JP4590777B2 - heat pump - Google Patents

heat pump Download PDF

Info

Publication number
JP4590777B2
JP4590777B2 JP2001146829A JP2001146829A JP4590777B2 JP 4590777 B2 JP4590777 B2 JP 4590777B2 JP 2001146829 A JP2001146829 A JP 2001146829A JP 2001146829 A JP2001146829 A JP 2001146829A JP 4590777 B2 JP4590777 B2 JP 4590777B2
Authority
JP
Japan
Prior art keywords
refrigerant
opening degree
flow rate
liquid flow
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001146829A
Other languages
Japanese (ja)
Other versions
JP2002340434A (en
Inventor
秀行 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2001146829A priority Critical patent/JP4590777B2/en
Publication of JP2002340434A publication Critical patent/JP2002340434A/en
Application granted granted Critical
Publication of JP4590777B2 publication Critical patent/JP4590777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン冷却水で冷媒を加熱する熱交換器を有するヒートポンプに関する。
【0002】
【従来の技術】
先ず、図10のヒートポンプ1の概要について説明する。図10のヒートポンプ1は、エンジン冷却水で冷媒を加熱する熱交換器17を有するものであり、冷却水回路2と冷媒回路3から構成されている。
【0003】
この点、冷却水回路2においては、エンジン12や排気熱交換器18で加熱されて高温となったエンジン冷却水をウォーターポンプ11でラジエータ13に導くことにより、エンジン冷却水の温度を低くしている。このとき、エンジン12が冷えすぎても不調をきたすので、サーモスタット14によって、ラジエータ13に向かうエンジン冷却水の流量とバイパス流路15に向かうエンジン冷却水の流量とを自動的にコントロールしている。また、上述したように、エンジン冷却水で冷媒を加熱する熱交換器17を設けており、電動水三方弁16によって、熱交換器17に向かうエンジン冷却水の流量とサーモスタット14に向かうエンジン冷却水の流量とをコントロールしている。
【0004】
尚、ラジエータ13の下流側に設けられたラジエータ・キャップ20は、ラジエータ13内の圧力を調節することによりエンジン冷却水の蒸発量を少なくするものであり、その圧力は大気圧より高く設定される。また、ラジエータ・キャップ20の上流側で分岐して設けられたリザーブ・タンク19は、エンジン冷却水の蒸気が冷えて液体に戻ったものを溜めるものである。
【0005】
一方、冷媒回路3には、エンジン12で駆動する圧縮機21と、冷媒と冷凍機油を分離するオイルセパレータ22、冷房・暖房の冷媒回路に切り替える四方弁23、室外空気と冷媒との間で熱交換を行う室外熱交換器24、室内空気と冷媒との間で熱交換を行う室内熱交換器27、エンジン冷却水と冷媒との間で熱交換を行う熱交換器17、液冷媒とガス冷媒を分離するアキュムレータ25、液流量調整弁30などが設けられている。
【0006】
尚、オイルセパレータ22は、キャピラリー29を介して、圧縮機21の吸入口とアキュムレータ25に接続されている。
【0007】
ここで、図10のヒートポンプ1が暖房運転を行うときは、以下のような暖房サイクルが行われる。すなわち、四方弁23が暖房の冷媒回路に切り替えると、圧縮機21で高温・高圧となった冷媒は、四方弁23を介して室内熱交換器27へと流入する。このとき、室内熱交換器27では、室内空気と冷媒との間で熱交換を行うことにより、冷媒が凝縮する一方、冷媒の凝縮熱により室内空気が加熱されて温風となり、暖房効果が生じる。そして、室内熱交換器27を流出した冷媒は、膨張弁23で膨張した後に、室外熱交換器24へと流入する。このとき、室外熱交換器24では、室外空気と冷媒との間で熱交換を行うことにより、冷媒が加熱されて蒸発する。さらに、室外熱交換器24を流出した冷媒は、四方弁23を介して熱交換器17へと流入する。このとき、熱交換器17では、エンジン冷却水と冷媒との間で熱交換を行うことにより、エンジン冷却水が冷却される一方、冷媒が加熱されて蒸発する。そして、熱交換器17を流出した冷媒は、アキュムレータ25で液冷媒が分離された後に圧縮機21に戻る。
【0008】
従って、上述した暖房サイクルでは、室外熱交換器24及び熱交換器17での冷媒の蒸発熱量が多くなるほど、室内熱交換器27での室内空気の加熱量を大きくすることができるので、熱交換器17において、エンジン冷却水と冷媒との間で熱交換をできる限り多く行うことが暖房能力の増加につながることなる。
【0009】
一方、図10のヒートポンプ1が冷房運転を行うときは、以下のような冷房サイクルが行われる。すなわち、四方弁23が冷房の冷媒回路に切り替えると、圧縮機21で高温・高圧となった冷媒は、四方弁23を介して室外熱交換器24へと流入する。このとき、室外熱交換器24では、室外空気と冷媒との間で熱交換を行うことにより、冷媒が凝縮される。そして、室外熱交換器24を流出した冷媒は、膨張弁23で膨張した後に、室内熱交換器27へと流入する。このとき、室内熱交換器27では、室内空気と冷媒との間で熱交換を行うことにより、冷媒が加熱されて蒸発する一方、冷媒の蒸発熱により室内空気が冷却されて冷風となり、冷房効果が生じる。さらに、室内熱交換器27を流出した冷媒は、四方弁23を介して熱交換器17へと流入し、熱交換器17を流出した冷媒は、アキュムレータ25で液冷媒が分離された後に圧縮機21に戻る。
【0010】
そして、図10のヒートポンプ1が冷房運転を行う場合において、室内熱交換器27における冷媒の蒸発が不足しているときは、液流量調整弁30を介して、室外熱交換器24から流出した冷媒の一部を熱交換器17に流入させるとともに、電動水三方弁16を介して、エンジン12から流出したエンジン冷却水の一部を熱交換器17に流入させており、このとき、熱交換器17では、エンジン冷却水と冷媒との間で熱交換を行うことにより、エンジン冷却水が冷却される一方、冷媒が加熱されて蒸発するので、これにより、室内熱交換器27における冷媒の蒸発不足を解消させることができる。
【0011】
もっとも、成績係数の低下を防止する観点から、室内熱交換器27における冷媒の蒸発が不足しているときであっても、エンジン12の見掛け回転数(室内熱交換器27の冷媒流量に相当するもの)が最低でないときは、エンジン12の回転数を下げる制御を優先しており、エンジン12の見掛け回転数が最低であるときのみに、電動水三方弁16の開度及び液流量調整弁30の開度を制御することにより、エンジン冷却水及び冷媒を熱交換器17に通過させている。
【0012】
この点、図10のヒートポンプ1では、エンジン12の回転数の制御と、電動水三方弁16の開度及び液流量調整弁30の開度の制御を、同一の冷媒目標温度を使用して連携させながら行っているが、これでは、急激な運転状況の変化に追従しにくくなるので、エンジン12の回転数の制御や、電動水三方弁16の開度及び液流量調整弁30の開度の制御を割り込ませて行うことにより、応答性を向上させている。
【0013】
【発明が解決しようとする課題】
しかしながら、エンジン12の回転数の制御や、電動水三方弁16の開度及び液流量調整弁30の開度の制御を割り込ませて行うと、エンジン12の見掛け回転数が最低でないときにエンジン冷却水が熱交換器17を通過するイレギュラーな状態になることがあり、かかるイレギュラーな状態になると、エンジン12の見掛け回転数が最低であるときにエンジン冷却水が熱交換器17を通過するレギュラーな状態に戻るまでに、各制御が不安定となる問題点があった。
【0014】
そこで、本発明は、上述した問題点を解決するためになされたものであり、成績係数の低下を防止するとともに、エンジンの回転数の制御と電動水三方弁の開度及び液流量調整弁の開度の制御とを安定して行うことができるヒートポンプを提供することを課題とする。
【0015】
【課題を解決するための手段】
この課題を解決するために成された請求項1に係る発明は、駆動源であるエンジンの排熱を回収するための冷却水回路と、冷凍サイクルにより冷房・暖房を行うための冷媒回路と、前記冷媒回路の冷媒を低温流体とするとともに前記冷却水回路のエンジン冷却水を高温流体とする熱交換器と、前記熱交換器に向かう前記冷媒の流量をコントロールする液流量調節弁と、前記熱交換器に向かう前記エンジン冷却水の流量をコントロールする電動水三方弁と、を有し、前記冷媒回路の冷媒目標温度に基づいて前記エンジンの回転数を制御することにより前記冷媒回路の冷媒循環量をコントロールするとともに、前記冷媒回路の冷媒目標温度に基づいて前記電動水三方弁の開度及び前記液流量調節弁の開度を制御することにより前記冷凍サイクルの蒸発工程の不足分を前記熱交換器で補うヒートポンプにおいて、前記電動水三方弁の開度及び前記液流量調節弁の開度の制御と前記エンジンの回転数の制御とを独立して行うとともに、前記電動水三方弁の開度及び前記液流量調節弁の開度の制御で使用する冷媒目標温度を前記エンジンの回転数の制御で使用する冷媒目標温度よりも低く設定したこと、を特徴としている。
【0016】
このような特徴を有する本発明のヒートポンプは、冷媒回路の冷媒目標温度に基づいてエンジンの回転数を制御することにより冷媒回路の冷媒循環量をコントロールするものである。従って、例えば、冷媒回路の冷媒目標温度より冷媒回路の冷媒温度が高いときは、エンジンの回転数を上げ方向に制御して、冷媒回路の冷媒循環量を多くしていき、冷媒回路の冷媒目標温度と冷媒回路の冷媒温度が等しいときは、エンジンの回転数を維持するように制御して、冷媒回路の冷媒循環量を保持し、冷媒回路の冷媒目標温度より冷媒回路の冷媒温度が低いときは、エンジンの回転数を下げ方向に制御して、冷媒回路の冷媒循環量を少なくしていく。
【0017】
その一方で、本発明のヒートポンプは、冷媒回路の冷媒目標温度に基づいて電動水三方弁の開度及び液流量調節弁の開度を制御することにより冷凍サイクルの蒸発工程の不足分を熱交換器で補うものである。従って、例えば、冷媒回路の冷媒目標温度より冷媒回路の冷媒温度が高いときは、電動水三方弁の開度及び液流量調節弁の開度を閉じ方向に制御して、熱交換器を通過するエンジン冷却水及び冷媒を少なくしていき、冷媒回路の冷媒目標温度と冷媒回路の冷媒温度が等しいときは、電動水三方弁の開度及び液流量調節弁の開度を維持するように制御して、熱交換器を通過するエンジン冷却水及び冷媒を保持し、冷媒回路の冷媒目標温度より冷媒回路の冷媒温度が低いときは、電動水三方弁の開度及び液流量調節弁の開度を開け方向に制御して、熱交換器を通過するエンジン冷却水及び冷媒を多くしていく。
【0018】
この点、本発明のヒートポンプでは、電動水三方弁液の開度及び液流量調節弁の開度の制御の基準となる冷媒目標温度をエンジンの回転数の制御で基準となる冷媒目標温度よりも低く設定しており、各制御の定常時において、エンジンの回転数が最低でないときは、必ず、電動水三方弁の開度及び液流量調節弁の開度が全閉となり、逆に、電動水三方弁の開度及び液流量調節弁の開度が開いているときは、必ず、エンジンの回転数が最低となる。従って、冷凍サイクルの蒸発工程の不足分を補う際は、エンジンの回転数を最低にすることが熱交換器で補うことよりも優先される。
【0019】
すなわち、本発明のヒートポンプでは、電動水三方弁の開度及び液流量調節弁の開度の制御で基準となる冷媒目標温度をエンジンの回転数の制御で基準となる冷媒目標温度よりも低く設定することにより、冷凍サイクルの蒸発工程の不足分を補う際(各制御の定常時)に、エンジンの回転数を最低にすることを熱交換器で補うことよりも優先して行うことが可能となるので、成績係数の低下を防止することができ、さらに、このとき、電動水三方弁の開度及び液流量調節弁の開度の制御とエンジンの回転数の制御とが独立して行われるので、電動水三方弁の開度及び液流量調節弁の開度の制御とエンジンの回転数の制御とを安定に行うことができる。
【0020】
また、請求項2に係る発明は、請求項1に記載するヒートポンプであって、前記電動水三方弁の開度及び前記液流量調節弁の開度が維持される第1不感帯と前記エンジンの回転数が維持される第2不感帯とを隣接して設けたこと、を特徴としている。
【0021】
さらに、本発明のヒートポンプにおいて、電動水三方弁の開度及び液流量調節弁の開度が維持される第1不感帯とエンジンの回転数が維持される第2不感帯とを隣接して設ければ、電動水三方弁の開度及び液流量調節弁の開度の制御とエンジンの回転数の制御とをより安定に行うことができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照にして説明する。先ず、第1実施の形態のヒートポンプについて説明する。第1実施の形態のヒートポンプの構成は、「従来の技術」の欄で説明した図10のヒートポンプ1と同じである。
尚、室内熱交換器31には、室内熱交換器31内の冷媒温度を測定するための温度センサー31が設けられている。また、圧縮機21には、吸入口側の冷媒温度を測定するための温度センサー32と、吐出口側の冷媒温度を測定するための温度センサー33とが設けられている。また、エンジン12には、エンジン冷却水の温度を測定するための温度センサー34が設けられている。また、圧縮機21には、吸入口側の冷媒圧力を測定するための圧力センサー(図示せず)が設けられている。
【0023】
そして、第1実施の形態のヒートポンプ1において、冷房運転を行う場合には、図9に示すようにして、電動水三方弁16の開度及び液流量調節弁30の開度の制御とエンジン12の回転数の制御とを所定時間毎(例えば、1分毎)に行っている。
【0024】
ここで、電動水三方弁16の開度及び液流量調節弁30の開度の制御とエンジン12の回転数の制御とで使用される冷媒回路3の冷媒温度には、室内熱交換器22内の冷媒温度(以下、「室内熱交換器温度」という)を用いる。
【0025】
また、電動水三方弁16の開度が全開とは、エンジン冷却水の全流量が熱交換器17に向かうことを意味し、電動水三方弁16の開度が全閉とは、エンジン冷却水の全流量がサーモスタット14に向かうことを意味する。従って、電動水三方弁16の開度が開方向に移動すると、熱交換器17に向かうエンジン冷却水の流量が増加するとともにサーモスタット14に向かうエンジン冷却水の流量が減少する。一方、電動水三方弁16の開度が閉方向に移動すると、熱交換器17に向かうエンジン冷却水の流量が減少するとともにサーモスタット14に向かうエンジン冷却水の流量が増加する。
【0026】
また、液流量調整弁30の開度が全開とは、冷媒の可能な限りの最大量が熱交換器17に向かうことを意味し、液流量調整弁30の開度が全閉とは、冷媒の全流量が室内熱交換器22に向かうことを意味する。従って、液流量調整弁30の開度が開方向に移動すると、熱交換器17に向かう冷媒の流量が増加するとともに室内熱交換器22に向かう冷媒の流量が減少する。一方、液流量調整弁30の開度が閉方向に移動すると、熱交換器17に向かう冷媒の流量が減少するとともに室内熱交換器22に向かう冷媒の流量が増加する。
【0027】
さて、第1実施の形態のヒートポンプ1で冷房運転を行う場合には、上述したように、電動水三方弁16の開度及び液流量調節弁30の開度の制御とエンジン12の回転数の制御とが所定時間毎(例えば、1分毎)に行われる。
すなわち、図9のフローチャートに示すように、先ず、S210において、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETより高いか否かを判断する。ここで、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETより高いと判断する場合には(S201:Yes)、S202に進んで、エンジン12の回転数の制御を行って、エンジン12の回転数を上げていく。そして、S203に進んで、電動水三方弁16の開度の制御を行って、電動水三方弁16の開度を閉じていく。さらに、S204に進んで、液流量調整弁30の開度の制御を行って、液流量調整弁30の開度を閉じていく。
【0028】
一方、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETより高いと判断しない場合には(S201:No)、S205に進んで、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETと等しいか否かを判断する。ここで、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETに等しいと判断する場合には(S205:Yes)、S206に進み、エンジン12の回転数の制御を行って、エンジン12の回転数を維持する。そして、S207に進んで、電動水三方弁16の開度の制御を行って、電動水三方弁16の開度を閉じていく。さらに、S208に進んで、液流量調整弁30の開度の制御を行って、液流量調整弁30の開度を閉じていく。
【0029】
一方、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETと等しいと判断しない場合には(S205:No)、S209に進んで、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETより2℃未満で低いか否かを判断する。ここで、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETより2℃未満で低いと判断する場合には(S209:Yes)、S210に進み、エンジン12の回転数の制御を行って、エンジン12の回転数を下げていく。そして、S211に進んで、電動水三方弁16の開度の制御を行って、電動水三方弁16の開度を閉じていく。さらに、S212に進んで、液流量調整弁30の開度の制御を行って、液流量調整弁30の開度を閉じていく。
【0030】
一方、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETより2℃未満で低いと判断しない場合には(S209:No)、S213に進んで、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETより2℃低いか否かを判断する。ここで、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETより2℃低いと判断する場合には(S213:Yes)、S214に進み、エンジン12の回転数の制御を行って、エンジン12の回転数を下げていく。そして、S215に進んで、電動水三方弁16の開度の制御を行って、電動水三方弁16の開度を維持する。さらに、S212に進んで、液流量調整弁30の開度の制御を行って、液流量調整弁30の開度を維持する。
【0031】
一方、「室内熱交換器温度」が冷媒回路3の冷媒目標温度ETより2℃低いと判断しない場合には(S213:No)、S217に進み、エンジン12の回転数の制御を行って、エンジン12の回転数を下げていく。そして、S218に進んで、電動水三方弁16の開度の制御を行って、電動水三方弁16の開度を開けていく。さらに、S219に進んで、液流量調整弁30の開度の制御を行って、液流量調整弁30の開度を開けていく。
【0032】
以上詳細に説明したように、第1実施の形態のヒートポンプ1は、図9に示すように、冷媒回路3の冷媒目標温度ETに基づいてエンジン12の回転数を制御することにより冷媒回路3の冷媒循環量をコントロールするものである。すなわち、冷媒回路3の冷媒目標温度ETより「室内熱交換器温度」が高いときは(S201:Yes)、エンジン12の回転数を上げ方向に制御して(S202)、冷媒回路3の冷媒循環量を多くしていき、冷媒回路3の冷媒目標温度ETと「室内熱交換器温度」が等しいときは(S205:Yes)、エンジン12の回転数を維持するように制御して(S206)、冷媒回路3の冷媒循環量を保持し、冷媒回路3の冷媒目標温度ETより「室内熱交換器温度」が低いときは(S205:No)、エンジン12の回転数を下げ方向に制御して(S210,S214,S217)、冷媒回路3の冷媒循環量を少なくしていく。
【0033】
その一方で、第1実施の形態のヒートポンプ1は、図9に示すように、冷媒回路3の冷媒目標温度ETに基づいて電動水三方弁16の開度及び液流量調節弁30の開度を制御することにより冷房運転時の冷凍サイクルの蒸発工程の不足分を熱交換器17で補うものである。すなわち、冷媒回路3の冷媒目標温度ETから2℃引いた値より「室内熱交換器温度」が高いときは、電動水三方弁16の開度及び液流量調節弁30の開度を閉じ方向に制御して(S203,S204,S207,S208,S211,S212)、熱交換器17を通過するエンジン冷却水及び冷媒を少なくしていき、冷媒回路3の冷媒目標温度ETから2℃引いた値と「室内熱交換器温度」が等しいときは(S213:Yes)、電動水三方弁16の開度及び液流量調節弁30の開度を維持するように制御して(S215,S216)、熱交換器17を通過するエンジン冷却水及び冷媒を保持し、冷媒回路3の冷媒目標温度ETから2℃引いた値より「室内熱交換器温度」が低いときは(S213:No)、電動水三方弁16の開度及び液流量調節弁30の開度を開け方向に制御して(S218,S219)、熱交換器17を通過するエンジン冷却水及び冷媒を多くしていく。
【0034】
この点、第1実施の形態のヒートポンプ1では、電動水三方弁液16の開度及び液流量調節弁30の開度の制御で基準となる冷媒目標温度ETから2℃引いた値は、エンジン12の回転数の制御で使用する冷媒目標温度ETよりも2℃低く設定されているので、各制御の定常時において、エンジン12の回転数が最低でないときは、必ず、電動水三方弁16の開度及び液流量調節弁30の開度が全閉となり、逆に、電動水三方弁16の開度及び液流量調節弁30の開度が開いているときは、必ず、エンジン12の回転数が最低となる。従って、冷房運転時の冷凍サイクルの蒸発工程の不足分を補う際は、エンジン12の回転数を最低にすることが熱交換器17で補うことよりも優先されることになる。
【0035】
すなわち、第1実施の形態のヒートポンプ1では、電動水三方弁16の開度及び液流量調節弁30の開度の制御で基準となる冷媒目標温度ETから2℃引いた値をエンジン12の回転数の制御で基準となる冷媒目標温度ETよりも低く設定することにより、冷房運転時の冷凍サイクルの蒸発工程の不足分を補う際(各制御の定常時)に、エンジン12の回転数を最低にすることを熱交換器17で補うことよりも優先して行うことが可能となるので、成績係数の低下を防止することができ、さらに、このとき、図9に示すように、電動水三方弁16の開度及び液流量調節弁30の開度の制御(S203,S204,S207,S208,S211,S212,S215,S216,S218,S219)とエンジン12の回転数の制御(S202,S206,S210,S214,S217)とが独立して行われるので、電動水三方弁16の開度及び液流量調節弁30の開度の制御とエンジン12の回転数の制御とを安定に行うことができる。
【0036】
次に、第2実施の形態のヒートポンプについて説明する。第2実施の形態のヒートポンプの構成は、「従来の技術」の欄で説明した図10のヒートポンプ1と同じであり、すなわち、第1実施の形態のヒートポンプ1と同じである。
【0037】
そして、第2実施の形態のヒートポンプ1において、冷房運転を行う場合には、電動水三方弁16の開度及び液流量調節弁30の開度の制御とエンジン12の回転数の制御とを所定時間毎(例えば、1分毎)に行っている。
【0038】
ここで、電動水三方弁16の開度及び液流量調節弁30の開度の制御とエンジン12の回転数の制御とで使用される冷媒回路3の冷媒温度には、室内熱交換器22内の冷媒温度(以下、「室内熱交換器温度」という)を用いる。
【0039】
また、電動水三方弁16の開度が最大開度とは、エンジン冷却水の全流量が熱交換器17に向かうことを意味し、電動水三方弁16の開度が最小開度とは、エンジン冷却水の全流量がサーモスタット14に向かうことを意味する。従って、電動水三方弁16の開度が開方向に移動すると、熱交換器17に向かうエンジン冷却水の流量が増加するとともにサーモスタット14に向かうエンジン冷却水の流量が減少する。一方、電動水三方弁16の開度が閉方向に移動すると、熱交換器17に向かうエンジン冷却水の流量が減少するとともにサーモスタット14に向かうエンジン冷却水の流量が増加する。
【0040】
また、液流量調整弁30の開度が最大開度とは、冷媒の可能な限りの最大量が熱交換器17に向かうことを意味し、液流量調整弁30の開度が最小開度とは、冷媒の全流量が室内熱交換器22に向かうことを意味する。従って、液流量調整弁30の開度が開方向に移動すると、熱交換器17に向かう冷媒の流量が増加するとともに室内熱交換器22に向かう冷媒の流量が減少する。一方、液流量調整弁30の開度が閉方向に移動すると、熱交換器17に向かう冷媒の流量が減少するとともに室内熱交換器22に向かう冷媒の流量が増加する。
【0041】
尚、エンジン12の回転数の制御は、図示しないが、電動水三方弁16の開度及び液流量調節弁30の開度の制御とは独立して行われる。具体的には、「室内熱交換器温度」>冷媒回路3の冷媒目標温度ET+「2℃」のときは、エンジン12の回転数を上げ方向に制御して、冷媒回路3の冷媒循環量を多くしていき、冷媒回路3の冷媒目標温度ET+「2℃」≧「室内熱交換器温度」>冷媒回路3の冷媒目標温度ET−「1℃」のときは、エンジン12の回転数を維持するように制御して、冷媒回路3の冷媒循環量を保持し、冷媒回路3の冷媒目標温度ET−「1℃」≧「室内熱交換器温度」のときは、エンジン12の回転数を下げ方向に制御して、冷媒回路3の冷媒循環量を少なくしていく。すなわち、エンジン12の回転数の制御において、冷媒回路3の冷媒目標温度ET+「2℃」≧「室内熱交換器温度」>冷媒回路3の冷媒目標温度ET−「1℃」のときは、エンジン12の回転数を維持するように制御するので、第2不感帯となる。従って、エンジン12の回転数の制御に対する第2不感帯は3℃の幅を持つ。また、冷媒回路3の冷媒目標温度ETがエンジン12の回転数の制御の基準となる。
【0042】
一方、電動水三方弁16の開度及び液流量調節弁30の開度の制御は、図1〜図8に基づいて行われる。先ず、図1のS11において、図2の電動水三方弁16の制御量の計算が行われる。すなわち、電動水三方弁16の制御量の計算を行うためには、先ず、図2のS111において、圧縮機21の吐出口側の冷媒温度と、圧縮機21の吸入口側の冷媒温度、エンジン12のエンジン冷却水の温度を使用して、電動水三方弁16の上限開度を制御マップから求める。次に、S112において、「室内熱交換器温度」を使用して、電動水三方弁16の要求開度を制御マップから求める。そして、S113において、上限開度が要求開度以上であるか否かを判断する。ここで、上限開度が要求開度以上であると判断する場合には(S113:Yes)、S114に進んで、電動水三方弁16の制御量として要求開度を選択した後、S115に進んで、制御フラグとして「回避要求なし」とし、図1に戻る。一方、上限開度が要求開度以上であると判断しない場合には(S113:No)、S116に進んで、電動水三方弁16の制御量として上限開度を選択した後、S117に進んで、制御フラグとして「回避要求あり」とし、図1に戻る。
【0043】
そして、図2の電動水三方弁16の制御量の計算が行われると、図1に戻って、S12に進み、図3の液流量調整弁30の制御量の計算が行われる。すなわち、液流量調整弁30の制御量の計算を行うためには、先ず、図3のS121において、圧縮機21の吐出口側の冷媒温度と圧縮機21の吸入口側の冷媒温度を使用して、液流量調整弁30の下限開度を制御マップから求める。次に、S122において、圧縮機21の吸入口側の冷媒過熱度(圧縮機21の吸入口側の冷媒温度と、圧縮機21の吸入口側の冷媒圧力に対する飽和ガス温度とみなせる値との差)を使用して、液流量調整弁30の上限開度を制御マップから求める。さらに、S123において、「室内熱交換器温度」を使用して、液流量調整弁30の要求開度を制御マップから求める。そして、S124において、下限開度が要求開度より大きいか否かを判断する。
【0044】
ここで、下限開度が要求開度より大きいと判断する場合には(S124:Yes)、S125に進んで、上限開度が下限開度より大きいか否か判断する。このとき、上限開度が下限開度より大きいと判断する場合には(S125:Yes)、S126に進んで、液流量調整弁30の制御量として下限開度を選択した後、S127に進んで、制御フラグとして「回避要求あり」とし、図1に戻る。一方、上限開度が下限開度より大きいと判断しない場合には(S125:No)、S128に進んで、上限開度と下限開度が等しいか否か判断する。ここで、上限開度と下限開度が等しいと判断する場合には(S128:Yes)、S126に進んで、液流量調整弁30の制御量として下限開度を選択した後、S127に進んで、制御フラグとして「回避要求あり」とし、図1に戻る。一方、上限開度と下限開度が等しいと判断しない場合には(S128:No)、S129に進んで、液流量調整弁30の制御量として上限開度を選択した後、S130に進んで、制御フラグとして「回避要求あり」とし、図1に戻る。
【0045】
また、上述したS124において、下限開度が要求開度より大きいと判断しない場合には(S124:No)、S131に進んで、下限開度と要求開度とが等しいか否かを判断する。
【0046】
ここで、下限開度と要求開度とが等しいと判断する場合には(S131:Yes)、S132に進んで、上限開度が要求開度より大きいか否か判断する。このとき、上限開度が要求開度より大きいと判断する場合には(S132:Yes)、S133に進んで、液流量調整弁30の制御量として要求開度を選択した後、S134に進んで、制御フラグとして「回避要求なし」とし、図1に戻る。一方、上限開度が要求開度より大きいと判断しない場合には(S132:No)、S135に進んで、上限開度と要求開度が等しいか否か判断する。ここで、上限開度と要求開度が等しいと判断する場合には(S135:Yes)、S133に進んで、液流量調整弁30の制御量として要求開度を選択した後、S134に進んで、制御フラグとして「回避要求なし」とし、図1に戻る。一方、上限開度と要求開度が等しいと判断しない場合には(S135:No)、S136に進んで、液流量調整弁30の制御量として上限開度を選択した後、S137に進んで、制御フラグとして「回避要求あり」とし、図1に戻る。
【0047】
また、上述したS131において、下限開度と要求開度とが等しいと判断しない場合には(S131:No)、S138に進んで、上限開度が要求開度より大きいか否か判断する。このとき、上限開度が要求開度より大きいと判断する場合には(S138:Yes)、S139に進んで、液流量調整弁30の制御量として要求開度を選択した後、S140に進んで、制御フラグとして「回避要求なし」とし、図1に戻る。一方、上限開度が要求開度より大きいと判断しない場合には(S138:No)、S141に進んで、上限開度と要求開度が等しいか否か判断する。ここで、上限開度と要求開度が等しいと判断する場合には(S141:Yes)、S139に進んで、液流量調整弁30の制御量として要求開度を選択した後、S140に進んで、制御フラグとして「回避要求なし」とし、図1に戻る。一方、上限開度と要求開度が等しいと判断しない場合には(S141:No)、S142に進んで、液流量調整弁30の制御量として上限開度を選択した後、S143に進んで、制御フラグとして「回避要求あり」とし、図1に戻る。
【0048】
そして、図3の液流量調整弁30の制御量の計算が行われると、図1に戻り、S13において、「室内熱交換器温度」<冷媒回路3の冷媒目標温度ET−「3℃」であるか否かの判断をもって、上げ要求があるか否かを判断するとともに、S14において、「室内熱交換器温度」>冷媒回路3の冷媒目標温度ET−「1℃」であるか否かを判断をもって、下げ要求があるか否かを判断する。
【0049】
ここで、「室内熱交換器温度」<冷媒回路3の冷媒目標温度ET−「3℃」であると判断する場合、すなわち、上げ要求があると判断する場合には(S13:Yes)、S15に進んで、各制御フラグの全てが「回避要求なし」であるか否かを判断する。このとき、各制御フラグの全てが「回避要求なし」であると判断する場合には(S15:Yes)、図4に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御を行った後に、図1のフローチャートを終了する。一方、各制御フラグの全てが「回避要求なし」であると判断しない場合には(S15:No)、図5に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御を行った後に、図1のフローチャートを終了する。
【0050】
一方、上述したS13において、「室内熱交換器温度」<冷媒回路3の冷媒目標温度ET−「3℃」であると判断しない場合、すなわち、上げ要求があると判断しない場合(S13:No)には、S14に進む。
【0051】
そして、S14において、「室内熱交換器温度」≧冷媒回路3の冷媒目標温度ET−「1℃」であると判断する場合、すなわち、下げ要求があると判断する場合には(S14:Yes)、S17に進んで、各制御フラグの全てが「回避要求なし」であるか否かを判断する。このとき、各制御フラグの全てが「回避要求なし」であると判断する場合には(S17:Yes)、図6に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御を行った後に、図1のフローチャートを終了する。一方、各制御フラグの全てが「回避要求なし」であると判断しない場合には(S17:No)、図7に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御を行った後に、図1のフローチャートを終了する。
【0052】
一方、上述したS14において、「室内熱交換器温度」≧冷媒回路3の冷媒目標温度ET−「1℃」であると判断しない場合、すなわち、下げ要求があると判断しない場合には(S14:No)、S18に進んで、各制御フラグの全てが「回避要求なし」であるか否かを判断する。このとき、各制御フラグの全てが「回避要求なし」であると判断する場合には(S18:Yes)、電動水三方弁16の開度及び液流量調節弁30の開度を維持したままで、図1のフローチャートを終了する。一方、各制御フラグの全てが「回避要求なし」であると判断しない場合には(S18:No)、図8に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御を行った後に、図1のフローチャートを終了する。
【0053】
ここで、図4に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御について説明すると、先ず、S21において、電動水三方弁16の開度及び液流量調節弁30の開度が最小開度であるか否かを判断する。ここで、電動水三方弁16の開度及び液流量調節弁30の開度が最小開度であると判断する場合には(S21:Yes)、S22に進んで、電動水三方弁16の開度を要求開度にするとともに、S23に進んで、液流量調節弁30の開度を要求開度にする。一方、電動水三方弁16の開度及び液流量調節弁30の開度が最小開度であると判断しない場合には(S21:No)、S24に進んで、電動水三方弁16の開度及び液流量調節弁30の開度が最大開度であるか否かを判断する。
【0054】
このとき、電動水三方弁16の開度及び液流量調節弁30の開度が最大開度であると判断する場合には(S24:Yes)、電動水三方弁16の開度及び液流量調節弁30の開度を維持する。一方、電動水三方弁16の開度及び液流量調節弁30の開度が最大開度であると判断しない場合には(S24:No)、S25に進んで、電動水三方弁16の開度又は液流量調節弁30の開度が最大開度であるか否かを判断する。
【0055】
ここで、電動水三方弁16の開度又は液流量調節弁30の開度が最大開度であると判断する場合には(S25:Yes)、S26に進んで、液流量調節弁30の開度が最大開度であるか否かを判断する。このとき、液流量調節弁30の開度が最大開度であると判断する場合には(S26:Yes)、S27に進んで、電動水三方弁16の開度を要求開度にする。一方、液流量調節弁30の開度が最大開度であると判断しない場合には(S26:No)、S28に進んで、液流量調節弁30の開度を要求開度にする。
【0056】
また、上述したS25において、電動水三方弁16の開度又は液流量調節弁30の開度が最大開度であると判断しない場合には(S25:No)、S29に進んで、液流量調節弁30の開度の制御が前回の制御で行われたか否かを判断する。このとき、液流量調節弁30の開度の制御が前回の制御で行われたと判断する場合には(S29:Yes)、S30に進んで、電動水三方弁16の開度を要求開度にする。一方、液流量調節弁30の開度の制御が前回の制御で行われたと判断しない場合には(S29:No)、S31に進んで、液流量調節弁30の開度を要求開度にする。
【0057】
また、図5に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御について説明すると、先ず、S41において、電動水三方弁16の制御フラグのみが「回避要求あり」であるか否かを判断する。ここで、電動水三方弁16の制御フラグのみが「回避要求あり」であると判断する場合には(S41:Yes)、S42に進んで、液流量調節弁30の開度を要求開度にするとともに、S43に進んで、電動水三方弁16の開度を上限開度にする。一方、電動水三方弁16の制御フラグのみが「回避要求あり」であると判断しない場合には(S41:No)、S44に進んで、液流量調節弁30の制御フラグのみが「回避要求あり」であるか否かを判断する。
【0058】
このとき、液流量調節弁30の制御フラグのみが「回避要求あり」であると判断する場合には(S44:Yes)、S45に進んで、液流量調節弁30の開度の制御が開方向となるか否かを判断する。ここで、液流量調節弁30の開度の制御が開方向となると判断する場合には(S45:Yes)、S46に進んで、液流量調節弁30の開度を下限開度にする。一方、液流量調節弁30の開度の制御が開方向となると判断しない場合には(S45:No)、S47に進んで、電動水三方弁16の開度を要求開度にするとともに、S48に進んで、液流量調節弁30の開度を上限開度にする。
【0059】
また、上述したS44において、液流量調節弁30の制御フラグのみが「回避要求あり」であると判断しない場合には(S44:No)、S49に進んで、電動水三方弁16の開度を上限開度にするとともに、S50に進んで、図1のS12の計算結果に基づいて、液流量調節弁30の開度を上限開度又は下限開度にする。
【0060】
また、図6に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御について説明すると、先ず、S61において、電動水三方弁16の開度が最小開度であるか否かを判断する。ここで、電動水三方弁16の開度が最小開度であると判断する場合には(S61:Yes)、S62に進んで、液流量調節弁30の開度を要求開度にする。一方、電動水三方弁16の開度が最小開度であると判断しない場合には(S61:No)、S63に進んで、液流量調節弁30の開度の制御が前回の制御で行われた否かを判断する。このとき、液流量調節弁30の開度の制御が前回の制御で行われたと判断する場合には(S63:Yes)、S64に進んで、電動水三方弁16の開度を要求開度とする。一方、液流量調節弁30の開度の制御が前回の制御で行われたと判断しない場合には(S63:No)、液流量調節弁30の開度を要求開度とする。
【0061】
また、図7に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御について説明すると、先ず、S71において、電動水三方弁16の制御フラグ及び液流量調節弁30の制御フラグが「回避要求あり」であるか否かを判断する。ここで、電動水三方弁16の制御フラグ及び液流量調節弁30の制御フラグが「回避要求あり」であると判断する場合には(S71:Yes)、S72に進んで、電動水三方弁16の開度を上限開度とするとともに、S73に進んで、図1のS12の計算結果に基づいて、液流量調節弁30の開度を上限開度又は下限開度にする。一方、電動水三方弁16の制御フラグ及び液流量調節弁30の制御フラグが「回避要求あり」であると判断しない場合には(S71:No)、S74に進んで、電動水三方弁16の制御フラグのみが「回避要求あり」であるか否かを判断する。
【0062】
ここで、電動水三方弁16の制御フラグのみが「回避要求あり」であると判断する場合には(S74:Yes)、S75に進んで、電動水三方弁16の開度を上限開度とする。一方、電動水三方弁16の制御フラグのみが「回避要求あり」であると判断しない場合には(S74:No)、S76に進んで、電動水三方弁16の開度が最小開度であるか否かを判断する。
【0063】
このとき、電動水三方弁16の開度が最小開度であると判断する場合には(S76:Yes)、S77に進んで、図1のS12の計算結果に基づいて、液流量調節弁30の開度を上限開度又は下限開度にする。一方、電動水三方弁16の開度が最小開度であると判断しない場合には(S76:No)、S78に進んで、液流量調節弁30の開度の制御が開方向となるか否かを判断する。
【0064】
ここで、液流量調節弁30の開度の制御が開方向となると判断する場合には(S78:Yes)、S79に進んで、電動水三方弁16の開度を要求開度とするとともに、S80に進んで、液流量調節弁30の開度を上限開度にする。一方、液流量調節弁30の開度の制御が開方向となると判断しない場合には(S78:No)、S81に進んで、液流量調節弁30の開度を下限開度にする。
【0065】
また、図8に示した電動水三方弁16の開度及び液流量調節弁30の開度の制御について説明すると、先ず、S91において、電動水三方弁16の制御フラグのみが「回避要求あり」であるか否かを判断する。ここで、電動水三方弁16の制御フラグのみが「回避要求あり」であると判断する場合には(S91:Yes)、S92に進んで、電動水三方弁16の開度を上限開度とする。一方、電動水三方弁16の制御フラグのみが「回避要求あり」であると判断しない場合には(S91:No)、S93に進んで、液流量調節弁30の制御フラグのみが「回避要求あり」であるか否かを判断する。
【0066】
このとき、液流量調節弁30の制御フラグのみが「回避要求あり」であると判断する場合には(S93:Yes)、S94に進んで、図1のS12の計算結果に基づいて、液流量調節弁30の開度を上限開度又は下限開度にする。一方、液流量調節弁30の制御フラグのみが「回避要求あり」であると判断しない場合には(S93:No)、S95に進んで、図1のS12の計算結果に基づいて、液流量調節弁30の開度を上限開度又は下限開度にするとともに、S96に進んで、電動水三方弁16の開度を上限開度とする。
【0067】
以上より、第2実施の形態のヒートポンプ1では、図1に示すように、冷媒回路3の冷媒目標温度ET−「3℃」≦「室内熱交換器温度」≦冷媒回路3の冷媒目標温度ET−「1℃」のときは(S13:No,S14:No,S18:No)、電動水三方弁16の開度及び液流量調節弁30の開度を維持するように制御するので、電動水三方弁16の開度及び液流量調節弁30の開度の制御に対する第1不感帯となる。従って、電動水三方弁16の開度及び液流量調節弁30の開度の制御に対する第1不感帯は2℃の幅を持つ。また、冷媒回路3の冷媒目標温度ET−「2℃」が電動水三方弁16の開度及び液流量調節弁30の開度の制御の基準となる。また、上述したように、エンジン12の回転数の制御に対する第2不感帯は、冷媒回路3の冷媒目標温度ET−「1℃」<「室内熱交換器温度」≦冷媒回路3の冷媒目標温度ET+「2℃」であるので、電動水三方弁16の開度及び液流量調節弁30の開度の制御に対する第1不感帯と隣接することになる。
【0068】
尚、第2実施の形態のヒートポンプ1では、室内熱交換器22の冷媒温度を適正に保つことに加えて、圧縮機21の吸入口側の冷媒温度や、圧縮機21の吐出口側の冷媒温度、圧縮機21の吸入口側の冷媒過熱度を適正に保つことも考慮されている。具体的には、「室内熱交換器温度」を使用して制御マップから求められた電動水三方弁16の要求開度への制御と、「室内熱交換器温度」を使用して制御マップから求められた液流量調整弁30の要求開度への制御とが、室内熱交換器22の冷媒温度を適正に保つものであり、電動水三方弁16の上限開度又は下限開度への制御と、液流量調整弁30上限開度又は下限開度への制御とが、圧縮機21の吸入口側の冷媒温度や、圧縮機21の吐出口側の冷媒温度、圧縮機21の吸入口側の冷媒過熱度を適正に保つためのものである。
【0069】
そして、電動水三方弁16の制御フラグや液流量調節弁30の制御フラグの「回避要求なし」とは、室内熱交換器22の冷媒温度を適正に保つことが優先されることを意味し、電動水三方弁16の制御フラグや液流量調節弁30の制御フラグの「回避要求あり」とは、圧縮機21の吸入口側の冷媒温度や、圧縮機21の吐出口側の冷媒温度、圧縮機21の吸入口側の冷媒過熱度を適正に保つことが優先されることを意味する。従って、冷媒回路3の冷媒目標温度ET−「3℃」≦「室内熱交換器温度」≦冷媒回路3の冷媒目標温度ET−「1℃」のときであって(S13:No,S14:No)、電動水三方弁16の開度及び液流量調節弁30の開度の制御に対する第1不感帯にあっても、圧縮機21の吸入口側の冷媒温度や、圧縮機21の吐出口側の冷媒温度、圧縮機21の吸入口側の冷媒過熱度を適正に保つことが優先される状態にあり、電動水三方弁16の制御フラグ又は液流量調節弁30の制御フラグが「回避要求あり」であるときは(S18:No)、電動水三方弁16の開度又は液流量調節弁30の開度の制御が行われる。
【0070】
以上詳細に説明したように、第2実施の形態のヒートポンプ1は、冷媒回路3の冷媒目標温度ETに基づいてエンジン12の回転数を制御することにより冷媒回路3の冷媒循環量をコントロールするものである。その一方で、第2実施の形態のヒートポンプ1は、図1に示すように、冷媒回路3の冷媒目標温度ETに基づいて電動水三方弁16の開度及び液流量調節弁30の開度を制御することにより冷房運転時の冷凍サイクルの蒸発工程の不足分を熱交換器17で補うものである。
【0071】
この点、第2実施の形態のヒートポンプ1では、電動水三方弁液16の開度及び液流量調節弁30の開度の制御の基準となる冷媒目標温度ET−「2℃」をエンジン12の回転数の制御で基準となる冷媒目標温度ETよりも低く設定しており、各制御の定常時において、エンジン12の回転数が最低でないときは、必ず、電動水三方弁16の開度及び液流量調節弁30の開度が全閉となり、逆に、電動水三方弁16の開度及び液流量調節弁30の開度が開いているときは、必ず、エンジン12の回転数が最低となる。従って、冷房運転時の冷凍サイクルの蒸発工程の不足分を補う際は、エンジン12の回転数を最低にすることが熱交換器17で補うことよりも優先される。
【0072】
すなわち、第2実施の形態のヒートポンプ1では、電動水三方弁16の開度及び液流量調節弁30の開度の制御で基準となる冷媒目標温度ET−「2℃」をエンジン12の回転数の制御で基準となる冷媒目標温度ETよりも低く設定することにより、冷房運転時の冷凍サイクルの蒸発工程の不足分を補う際(各制御の定常時)に、エンジン12の回転数を最低にすることを熱交換器17で補うことよりも優先して行うことが可能となるので、成績係数の低下を防止することができ、さらに、このとき、電動水三方弁16の開度及び液流量調節弁30の開度の制御とエンジン12の回転数の制御とが独立して行われるので、電動水三方弁16の開度及び液流量調節弁30の開度の制御とエンジン12の回転数の制御とを安定に行うことができる。
【0073】
さらに、第2実施の形態のヒートポンプ1においては、電動水三方弁16の開度及び液流量調節弁30の開度が維持される第1不感帯(冷媒回路3の冷媒目標温度ET−「3℃」≦「室内熱交換器温度」≦冷媒回路3の冷媒目標温度ET−「1℃」)とエンジン12の回転数が維持される第2不感帯(冷媒回路3の冷媒目標温度ET−「1℃」<「室内熱交換器温度」≦冷媒回路3の冷媒目標温度ET+「2℃」)とを隣接して設けているので、電動水三方弁16の開度及び液流量調節弁30の開度の制御とエンジン12の回転数の制御とをより安定に行うことができる。
【0074】
尚、第1実施の形態及び第2実施の形態のヒートポンプ1では、電動水三方弁液16の開度及び液流量調節弁30の開度の制御の基準を冷媒目標温度ET−「2℃」としているが、この点、冷媒目標温度ETから大きく離すと、室内熱交換器22の冷媒温度を適正に保つことができなくなるので、電動水三方弁液16の開度及び液流量調節弁30の開度の制御の基準は、冷媒目標温度ETに近いことが望ましい。
【0075】
【発明の効果】
本発明のヒートポンプでは、電動水三方弁の開度及び液流量調節弁の開度の制御で基準となる冷媒目標温度をエンジンの回転数の制御で基準となる冷媒目標温度よりも低く設定することにより、冷凍サイクルの蒸発工程の不足分を補う際(各制御の定常時)に、エンジンの回転数を最低にすることを熱交換器で補うことよりも優先して行うことが可能となるので、成績係数の低下を防止することができ、さらに、このとき、電動水三方弁の開度及び液流量調節弁の開度の制御とエンジンの回転数の制御とが独立して行われるので、電動水三方弁の開度及び液流量調節弁の開度の制御とエンジンの回転数の制御とを安定に行うことができる。
【図面の簡単な説明】
【図1】第2実施の形態のヒートポンプにおいて、電動水三方弁の開度及び液流量調節弁の開度の制御を示すフローチャート図である。
【図2】第2実施の形態のヒートポンプにおいて、電動水三方弁の開度の制御量の計算手順を示すフローチャート図である。
【図3】第2実施の形態のヒートポンプにおいて、液流量調整弁の開度の制御量の計算手順を示すフローチャート図である。
【図4】第2実施の形態のヒートポンプにおいて、電動水三方弁の開度及び液流量調節弁の開度の制御を示すフローチャート図である。
【図5】第2実施の形態のヒートポンプにおいて、電動水三方弁の開度及び液流量調節弁の開度の制御を示すフローチャート図である。
【図6】第2実施の形態のヒートポンプにおいて、電動水三方弁の開度及び液流量調節弁の開度の制御を示すフローチャート図である。
【図7】第2実施の形態のヒートポンプにおいて、電動水三方弁の開度及び液流量調節弁の開度の制御を示すフローチャート図である。
【図8】第2実施の形態のヒートポンプにおいて、電動水三方弁の開度及び液流量調節弁の開度の制御を示すフローチャート図である。
【図9】第1実施の形態のヒートポンプにおいて、エンジンの回転数の制御と、電動水三方弁の開度及び液流量調節弁の開度の制御とを示すフローチャート図である。
【図10】本発明及び従来技術のヒートポンプの回路図である。
【符号の説明】
1 ヒートポンプ
2 冷却水回路
3 冷媒回路
12 エンジン
16 電動水三方弁
17 熱交換器
30 液流量調節弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump having a heat exchanger that heats a refrigerant with engine coolant.
[0002]
[Prior art]
First, the outline | summary of the heat pump 1 of FIG. 10 is demonstrated. The heat pump 1 shown in FIG. 10 includes a heat exchanger 17 that heats the refrigerant with engine cooling water, and includes a cooling water circuit 2 and a refrigerant circuit 3.
[0003]
In this respect, in the cooling water circuit 2, the temperature of the engine cooling water is lowered by guiding the engine cooling water heated by the engine 12 and the exhaust heat exchanger 18 to the radiator 13 by the water pump 11. Yes. At this time, even if the engine 12 is too cold, the thermostat 14 automatically controls the flow rate of the engine cooling water toward the radiator 13 and the flow rate of the engine cooling water toward the bypass passage 15. Further, as described above, the heat exchanger 17 that heats the refrigerant with the engine coolant is provided, and the engine coolant flow toward the heat exchanger 17 and the engine coolant toward the thermostat 14 by the electric water three-way valve 16. The flow rate is controlled.
[0004]
The radiator cap 20 provided on the downstream side of the radiator 13 is for reducing the evaporation amount of the engine cooling water by adjusting the pressure in the radiator 13, and the pressure is set higher than the atmospheric pressure. . In addition, a reserve tank 19 that is branched from the radiator cap 20 is provided for storing the engine cooling water vapor that has cooled and returned to the liquid.
[0005]
On the other hand, the refrigerant circuit 3 includes a compressor 21 driven by the engine 12, an oil separator 22 that separates refrigerant and refrigeration oil, a four-way valve 23 that switches to a cooling / heating refrigerant circuit, and heat between outdoor air and the refrigerant. Outdoor heat exchanger 24 for exchanging, indoor heat exchanger 27 for exchanging heat between indoor air and refrigerant, heat exchanger 17 for exchanging heat between engine cooling water and refrigerant, liquid refrigerant and gas refrigerant An accumulator 25 for separating the liquid and a liquid flow rate adjusting valve 30 are provided.
[0006]
The oil separator 22 is connected to the suction port of the compressor 21 and the accumulator 25 via a capillary 29.
[0007]
Here, when the heat pump 1 of FIG. 10 performs the heating operation, the following heating cycle is performed. That is, when the four-way valve 23 is switched to the heating refrigerant circuit, the refrigerant that has become high temperature and high pressure in the compressor 21 flows into the indoor heat exchanger 27 via the four-way valve 23. At this time, in the indoor heat exchanger 27, the heat is exchanged between the indoor air and the refrigerant, so that the refrigerant is condensed, while the indoor air is heated by the heat of condensation of the refrigerant to become warm air, thereby producing a heating effect. . The refrigerant that has flowed out of the indoor heat exchanger 27 is expanded by the expansion valve 23 and then flows into the outdoor heat exchanger 24. At this time, in the outdoor heat exchanger 24, the refrigerant is heated and evaporated by exchanging heat between the outdoor air and the refrigerant. Further, the refrigerant that has flowed out of the outdoor heat exchanger 24 flows into the heat exchanger 17 through the four-way valve 23. At this time, in the heat exchanger 17, the engine cooling water is cooled by exchanging heat between the engine cooling water and the refrigerant, and the refrigerant is heated and evaporated. The refrigerant that has flowed out of the heat exchanger 17 returns to the compressor 21 after the liquid refrigerant is separated by the accumulator 25.
[0008]
Therefore, in the heating cycle described above, the amount of heat of the indoor air in the indoor heat exchanger 27 can be increased as the amount of heat of evaporation of the refrigerant in the outdoor heat exchanger 24 and the heat exchanger 17 increases. In the chamber 17, heat exchange between the engine coolant and the refrigerant as much as possible leads to an increase in heating capacity.
[0009]
On the other hand, when the heat pump 1 of FIG. 10 performs the cooling operation, the following cooling cycle is performed. That is, when the four-way valve 23 is switched to the cooling refrigerant circuit, the refrigerant that has become high temperature and high pressure in the compressor 21 flows into the outdoor heat exchanger 24 through the four-way valve 23. At this time, in the outdoor heat exchanger 24, the refrigerant is condensed by exchanging heat between the outdoor air and the refrigerant. Then, the refrigerant that has flowed out of the outdoor heat exchanger 24 is expanded by the expansion valve 23 and then flows into the indoor heat exchanger 27. At this time, in the indoor heat exchanger 27, the heat is evaporated between the indoor air and the refrigerant, whereby the refrigerant is heated and evaporated, while the indoor air is cooled by the evaporating heat of the refrigerant to become cool air, and the cooling effect. Occurs. Further, the refrigerant flowing out of the indoor heat exchanger 27 flows into the heat exchanger 17 through the four-way valve 23, and the refrigerant flowing out of the heat exchanger 17 is compressed after the liquid refrigerant is separated by the accumulator 25. Return to 21.
[0010]
When the heat pump 1 of FIG. 10 performs the cooling operation, when the refrigerant evaporates in the indoor heat exchanger 27 is insufficient, the refrigerant that has flowed out of the outdoor heat exchanger 24 via the liquid flow rate adjustment valve 30. Part of the engine cooling water flows into the heat exchanger 17 and part of the engine cooling water flowing out of the engine 12 flows into the heat exchanger 17 via the electric water three-way valve 16. At this time, the heat exchanger In 17, the engine cooling water is cooled by exchanging heat between the engine cooling water and the refrigerant, while the refrigerant is heated and evaporates. Thus, the refrigerant is insufficiently evaporated in the indoor heat exchanger 27. Can be eliminated.
[0011]
However, from the viewpoint of preventing a decrease in the coefficient of performance, even when the refrigerant evaporates in the indoor heat exchanger 27 is insufficient, the apparent rotational speed of the engine 12 (corresponding to the refrigerant flow rate in the indoor heat exchanger 27). Is not the lowest, priority is given to the control for reducing the rotational speed of the engine 12, and only when the apparent rotational speed of the engine 12 is the lowest, the opening degree of the electric water three-way valve 16 and the liquid flow rate adjusting valve 30 By controlling the opening degree of the engine, the engine coolant and the refrigerant are passed through the heat exchanger 17.
[0012]
In this regard, in the heat pump 1 of FIG. 10, the control of the rotational speed of the engine 12 and the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 are linked using the same refrigerant target temperature. However, in this case, it becomes difficult to follow a sudden change in the operating state. Therefore, it is difficult to control the rotational speed of the engine 12, the opening degree of the electric water three-way valve 16, and the opening degree of the liquid flow rate adjustment valve 30. Responsiveness is improved by interrupting control.
[0013]
[Problems to be solved by the invention]
However, if the control of the rotational speed of the engine 12 or the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 is performed, the engine cooling is performed when the apparent rotational speed of the engine 12 is not the lowest. The water may be in an irregular state where it passes through the heat exchanger 17. When such an irregular state occurs, the engine coolant passes through the heat exchanger 17 when the apparent rotational speed of the engine 12 is the lowest. There was a problem that each control became unstable before returning to a regular state.
[0014]
Therefore, the present invention has been made to solve the above-described problems, and prevents a decrease in the coefficient of performance, and controls the engine speed, the opening degree of the electric water three-way valve, and the liquid flow rate adjustment valve. It is an object of the present invention to provide a heat pump that can stably control the opening degree.
[0015]
[Means for Solving the Problems]
The invention according to claim 1 made to solve this problem includes a cooling water circuit for recovering exhaust heat of an engine as a driving source, a refrigerant circuit for performing cooling and heating by a refrigeration cycle, A heat exchanger in which the refrigerant in the refrigerant circuit is a low-temperature fluid and the engine coolant in the cooling water circuit is a high-temperature fluid, a liquid flow rate control valve that controls the flow rate of the refrigerant toward the heat exchanger, and the heat An electric water three-way valve that controls the flow rate of the engine cooling water toward the exchanger, and the refrigerant circulation amount of the refrigerant circuit by controlling the engine speed based on the refrigerant target temperature of the refrigerant circuit And controlling the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve based on the refrigerant target temperature of the refrigerant circuit. In the heat pump that compensates for the shortage of the starting process with the heat exchanger, the control of the opening of the electric water three-way valve and the opening of the liquid flow control valve and the control of the engine speed are performed independently, The refrigerant target temperature used for controlling the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate regulating valve is set lower than the refrigerant target temperature used for controlling the engine speed. .
[0016]
The heat pump of the present invention having such characteristics controls the amount of refrigerant circulation in the refrigerant circuit by controlling the engine speed based on the refrigerant target temperature of the refrigerant circuit. Therefore, for example, when the refrigerant temperature of the refrigerant circuit is higher than the refrigerant target temperature of the refrigerant circuit, the engine speed is controlled to increase so that the refrigerant circulation amount of the refrigerant circuit is increased, and the refrigerant target of the refrigerant circuit is increased. When the temperature is equal to the refrigerant temperature in the refrigerant circuit, control is performed to maintain the engine speed, the refrigerant circulation amount in the refrigerant circuit is maintained, and the refrigerant temperature in the refrigerant circuit is lower than the refrigerant target temperature in the refrigerant circuit Controls the engine speed in the downward direction to reduce the amount of refrigerant circulating in the refrigerant circuit.
[0017]
On the other hand, the heat pump of the present invention heat-exchanges the shortage of the evaporation step of the refrigeration cycle by controlling the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve based on the refrigerant target temperature of the refrigerant circuit. It is to supplement with a vessel. Therefore, for example, when the refrigerant temperature of the refrigerant circuit is higher than the refrigerant target temperature of the refrigerant circuit, the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve are controlled in the closing direction to pass through the heat exchanger. When the engine coolant and refrigerant are reduced and the target refrigerant temperature in the refrigerant circuit is equal to the refrigerant temperature in the refrigerant circuit, control is performed to maintain the opening of the electric water three-way valve and the opening of the liquid flow control valve. When the engine coolant and refrigerant passing through the heat exchanger are held and the refrigerant temperature in the refrigerant circuit is lower than the refrigerant target temperature in the refrigerant circuit, the opening degree of the electric water three-way valve and the opening degree of the liquid flow control valve are adjusted. The engine cooling water and refrigerant passing through the heat exchanger are increased by controlling in the opening direction.
[0018]
In this regard, in the heat pump of the present invention, the refrigerant target temperature that serves as a reference for controlling the opening degree of the electric water three-way valve fluid and the opening of the liquid flow rate control valve is set to be higher than the refrigerant target temperature that serves as a reference in controlling the engine speed. If the engine speed is not the lowest at the steady state of each control, the opening of the electric water three-way valve and the opening of the liquid flow rate control valve are always fully closed. When the opening of the three-way valve and the opening of the liquid flow control valve are open, the engine speed is always the lowest. Therefore, when the shortage of the evaporation process of the refrigeration cycle is compensated, priority is given to minimizing the engine speed over the heat exchanger.
[0019]
That is, in the heat pump of the present invention, the reference refrigerant target temperature for controlling the opening of the electric water three-way valve and the opening of the liquid flow rate control valve is set lower than the reference refrigerant target temperature for controlling the engine speed. As a result, when making up for the shortage of the evaporation process of the refrigeration cycle (when each control is steady), it is possible to give priority to minimizing the engine speed over the heat exchanger. Therefore, it is possible to prevent a decrease in the coefficient of performance, and at this time, the control of the opening degree of the electric water three-way valve and the liquid flow rate control valve and the control of the engine speed are performed independently. Therefore, it is possible to stably control the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve and the engine speed.
[0020]
The invention according to claim 2 is the heat pump according to claim 1, wherein the first dead zone in which the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve are maintained, and the rotation of the engine A second dead zone in which the number is maintained is provided adjacently.
[0021]
Furthermore, in the heat pump of the present invention, if the first dead zone in which the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve are maintained and the second dead band in which the engine speed is maintained are provided adjacent to each other. In addition, the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve and the control of the engine speed can be more stably performed.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the heat pump according to the first embodiment will be described. The configuration of the heat pump according to the first embodiment is the same as that of the heat pump 1 of FIG. 10 described in the section “Prior art”.
The indoor heat exchanger 31 is provided with a temperature sensor 31 for measuring the refrigerant temperature in the indoor heat exchanger 31. In addition, the compressor 21 is provided with a temperature sensor 32 for measuring the refrigerant temperature on the suction port side and a temperature sensor 33 for measuring the refrigerant temperature on the discharge port side. Further, the engine 12 is provided with a temperature sensor 34 for measuring the temperature of engine cooling water. The compressor 21 is provided with a pressure sensor (not shown) for measuring the refrigerant pressure on the inlet side.
[0023]
And in the heat pump 1 of 1st Embodiment, when performing a cooling operation, as shown in FIG. 9, control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow control valve 30 and the engine 12 are performed. Is controlled every predetermined time (for example, every minute).
[0024]
Here, the refrigerant temperature of the refrigerant circuit 3 used in the control of the opening degree of the electric water three-way valve 16 and the opening of the liquid flow rate control valve 30 and the control of the rotational speed of the engine 12 includes the inside of the indoor heat exchanger 22. The refrigerant temperature (hereinafter referred to as “indoor heat exchanger temperature”) is used.
[0025]
Further, the opening degree of the electric water three-way valve 16 is fully open means that the entire flow rate of the engine cooling water is directed to the heat exchanger 17, and the opening degree of the electric water three-way valve 16 is fully closed. This means that the total flow rate is directed to the thermostat 14. Therefore, when the opening degree of the electric water three-way valve 16 moves in the opening direction, the flow rate of engine cooling water toward the heat exchanger 17 increases and the flow rate of engine cooling water toward the thermostat 14 decreases. On the other hand, when the opening degree of the electric water three-way valve 16 moves in the closing direction, the flow rate of engine cooling water toward the heat exchanger 17 decreases and the flow rate of engine cooling water toward the thermostat 14 increases.
[0026]
Moreover, the opening degree of the liquid flow rate adjustment valve 30 is fully open means that the maximum possible amount of refrigerant is directed to the heat exchanger 17, and the opening degree of the liquid flow rate adjustment valve 30 is fully closed. This means that the total flow rate of is directed to the indoor heat exchanger 22. Therefore, when the opening of the liquid flow rate adjustment valve 30 moves in the opening direction, the flow rate of the refrigerant toward the heat exchanger 17 increases and the flow rate of the refrigerant toward the indoor heat exchanger 22 decreases. On the other hand, when the opening of the liquid flow rate adjusting valve 30 moves in the closing direction, the flow rate of the refrigerant toward the heat exchanger 17 decreases and the flow rate of the refrigerant toward the indoor heat exchanger 22 increases.
[0027]
Now, when performing the cooling operation with the heat pump 1 of the first embodiment, as described above, the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 and the rotation speed of the engine 12 are controlled. Control is performed every predetermined time (for example, every minute).
That is, as shown in the flowchart of FIG. 9, first, in S210, it is determined whether or not the “indoor heat exchanger temperature” is higher than the refrigerant target temperature ET of the refrigerant circuit 3. Here, when it is determined that the “indoor heat exchanger temperature” is higher than the refrigerant target temperature ET of the refrigerant circuit 3 (S201: Yes), the process proceeds to S202, and the engine 12 is controlled for the rotational speed. Increase the number of revolutions of 12. And it progresses to S203 and the opening degree of the electric water three-way valve 16 is controlled, and the opening degree of the electric water three-way valve 16 is closed. Furthermore, it progresses to S204 and the opening degree of the liquid flow rate adjustment valve 30 is controlled, and the opening degree of the liquid flow rate adjustment valve 30 is closed.
[0028]
On the other hand, when it is not determined that the “indoor heat exchanger temperature” is higher than the refrigerant target temperature ET of the refrigerant circuit 3 (S201: No), the process proceeds to S205, where the “indoor heat exchanger temperature” is the refrigerant of the refrigerant circuit 3. It is determined whether or not it is equal to the target temperature ET. Here, when it is determined that the “indoor heat exchanger temperature” is equal to the refrigerant target temperature ET of the refrigerant circuit 3 (S205: Yes), the process proceeds to S206, and the engine 12 is controlled to control the rotational speed. Maintain the number of revolutions. And it progresses to S207 and the opening degree of the electric water three-way valve 16 is controlled, and the opening degree of the electric water three-way valve 16 is closed. Furthermore, it progresses to S208 and the opening degree of the liquid flow rate adjustment valve 30 is controlled, and the opening degree of the liquid flow rate adjustment valve 30 is closed.
[0029]
On the other hand, when it is not determined that the “indoor heat exchanger temperature” is equal to the refrigerant target temperature ET of the refrigerant circuit 3 (S205: No), the process proceeds to S209, and the “indoor heat exchanger temperature” is the refrigerant of the refrigerant circuit 3. It is determined whether the temperature is lower than 2 ° C. below the target temperature ET. Here, when it is determined that the “indoor heat exchanger temperature” is lower than the refrigerant target temperature ET of the refrigerant circuit 3 by less than 2 ° C. (S209: Yes), the process proceeds to S210, and the rotational speed of the engine 12 is controlled. Then, the rotational speed of the engine 12 is decreased. And it progresses to S211 and the opening degree of the electric water three-way valve 16 is controlled, and the opening degree of the electric water three-way valve 16 is closed. Furthermore, it progresses to S212 and the opening degree of the liquid flow rate adjustment valve 30 is controlled, and the opening degree of the liquid flow rate adjustment valve 30 is closed.
[0030]
On the other hand, when it is not determined that the “indoor heat exchanger temperature” is lower than the refrigerant target temperature ET of the refrigerant circuit 3 by less than 2 ° C. (S209: No), the process proceeds to S213, where the “indoor heat exchanger temperature” is the refrigerant. It is determined whether or not the refrigerant target temperature ET of the circuit 3 is 2 ° C. lower. Here, when it is determined that the “indoor heat exchanger temperature” is 2 ° C. lower than the refrigerant target temperature ET of the refrigerant circuit 3 (S213: Yes), the process proceeds to S214, and the rotational speed of the engine 12 is controlled. The rotational speed of the engine 12 is decreased. And it progresses to S215 and the opening degree of the electric water three-way valve 16 is controlled, and the opening degree of the electric water three-way valve 16 is maintained. Furthermore, it progresses to S212 and the opening degree of the liquid flow rate adjustment valve 30 is controlled, and the opening degree of the liquid flow rate adjustment valve 30 is maintained.
[0031]
On the other hand, when it is not determined that the “indoor heat exchanger temperature” is 2 ° C. lower than the refrigerant target temperature ET of the refrigerant circuit 3 (S213: No), the process proceeds to S217, and the engine 12 is controlled for the engine speed. Decrease the number of revolutions of 12. And it progresses to S218 and the opening degree of the electric water three-way valve 16 is opened by controlling the opening degree of the electric water three-way valve 16. Furthermore, it progresses to S219 and the opening degree of the liquid flow rate adjustment valve 30 is controlled, and the opening degree of the liquid flow rate adjustment valve 30 is opened.
[0032]
As described above in detail, the heat pump 1 according to the first embodiment is configured so that the rotation speed of the engine 12 is controlled based on the refrigerant target temperature ET of the refrigerant circuit 3 as shown in FIG. It controls the amount of refrigerant circulation. That is, when the “indoor heat exchanger temperature” is higher than the refrigerant target temperature ET of the refrigerant circuit 3 (S201: Yes), the rotational speed of the engine 12 is controlled to increase (S202), and the refrigerant circulation of the refrigerant circuit 3 is performed. When the refrigerant target temperature ET of the refrigerant circuit 3 is equal to the “indoor heat exchanger temperature” (S205: Yes), the engine 12 is controlled to maintain the rotational speed (S206). When the refrigerant circulation amount of the refrigerant circuit 3 is maintained and the “indoor heat exchanger temperature” is lower than the refrigerant target temperature ET of the refrigerant circuit 3 (S205: No), the rotational speed of the engine 12 is controlled to decrease ( S210, S214, S217), the refrigerant circulation amount of the refrigerant circuit 3 is decreased.
[0033]
On the other hand, as shown in FIG. 9, the heat pump 1 of the first embodiment sets the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 based on the refrigerant target temperature ET of the refrigerant circuit 3. By controlling, the heat exchanger 17 compensates for the shortage of the evaporation step of the refrigeration cycle during the cooling operation. That is, when the “indoor heat exchanger temperature” is higher than the value obtained by subtracting 2 ° C. from the refrigerant target temperature ET of the refrigerant circuit 3, the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 are set in the closing direction. Control (S203, S204, S207, S208, S211, S212), the engine cooling water and refrigerant passing through the heat exchanger 17 are reduced, and a value obtained by subtracting 2 ° C. from the refrigerant target temperature ET of the refrigerant circuit 3 When the “indoor heat exchanger temperature” is equal (S213: Yes), the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 are controlled to be maintained (S215, S216), and heat exchange is performed. If the “indoor heat exchanger temperature” is lower than the value obtained by subtracting 2 ° C. from the refrigerant target temperature ET of the refrigerant circuit 3 (S213: No), the electric water three-way valve is held. 16 opening and liquid By controlling the direction opening the opening amount adjusting valve 30 (S218, S219), continue to increase the engine cooling water and the refrigerant passing through the heat exchanger 17.
[0034]
In this regard, in the heat pump 1 of the first embodiment, the value obtained by subtracting 2 ° C. from the reference refrigerant target temperature ET in the control of the opening degree of the electric water three-way valve liquid 16 and the opening degree of the liquid flow rate adjustment valve 30 is the engine Since the refrigerant target temperature ET used in the control of the rotational speed of 12 is set to be 2 ° C. lower than the target temperature ET of the engine 12, when the rotational speed of the engine 12 is not the lowest in the steady state of each control, When the opening degree and the opening degree of the liquid flow rate adjustment valve 30 are fully closed, and conversely, when the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 are open, the rotational speed of the engine 12 is always set. Is the lowest. Therefore, when the shortage of the evaporation step of the refrigeration cycle during the cooling operation is compensated, priority is given to minimizing the rotational speed of the engine 12 over supplementing with the heat exchanger 17.
[0035]
That is, in the heat pump 1 of the first embodiment, the value obtained by subtracting 2 ° C. from the reference refrigerant target temperature ET in the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 is the rotation of the engine 12. By setting the temperature lower than the reference refrigerant target temperature ET in the control of the number, when the shortage of the evaporation process of the refrigeration cycle during the cooling operation is compensated (at the time of steady state of each control), the rotational speed of the engine 12 is minimized. Can be performed with priority over supplementing with the heat exchanger 17, so that the coefficient of performance can be prevented from being lowered. Further, at this time, as shown in FIG. Control of the opening degree of the valve 16 and the opening degree of the liquid flow rate control valve 30 (S203, S204, S207, S208, S211, S212, S215, S216, S218, S219) and the rotation speed control of the engine 12 (S20) , S206, S210, S214, S217) are performed independently, so that the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 and the control of the rotational speed of the engine 12 are stably performed. be able to.
[0036]
Next, the heat pump of the second embodiment will be described. The configuration of the heat pump of the second embodiment is the same as that of the heat pump 1 of FIG. 10 described in the section “Prior art”, that is, the same as the heat pump 1 of the first embodiment.
[0037]
And in the heat pump 1 of 2nd Embodiment, when performing a cooling operation, control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow control valve 30 and control of the rotation speed of the engine 12 are predetermined. This is done every hour (for example, every minute).
[0038]
Here, the refrigerant temperature of the refrigerant circuit 3 used in the control of the opening degree of the electric water three-way valve 16 and the opening of the liquid flow rate control valve 30 and the control of the rotational speed of the engine 12 includes the inside of the indoor heat exchanger 22. The refrigerant temperature (hereinafter referred to as “indoor heat exchanger temperature”) is used.
[0039]
Further, the maximum opening degree of the electric water three-way valve 16 means that the entire flow rate of the engine cooling water is directed to the heat exchanger 17, and the opening degree of the electric water three-way valve 16 is the minimum opening degree. It means that the total flow rate of engine cooling water is directed to the thermostat 14. Therefore, when the opening degree of the electric water three-way valve 16 moves in the opening direction, the flow rate of engine cooling water toward the heat exchanger 17 increases and the flow rate of engine cooling water toward the thermostat 14 decreases. On the other hand, when the opening degree of the electric water three-way valve 16 moves in the closing direction, the flow rate of engine cooling water toward the heat exchanger 17 decreases and the flow rate of engine cooling water toward the thermostat 14 increases.
[0040]
Further, the maximum opening degree of the liquid flow rate adjustment valve 30 means that the maximum possible amount of the refrigerant is directed to the heat exchanger 17, and the opening degree of the liquid flow rate adjustment valve 30 is the minimum opening degree. Means that the total flow rate of the refrigerant is directed to the indoor heat exchanger 22. Therefore, when the opening of the liquid flow rate adjustment valve 30 moves in the opening direction, the flow rate of the refrigerant toward the heat exchanger 17 increases and the flow rate of the refrigerant toward the indoor heat exchanger 22 decreases. On the other hand, when the opening of the liquid flow rate adjusting valve 30 moves in the closing direction, the flow rate of the refrigerant toward the heat exchanger 17 decreases and the flow rate of the refrigerant toward the indoor heat exchanger 22 increases.
[0041]
Although not shown, the control of the rotational speed of the engine 12 is performed independently of the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30. Specifically, when “indoor heat exchanger temperature”> refrigerant target temperature ET of the refrigerant circuit 3+ “2 ° C.”, the rotational speed of the engine 12 is controlled to increase so that the refrigerant circulation amount of the refrigerant circuit 3 is increased. When the refrigerant target temperature ET of the refrigerant circuit 3+ “2 ° C.” ≧ “indoor heat exchanger temperature”> refrigerant target temperature ET of the refrigerant circuit 3− “1 ° C.”, the rotational speed of the engine 12 is maintained. The refrigerant circulation amount of the refrigerant circuit 3 is maintained, and when the refrigerant target temperature ET− “1 ° C.” ≧ “indoor heat exchanger temperature” of the refrigerant circuit 3, the rotational speed of the engine 12 is decreased. The amount of refrigerant circulating in the refrigerant circuit 3 is reduced by controlling in the direction. That is, in the control of the rotation speed of the engine 12, when the refrigerant target temperature ET of the refrigerant circuit 3+ “2 ° C.” ≧ “indoor heat exchanger temperature”> the refrigerant target temperature ET− “1 ° C.” of the refrigerant circuit 3, the engine Since the control is performed so as to maintain the rotational speed of 12, a second dead zone is obtained. Therefore, the second dead zone for controlling the rotational speed of the engine 12 has a width of 3 ° C. Further, the refrigerant target temperature ET of the refrigerant circuit 3 is a reference for controlling the rotational speed of the engine 12.
[0042]
On the other hand, control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 is performed based on FIGS. First, in S11 of FIG. 1, the control amount of the electric water three-way valve 16 of FIG. 2 is calculated. That is, in order to calculate the control amount of the electric water three-way valve 16, first, in S111 of FIG. 2, the refrigerant temperature on the discharge port side of the compressor 21, the refrigerant temperature on the suction port side of the compressor 21, and the engine The upper limit opening degree of the electric water three-way valve 16 is obtained from the control map using the engine cooling water temperature of 12. Next, in S112, the required opening degree of the electric water three-way valve 16 is obtained from the control map using the “indoor heat exchanger temperature”. In step S113, it is determined whether the upper limit opening is equal to or greater than the required opening. Here, when it is determined that the upper limit opening is equal to or greater than the required opening (S113: Yes), the process proceeds to S114, the required opening is selected as the control amount of the electric water three-way valve 16, and then the process proceeds to S115. Thus, the control flag is set to “no avoidance request” and the processing returns to FIG. On the other hand, when it is not determined that the upper limit opening is equal to or greater than the required opening (S113: No), the process proceeds to S116, the upper limit opening is selected as the control amount of the electric water three-way valve 16, and then the process proceeds to S117. Then, the control flag is “avoidance requested” and the processing returns to FIG.
[0043]
When the control amount of the electric water three-way valve 16 in FIG. 2 is calculated, the process returns to FIG. 1 and proceeds to S12, where the control amount of the liquid flow rate adjustment valve 30 in FIG. 3 is calculated. That is, in order to calculate the control amount of the liquid flow rate adjustment valve 30, first, the refrigerant temperature on the discharge port side of the compressor 21 and the refrigerant temperature on the suction port side of the compressor 21 are used in S121 of FIG. Thus, the lower limit opening of the liquid flow rate adjusting valve 30 is obtained from the control map. Next, in S122, the refrigerant superheat degree on the inlet side of the compressor 21 (the difference between the refrigerant temperature on the inlet side of the compressor 21 and the value that can be regarded as the saturated gas temperature with respect to the refrigerant pressure on the inlet side of the compressor 21). ) To obtain the upper limit opening of the liquid flow rate adjustment valve 30 from the control map. Further, in S123, the required opening degree of the liquid flow rate adjustment valve 30 is obtained from the control map using the “indoor heat exchanger temperature”. In S124, it is determined whether the lower limit opening is larger than the required opening.
[0044]
Here, when it is determined that the lower limit opening is larger than the required opening (S124: Yes), the process proceeds to S125, and it is determined whether the upper limit opening is larger than the lower limit opening. At this time, when it is determined that the upper limit opening is larger than the lower limit opening (S125: Yes), the process proceeds to S126, and after selecting the lower limit opening as the control amount of the liquid flow rate adjustment valve 30, the process proceeds to S127. Then, the control flag is “avoidance requested” and the processing returns to FIG. On the other hand, when it is not determined that the upper limit opening is larger than the lower limit opening (S125: No), the process proceeds to S128, and it is determined whether the upper limit opening and the lower limit opening are equal. Here, when it is determined that the upper limit opening and the lower limit opening are equal (S128: Yes), the process proceeds to S126, the lower limit opening is selected as the control amount of the liquid flow rate adjustment valve 30, and then the process proceeds to S127. Then, the control flag is “avoidance requested” and the processing returns to FIG. On the other hand, when it is not determined that the upper limit opening is equal to the lower limit opening (S128: No), the process proceeds to S129, and after selecting the upper limit opening as the control amount of the liquid flow rate adjustment valve 30, the process proceeds to S130. The control flag is “avoidance requested” and the processing returns to FIG.
[0045]
In S124 described above, when it is not determined that the lower limit opening is larger than the required opening (S124: No), the process proceeds to S131, and it is determined whether or not the lower limit opening and the required opening are equal.
[0046]
Here, when it is determined that the lower limit opening is equal to the required opening (S131: Yes), the process proceeds to S132, and it is determined whether the upper limit opening is larger than the required opening. At this time, when it is determined that the upper limit opening is larger than the required opening (S132: Yes), the process proceeds to S133, the requested opening is selected as the control amount of the liquid flow rate adjustment valve 30, and then the process proceeds to S134. Then, “no avoidance request” is set as the control flag, and the flow returns to FIG. On the other hand, when it is not determined that the upper limit opening is larger than the required opening (S132: No), the process proceeds to S135, and it is determined whether the upper limit opening and the required opening are equal. Here, when it is determined that the upper limit opening and the required opening are equal (S135: Yes), the process proceeds to S133, the requested opening is selected as the control amount of the liquid flow rate adjustment valve 30, and then the process proceeds to S134. Then, “no avoidance request” is set as the control flag, and the flow returns to FIG. On the other hand, when it is not determined that the upper limit opening and the required opening are equal (S135: No), the process proceeds to S136, and after selecting the upper limit opening as the control amount of the liquid flow rate adjustment valve 30, the process proceeds to S137. The control flag is “avoidance requested” and the processing returns to FIG.
[0047]
In S131 described above, when it is not determined that the lower limit opening is equal to the required opening (S131: No), the process proceeds to S138, and it is determined whether the upper limit opening is larger than the required opening. At this time, when it is determined that the upper limit opening is larger than the required opening (S138: Yes), the process proceeds to S139, and after selecting the required opening as the control amount of the liquid flow rate adjusting valve 30, the process proceeds to S140. Then, “no avoidance request” is set as the control flag, and the flow returns to FIG. On the other hand, when it is not determined that the upper limit opening is larger than the required opening (S138: No), the process proceeds to S141, and it is determined whether the upper limit opening and the required opening are equal. Here, when it is determined that the upper limit opening is equal to the required opening (S141: Yes), the process proceeds to S139, the required opening is selected as the control amount of the liquid flow rate adjustment valve 30, and then the process proceeds to S140. Then, “no avoidance request” is set as the control flag, and the flow returns to FIG. On the other hand, when it is not determined that the upper limit opening and the required opening are equal (S141: No), the process proceeds to S142, and after selecting the upper limit opening as the control amount of the liquid flow rate adjustment valve 30, the process proceeds to S143. The control flag is “avoidance requested” and the processing returns to FIG.
[0048]
3 is calculated, the process returns to FIG. 1, and in S13, “indoor heat exchanger temperature” <refrigerant target temperature ET of the refrigerant circuit 3− “3 ° C.” Whether or not there is a request for raising is determined based on whether or not there is a request, and whether or not “indoor heat exchanger temperature”> refrigerant target temperature ET of the refrigerant circuit 3− “1 ° C.” is determined in S14. Based on the judgment, it is judged whether or not there is a lowering request.
[0049]
Here, when it is determined that “indoor heat exchanger temperature” <refrigerant target temperature ET of the refrigerant circuit 3− “3 ° C.”, that is, when it is determined that there is an increase request (S13: Yes), S15 Then, it is determined whether or not all the control flags are “no avoidance request”. At this time, when it is determined that all of the control flags are “no avoidance request” (S15: Yes), the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 shown in FIG. After performing the above control, the flowchart of FIG. On the other hand, when it is not determined that all of the control flags are “no avoidance request” (S15: No), the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 shown in FIG. After performing the control, the flowchart of FIG. 1 is terminated.
[0050]
On the other hand, in S13 described above, when it is not determined that “indoor heat exchanger temperature” <refrigerant target temperature ET of the refrigerant circuit 3− “3 ° C.”, that is, when it is not determined that there is an increase request (S13: No). The process proceeds to S14.
[0051]
In S14, when it is determined that “indoor heat exchanger temperature” ≧ refrigerant target temperature ET of the refrigerant circuit 3− “1 ° C.”, that is, when it is determined that there is a request for lowering (S14: Yes). In S17, it is determined whether or not all the control flags are “no avoidance request”. At this time, when it is determined that all of the control flags are “no avoidance request” (S17: Yes), the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow control valve 30 shown in FIG. After performing the above control, the flowchart of FIG. On the other hand, when it is not determined that all of the control flags are “no avoidance request” (S17: No), the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 shown in FIG. After performing the control, the flowchart of FIG. 1 is terminated.
[0052]
On the other hand, in S14 described above, when it is not determined that “indoor heat exchanger temperature” ≧ refrigerant target temperature ET of the refrigerant circuit 3− “1 ° C.”, that is, when it is not determined that there is a reduction request (S14: No), the process proceeds to S18, and it is determined whether or not all the control flags are “no avoidance request”. At this time, when it is determined that all the control flags are “no avoidance request” (S18: Yes), the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 are maintained. Then, the flowchart of FIG. On the other hand, when it is not determined that all of the control flags are “no avoidance request” (S18: No), the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 shown in FIG. After performing the control, the flowchart of FIG. 1 is terminated.
[0053]
Here, the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 shown in FIG. 4 will be described. First, in S21, the opening degree of the electric water three-way valve 16 and the liquid flow rate adjustment valve 30 are explained. It is determined whether or not the opening is a minimum opening. Here, when it is determined that the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 are the minimum opening degree (S21: Yes), the process proceeds to S22 and the electric water three-way valve 16 is opened. In addition to setting the degree to the required opening, the process proceeds to S23 to set the opening of the liquid flow rate control valve 30 to the required opening. On the other hand, when it is not determined that the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 are the minimum opening degree (S21: No), the process proceeds to S24 and the opening degree of the electric water three-way valve 16 is reached. In addition, it is determined whether or not the opening degree of the liquid flow control valve 30 is the maximum opening degree.
[0054]
At this time, when it is determined that the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 are the maximum opening degree (S24: Yes), the opening degree and liquid flow rate adjustment of the electric water three-way valve 16 are adjusted. The opening degree of the valve 30 is maintained. On the other hand, when it is not determined that the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 are the maximum opening degree (S24: No), the process proceeds to S25 and the opening degree of the electric water three-way valve 16 is reached. Alternatively, it is determined whether or not the opening degree of the liquid flow control valve 30 is the maximum opening degree.
[0055]
Here, when it is determined that the opening degree of the electric water three-way valve 16 or the opening degree of the liquid flow rate adjustment valve 30 is the maximum opening degree (S25: Yes), the process proceeds to S26 and the opening of the liquid flow rate adjustment valve 30 is started. It is determined whether the degree is the maximum opening. At this time, when it is determined that the opening degree of the liquid flow control valve 30 is the maximum opening degree (S26: Yes), the process proceeds to S27, and the opening degree of the electric water three-way valve 16 is set to the required opening degree. On the other hand, when it is not determined that the opening degree of the liquid flow rate adjustment valve 30 is the maximum opening degree (S26: No), the process proceeds to S28, and the opening degree of the liquid flow rate adjustment valve 30 is set to the required opening degree.
[0056]
In S25 described above, when it is not determined that the opening degree of the electric water three-way valve 16 or the liquid flow rate adjustment valve 30 is the maximum opening degree (S25: No), the process proceeds to S29 to adjust the liquid flow rate. It is determined whether or not the opening degree of the valve 30 has been controlled by the previous control. At this time, when it is determined that the control of the opening degree of the liquid flow control valve 30 was performed in the previous control (S29: Yes), the process proceeds to S30, and the opening degree of the electric water three-way valve 16 is set to the required opening degree. To do. On the other hand, when it is not determined that the control of the opening degree of the liquid flow rate adjustment valve 30 has been performed by the previous control (S29: No), the process proceeds to S31 and the opening degree of the liquid flow rate adjustment valve 30 is set to the required opening degree. .
[0057]
Further, the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 shown in FIG. 5 will be described. First, in S41, only the control flag of the electric water three-way valve 16 is “with an avoidance request” It is determined whether or not. Here, when it is determined that only the control flag of the electric water three-way valve 16 is “avoidance requested” (S41: Yes), the process proceeds to S42, and the opening of the liquid flow control valve 30 is set to the requested opening. At the same time, the process proceeds to S43 and the opening degree of the electric water three-way valve 16 is set to the upper limit opening degree. On the other hand, when it is not determined that only the control flag of the electric water three-way valve 16 is “avoidance requested” (S41: No), the process proceeds to S44, and only the control flag of the liquid flow rate control valve 30 is “avoidance requested. Is determined.
[0058]
At this time, when it is determined that only the control flag of the liquid flow rate control valve 30 is “avoidance requested” (S44: Yes), the process proceeds to S45, where the control of the opening degree of the liquid flow rate control valve 30 is the opening direction. It is determined whether or not. Here, when it is determined that the control of the opening degree of the liquid flow control valve 30 is in the opening direction (S45: Yes), the process proceeds to S46, and the opening degree of the liquid flow control valve 30 is set to the lower limit opening degree. On the other hand, when it is not determined that the control of the opening degree of the liquid flow rate control valve 30 is in the opening direction (S45: No), the process proceeds to S47, the opening degree of the electric water three-way valve 16 is set to the required opening degree, and S48. Then, the opening of the liquid flow control valve 30 is set to the upper limit opening.
[0059]
Further, in S44 described above, when it is not determined that only the control flag of the liquid flow rate adjustment valve 30 is “avoidance requested” (S44: No), the process proceeds to S49 and the opening degree of the electric water three-way valve 16 is increased. In addition to the upper limit opening, the process proceeds to S50, and the opening of the liquid flow rate control valve 30 is set to the upper limit opening or the lower limit opening based on the calculation result of S12 in FIG.
[0060]
Further, the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 shown in FIG. 6 will be described. First, in S61, is the opening degree of the electric water three-way valve 16 the minimum opening degree? Judge whether or not. Here, when it is determined that the opening degree of the electric water three-way valve 16 is the minimum opening degree (S61: Yes), the process proceeds to S62, and the opening degree of the liquid flow control valve 30 is set to the required opening degree. On the other hand, when it is not determined that the opening degree of the electric water three-way valve 16 is the minimum opening degree (S61: No), the process proceeds to S63 and the opening degree of the liquid flow rate control valve 30 is controlled by the previous control. Judge whether or not. At this time, when it is determined that the control of the opening degree of the liquid flow control valve 30 was performed by the previous control (S63: Yes), the process proceeds to S64, and the opening degree of the electric water three-way valve 16 is set as the required opening degree. To do. On the other hand, when it is not determined that the control of the opening degree of the liquid flow rate adjustment valve 30 was performed by the previous control (S63: No), the opening degree of the liquid flow rate adjustment valve 30 is set as the required opening degree.
[0061]
Further, the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 shown in FIG. 7 will be described. First, in S71, the control flag of the electric water three-way valve 16 and the liquid flow rate adjustment valve 30 are set. It is determined whether or not the control flag is “avoidance requested”. Here, when it is determined that the control flag of the electric water three-way valve 16 and the control flag of the liquid flow rate adjusting valve 30 are “avoidance requested” (S71: Yes), the process proceeds to S72, and the electric water three-way valve 16 Is set to the upper limit opening, and the process proceeds to S73, where the opening of the liquid flow control valve 30 is set to the upper limit opening or the lower limit opening based on the calculation result of S12 in FIG. On the other hand, when it is not determined that the control flag of the electric water three-way valve 16 and the control flag of the liquid flow rate adjustment valve 30 are “avoidance requested” (S71: No), the process proceeds to S74 and the electric water three-way valve 16 It is determined whether only the control flag is “avoidance requested”.
[0062]
Here, when it is determined that only the control flag of the electric water three-way valve 16 is “avoidance requested” (S74: Yes), the process proceeds to S75, and the opening degree of the electric water three-way valve 16 is set to the upper limit opening degree. To do. On the other hand, when it is not determined that only the control flag of the electric water three-way valve 16 is “avoidance requested” (S74: No), the process proceeds to S76, and the opening degree of the electric water three-way valve 16 is the minimum opening degree. Determine whether or not.
[0063]
At this time, when it is determined that the opening degree of the electric water three-way valve 16 is the minimum opening degree (S76: Yes), the process proceeds to S77, and based on the calculation result of S12 of FIG. Is set to the upper limit or the lower limit. On the other hand, when it is not determined that the opening degree of the electric water three-way valve 16 is the minimum opening degree (S76: No), the process proceeds to S78, and whether or not the control of the opening degree of the liquid flow control valve 30 is in the opening direction. Determine whether.
[0064]
Here, when it is determined that the control of the opening degree of the liquid flow rate control valve 30 is in the opening direction (S78: Yes), the process proceeds to S79 and the opening degree of the electric water three-way valve 16 is set as the required opening degree. Proceeding to S80, the opening of the liquid flow rate adjustment valve 30 is set to the upper limit opening. On the other hand, when it is not determined that the control of the opening degree of the liquid flow rate adjustment valve 30 is in the opening direction (S78: No), the process proceeds to S81, and the opening degree of the liquid flow rate adjustment valve 30 is set to the lower limit opening degree.
[0065]
Further, the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjusting valve 30 shown in FIG. 8 will be described. First, in S91, only the control flag of the electric water three-way valve 16 indicates “avoidance is requested”. It is determined whether or not. Here, when it is determined that only the control flag of the electric water three-way valve 16 is “avoidance requested” (S91: Yes), the process proceeds to S92, and the opening degree of the electric water three-way valve 16 is set as the upper limit opening degree. To do. On the other hand, when it is not determined that only the control flag of the electric water three-way valve 16 is “avoidance requested” (S91: No), the process proceeds to S93, and only the control flag of the liquid flow rate control valve 30 is “avoidance requested”. Is determined.
[0066]
At this time, when it is determined that only the control flag of the liquid flow rate adjustment valve 30 is “avoidance requested” (S93: Yes), the process proceeds to S94, and the liquid flow rate is determined based on the calculation result of S12 of FIG. The opening degree of the control valve 30 is set to the upper limit opening degree or the lower limit opening degree. On the other hand, when it is not determined that only the control flag of the liquid flow rate adjustment valve 30 is “avoidance requested” (S93: No), the process proceeds to S95, and the liquid flow rate adjustment is performed based on the calculation result of S12 of FIG. While making the opening degree of the valve 30 into an upper limit opening degree or a lower limit opening degree, it progresses to S96 and makes the opening degree of the electric water three-way valve 16 into an upper limit opening degree.
[0067]
As described above, in the heat pump 1 of the second embodiment, as shown in FIG. 1, the refrigerant target temperature ET of the refrigerant circuit 3− “3 ° C.” ≦ “indoor heat exchanger temperature” ≦ the refrigerant target temperature ET of the refrigerant circuit 3. -When it is "1 degreeC" (S13: No, S14: No, S18: No), since it controls so that the opening degree of the electrically-driven water three-way valve 16 and the opening degree of the liquid flow control valve 30 are maintained, electrically-driven water This is a first dead zone for controlling the opening of the three-way valve 16 and the opening of the liquid flow rate control valve 30. Therefore, the first dead zone for controlling the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 has a width of 2 ° C. The refrigerant target temperature ET− “2 ° C.” of the refrigerant circuit 3 is a reference for controlling the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30. Further, as described above, the second dead zone for the control of the rotational speed of the engine 12 is the refrigerant target temperature ET of the refrigerant circuit 3− “1 ° C.” <“Indoor heat exchanger temperature” ≦ the refrigerant target temperature ET + of the refrigerant circuit 3. Since it is “2 ° C.”, it is adjacent to the first dead zone for the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30.
[0068]
In the heat pump 1 of the second embodiment, in addition to keeping the refrigerant temperature of the indoor heat exchanger 22 appropriate, the refrigerant temperature on the suction port side of the compressor 21 and the refrigerant on the discharge port side of the compressor 21. It is also considered that the temperature and the degree of refrigerant superheating on the inlet side of the compressor 21 are appropriately maintained. Specifically, the control to the required opening degree of the electric water three-way valve 16 obtained from the control map using the “indoor heat exchanger temperature” and the control map using the “indoor heat exchanger temperature” The obtained control of the liquid flow rate adjusting valve 30 to the required opening degree keeps the refrigerant temperature of the indoor heat exchanger 22 properly, and the electric water three-way valve 16 is controlled to the upper limit opening degree or the lower limit opening degree. And the control to the upper limit opening or the lower limit opening of the liquid flow rate adjusting valve 30 are the refrigerant temperature on the suction port side of the compressor 21, the refrigerant temperature on the discharge port side of the compressor 21, and the suction port side of the compressor 21. This is to keep the degree of refrigerant superheat appropriately.
[0069]
And, “no avoidance request” in the control flag of the electric water three-way valve 16 and the control flag of the liquid flow rate control valve 30 means that priority is given to keeping the refrigerant temperature in the indoor heat exchanger 22 appropriate, “There is a request for avoidance” of the control flag of the electric water three-way valve 16 and the control flag of the liquid flow rate control valve 30 means that the refrigerant temperature at the suction port side of the compressor 21, the refrigerant temperature at the discharge port side of the compressor 21, and compression It means that priority is given to keeping the refrigerant superheat degree at the inlet side of the machine 21 properly. Therefore, when the refrigerant target temperature ET− “3 ° C.” ≦ “the indoor heat exchanger temperature” ≦ the refrigerant target temperature ET− “1 ° C.” of the refrigerant circuit 3 (S13: No, S14: No ) Even in the first dead zone for the control of the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30, the refrigerant temperature on the inlet side of the compressor 21 and the outlet side of the compressor 21 It is in a state where priority is given to appropriately maintaining the refrigerant temperature and the refrigerant superheat degree on the inlet side of the compressor 21, and the control flag of the electric water three-way valve 16 or the control flag of the liquid flow rate adjustment valve 30 is “avoidance requested”. (S18: No), the opening degree of the electric water three-way valve 16 or the opening degree of the liquid flow rate control valve 30 is controlled.
[0070]
As described above in detail, the heat pump 1 of the second embodiment controls the refrigerant circulation amount of the refrigerant circuit 3 by controlling the rotational speed of the engine 12 based on the refrigerant target temperature ET of the refrigerant circuit 3. It is. On the other hand, as shown in FIG. 1, the heat pump 1 of the second embodiment sets the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 based on the refrigerant target temperature ET of the refrigerant circuit 3. By controlling, the heat exchanger 17 compensates for the shortage of the evaporation step of the refrigeration cycle during the cooling operation.
[0071]
In this regard, in the heat pump 1 of the second embodiment, the refrigerant target temperature ET− “2 ° C.”, which serves as a reference for controlling the opening degree of the electric water three-way valve liquid 16 and the opening degree of the liquid flow rate adjustment valve 30, is set to the engine 12. When the rotational speed of the engine 12 is set to be lower than the reference refrigerant target temperature ET in the control of the rotational speed and the engine 12 is not at the lowest speed in the steady state of each control, the opening degree and liquid of the electric water three-way valve 16 are always When the opening degree of the flow control valve 30 is fully closed and, conversely, when the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow control valve 30 are open, the rotational speed of the engine 12 is always the lowest. . Accordingly, when the shortage of the evaporation process of the refrigeration cycle during the cooling operation is compensated, the lowest speed of the engine 12 is prioritized over the heat exchanger 17.
[0072]
That is, in the heat pump 1 of the second embodiment, the refrigerant target temperature ET− “2 ° C.” that serves as a reference in controlling the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 is set to the rotational speed of the engine 12. By setting the temperature lower than the reference refrigerant target temperature ET in the control of the engine, when the shortage of the evaporation process of the refrigeration cycle during the cooling operation is compensated (at the steady state of each control), the engine 12 is rotated at the minimum speed. Since it is possible to preferentially perform the operation over the heat exchanger 17, it is possible to prevent a decrease in the coefficient of performance. Further, at this time, the opening degree and the liquid flow rate of the electric water three-way valve 16 can be prevented. Since the control of the opening of the control valve 30 and the control of the rotational speed of the engine 12 are performed independently, the control of the opening of the electric water three-way valve 16 and the opening of the liquid flow control valve 30 and the rotational speed of the engine 12 are performed. Can be controlled stably
[0073]
Furthermore, in the heat pump 1 of the second embodiment, the first dead zone (the refrigerant target temperature ET− “3 ° C. of the refrigerant circuit 3) in which the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate adjustment valve 30 are maintained. ”≦“ Indoor heat exchanger temperature ”≦ Refrigerant target temperature ET of the refrigerant circuit 3−“ 1 ° C. ”) and the second dead zone in which the rotation speed of the engine 12 is maintained (Refrigerant target temperature ET of the refrigerant circuit 3−“ 1 ° C. ”) ”<“ Indoor heat exchanger temperature ”≦ refrigerant target temperature ET +“ 2 ° C. ”) of the refrigerant circuit 3), the opening degree of the electric water three-way valve 16 and the opening degree of the liquid flow rate control valve 30 And the rotation speed of the engine 12 can be more stably performed.
[0074]
In the heat pump 1 of the first embodiment and the second embodiment, the reference of the control of the opening degree of the electric water three-way valve liquid 16 and the opening degree of the liquid flow rate adjustment valve 30 is the refrigerant target temperature ET− “2 ° C.”. However, if it is greatly separated from the refrigerant target temperature ET at this point, the refrigerant temperature of the indoor heat exchanger 22 cannot be maintained properly, so the opening degree of the electric water three-way valve liquid 16 and the liquid flow rate adjustment valve 30 It is desirable that the standard for controlling the opening is close to the refrigerant target temperature ET.
[0075]
【The invention's effect】
In the heat pump of the present invention, the reference refrigerant target temperature in the control of the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve is set lower than the reference refrigerant target temperature in the control of the engine speed. Therefore, when making up for the shortage of the evaporation process of the refrigeration cycle (when each control is in a steady state), it is possible to prioritize making the engine rotation speed minimum rather than making up with a heat exchanger. The coefficient of performance can be prevented from decreasing, and further, at this time, the control of the opening degree of the electric water three-way valve and the opening of the liquid flow rate control valve and the control of the engine speed are performed independently. It is possible to stably control the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve and the engine speed.
[Brief description of the drawings]
FIG. 1 is a flowchart showing control of the opening degree of an electric water three-way valve and the opening degree of a liquid flow rate control valve in a heat pump according to a second embodiment.
FIG. 2 is a flowchart showing a calculation procedure of a control amount of an opening degree of an electric water three-way valve in a heat pump according to a second embodiment.
FIG. 3 is a flowchart showing a calculation procedure of a control amount of an opening degree of a liquid flow rate adjustment valve in the heat pump according to the second embodiment.
FIG. 4 is a flowchart showing the control of the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate adjustment valve in the heat pump of the second embodiment.
FIG. 5 is a flowchart showing the control of the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve in the heat pump of the second embodiment.
FIG. 6 is a flowchart showing control of the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate adjustment valve in the heat pump of the second embodiment.
FIG. 7 is a flowchart showing control of the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve in the heat pump of the second embodiment.
FIG. 8 is a flowchart showing control of the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate adjustment valve in the heat pump of the second embodiment.
FIG. 9 is a flowchart showing control of the engine speed and control of the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate adjustment valve in the heat pump of the first embodiment.
FIG. 10 is a circuit diagram of the heat pump of the present invention and the prior art.
[Explanation of symbols]
1 Heat pump
2 Cooling water circuit
3 Refrigerant circuit
12 engine
16 Electric water three-way valve
17 Heat exchanger
30 Liquid flow control valve

Claims (2)

駆動源であるエンジンの排熱を回収するための冷却水回路と、冷凍サイクルにより冷房・暖房を行うための冷媒回路と、前記冷媒回路の冷媒を低温流体とするとともに前記冷却水回路のエンジン冷却水を高温流体とする熱交換器と、前記熱交換器に向かう前記冷媒の流量をコントロールする液流量調節弁と、前記熱交換器に向かう前記エンジン冷却水の流量をコントロールする電動水三方弁と、を有し、前記冷媒回路の冷媒目標温度に基づいて前記エンジンの回転数を制御することにより前記冷媒回路の冷媒循環量をコントロールするとともに、前記冷媒回路の冷媒目標温度に基づいて前記電動水三方弁の開度及び前記液流量調節弁の開度を制御することにより前記冷凍サイクルの蒸発工程の不足分を前記熱交換器で補うヒートポンプにおいて、
前記電動水三方弁の開度及び前記液流量調節弁の開度の制御と前記エンジンの回転数の制御とを独立して行うとともに、前記電動水三方弁の開度及び前記液流量調節弁の開度の制御で使用する冷媒目標温度を前記エンジンの回転数の制御で使用する冷媒目標温度よりも低く設定したこと、を特徴とするヒートポンプ。
A cooling water circuit for recovering exhaust heat of the engine that is a driving source, a refrigerant circuit for performing cooling and heating by a refrigeration cycle, and cooling the engine of the cooling water circuit using the refrigerant in the refrigerant circuit as a low-temperature fluid A heat exchanger that uses water as a high-temperature fluid; a liquid flow rate control valve that controls the flow rate of the refrigerant toward the heat exchanger; and an electric water three-way valve that controls the flow rate of the engine coolant toward the heat exchanger; And controlling the number of revolutions of the engine based on the refrigerant target temperature of the refrigerant circuit to control the refrigerant circulation amount of the refrigerant circuit, and the electric water based on the refrigerant target temperature of the refrigerant circuit. In a heat pump that compensates for a shortage of the evaporation step of the refrigeration cycle by the heat exchanger by controlling the opening of the three-way valve and the opening of the liquid flow control valve. ,
The opening of the electric water three-way valve and the control of the opening of the liquid flow control valve and the control of the engine speed are performed independently, and the opening of the electric water three-way valve and the liquid flow control valve A heat pump characterized in that a target refrigerant temperature used for controlling the opening is set lower than a target refrigerant temperature used for controlling the engine speed.
請求項1に記載するヒートポンプであって、
前記電動水三方弁の開度及び前記液流量調節弁の開度が維持される第1不感帯と前記エンジンの回転数が維持される第2不感帯とを隣接して設けたこと、を特徴とするヒートポンプ。
A heat pump according to claim 1,
A first dead zone in which the opening degree of the electric water three-way valve and the opening degree of the liquid flow rate control valve are maintained and a second dead band in which the engine speed is maintained are provided adjacent to each other. heat pump.
JP2001146829A 2001-05-16 2001-05-16 heat pump Expired - Fee Related JP4590777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146829A JP4590777B2 (en) 2001-05-16 2001-05-16 heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001146829A JP4590777B2 (en) 2001-05-16 2001-05-16 heat pump

Publications (2)

Publication Number Publication Date
JP2002340434A JP2002340434A (en) 2002-11-27
JP4590777B2 true JP4590777B2 (en) 2010-12-01

Family

ID=18992409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146829A Expired - Fee Related JP4590777B2 (en) 2001-05-16 2001-05-16 heat pump

Country Status (1)

Country Link
JP (1) JP4590777B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565923B2 (en) * 2004-08-03 2010-10-20 三洋電機株式会社 Air conditioner
JP2008045814A (en) * 2006-08-16 2008-02-28 Tokyo Gas Co Ltd Gas engine heat pump and its control method
JP5310289B2 (en) 2009-06-17 2013-10-09 アイシン精機株式会社 Air conditioner
JP5841921B2 (en) * 2012-09-06 2016-01-13 ヤンマー株式会社 Engine driven heat pump chiller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358070A (en) * 1986-08-28 1988-03-12 三洋電機株式会社 Engine drive type air conditioner
JPH03160281A (en) * 1989-11-20 1991-07-10 Sanyo Electric Co Ltd Engine driven air conditioner
JPH03213966A (en) * 1990-01-19 1991-09-19 Aisin Seiki Co Ltd Waste heat recoverying heat pump
JPH04148166A (en) * 1990-10-09 1992-05-21 Yamaha Motor Co Ltd Air conditioner for engine-driven heat pump
JPH04344080A (en) * 1991-05-20 1992-11-30 Sanyo Electric Co Ltd Gas heat pump air conditioner
JPH08226725A (en) * 1995-02-22 1996-09-03 Mitsubishi Heavy Ind Ltd Engine driven type air conditioning equipment
JPH0914778A (en) * 1995-06-30 1997-01-17 Yamaha Motor Co Ltd Air conditioner
JP2001116392A (en) * 1999-10-12 2001-04-27 Aisin Seiki Co Ltd Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358070A (en) * 1986-08-28 1988-03-12 三洋電機株式会社 Engine drive type air conditioner
JPH03160281A (en) * 1989-11-20 1991-07-10 Sanyo Electric Co Ltd Engine driven air conditioner
JPH03213966A (en) * 1990-01-19 1991-09-19 Aisin Seiki Co Ltd Waste heat recoverying heat pump
JPH04148166A (en) * 1990-10-09 1992-05-21 Yamaha Motor Co Ltd Air conditioner for engine-driven heat pump
JPH04344080A (en) * 1991-05-20 1992-11-30 Sanyo Electric Co Ltd Gas heat pump air conditioner
JPH08226725A (en) * 1995-02-22 1996-09-03 Mitsubishi Heavy Ind Ltd Engine driven type air conditioning equipment
JPH0914778A (en) * 1995-06-30 1997-01-17 Yamaha Motor Co Ltd Air conditioner
JP2001116392A (en) * 1999-10-12 2001-04-27 Aisin Seiki Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2002340434A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP5906440B2 (en) Refrigeration cycle equipment
EP2434234B1 (en) Air conditioning apparatus
JP2002513133A (en) Electric control expansion valve
JP2013221669A (en) Air conditioner
CN111288690A (en) Water chiller system, control method of water chiller system, and readable storage medium
JP4590777B2 (en) heat pump
KR100734191B1 (en) Cooling unit
KR101923433B1 (en) Dual cooling system for semiconductor parts cooling
JP3668750B2 (en) Air conditioner
JP7237130B2 (en) Hybrid multi-air conditioning system
JP5478403B2 (en) Heat pump water heater
JP3864266B2 (en) Refrigeration equipment
JP4649768B2 (en) Heat pump cooling circuit
JPH07229655A (en) Refrigerant flow rate controller for vapor compression type refrigerator
JP2018169105A (en) Air conditioning device
JP6070624B2 (en) Air conditioner
CN114198859A (en) Compressor oil return control method and air conditioner
KR100188989B1 (en) Method for controlling an absorption system
CN115200179B (en) Air conditioning system, throttle control method and device thereof and storage medium
JP2010266095A (en) Absorption refrigerating machine for single/double effect
JP6379633B2 (en) Engine driven air conditioner
JP2018141600A (en) Air conditioner
KR101605909B1 (en) Method for controlling heating apparatus associated with heat pump
JP2004198048A (en) Freezer
JP2766608B2 (en) Brine temperature control method and apparatus for brine forced circulation refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4590777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees