate. Therefore, the total pore volume with a pore diameter of 0.1 to 1 μm is preferably 0.08 mL / g. More preferably, it is 1 mL / g or more. Here, the pore diameter refers to the diameter of the pore. The inventors have developed pores having a pore diameter of 0.1 to 1 μm, which facilitates mass transfer in the pores of gas and liquid potassium carbonate as a reaction partner. It is assumed that the dissolution rate is improved. With fine pores having a pore diameter of less than 0.1 μm, it is assumed that even if the specific surface area is large, the mass transfer rate of the gas or liquid as the reaction partner is slowed, and the reaction activity and dissolution rate are reduced.

<多孔質炭酸カリウムIIの製造ルート>
次いで、さらに良好な細孔構造を有する平均粒子径1〜30μmの多孔質炭酸カリウムとその製造方法を説明する。ここで、炭酸水素カリウムは前述の方法の晶析工程で得た炭酸水素カリウムを乾燥したものの他に、市販の炭酸水素カリウムも採用できる。
<Production route for porous potassium carbonate II>
Next, porous potassium carbonate having an even better pore structure and an average particle size of 1 to 30 μm and a method for producing the same will be described. Here, as the potassium hydrogen carbonate, commercially available potassium hydrogen carbonate can be adopted in addition to the dried potassium hydrogen carbonate obtained in the crystallization step of the above-described method.

(粉砕・分級)
炭酸水素カリウムを微粉砕した後、か焼する方法が好適に採用される。炭酸水素カリウムとして平均粒子径30μm以下に粉砕されたものを使用することが好ましい。これにより後に続くか焼工程を経て平均粒子径1〜30μmの炭酸カリウムが得られことになり、微粒子化による単位質量あたりの比表面積の増大、単位質量あたりの粒子個数の増加によって、反応性や溶解性を向上させることが可能となる。炭酸水素ナトリウムはより好ましくは平均粒子径20μm以下に粉砕することが好ましい。
(Crushing and classification)
A method of pulverizing potassium hydrogen carbonate and then calcining is preferably employed. It is preferable to use what was grind | pulverized as an average particle diameter of 30 micrometers or less as potassium hydrogen carbonate. As a result, potassium carbonate having an average particle size of 1 to 30 μm is obtained through a subsequent calcination step. By increasing the specific surface area per unit mass due to micronization, the number of particles per unit mass is increased. It becomes possible to improve solubility. Sodium hydrogen carbonate is more preferably pulverized to an average particle size of 20 μm or less.

微粉砕の方法は、前述の炭酸カリウムの微粉砕と同様な方法が採用できる。風力式分級機を備えた衝撃式粉砕機を前述の条件で粉砕する方法は、炭酸カリウムの場合と同様に好適に使用できる。なお、この粉砕も粉砕中の吸湿を防止するために、露点が0℃以下かつ温度が10〜50℃の乾燥ガス中で行うことが好ましい。乾燥ガスとしては、窒素ガスや乾燥空気が好適に使用できる。   As the fine pulverization method, the same method as the fine pulverization of potassium carbonate described above can be adopted. The method of pulverizing an impact pulverizer equipped with a wind classifier under the above-described conditions can be suitably used as in the case of potassium carbonate. This pulverization is also preferably performed in a dry gas having a dew point of 0 ° C. or lower and a temperature of 10 to 50 ° C. in order to prevent moisture absorption during pulverization. Nitrogen gas and dry air can be suitably used as the dry gas.

か焼条件としては、炭酸水素カリウムが微粉のため、炭酸水素カリウムを加熱ガス中に噴霧して、か焼する方法が好適に採用できる。ガスの温度は100〜500℃であるのが好ましい。より好適な温度は110〜500℃、さらに好適な温度は130〜500℃である。温度が100℃以上であると、炭酸水素カリウムを炭酸カリウムにする反応時間を短小化でき、未反応の炭酸水素カリウムの残存による炭酸カリウムの純分の低下を防ぐことができる。温度が500℃以下であると、形成された細孔のつぶれを防止でき、良好な細孔構造の多孔質炭酸カリウムが得られやすい。   As the calcination conditions, since potassium hydrogen carbonate is a fine powder, a method in which potassium hydrogen carbonate is sprayed into a heated gas and calcined can be suitably employed. The gas temperature is preferably 100 to 500 ° C. A more preferable temperature is 110 to 500 ° C, and a more preferable temperature is 130 to 500 ° C. When the temperature is 100 ° C. or higher, the reaction time for converting potassium hydrogen carbonate to potassium carbonate can be shortened, and a decrease in pure potassium carbonate due to the remaining unreacted potassium hydrogen carbonate can be prevented. When the temperature is 500 ° C. or lower, the formed pores can be prevented from being crushed, and porous potassium carbonate having a good pore structure can be easily obtained.

か焼に使用するガスは空気や窒素ガスを加熱したものの他、燃焼排ガスを使用できる。か焼時間は0.1秒から10時間であることが好ましい。か焼時間は加熱ガス中の滞留時間であるが、これは炭酸水素カリウムの粒径やガス温度に依存する。か焼温度が450℃を超える場合は、細孔のつぶれを防止するために1時間以内であることが望ましい。   As the gas used for calcination, combustion exhaust gas can be used in addition to those obtained by heating air or nitrogen gas. The calcination time is preferably from 0.1 seconds to 10 hours. The calcination time is the residence time in the heated gas, which depends on the particle size of the hydrogen carbonate and the gas temperature. When the calcination temperature exceeds 450 ° C., it is preferably within 1 hour in order to prevent the pores from collapsing.

か焼して得た30μm以下の微細な炭酸カリウムの捕集にはバグフィルタやサイクロンセパレータや電気集塵機等の集塵装置が使用できる。   A dust collector such as a bag filter, a cyclone separator, or an electric dust collector can be used for collecting fine potassium carbonate of 30 μm or less obtained by calcination.

また、本発明の良好な細孔構造を有した平均粒子径30μm以下の多孔質炭酸カリウムを酸性ガスとの反応に使用する実施の一形態としては、反応に使用する酸性ガスを加熱し、ここに30μm以下に粉砕した炭酸水素カリウムを噴霧し、か焼による炭酸カリウムの生成と、酸性ガスとの反応を同一工程で行う方法がある。   Further, as an embodiment of using porous potassium carbonate having a good pore structure and an average particle diameter of 30 μm or less of the present invention for the reaction with an acidic gas, the acidic gas used for the reaction is heated, There is a method in which potassium hydrogen carbonate pulverized to 30 μm or less is sprayed and the production of potassium carbonate by calcination and the reaction with acid gas are carried out in the same step.

上記の炭酸水素カリウムを粉砕した後、か焼する方法によって、細孔径0.1〜1μmの細孔の細孔容積の合計が0.10mL/g以上である平均粒子径1〜30μmの多孔質炭酸カリウムが得られる。先に述べた、100〜1000μmの炭酸水素カリウムをか焼後に30μm以下に微粉砕する方法では、細孔径0.1〜1μmの細孔の細孔容積の合計が、粉砕によって低下する。炭酸水素カリウムを微粉砕した後、か焼する方法によって細孔径0.1〜1μmの細孔容積の低下を回避できる。炭酸水素カリウムを粉砕後、か焼する、炭酸カリウムの製造方法の採用によって、細孔径0.1〜1μmの細孔の細孔容積の合計を0.10mL/g以上、より好ましくは0.15mL/g以上とすることができ、さらに良好な細孔構造を得ることができる。   A porous material having an average particle diameter of 1 to 30 μm in which the total pore volume of pores having a pore diameter of 0.1 to 1 μm is 0.10 mL / g or more by calcination after pulverizing the above potassium bicarbonate Potassium carbonate is obtained. In the above-described method of pulverizing 100 to 1000 μm of potassium hydrogen carbonate to 30 μm or less after calcination, the total pore volume of pores having a pore diameter of 0.1 to 1 μm is reduced by pulverization. After finely pulverizing potassium hydrogen carbonate, it is possible to avoid a reduction in pore volume of pore diameters of 0.1 to 1 μm by a method of calcination. By adopting a potassium carbonate production method in which potassium bicarbonate is pulverized and calcined, the total pore volume of pores having a pore diameter of 0.1 to 1 μm is 0.10 mL / g or more, more preferably 0.15 mL. / G or more, and a better pore structure can be obtained.

本発明の多孔質炭酸カリウムは比表面積が大きいため吸湿しやすい。吸湿すると無水炭酸カリウムが含水塩となり、さらには細孔構造が変化して反応性が低下する。一般に炭酸カリウムの包装は直鎖状低密度ポリエチレン(以下、LLDPEフィルムという。)が使用されているが、水蒸気透湿性があるため、多孔質炭酸カリウムの長期間の保管用には適していない。   Since the porous potassium carbonate of the present invention has a large specific surface area, it is easy to absorb moisture. When moisture is absorbed, anhydrous potassium carbonate becomes a hydrated salt, and the pore structure is changed to lower the reactivity. Generally, linear low-density polyethylene (hereinafter referred to as LLDPE film) is used for packaging of potassium carbonate, but it is not suitable for long-term storage of porous potassium carbonate because of its moisture vapor permeability.

よってJIS K 7129(プラスチックフィルムおよびシートの水蒸気透過度試験方法(機器測定法)、1992年8月1日制定、1999年確認)で規定する透湿度が40℃、相対湿度差90%RHで5g/(m・24h)以下の包装材料で密閉することが好ましい。すなわち、1mあたり24時間の透湿量が5g以下が好ましい。より好ましくは3g/(m・24h)以下、さらに好ましくは1g/(m・24h)以下である。 Therefore, the moisture permeability specified by JIS K 7129 (Test method for water vapor permeability of plastic films and sheets (instrument measurement method), established on August 1, 1992, confirmed in 1999) is 5 g at a relative humidity difference of 90% RH. It is preferable to seal with a packaging material of / (m 2 · 24 h) or less. That is, the moisture permeability for 24 hours per 1 m 2 is preferably 5 g or less. More preferably 3g / (m 2 · 24h) or less, more preferably 1g / (m 2 · 24h) or less.

水蒸気透過度の低いあるいは防湿性の包装材料としては、アルミナまたはシリカを蒸着した樹脂シートを用いることが好ましい。シートの構成としては、最外装に防湿用にアルミナの透明蒸着を施したポリエチレンテレフタレートフィルム(以下、PETフィルムという。)を蒸着層を内側として使用し、必要に応じて中間層に突き刺し強度向上用のナイロンフィルムを使用し、最内層にはLLDPEフィルムをドライラミネート積層した樹脂シートが好適に使用できる。防湿層としてはアルミ薄膜やアルミ蒸着ポリエチレンがあるが、これらは透明でなく、また包装後や出荷時の金属検知の支障となる。また塩化ビニリデンコーティングフィルムも防湿層として使用されているが、塩素を含有するため包装袋を処分する際に焼却すると塩化水素ガスが発生するので好ましくない。アルミナあるいはシリカを蒸着したPETフィルムを防湿層に使用すれば透明であり、金属検出器が使用でき、焼却時に塩化水素の発生がないため好ましい。蒸着方法はCVD(Chemical Vapor Drposition)法の他にPVD(Physical Vapor Drposition)法でも良い。基材はPET以外に二軸延伸ナイロン(ON)でも良い。また最内装のLLDPEフィルムは製品に直接接するので、製品の着色等の原因となる酸化防止剤等を含有しない完全無添加LLDPEを使用することが好ましい。LLDPEは低密度ポリエチレンであってもよいが、ヒートシール強度が優れるのでLLDPEがより好ましい。   As a packaging material having a low water vapor transmission rate or moisture resistance, it is preferable to use a resin sheet on which alumina or silica is deposited. As for the structure of the sheet, a polyethylene terephthalate film (hereinafter referred to as PET film) that has been transparently vapor-deposited with alumina for moisture proofing is used as the inner layer, and the intermediate layer is pierced as necessary to improve strength. A resin sheet in which an LLDPE film is dry-laminated and laminated can be suitably used. The moisture-proof layer includes an aluminum thin film and aluminum-deposited polyethylene, but these are not transparent, and hinder metal detection after packaging or at the time of shipment. A vinylidene chloride coating film is also used as a moisture-proof layer. However, since it contains chlorine, incineration when disposing of the packaging bag generates hydrogen chloride gas, which is not preferable. It is preferable to use a PET film deposited with alumina or silica for the moisture-proof layer because it is transparent, a metal detector can be used, and hydrogen chloride is not generated during incineration. The vapor deposition method may be a PVD (Physical Vapor Dripposition) method in addition to a CVD (Chemical Vapor Dripping) method. The substrate may be biaxially stretched nylon (ON) other than PET. Further, since the innermost LLDPE film is in direct contact with the product, it is preferable to use completely non-added LLDPE that does not contain an antioxidant or the like that causes coloring of the product. LLDPE may be low-density polyethylene, but LLDPE is more preferred because of its excellent heat seal strength.

本発明における良好な細孔構造を有した多孔質炭酸カリウムは、薬剤との反応性や水への溶解性等が良好で活性が高いことから、各種医薬若しくは農薬若しくは工業薬品の合成原料、有機合成等で使用される触媒、かん水等の食品添加物、写真現像液、発色剤、pH調整剤、酸吸着剤、洗剤、除湿剤、酸性ガス除去剤、ハロゲンガス除去剤、ホウ酸ガス除去剤、ガラス原料などの使用用途に好適に用いられる。   Porous potassium carbonate having a good pore structure in the present invention has good activity and high reactivity with drugs, solubility in water, etc. Catalysts used in synthesis, food additives such as brine, photographic developer, color former, pH adjuster, acid adsorbent, detergent, dehumidifier, acid gas remover, halogen gas remover, boric acid remover It is suitably used for applications such as glass raw materials.

各種医薬若しくは農薬若しくは工業薬品の合成原料として使用すれば、細孔径と比表面積が大きい独特の細孔構造より合成反応の反応率が高くなり、また反応時間が短縮できる。有機合成等で使用される触媒として使用すれば、同様に独特の細孔構造より合成反応の反応率が高くなり、反応時間が短縮できるのみならず、炭酸カリウム自体の使用量が低減できる。かん水や写真現像液に使用すれば溶解速度が速いために商品価値が向上できる。pH調整剤として使用すれば実施例に示すごとく酸との反応性に優れる。酸性ガス除去剤、ハロゲンガス除去剤、ホウ酸ガス除去剤、酸吸着剤として使用すれば、酸性ガスとの反応性に優れる。洗剤として使用すれば、多孔質であるために界面活性剤を担持できドライブレンドで製造する家庭用洗剤原料に適している。除湿剤として使用すれば、吸湿性能に優れる。ガラス原料として使用すれば、ガラス溶解窯内での溶解性に優れる。   When used as a raw material for synthesizing various pharmaceuticals, agricultural chemicals or industrial chemicals, the reaction rate of the synthesis reaction is higher than the unique pore structure having a large pore diameter and specific surface area, and the reaction time can be shortened. When used as a catalyst used in organic synthesis or the like, similarly, the reaction rate of the synthesis reaction is higher than the unique pore structure, and not only the reaction time can be shortened, but also the amount of potassium carbonate used can be reduced. When used in brine or photographic developer, commercial value can be improved due to its high dissolution rate. When used as a pH adjuster, the reactivity with acid is excellent as shown in the Examples. When used as an acid gas remover, a halogen gas remover, a boric acid gas remover, or an acid adsorbent, the reactivity with the acid gas is excellent. If used as a detergent, it is porous and can carry a surfactant and is suitable as a household detergent raw material produced by dry blending. If used as a dehumidifying agent, the moisture absorption performance is excellent. If used as a glass raw material, it has excellent solubility in a glass melting furnace.

[例1(実施例)]
以下実施例によって本発明を説明する。全体としてのカリウム濃度がKO換算で37質量%で、そのうち水酸化カリウムの濃度がKO換算で18質量%である、水酸化カリウムおよび炭酸カリウムを含む水溶液を6mの反応槽に入れ、液温を70℃に調節した。濃度が40体積%の二酸化炭素含有ガスを反応槽の下から12m/分(標準状態換算流量)で吹き込むと炭酸水素カリウム結晶が析出し成長した。8時間後、スラリ状となった反応槽内容物を抜き取り、遠心分離によって炭酸水素カリウム結晶相を取り出した。採取した炭酸水素カリウムケーキは4500kgであり、付着水分量は乾燥量基準(乾燥後の炭酸水素カリウムに対する水分の割合)で4質量%、平均粒子径は400μmであった。
[Example 1 (Example)]
The following examples illustrate the invention. An aqueous solution containing potassium hydroxide and potassium carbonate having an overall potassium concentration of 37% by mass in terms of K 2 O, of which the concentration of potassium hydroxide is 18% by mass in terms of K 2 O, is placed in a 6 m 3 reaction vessel. The liquid temperature was adjusted to 70 ° C. When a carbon dioxide-containing gas having a concentration of 40% by volume was blown from the bottom of the reaction vessel at 12 m 3 / min (standard flow rate), potassium hydrogen carbonate crystals were precipitated and grew. After 8 hours, the contents of the reaction vessel in the form of a slurry were extracted, and the potassium hydrogen carbonate crystal phase was extracted by centrifugation. The collected potassium hydrogen carbonate cake was 4500 kg, the amount of adhering water was 4% by mass on the basis of the amount of drying (ratio of water to potassium hydrogen carbonate after drying), and the average particle size was 400 μm.

次に、か焼工程に移る。この炭酸水素カリウムケーキを、キルン外壁部の加熱温度を880℃に設定した外熱式ロータリーキルンに10kg/分で投入した。このとき、被か焼物の温度は400℃であった。このとき、露点が−5℃、温度30℃の乾燥空気を10m/分(標準状態換算流量)で製品である炭酸カリウムの取り出し口から投入口方向へ被か焼物の流れに対し向流で流し続けた。導入される乾燥空気の容量はか焼して得られた炭酸カリウム1kgあたり1mであった。また被か焼物の滞留時間は2時間であった。キルンの外部より、可動式のハンマーで、キルンが一回転する間に3回衝撃を加えた。取り出し口から採取した多孔質炭酸カリウムの温度は50℃に冷却されていた。 Next, it moves to a calcination process. This potassium hydrogen carbonate cake was charged at 10 kg / min into an external heating rotary kiln in which the heating temperature of the outer wall of the kiln was set to 880 ° C. At this time, the temperature of the calcined product was 400 ° C. At this time, dry air having a dew point of −5 ° C. and a temperature of 30 ° C. is 10 m 3 / min (standard state converted flow rate) from the potassium carbonate take-out port, which is the product, in the counterflow direction to the flow of the calcined product Continued to flow. The volume of dry air introduced was 1 m 3 per kg of potassium carbonate obtained by calcination. The residence time of the calcined product was 2 hours. From the outside of the kiln, an impact was applied three times during one rotation of the kiln with a movable hammer. The temperature of the porous potassium carbonate collected from the outlet was cooled to 50 ° C.

さらに、粉砕・分級工程に移る。取り出した多孔質炭酸カリウムの一部を、露点が−10℃の乾燥空気中で、風力式分級機能を備えた衝撃式粉砕器、「ACMパルベライザーACM−5型」(ホソカワミクロン社製)で粉砕した。これらの多孔質炭酸カリウムの性状は表1に示すとおりであった。   Further, the process proceeds to the pulverization / classification process. Part of the extracted porous potassium carbonate was pulverized in dry air having a dew point of −10 ° C. with an impact pulverizer having an air classification function, “ACM Pulverizer ACM-5” (manufactured by Hosokawa Micron). . The properties of these porous potassium carbonates are as shown in Table 1.

なお、平均粒径の測定は、粉砕品についてはレーザー散乱回折式の粒度分布測定装置、「マイクロトラックFRA9220」(日機装社製)を使用して行い、未粉砕品についてはロータップ式振とう機を使用して行った。比表面積の測定は、窒素置換法により「迅速表面積測定装置SA−1000」(柴田科学社製)を用いて測定した。また、細孔容積の測定は、水銀圧入式法により「マイクロメリティックスポアサイザー9310形」(島津製作所製、測定範囲:細孔径0.0071〜609.5μm)を用いて測定した。   The average particle size is measured using a laser scattering diffraction type particle size distribution measuring device, “Microtrac FRA9220” (manufactured by Nikkiso Co., Ltd.) for pulverized products, and a low-tap shaker for unmilled products. Done using. The specific surface area was measured using a “rapid surface area measuring device SA-1000” (manufactured by Shibata Kagaku Co., Ltd.) by a nitrogen substitution method. The pore volume was measured using a “micromeritic pore sizer 9310 type” (manufactured by Shimadzu Corporation, measurement range: pore diameter 0.0071 to 609.5 μm) by a mercury intrusion method.

また、得られた多孔質炭酸カリウムのアルカリ触媒としての活性の指標として酸との反応性を測定した。酸との反応性は、25℃に調整した0.5%塩酸水溶液400gに炭酸カリウム4.0gを投入し、pH5に到達する時間により評価した。   Moreover, the reactivity with an acid was measured as an activity index of the obtained porous potassium carbonate as an alkali catalyst. The reactivity with the acid was evaluated by adding 4.0 g of potassium carbonate to 400 g of 0.5% hydrochloric acid aqueous solution adjusted to 25 ° C., and reaching the pH of 5.

Figure 0004590946
Figure 0004590946

[例2(比較例)]
キルン外壁部の加熱温度を1200℃とした以外は実施例と同様に行い、炭酸カリウムを得た。被か焼物の温度は830℃であった。実施例と同様に、その一部を粉砕し、評価した。
[Example 2 (comparative example)]
Except that the heating temperature of the outer wall of the kiln was 1200 ° C., potassium carbonate was obtained in the same manner as in the example. The temperature of the calcined product was 830 ° C. In the same manner as in the examples, a part thereof was crushed and evaluated.

Figure 0004590946
Figure 0004590946

例2の炭酸カリウムは多孔質ではあるものの、比表面積、細孔容積、細孔径0.1〜1.0μmの細孔の細孔容積ともに例1の炭酸カリウムより小さく、また、酸との反応も遅い。したがって、例1の炭酸カリウム結晶のほうが反応活性が高いことがわかる。   Although potassium carbonate of Example 2 is porous, the specific surface area, pore volume, and pore volume of pores having a pore diameter of 0.1 to 1.0 μm are smaller than those of Example 1, and the reaction with acid. Is too slow. Therefore, it can be seen that the potassium carbonate crystal of Example 1 has higher reaction activity.

[例3(実施例)]
例1で得た炭酸水素カリウムケーキを、105℃の100体積%二酸化炭素ガス中で2時間静置乾燥した。これを、露点が−10℃の乾燥空気中で、風力式分級機能を備えた衝撃式粉砕器、「ACMパルベライザーACM−5型」(ホソカワミクロン社製商品名)で粉砕した。
[Example 3 (Example)]
The potassium hydrogen carbonate cake obtained in Example 1 was left to stand in 100 vol% carbon dioxide gas at 105 ° C. for 2 hours. This was pulverized in dry air having a dew point of −10 ° C. with an impact pulverizer having an air classification function, “ACM pulverizer ACM-5 type” (trade name, manufactured by Hosokawa Micron).

さらにここで得られた粉砕後の炭酸水素カリウムを、灯油を燃焼することにより得られる200℃のガス中に噴霧し、バグフィルターで捕集し、多孔質炭酸カリウムを得た。例3の粉砕後の炭酸水素カリウムと多孔質炭酸カリウムの性状を確認すると表3に示すとおりであった。   Further, the pulverized potassium hydrogen carbonate obtained here was sprayed into a gas at 200 ° C. obtained by burning kerosene, and collected with a bag filter to obtain porous potassium carbonate. The properties of the potassium hydrogen carbonate and porous potassium carbonate after pulverization in Example 3 were confirmed as shown in Table 3.

Figure 0004590946
Figure 0004590946

表1の粉砕品に比較してさらに細孔径0.1〜1.0μmの細孔の細孔容積と比表面積が増加しており、塩酸との反応によるpH5に到達する時間も短縮された。よって炭酸水素カリウムを微粉砕した後、か焼する方法によって、より良好な細孔構造を有した多孔質炭酸カリウムが得られることがわかる。   Compared with the pulverized product of Table 1, the pore volume and specific surface area of pores having a pore diameter of 0.1 to 1.0 μm were further increased, and the time to reach pH 5 due to reaction with hydrochloric acid was also shortened. Therefore, it can be seen that porous potassium carbonate having a better pore structure can be obtained by pulverizing potassium bicarbonate and then calcining.

[例4(実施例)]
例1で製造した平均粒子径12.3μmの多孔質炭酸カリウムの粉砕品を25kg秤量し、防湿仕様の包装材料で包装してヒートシールし、3か月倉庫内に放置したあとの吸湿量を評価した。
[Example 4 (Example)]
25 kg of a porous potassium carbonate pulverized product with an average particle size of 12.3 μm produced in Example 1 is weighed, packaged with a moisture-proof packaging material, heat-sealed, and the amount of moisture absorbed after being left in the warehouse for 3 months. evaluated.

防湿使用の包装材料としては、PVD法によってアルミナの透明蒸着を施した12μmのPETフィルムを蒸着層を内側にした防湿用の最外層と、15μmのナイロンフィルムである突き刺し強度向上用の中間層と、70μmの完全無添加LLDPEフィルムである最内層と、をドライラミネート積層した樹脂シートを用いた。本包装袋の寸法は、縦710mm、横490mmであった。本包装材料の、JIS K 7129で規定する水蒸気透過度は40℃、相対湿度差90%RHで0.2g/(m・24h)であった。 The moisture-proof packaging material includes a moisture-proof outermost layer with a 12-μm PET film with transparent vapor deposition of alumina by the PVD method, and a 15-μm nylon film piercing strength improving intermediate layer. A resin sheet obtained by dry laminating a 70 μm completely non-added LLDPE film and an innermost layer was used. The dimensions of this packaging bag were 710 mm long and 490 mm wide. The water vapor permeability specified by JIS K 7129 of this packaging material was 0.2 g / (m 2 · 24 h) at 40 ° C. and a relative humidity difference of 90% RH.

吸湿量としては、炭酸カリウムを550℃で1時間加熱したときの減量(以下、強熱減量という。)を測定した。強熱減量は0.1%未満であった。なお、包装前の多孔質炭酸カリウムの強熱減量は0.1%未満であった。   As the amount of moisture absorption, the weight loss when potassium carbonate was heated at 550 ° C. for 1 hour (hereinafter referred to as ignition loss) was measured. The ignition loss was less than 0.1%. The ignition loss of porous potassium carbonate before packaging was less than 0.1%.

[例5(比較例)]
包装材料をLLDPEフィルムとしたほかは、例4と同様にして、多孔質炭酸カリウムを3か月倉庫内に放置したあとの吸湿量を評価した。本包装材料のLLDPEの厚みは80μmで、JIS K 7129で規定する水蒸気透過度は40℃、相対湿度差90%RHで6.8g/(m・24h)であった。強熱減量は0.6%であった。
[Example 5 (comparative example)]
Except for the LLDPE film as the packaging material, the moisture absorption after the porous potassium carbonate was left in the warehouse for 3 months was evaluated in the same manner as in Example 4. The thickness of the LLDPE of this packaging material was 80 μm, and the water vapor permeability specified by JIS K 7129 was 6.8 g / (m 2 · 24 h) at 40 ° C. and a relative humidity difference of 90% RH. The ignition loss was 0.6%.

本発明の多孔質炭酸カリウムは、各種医薬若しくは農薬若しくは工業薬品の合成原料、触媒、食品添加物、写真現像液、発色剤、pH調整剤、酸吸着剤、洗浄剤、除湿剤、酸性ガス除去剤、ハロゲンガス除去剤、ガラス原料などの使用用途に好適に用いられる。   The porous potassium carbonate of the present invention is a raw material for synthesis of various pharmaceuticals or agricultural chemicals or industrial chemicals, catalysts, food additives, photographic developers, color formers, pH adjusters, acid adsorbents, detergents, dehumidifiers, acid gas removers. It is suitably used for applications such as an agent, a halogen gas removing agent, and a glass raw material.

本発明の多孔質炭酸カリウムの製造を実施するための概要を示す図The figure which shows the outline | summary for implementing manufacture of the porous potassium carbonate of this invention

Claims (7)

平均粒子径100〜1000μmの炭酸水素カリウム結晶を、被か焼物の流れと逆方向から露点0℃以下かつ温度が10〜50℃の乾燥ガスを導入しながら、100〜500℃の被か焼物温度で連続式でか焼する方法であって、炭酸水素カリウムが炭酸カリウムとなる部分を外熱式ロータリーキルンの外部より衝撃を加えて炭酸カリウムの付着を防止し、
細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.08mL/g以上である多孔質炭酸カリウムを得ることを特徴とする多孔質炭酸カリウムの製造方法。
The temperature of the calcined product of 100 to 500 ° C. while introducing a dry hydrogen gas having a dew point of 0 ° C. or less and a temperature of 10 to 50 ° C. from the opposite direction to the flow of the calcined product, with potassium bicarbonate crystals having an average particle size of 100 to 1000 μm In the continuous calcination method, the portion where potassium hydrogen carbonate becomes potassium carbonate is impacted from the outside of the externally heated rotary kiln to prevent the adhesion of potassium carbonate ,
A method for producing porous potassium carbonate, comprising obtaining porous potassium carbonate having a total pore volume of pores having a pore diameter of 0.1 to 1.0 μm of 0.08 mL / g or more .
導入される乾燥ガスの容量が、か焼して得られる多孔質炭酸カリウム1kgあたり0.5m以上である請求項1に記載の多孔質炭酸カリウムの製造方法。 The method for producing porous potassium carbonate according to claim 1, wherein the volume of the introduced dry gas is 0.5 m 3 or more per 1 kg of porous potassium carbonate obtained by calcination. か焼して得られる多孔質炭酸カリウムを粉砕する請求項1または2に記載の多孔質炭酸カリウムの製造方法。   The method for producing porous potassium carbonate according to claim 1 or 2, wherein the porous potassium carbonate obtained by calcination is pulverized. 細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.10mL/g以上である平均粒子径1〜30μmの、医薬若しくは農薬若しくは工業薬品の合成原料、有機合成等で使用される触媒、pH調整剤または洗剤用の多孔質炭酸カリウム。   Used in the synthesis of pharmaceuticals, agricultural chemicals or industrial chemicals, organic synthesis, etc. with an average particle size of 1-30 μm, with a total pore volume of 0.1-1.0 μm pores and a total pore volume of 0.10 mL / g or more Porous potassium carbonate for catalysts, pH adjusters or detergents. 平均粒子径が30μm以下の炭酸水素カリウムをか焼し請求項に記載の多孔質炭酸カリウムを得る多孔質炭酸カリウムの製造方法。 The manufacturing method of the porous potassium carbonate which calcines potassium hydrogen carbonate whose average particle diameter is 30 micrometers or less, and obtains the porous potassium carbonate of Claim 4 . 前記炭酸水素カリウムを100〜500℃のガス中に噴霧する請求項に記載の多孔質炭酸カリウムの製造方法。 The method for producing porous potassium carbonate according to claim 5 , wherein the potassium hydrogen carbonate is sprayed into a gas at 100 to 500 ° C. 請求項1、2、3、5または6のいずれか一項に記載の製造方法により得られるかまたは請求項記載の多孔質炭酸カリウムを、JIS K 7129で規定する水蒸気透過度が40℃、相対湿度差90%RHで5g/(m・24h)以下である、アルミナまたはシリカで蒸着処理された包装材料で密閉する多孔質炭酸カリウムの保存方法。 The water vapor permeability obtained by the production method according to any one of claims 1, 2, 3, 5 or 6 or the porous potassium carbonate according to claim 4 having a water vapor permeability of 40 ° C as defined in JIS K 7129, A method for preserving porous potassium carbonate, which is sealed with a packaging material vapor-deposited with alumina or silica, having a relative humidity difference of 90% RH and 5 g / (m 2 · 24 h) or less.
JP2004183713A 2003-06-24 2004-06-22 Porous potassium carbonate having a specific pore structure, method for producing the same, and method for storing the same Active JP4590946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183713A JP4590946B2 (en) 2003-06-24 2004-06-22 Porous potassium carbonate having a specific pore structure, method for producing the same, and method for storing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003179784 2003-06-24
JP2004183713A JP4590946B2 (en) 2003-06-24 2004-06-22 Porous potassium carbonate having a specific pore structure, method for producing the same, and method for storing the same

Publications (2)

Publication Number Publication Date
JP2005035880A JP2005035880A (en) 2005-02-10
JP4590946B2 true JP4590946B2 (en) 2010-12-01

Family

ID=34220193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183713A Active JP4590946B2 (en) 2003-06-24 2004-06-22 Porous potassium carbonate having a specific pore structure, method for producing the same, and method for storing the same

Country Status (1)

Country Link
JP (1) JP4590946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435075A (en) * 2013-08-20 2013-12-11 湖北双环科技股份有限公司 Water washing method for carbonization tower and device thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883008B1 (en) * 2005-03-08 2007-04-27 Solvay PROCESS FOR THE JOINT PRODUCTION OF CHLORINE AND CRYSTALS OF CARBONATE MONOHYDRATE
JP5749991B2 (en) * 2011-06-28 2015-07-15 出光興産株式会社 Method for producing inorganic metal salt
PL3410861T3 (en) 2016-02-05 2021-07-05 Tiense Suikerraffinaderij N.V. Pearl sugar; process for preparing pearl sugar
CN115924938A (en) * 2022-12-30 2023-04-07 华融化学股份有限公司 Production process of food-grade potassium carbonate and food-grade potassium bicarbonate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241078A (en) * 1999-02-18 2000-09-08 Mitsui Eng & Shipbuild Co Ltd Rotary kiln
JP2002098480A (en) * 2000-09-21 2002-04-05 Shigeru Yoshida Scraping mechanism for rotary kiln
JP2003192337A (en) * 2001-12-25 2003-07-09 Asahi Glass Co Ltd Porous potassium carbonate and manufacturing method thereof
JP2003201115A (en) * 2001-12-28 2003-07-15 Asahi Glass Co Ltd Alkali metal hydrogencarbonate aqueous slurry and its manufacturing method
JP2004002166A (en) * 2002-03-29 2004-01-08 Asahi Glass Co Ltd Manufacturing method for sodium hydrogencarbonate crystal particle with low caking property, and sodium hydrogencarbonate crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241078A (en) * 1999-02-18 2000-09-08 Mitsui Eng & Shipbuild Co Ltd Rotary kiln
JP2002098480A (en) * 2000-09-21 2002-04-05 Shigeru Yoshida Scraping mechanism for rotary kiln
JP2003192337A (en) * 2001-12-25 2003-07-09 Asahi Glass Co Ltd Porous potassium carbonate and manufacturing method thereof
JP2003201115A (en) * 2001-12-28 2003-07-15 Asahi Glass Co Ltd Alkali metal hydrogencarbonate aqueous slurry and its manufacturing method
JP2004002166A (en) * 2002-03-29 2004-01-08 Asahi Glass Co Ltd Manufacturing method for sodium hydrogencarbonate crystal particle with low caking property, and sodium hydrogencarbonate crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435075A (en) * 2013-08-20 2013-12-11 湖北双环科技股份有限公司 Water washing method for carbonization tower and device thereof

Also Published As

Publication number Publication date
JP2005035880A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
TW201840468A (en) Highly reactive, dust-free and free-flowing lithium sulfide and method for producing it
JP4590946B2 (en) Porous potassium carbonate having a specific pore structure, method for producing the same, and method for storing the same
KR101191066B1 (en) Porous potassium carbonate having special pore structure and method for its production
JP4061902B2 (en) Method for producing porous potassium carbonate
JP2021006506A (en) Sodium hypochlorite pentahydrate crystalline powder and aqueous solution of sodium hypochlorite using the same
JP6173931B2 (en) Method for producing alkali metal iodide or alkaline earth metal iodide
AU2005258472B2 (en) Sodium hydrogencarbonate crystal grains with low level of integrity and process for producing the same
JP6942495B2 (en) Storage method of hexagonal boron nitride
JP4701480B2 (en) Tin oxide powder and method for producing tin oxide powder
JP5321056B2 (en) High purity sodium hydrogen carbonate crystal particles and method for producing the same
JPH06329411A (en) Production of flaky transition alumina
US9388053B2 (en) Anhydrous sodium carbonate having a low pore content
JP2009120422A (en) Preparation method of titanium oxide
JP4765692B2 (en) Method for analyzing sodium hydrogen carbonate crystal particles
JPH03204895A (en) Aspartame granule
JP2004203673A (en) Production method for hardly caking sodium hydrogencarbonate
JP6808443B2 (en) Method for producing crystalline silicotitanate
JP2024501508A (en) How to remove water from particulate matter
TW201615269A (en) Adsorption material
JP6836334B2 (en) Method for producing inorganic iodine compound powder
JP2004217471A (en) Method of manufacturing gaseous carbon dioxide absorption material
WO2022189307A1 (en) Process for making a particulate (oxy)hydroxide or oxide
JP2020079198A (en) Method for storing hexagonal boron nitride
JPH08104517A (en) Production of calcium chloride high in purity and crystallinity
JP2006169062A (en) Porous particulate containing calcium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4590946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250