JP4590802B2 - Embedded hook - Google Patents

Embedded hook Download PDF

Info

Publication number
JP4590802B2
JP4590802B2 JP2001239117A JP2001239117A JP4590802B2 JP 4590802 B2 JP4590802 B2 JP 4590802B2 JP 2001239117 A JP2001239117 A JP 2001239117A JP 2001239117 A JP2001239117 A JP 2001239117A JP 4590802 B2 JP4590802 B2 JP 4590802B2
Authority
JP
Japan
Prior art keywords
embedded
hook
rib
hole
lateral rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001239117A
Other languages
Japanese (ja)
Other versions
JP2003049819A (en
Inventor
聡 外間
幸 平和
文彦 川野
Original Assignee
コンドーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コンドーテック株式会社 filed Critical コンドーテック株式会社
Priority to JP2001239117A priority Critical patent/JP4590802B2/en
Publication of JP2003049819A publication Critical patent/JP2003049819A/en
Application granted granted Critical
Publication of JP4590802B2 publication Critical patent/JP4590802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート構造物に埋込み施工するのに好適な埋込みフックに関する。
【0002】
【従来の技術】
埋込みフックとして、実開昭58−63418号公報には、コンクリート構造物中に埋設される棒状の埋設部と、コンクリート構造物から露出するフック部とを一体に設け、埋設部の外周面に、それの母線方向に延びる複数条の縦リブと、隣接する縦リブ間を連結する複数条の横リブとを型鍛造により成形し、埋設部にそれの軸線と直交する回止め兼抜止め用のかんざし筋を貫通させて固着してなる埋込みフックが記載されている。尚、縦リブ及び横リブは、断面略半円状或いは台形状に形成されている。
【0003】
ところが、この埋込みフックでは、埋設部に縦リブと横リブを形成しているものの、全ての横リブの最大外径が同じサイズなので、引き抜き方向に対する埋設部とコンクリート構造物との接合強度を十分に確保することが困難であった。
【0004】
そこで、特開平7−310728号公報に記載のように、埋設部を係合部側へ行くにしたがって縮径させたテーパ軸で構成し、構造物に対する埋込みフックの引き抜き強度をより一層向上できるように構成したものも提案されている。
【0005】
【発明が解決しようとする課題】
後者の公報に記載の埋込みフックでは、埋設部をテーパ軸で構成しているので、構造物に対する埋込みフックの引き抜き強度を向上できるものの、埋込みフックの製作コストが高くなるという問題があった。
また、前記両公報に記載の埋込みフックでは、かんざし筋が挿通される埋設部の貫通孔がドリルにより形成されている関係上、かんざし筋の取付部において埋設部の肉厚が貫通孔分だけ薄肉となり、埋込みフックに対して大きな外力が作用したときに、かんざし筋の取付部が破断して、埋込みフックが脱落することが懸念される。
【0006】
本発明の目的は、製作コストの上昇を抑制しつつ、引き抜き強度を向上し得る埋込みフックを提供することである。
【0007】
【課題を解決するための手段及びその作用】
本発明に係る埋込みフックは、構造物に埋込み施工される埋設部と、埋設部から一体的に延びて構造物外に突出するフック部とを有し、前記埋設部の周面に周方向に延びる抜け止め用の横リブを軸方向に間隔をあけて複数突出形成するとともに、この横リブのフック部側の側面に埋設部の軸心と略直交する係合面を形成し、横リブの形状を横リブの長手方向と直交する断面において係合面から離れるにしたがって薄肉に形成したものである。
【0008】
この埋込みフックにおいては、横リブのフック部側の側面に埋設部の軸心と略直交する係合面を形成し、埋込みフックの引き抜き方向への荷重をこの係合面を介して構造物に作用させるので、横リブの係合面と構造物の横リブに対する係合部間における剪断力を極力少なくして係合部の破損を防止し、埋込みフックの引き抜き強度を向上できる。また、横リブの形状を横リブの長手方向と直交する断面において係合面から離れるにしたがって薄肉に形成しているので、前記のように係合面を形成しつつ、係合部の基端部の幅を十分に確保して、係合部の破損を効果的に防止でき、埋込みフックの引き抜き強度を向上できる。
【0009】
ここで、前記埋設部の周面に軸方向に延びる縦リブを周方向に間隔をあけて複数突出形成することが好ましい。この場合には、埋込みフックに作用する捩り荷重を縦リブにより受け止めることが可能となり、構造物に対する埋込みフックの取付強度を向上できる。
【0010】
前記埋設部に軸心直交方向に延びる貫通孔を形成し、この貫通孔に回止め兼抜止め用のかんざし筋を装着可能となしてもよい。この場合には、かんざし筋により、構造物に対する埋込みフックの引き抜き方向及び捩じり方向への荷重に対する取付強度を格段に向上できる。
【0011】
また、この場合には前記貫通孔を鍛造により形成することが好ましい。このように構成すると、ドリルにより貫通孔を形成する場合と比較して、かんざし筋の装着部における埋設部の強度を格段に向上できる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
図1、図2に示すように、埋込みフック10は、コンクリート構造物1の施工時にその壁部や柱、床や天井などに埋込み施工される埋設部11と、埋設部11から一体的に延びて構造物1外へ突出するフック部12とを備え、金属製の棒状部材を型鍛造して一体成形されている。埋設部11の一端部には軸心直交方向に延びる貫通孔13が形成され、貫通孔13には棒状のかんざし筋14が装着され、このかんざし筋14を埋設部11とともにコンクリート構造物1に埋設することで、コンクリート構造物1に対する埋込みフック10の引き抜き強度及び捩り強度を高めるように構成されている。
【0013】
埋設部11は、略ストレート状に形成され、埋設部11の周面には周方向に延びる環状の抜け止め用の横リブ15が軸方向に間隔をあけて複数形成されるとともに、軸方向に延びるストレート状の縦リブ16が周方向に間隔をあけて複数形成されている。
【0014】
図1、図3(a)に示すように、横リブ15のフック部12側の側面には埋設部11の軸心と略直交する係合面17が形成され、横リブ15は断面略直角三角形状に形成されて、その肉厚は係合面17から離れるにしたがって薄肉に構成されている。埋設部11の直径Dは、10〜100mmに設定され、横リブ15の幅W1は、横リブ15の成形性及び強度を考慮して埋設部11の直径Dの10〜50%に設定されている。横リブ15の最大肉厚T1は、横リブ15の型鍛造による成形性を確保しつつ係合面17を十分に確保するため、埋設部11の直径Dの3.0〜20%に設定され、横リブ15の配設ピッチPは任意に設定可能であるが、引き抜き方向への荷重に対する構造物1の強度を十分に確保するとともに、埋設部11に形成する横リブ15の個数を極力増やして埋設部11とコンクリート構造物1との接触面積を極力増やすため、埋設部の直径Dの40〜80%に設定されている。尚、横リブ15の斜辺18は、略ストレート状に形成してもよし、軸心側へ窪ませた湾曲状や、外方側へ膨出させた湾曲状などに形成してもよい。また、横リブ15は埋設部11の軸方向に対して傾斜状に形成することも可能であるし、縦リブ16を境にして埋設部11の軸方向に位相をずらして配置してもよい。
【0015】
図4に示すように、縦リブ16の断面形状は、従来と同様に略半円形状に形成され、その本数は、埋設部11の直径などに応じて任意に設定することが可能であるが、本数が増えると横リブ15と構造物1との接触面積が少なくなるので、2〜4本に設定することが好ましい。縦リブ16の幅W2は、縦リブ16の成形性及び強度を考慮して、横リブ15と同様に埋設部11の直径の10〜50%に設定され、縦リブ16の最大肉厚T2は横リブ15と同様に、埋設部11の直径Dの3.0〜20%に設定されている。
【0016】
図3(a)、図4に示すように、埋設部11の表面には横リブ15と縦リブ16とで略方形状の凹部19が形成され、埋設部11をコンクリート構造物1に埋設した状態で、凹部19内には横リブ15及び縦リブ16に係合するコンクリート構造物1の係合部2が形成される。そして、横リブ15と係合部2との係合により、埋込みフック10の引き抜き方向への荷重が受け止められ、縦リブ16と係合部2との係合により、埋込みフック10の捩り方向への荷重が受け止められる。しかも、引き抜き方向への荷重は、埋設部11の軸心と直交する係合面17を介して係合部2に受け止められるので、横リブ15の係合面17とコンクリート構造物1の係合部2間における剪断力を極力少なくして係合部2の破損を防止し、コンクリート構造物1に対する埋込みフック10の引き抜き強度を向上できる。また横リブ15の断面形状が係合面17から離れるにしたがって薄肉に構成されているので、横リブ15を矩形状に形成する場合と比較して係合部2の基部の幅Wを十分に確保することが可能となる。
【0017】
図3(b)は従来の埋込みフック100の縦断面図であるが、横リブ101は埋設部102に軸方向に一定間隔おきに環状に形成され、その断面は略半円状に形成されている。このため、埋込みフック100の引き抜き方向への荷重は、横リブ101の引き抜き側の円弧状の係合面103を介してコンクリート構造物104の係合部105の斜めに作用し、係合面103と係合部105間に剪断力が作用して、係合部105が破損し易くなる。それに対して、本発明に係る埋込みフック10では、図3(a)に示すように、横リブ15の係合面17を埋設部11の軸心と略直交するように形成しているので、係合面17と係合部2間における剪断力を極力少なくして係合部2の破損を防止でき、コンクリート構造物1に対する埋込みフック10の引き抜き強度を向上できることになる。
【0018】
フック部12は、図1、図2に示すように、釣針状に形成した周知の構成のものである。このフック部12の基部にはピン部材20を介して脱落規制部材21が実線で図示の規制位置と仮想線で図示の開放位置とにわたって回動自在に支持されるとともに、図示外のバネ部材を介して規制位置側へ常時付勢され、バネ部材の付勢力に抗して脱落規制部材21を開放位置側へ操作しないと、フック部12に引っ掛けたチェーンやロープなどの被係止体(図示略)をフック部12から離脱できないように構成されている。但し、この脱落規制部材21は省略することも可能である。
【0019】
埋設部11の端部近傍には円盤状の扁平部25が横リブ15及び縦リブ16とともに型鍛造により形成されるとともに、この扁平部25の中央部には扁平部25よりも薄肉の図示外の薄肉部(例えば厚さ約3mm)が形成され、この薄肉部を打ち抜いて貫通孔13が形成されている。このように型鍛造により貫通孔13を形成すると、扁平部25のうちの埋設部11から外側へ張り出した部分とコンクリート構造物1との係合により、引き抜き方向及び捩り方向への荷重を受け止めることが可能となる。また、貫通孔13はドリルにより形成することも可能であるが、型鍛造により形成する場合には、ドリルにより形成する場合と比較して、貫通孔13の形成時における肉減りを少なくして、貫通孔13付近の埋設部11の強度低下を抑制できる。
【0020】
ここで、埋込みフック10の他の実施例について説明する。尚、前記実施例と同一部材には同一符号を付してその詳細な説明を省略してもよい。
図5、図6に示すように、この実施例の埋込みフック30は、金属製の棒状部材を略U字状に成形してなるもので、埋込みフック30の両端部には前記埋込みフック10と同様に横リブ15と縦リブ16と凹部19と扁平部25とを形成した埋設部11がそれぞれ設けられ、埋込みフック30の途中部には両埋設部11に連なって延びる略U字状のフック部31が形成されている。
【0021】
横リブ15のフック部31側の側面には、図示していないが前記実施例と同様に、埋設部11の軸心と略直交する係合面17が形成され、横リブ15の断面は略直角三角形状に形成されて、その肉厚は係合面17から離れるにしたがって薄肉に構成されている。また、埋設部11の端部近傍には扁平部25が形成され、貫通孔13は前記実施例と同様に型鍛造により形成され、貫通孔13にはかんざし筋14が装着されている。但し、貫通孔13は、扁平部25を設けることなく埋設部11に対してドリルにより直接的に形成してもよい。
【0022】
尚、本実施例では、埋設部11を略ストレート状に形成したが、L字状などに折り曲げたものを使用してもよいし、複数の金属製の棒状部材を例えば植物の根のように放射状に溶接してたものを用いてもよい。また、フック部12、31としては、図示した形状以外のものを採用することも可能である。
【0023】
【発明の効果】
本発明に係る埋込みフックによれば、横リブのフック部側の側面に埋設部の軸心と略直交する係合面を形成し、埋込みフックの引き抜き方向への荷重をこの係合面を介して構造物に作用させるので、横リブの係合面と構造物の横リブに対する係合部間における剪断力を極力少なくして係合部の破損を防止し、埋込みフックの引き抜き強度を向上できる。また、横リブの形状を横リブの長手方向と直交する断面において係合面から離れるにしたがって薄肉に形成しているので、前記のように係合面を形成しつつ、係合部の基端部の幅を十分に確保して、係合部の破損を効果的に防止でき、埋込みフックの引き抜き強度を向上できる。
【0024】
ここで、埋設部の周面に軸方向に延びる縦リブを周方向に間隔をあけて複数突出形成すると、埋込みフックに作用する捩り荷重を縦リブにより受け止めることが可能となり、構造物に対する埋込みフックの取付強度を向上できる。
【0025】
埋設部に軸心直交方向に延びる貫通孔を形成し、この貫通孔に回止め兼抜止め用のかんざし筋を装着すると、かんざし筋により構造物に対する埋込みフックの引き抜き方向及び捩じり方向への荷重に対する取付強度を格段に向上できる。
【0026】
また、この場合には、貫通孔を鍛造により形成することで、ドリルにより貫通孔を形成する場合と比較して、かんざし筋の装着部における埋設部の強度を格段に向上できる。
【図面の簡単な説明】
【図1】コンクリート構造物における埋込みフック付近の縦断面図
【図2】同埋込みフックの(a)は平面図、(b)は正面図
【図3】(a)は図1のIII-III線断面図、(b)は従来の技術に係る埋込みフックの埋設状態における埋設部及びその付近の要部縦断面図
【図4】図1のIV-IV線断面図
【図5】他の実施例に係る埋込みフックの図1相当図
【図6】同埋込みフックの(a)は平面図、(b)は正面図
【符号の説明】
1 コンクリート構造物 2 係合部
10 埋込みフック 11 埋設部
12 フック部 13 貫通孔
14 かんざし筋 15 横リブ
16 縦リブ 17 係合面
18 斜辺 19 凹部
20 ピン部材 21 脱落規制部材
25 扁平部
30 埋込みフック 31 フック部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an embedding hook suitable for embedding in a concrete structure.
[0002]
[Prior art]
As an embedded hook, Japanese Utility Model Laid-Open No. 58-63418 discloses a rod-shaped embedded portion embedded in a concrete structure and a hook portion exposed from the concrete structure, and an outer peripheral surface of the embedded portion. A plurality of vertical ribs extending in the generatrix direction and a plurality of horizontal ribs connecting adjacent vertical ribs are formed by die forging, and the embedded portion is used for locking and retaining perpendicular to the axis thereof. An embedded hook is described which is formed by penetrating the shank muscles and fixed. The vertical ribs and the horizontal ribs are formed in a substantially semicircular or trapezoidal cross section.
[0003]
However, in this embedded hook, although the vertical rib and the horizontal rib are formed in the embedded portion, the maximum outer diameter of all the horizontal ribs is the same size, so the bonding strength between the embedded portion and the concrete structure in the drawing direction is sufficient. It was difficult to ensure.
[0004]
Therefore, as described in Japanese Patent Application Laid-Open No. 7-310728, the embedded portion is configured with a tapered shaft having a diameter reduced toward the engaging portion so that the pulling strength of the embedded hook with respect to the structure can be further improved. The one configured in this way has also been proposed.
[0005]
[Problems to be solved by the invention]
In the embedded hook described in the latter publication, since the embedded portion is configured with a taper shaft, the pulling strength of the embedded hook with respect to the structure can be improved, but the manufacturing cost of the embedded hook is increased.
Further, in the embedded hooks described in the above-mentioned publications, since the through hole of the embedded portion through which the shank muscle is inserted is formed by a drill, the thickness of the embedded portion in the mounting portion of the hairpin is thin by the amount corresponding to the through hole. Therefore, when a large external force is applied to the embedded hook, there is a concern that the attachment portion of the shank muscle breaks and the embedded hook falls off.
[0006]
An object of the present invention is to provide an embedded hook that can improve the pull-out strength while suppressing an increase in manufacturing cost.
[0007]
[Means for Solving the Problem and Action]
An embedded hook according to the present invention has an embedded portion embedded in a structure, and a hook portion that extends integrally from the embedded portion and protrudes outside the structure, and is circumferentially provided on the peripheral surface of the embedded portion. A plurality of lateral ribs for retaining the extension are formed to protrude in the axial direction at intervals, and an engagement surface substantially orthogonal to the shaft center of the embedded portion is formed on the side surface of the lateral rib on the hook portion side. The shape is formed so as to become thinner as the distance from the engagement surface increases in the cross section perpendicular to the longitudinal direction of the lateral rib.
[0008]
In this embedded hook, an engagement surface that is substantially perpendicular to the shaft center of the embedded portion is formed on the side surface of the lateral rib on the hook portion side, and the load in the pulling direction of the embedded hook is applied to the structure through this engagement surface. Therefore, the shearing force between the engaging surface of the lateral rib and the engaging portion with respect to the lateral rib of the structure is reduced as much as possible to prevent the engaging portion from being damaged, and the pull-out strength of the embedded hook can be improved. In addition, since the shape of the lateral rib is formed to become thinner as the distance from the engagement surface in the cross section orthogonal to the longitudinal direction of the lateral rib, the base end of the engagement portion is formed while forming the engagement surface as described above. By sufficiently securing the width of the portion, it is possible to effectively prevent breakage of the engaging portion and improve the pull-out strength of the embedded hook.
[0009]
Here, it is preferable that a plurality of longitudinal ribs extending in the axial direction are formed on the circumferential surface of the embedded portion so as to protrude in the circumferential direction. In this case, the torsional load acting on the embedded hook can be received by the vertical rib, and the mounting strength of the embedded hook to the structure can be improved.
[0010]
A through-hole extending in the direction perpendicular to the axis may be formed in the embedded portion, and a knurled bar for preventing rotation and retaining may be attached to the through-hole. In this case, the mounting strength against the load in the pulling direction and torsional direction of the embedded hook with respect to the structure can be remarkably improved by the knurled bar.
[0011]
In this case, the through hole is preferably formed by forging. If comprised in this way, compared with the case where a through-hole is formed with a drill, the intensity | strength of the embed | buried part in the mounting part of a pinch muscle can be improved markedly.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the embedded hook 10 is integrally extended from the embedded portion 11 and an embedded portion 11 embedded in a wall portion, a pillar, a floor, a ceiling, or the like when the concrete structure 1 is applied. And a hook portion 12 that protrudes outside the structure 1 and is integrally formed by die forging a metal rod-shaped member. A through-hole 13 extending in a direction orthogonal to the axis is formed at one end of the embedded portion 11, and a rod-shaped barb bar 14 is attached to the through-hole 13, and the barb bar 14 is embedded in the concrete structure 1 together with the embedded unit 11. By doing so, the pull-out strength and the torsional strength of the embedded hook 10 with respect to the concrete structure 1 are increased.
[0013]
The embedded portion 11 is formed in a substantially straight shape, and a plurality of annular retaining ribs 15 that are circumferentially extended are formed on the peripheral surface of the embedded portion 11 at intervals in the axial direction. A plurality of straight vertical ribs 16 are formed at intervals in the circumferential direction.
[0014]
As shown in FIGS. 1 and 3A, an engagement surface 17 that is substantially perpendicular to the axis of the embedded portion 11 is formed on the side surface of the lateral rib 15 on the hook portion 12 side, and the lateral rib 15 is substantially perpendicular to the cross section. It is formed in a triangular shape, and its thickness is made thinner as it gets away from the engagement surface 17. The diameter D of the embedded portion 11 is set to 10 to 100 mm, and the width W1 of the lateral rib 15 is set to 10 to 50% of the diameter D of the embedded portion 11 in consideration of the formability and strength of the lateral rib 15. Yes. The maximum thickness T1 of the horizontal rib 15 is set to 3.0 to 20% of the diameter D of the embedded portion 11 in order to sufficiently secure the engagement surface 17 while ensuring the formability of the horizontal rib 15 by die forging. The arrangement pitch P of the lateral ribs 15 can be arbitrarily set. However, the strength of the structure 1 with respect to the load in the drawing direction is sufficiently secured, and the number of the lateral ribs 15 formed in the embedded portion 11 is increased as much as possible. In order to increase the contact area between the buried portion 11 and the concrete structure 1 as much as possible, it is set to 40 to 80% of the diameter D of the buried portion. The oblique side 18 of the lateral rib 15 may be formed in a substantially straight shape, or may be formed in a curved shape recessed toward the axial center, a curved shape bulged outward, or the like. Further, the lateral rib 15 can be formed to be inclined with respect to the axial direction of the embedded portion 11, and may be arranged with a phase shifted in the axial direction of the embedded portion 11 with the vertical rib 16 as a boundary. .
[0015]
As shown in FIG. 4, the cross-sectional shape of the vertical ribs 16 is formed in a substantially semicircular shape as in the conventional case, and the number thereof can be arbitrarily set according to the diameter of the embedded portion 11 and the like. Since the contact area between the lateral rib 15 and the structure 1 decreases as the number increases, it is preferably set to 2 to 4. The width W2 of the vertical rib 16 is set to 10 to 50% of the diameter of the embedded portion 11 in the same manner as the horizontal rib 15 in consideration of the moldability and strength of the vertical rib 16, and the maximum thickness T2 of the vertical rib 16 is Similar to the lateral ribs 15, it is set to 3.0 to 20% of the diameter D of the embedded portion 11.
[0016]
As shown in FIG. 3A and FIG. 4, a substantially rectangular concave portion 19 is formed by a lateral rib 15 and a longitudinal rib 16 on the surface of the embedded portion 11, and the embedded portion 11 is embedded in the concrete structure 1. In this state, the engaging portion 2 of the concrete structure 1 that engages with the lateral rib 15 and the longitudinal rib 16 is formed in the recess 19. The load in the pulling direction of the embedded hook 10 is received by the engagement of the lateral rib 15 and the engaging portion 2, and the twisting direction of the embedded hook 10 is received by the engagement of the vertical rib 16 and the engaging portion 2. The load of is accepted. In addition, since the load in the pulling direction is received by the engaging portion 2 via the engaging surface 17 orthogonal to the axis of the embedded portion 11, the engagement surface 17 of the lateral rib 15 and the concrete structure 1 are engaged. The shearing force between the portions 2 can be reduced as much as possible to prevent the engagement portion 2 from being damaged, and the pulling strength of the embedded hook 10 with respect to the concrete structure 1 can be improved. Further, since the cross-sectional shape of the lateral rib 15 is made thinner as the distance from the engaging surface 17 increases, the width W of the base portion of the engaging portion 2 is sufficiently increased as compared with the case where the lateral rib 15 is formed in a rectangular shape. It can be secured.
[0017]
FIG. 3B is a longitudinal sectional view of a conventional embedded hook 100. The lateral rib 101 is formed in the embedded portion 102 in an annular shape at regular intervals in the axial direction, and the cross section is formed in a substantially semicircular shape. Yes. For this reason, the load in the pulling direction of the embedded hook 100 acts obliquely on the engaging portion 105 of the concrete structure 104 via the arc-shaped engaging surface 103 on the pulling side of the lateral rib 101, and the engaging surface 103. A shearing force acts between the engaging portion 105 and the engaging portion 105 is easily damaged. On the other hand, in the embedded hook 10 according to the present invention, as shown in FIG. 3A, the engaging surface 17 of the lateral rib 15 is formed so as to be substantially orthogonal to the axis of the embedded portion 11. The shearing force between the engaging surface 17 and the engaging portion 2 can be reduced as much as possible to prevent the engaging portion 2 from being damaged, and the pull-out strength of the embedded hook 10 with respect to the concrete structure 1 can be improved.
[0018]
As shown in FIGS. 1 and 2, the hook portion 12 has a well-known configuration formed in a fishhook shape. A drop-off restricting member 21 is supported at the base portion of the hook portion 12 via a pin member 20 so as to be rotatable between a restricting position shown by a solid line and an open position shown by an imaginary line, and a spring member (not shown) is supported. If the detachment restricting member 21 is not operated to the open position side against the urging force of the spring member, the object to be locked such as a chain or a rope hooked on the hook portion 12 (illustrated) Is omitted from the hook portion 12. However, the drop-out restricting member 21 can be omitted.
[0019]
A disc-shaped flat portion 25 is formed by die forging together with the lateral ribs 15 and the vertical ribs 16 near the end portion of the embedded portion 11, and the flat portion 25 is thinner than the flat portion 25. The thin-walled portion (for example, about 3 mm thick) is formed, and the through-hole 13 is formed by punching out the thin-walled portion. Thus, when the through-hole 13 is formed by die forging, the load in the drawing direction and the twisting direction is received by the engagement between the portion of the flat portion 25 that protrudes outward from the embedded portion 11 and the concrete structure 1. Is possible. In addition, the through hole 13 can be formed by a drill, but when formed by die forging, compared with the case of forming by a drill, the thickness reduction when forming the through hole 13 is reduced. The strength reduction of the embedded portion 11 near the through hole 13 can be suppressed.
[0020]
Here, another embodiment of the embedded hook 10 will be described. The same members as those in the above embodiment may be denoted by the same reference numerals and detailed description thereof may be omitted.
As shown in FIGS. 5 and 6, the embedded hook 30 of this embodiment is formed by molding a metal rod-like member into a substantially U shape, and the embedded hook 30 is connected to the embedded hook 10 at both ends. Similarly, embedded portions 11 each having a horizontal rib 15, a vertical rib 16, a recessed portion 19, and a flat portion 25 are provided, and a substantially U-shaped hook extending continuously from both embedded portions 11 is provided in the middle of the embedded hook 30. A portion 31 is formed.
[0021]
Although not shown in the drawings, the side surface of the horizontal rib 15 on the side of the hook portion 31 is formed with an engagement surface 17 that is substantially orthogonal to the axis of the embedded portion 11. It is formed in a right triangle shape, and its thickness is made thinner as it gets away from the engagement surface 17. Further, a flat portion 25 is formed in the vicinity of the end portion of the embedded portion 11, the through hole 13 is formed by die forging similarly to the above embodiment, and a knurled bar 14 is attached to the through hole 13. However, the through hole 13 may be formed directly by a drill with respect to the embedded portion 11 without providing the flat portion 25.
[0022]
In the present embodiment, the embedded portion 11 is formed in a substantially straight shape, but it may be used that is bent in an L shape or the like, and a plurality of metal rod-like members such as plant roots may be used. You may use what was radially welded. Moreover, as hook parts 12 and 31, things other than the shape shown in figure can also be employ | adopted.
[0023]
【The invention's effect】
According to the embedded hook of the present invention, an engagement surface that is substantially orthogonal to the shaft center of the embedded portion is formed on the side surface of the lateral rib on the hook portion side, and a load in the pulling direction of the embedded hook is passed through this engagement surface. Therefore, the shearing force between the engaging surface of the lateral rib and the engaging portion of the structure with respect to the lateral rib can be reduced as much as possible to prevent the engaging portion from being damaged, and the pull-out strength of the embedded hook can be improved. . In addition, since the shape of the lateral rib is formed to become thinner as the distance from the engagement surface in the cross section orthogonal to the longitudinal direction of the lateral rib, the base end of the engagement portion is formed while forming the engagement surface as described above. By sufficiently securing the width of the portion, it is possible to effectively prevent breakage of the engaging portion and improve the pull-out strength of the embedded hook.
[0024]
Here, when a plurality of longitudinal ribs extending in the axial direction are formed on the peripheral surface of the embedded portion with a circumferential interval, the torsional load acting on the embedded hook can be received by the vertical rib, and the embedded hook for the structure The mounting strength can be improved.
[0025]
When a through-hole extending in the direction perpendicular to the axial center is formed in the embedded portion and a knurled bar for locking and retaining is attached to this through-hole, the knurled bar moves the embedded hook to the structure in the pull-out direction and torsional direction. The mounting strength against the load can be greatly improved.
[0026]
Further, in this case, by forming the through hole by forging, the strength of the embedded portion in the shank muscle mounting portion can be significantly improved as compared with the case where the through hole is formed by a drill.
[Brief description of the drawings]
[Fig. 1] Longitudinal sectional view of an embedded hook in a concrete structure [Fig. 2] (a) is a plan view, (b) is a front view of the embedded hook [Fig. 3] (a) is III-III in Fig. 1 Fig. 4B is a cross-sectional view taken along the line IV-IV in Fig. 1; Fig. 5 is another embodiment. FIG. 6 is a view corresponding to FIG. 1 of the embedded hook according to the example. FIG. 6A is a plan view and FIG. 6B is a front view of the embedded hook.
DESCRIPTION OF SYMBOLS 1 Concrete structure 2 Engagement part 10 Embedment hook 11 Embedment part 12 Hook part 13 Through-hole 14 Hairpin 15 Horizontal rib 16 Vertical rib 17 Engagement surface 18 Oblique side 19 Recess 20 Pin member 21 Drop-off restriction member 25 Flat part 30 Embedded hook 31 Hook part

Claims (4)

構造物に埋込み施工される埋設部と、埋設部から一体的に延びて構造物外に突出するフック部とを有し、
前記埋設部の周面に周方向に延びる抜け止め用の横リブを軸方向に間隔をあけて複数突出形成するとともに、この横リブのフック部側の側面に埋設部の軸心と略直交する係合面を形成し、横リブの形状を横リブの長手方向と直交する断面において係合面から離れるにしたがって薄肉に形成した、
ことを特徴とする埋込みフック。
Having a buried portion embedded in the structure and a hook portion extending integrally from the buried portion and projecting outside the structure;
A plurality of retaining lateral ribs extending in the circumferential direction are formed on the circumferential surface of the buried portion so as to protrude in the axial direction, and the side ribs on the side of the hook portion of the lateral rib are substantially orthogonal to the shaft center of the buried portion. An engagement surface was formed, and the shape of the lateral rib was formed to be thinner as it was away from the engagement surface in a cross section perpendicular to the longitudinal direction of the lateral rib.
An embedded hook characterized by that.
前記埋設部の周面に軸方向に延びる縦リブを周方向に間隔をあけて複数突出形成した請求項1記載の埋込みフック。The embedded hook according to claim 1, wherein a plurality of longitudinal ribs extending in the axial direction are formed on the peripheral surface of the embedded portion so as to protrude in the circumferential direction. 前記埋設部に軸心直交方向に延びる貫通孔を形成し、この貫通孔に回止め兼抜止め用のかんざし筋を装着可能となした請求項1又は2記載の埋込みフック。The embedded hook according to claim 1 or 2, wherein a through hole extending in a direction orthogonal to the axis is formed in the embedded portion, and a knurled bar for rotation and retention can be attached to the through hole. 前記貫通孔を鍛造により形成した請求項3記載の埋込みフック。The embedded hook according to claim 3, wherein the through hole is formed by forging.
JP2001239117A 2001-08-07 2001-08-07 Embedded hook Expired - Lifetime JP4590802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001239117A JP4590802B2 (en) 2001-08-07 2001-08-07 Embedded hook

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001239117A JP4590802B2 (en) 2001-08-07 2001-08-07 Embedded hook

Publications (2)

Publication Number Publication Date
JP2003049819A JP2003049819A (en) 2003-02-21
JP4590802B2 true JP4590802B2 (en) 2010-12-01

Family

ID=19069919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001239117A Expired - Lifetime JP4590802B2 (en) 2001-08-07 2001-08-07 Embedded hook

Country Status (1)

Country Link
JP (1) JP4590802B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341560B2 (en) * 2013-12-19 2018-06-13 太平洋マテリアル株式会社 Coating structure, peeling prevention performance confirmation tool, peeling prevention performance confirmation method, and coating material fall prevention method
JP6517178B2 (en) * 2016-10-05 2019-05-22 株式会社パジコ Accessory and method for manufacturing the same and heaton for the accessory

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556837Y2 (en) * 1977-05-09 1980-02-15
JPS555777Y2 (en) * 1977-10-28 1980-02-09
JPS5863418U (en) * 1981-10-24 1983-04-28 株式会社日本ピツト recessed hook
JPS5935707U (en) * 1982-08-31 1984-03-06 チトセ株式会社 Dowel for joining
JPH0336732Y2 (en) * 1987-03-17 1991-08-05
FR2636685B1 (en) * 1988-09-19 1991-01-11 Vape Sa Ets SCREW FIXING DEVICE IN A CONCRETE CONSTRUCTION ELEMENT

Also Published As

Publication number Publication date
JP2003049819A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
EP0979948A1 (en) Fan blade assembly of a ceiling fan
US6729079B2 (en) Concrete anchor
JP5189139B2 (en) Clinch bolt
US4831798A (en) Ground anchoring stake
JP4590802B2 (en) Embedded hook
JPS6323413Y2 (en)
US7413391B2 (en) Cotter pin
JP2021159031A (en) Split ring
JP3075537U (en) Outer lock nut
JP3936573B2 (en) Intermediate compression friction type anchor construction method and anchor construction method
JP3909404B2 (en) Balance weight
JP2651315B2 (en) Earth anchor
US20040227394A1 (en) Spoke with tubular coupling end portions
JPS6346741Y2 (en)
JP3053566U (en) Deformed anchor bolt
JP4173250B2 (en) Lure
JP3115171U (en) Squid fishhook
EP1116887A2 (en) Wheel trim fastener
JPH06185253A (en) Press fitting hinge cup for hinge
KR200186767Y1 (en) A snap for fishery
JPH07310728A (en) Embedded hook
JP2562072Y2 (en) Anchoring anchor
JP2003335170A (en) Floor drop-down hook for truck loading space
JP4923023B2 (en) Kusari-an
JP3725756B2 (en) Fishhook

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4590802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term