JP4590367B2 - Airborne particulate matter measurement filter - Google Patents

Airborne particulate matter measurement filter Download PDF

Info

Publication number
JP4590367B2
JP4590367B2 JP2006077626A JP2006077626A JP4590367B2 JP 4590367 B2 JP4590367 B2 JP 4590367B2 JP 2006077626 A JP2006077626 A JP 2006077626A JP 2006077626 A JP2006077626 A JP 2006077626A JP 4590367 B2 JP4590367 B2 JP 4590367B2
Authority
JP
Japan
Prior art keywords
filter
porous film
spm
measurement
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006077626A
Other languages
Japanese (ja)
Other versions
JP2007255940A (en
Inventor
政良 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2006077626A priority Critical patent/JP4590367B2/en
Publication of JP2007255940A publication Critical patent/JP2007255940A/en
Application granted granted Critical
Publication of JP4590367B2 publication Critical patent/JP4590367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、例えば自動車の排気管や工場の煙突等からの排煙、飛散粉塵などのように、大気中に存在して人の健康、特に呼吸器官に悪影響を及ぼす浮遊粒子状物質(Suspended Particulate Matter:以下、SPMと略称するものを含む)の濃度を測定する場合に用いられるフィルタに関する。   The present invention relates to suspended particulate matter that is present in the atmosphere and has an adverse effect on human health, particularly the respiratory tract, such as smoke exhaust from automobile exhaust pipes and factory chimneys. Matter: a filter used for measuring the concentration of the following (including abbreviated as SPM).

大気中のSPMの濃度測定や成分分析にあたっては、一般的に、大気からSPMを含むサンプルガスを連続的に吸引し、この吸引したサンプルガスをフィルタの一面側から他面側へ通過させることにより、サンプルガス中のSPMをフィルタに測定スポットを形成するように捕集し、この測定スポットに例えばβ線等の放射線を照射してその放射線の透過量を検出することにより、SPMの濃度を測定するようにしたβ線吸収方式等の浮遊粒子状物質測定装置が用いられる。   In measuring the concentration and component analysis of SPM in the atmosphere, generally, a sample gas containing SPM is continuously sucked from the atmosphere, and the sucked sample gas is passed from one side of the filter to the other side. The SPM in the sample gas is collected so as to form a measurement spot on the filter, and the concentration of SPM is measured by irradiating the measurement spot with radiation such as β rays and detecting the amount of transmitted radiation. A suspended particulate matter measuring device such as a β-ray absorption method is used.

上述したようなSPMの濃度測定に用いられるフィルタとして、従来一般には、ガラス繊維単体あるいはフッ素樹脂よりなる多孔質フィルム単体が使用されていた。   As a filter used for the SPM concentration measurement as described above, conventionally, a glass fiber alone or a porous film alone made of a fluororesin has been used.

そのうち、ガラス繊維単体からなるフィルタの場合は、厚みを均一にできず、ガラス繊維による放射線吸収量も多いため、測定スポットごとに透過量が異なっており、これが誤差要因となっていた。また、フィルタをテープ状にしたとき、連続的な使用に耐え得る破断強度(特に、引張り強度)を付与させるためには、その厚みを大きく(約360μm以上)しなければならず、重量も大きく(7mg以上)ならざるをえない。しかし、テープ厚みが大きくなると、ガラス繊維による放射線吸収量も多いため、最小検出感度(2σ)が5μg/m3 以上となって、低濃度のSPMを高感度に検出することが困難である。また、ガラス繊維は結露時に水分を吸着するという吸湿性があり、それが指示誤差を生じる要因になる。さらに、ガラス繊維は、含有成分が多いために、フィルタに捕集した状態での元素やイオンなどの成分分析には実用できない等の多くの問題点を有している。 Among them, in the case of a filter made of a single glass fiber, the thickness cannot be made uniform, and the amount of radiation absorbed by the glass fiber is large. Further, when the filter is made into a tape shape, in order to give a breaking strength (particularly tensile strength) that can withstand continuous use, the thickness must be increased (about 360 μm or more), and the weight is also increased. It must be (7mg or more). However, as the tape thickness increases, the amount of radiation absorbed by the glass fiber increases, so the minimum detection sensitivity (2σ) is 5 μg / m 3 or more, and it is difficult to detect low-concentration SPM with high sensitivity. Further, the glass fiber has a hygroscopic property of adsorbing moisture at the time of dew condensation, which causes an instruction error. Furthermore, since glass fiber has many components, it has many problems such as impractical use for component analysis of elements and ions in a state of being collected in a filter.

一方、フッ素樹脂よりなる多孔質フィルム単体からなるフィルタの場合は、結露時の水分吸着による吸湿性がガラス繊維よりも大きいので誤差を生じやすい。また、帯電性が非常に大きくて静電気を発生しやすいために、フィルタをテープ状にしたとき、供給リールから順次繰り出し巻取りリールで順次巻き取るようにフィルタテープを一定経路に沿って走行移動させつつ、SPMの捕集及び放射線照射による濃度測定等を連続的に行なう測定装置のリールホルダーにセットした状態において、供給リールに巻回されているフィルタテープにそれが発生する静電気によって周囲のSPMが吸い寄せられて付着し、また、SPMがフィルタテープ上面に直接捕集されるために、次の測定に移行すべくフィルタテープを巻き取り移動させたとき、測定スポットに捕集されているSPMがフィルタテープに強く付着し、そのため、SPMの分析を正確かつ精度よく行なえない。加えて、フッ素樹脂よりなる多孔質フィルムは、ガラス繊維よりも更に引張り強度が弱いために、上述のような連続測定装置の使用に耐える破断強度を持たせるためには、厚みを大きくする必要があり、そのため重量(密度)も大きくなり、測定の誤差要因となる吸湿率も大きくなる。また、帯電性半減期も大きくなり、例えばICPやイオンクロマトのように、捕集SPMをフィルタから取り出さなければできないような成分分析時に、必要な捕集SPMのリリース性も悪化するという問題がある。   On the other hand, in the case of a filter made of a single porous film made of a fluororesin, an error is likely to occur because moisture absorption due to moisture adsorption during condensation is greater than that of glass fiber. In addition, since the chargeability is very large and it is easy to generate static electricity, when the filter is taped, the filter tape is moved and moved along a fixed path so that it is sequentially fed from the supply reel and taken up by the take-up reel. However, in the state set in the reel holder of the measuring device that continuously collects SPM and measures the concentration by irradiation, etc., the surrounding SPM is caused by static electricity generated on the filter tape wound around the supply reel. Since the SPM is attracted and attached, and the SPM is directly collected on the upper surface of the filter tape, when the filter tape is taken up and moved to move to the next measurement, the SPM collected at the measurement spot is filtered. It adheres strongly to the tape, and therefore SPM analysis cannot be performed accurately and accurately. In addition, since a porous film made of a fluororesin has a lower tensile strength than glass fiber, it is necessary to increase the thickness in order to have a breaking strength that can withstand the use of the continuous measurement device as described above. For this reason, the weight (density) increases, and the moisture absorption rate that causes measurement errors also increases. In addition, the charging half-life is also increased, and there is a problem that the required release property of the collected SPM is deteriorated at the time of component analysis such as ICP or ion chromatography that must be taken out of the filter. .

上記のようなガラス繊維単体あるいはフッ素樹脂よりなる多孔質フィルム単体からなるフィルタの有する薄くすれば強度が低下するという問題点を解消するものとして、本出願人は、フッ素系樹脂よりなる多孔質フィルムと、この多孔質フィルムに積層される通気性の補強層とから構成される浮遊粒子状物質測定用フィルタを開発し既に特許出願(下記の特許文献1参照)している。その既特許出願に係る浮遊粒子状物質測定用フィルタは、フッ素樹脂わりなる多孔質フィルムの厚みを80〜90μm範囲に設定したものであり、フィルタ自体の厚みを上述のガラス繊維単体やフッ素系樹脂よりなる多孔質フィルム単体のものに比べて薄くでき、その分だけ測定感度の向上が図れ、かつ、通気性補強層の積層により連続測定の使用に十分に耐え得る引張り強度を持たせることが可能である。   In order to solve the problem that the strength is reduced if the filter is made of a single glass fiber or a porous film made of a fluororesin as described above, the applicant of the present invention proposes a porous film made of a fluororesin. And a filter for measuring suspended particulate matter composed of a breathable reinforcing layer laminated on the porous film, and has already filed a patent application (see Patent Document 1 below). The suspended particulate matter measuring filter according to the already-mentioned patent application is a filter in which the thickness of a porous film made of a fluororesin is set in the range of 80 to 90 μm. Compared to a single porous film, it can be made thinner, the measurement sensitivity can be improved by that much, and the laminated breathable reinforcement layer can provide sufficient tensile strength to withstand continuous measurement. It is.

特開2004−205491号公報JP 2004-205491 A

しかしながら、本出願人による既特許出願に係る浮遊粒子状物質測定用フィルタに関して更に検討を加えた結果、多孔質フィルムの厚み(及び重量ないし密度)が濃度測定感度及び成分分析性能に多大な影響を及ぼすものであって、多孔質フィルムの厚みが80〜90μm範囲に設定されている既特許出願に係る浮遊粒子状物質測定用フィルタの場合、測定感度及び分析性能の向上に未だ十分な改良の余地が残されていることを知見するに至ったのである。   However, as a result of further study on the suspended particulate matter measurement filter according to the patent application already filed by the present applicant, the thickness (and weight or density) of the porous film has a great influence on the concentration measurement sensitivity and the component analysis performance. In the case of a filter for measuring suspended particulate matter according to a patent application in which the thickness of the porous film is set in the range of 80 to 90 μm, there is still room for improvement to improve measurement sensitivity and analytical performance. It came to know that is left.

本発明は上記のような知見に基づいて鋭意研究されたもので、その目的は、多孔質フィルムと補強層との積層構造のものにおいて、バッチ測定だけでなく連続測定にも十分に耐える引張り強度を確保し得る範囲で多孔質フィルムの厚さを一段と薄くし、もって、濃度測定感度及び成分分析性能の著しい向上を達成することができる浮遊粒子状物測定用フィルタを提供することにある。   The present invention has been intensively researched based on the above-mentioned knowledge, and its purpose is to have a tensile structure that can sufficiently withstand continuous measurement as well as batch measurement in a laminated structure of a porous film and a reinforcing layer. It is an object of the present invention to provide a filter for measuring suspended particulate matter that can achieve a significant improvement in concentration measurement sensitivity and component analysis performance by further reducing the thickness of a porous film within a range in which the above can be ensured.

上記目的を達成するために、本発明に係る浮遊粒子状物測定用フィルタは、大気から吸引されたサンプルガス中に含まれている浮遊粒子状物質を捕集して、その捕集された浮遊粒子状物質の濃度測定に用いられる浮遊粒子状物質測定用フィルタにおいて、フィルタが、フッ素系樹脂よりなる多孔質フィルムと、この多孔質フィルムに積層される通気性の補強層とから構成され、前記多孔質フィルムが、3〜35μm範囲の厚さに設定されていることを特徴としている。
ここで、前記フィルタは、0.1〜1.2mg/cm2 範囲の重量に設定されていることが好ましい。
In order to achieve the above object, a filter for measuring suspended particulate matter according to the present invention collects suspended particulate matter contained in a sample gas sucked from the atmosphere, and the collected suspended particulate matter is collected. In the suspended particulate matter measurement filter used for measuring the concentration of particulate matter, the filter is composed of a porous film made of a fluororesin and a breathable reinforcing layer laminated on the porous film, The porous film is characterized by being set to a thickness in the range of 3 to 35 μm.
Here, the filter is preferably set to a weight in the range of 0.1 to 1.2 mg / cm 2 .

上記のような特徴構成を有する本発明に係るフィルタは、補強層の積層によりフッ素系樹脂よりなる多孔質フィルムの厚みを3〜35μm範囲と非常に薄くしてもフィルタ全体としての引張り強度は、連続測定にも十分に耐え得る強度を確保することが可能である。このように十分な強度を確保し得る範囲で多孔質フィルムの厚みを非常に薄くしているので、β線透過量の増大も図れて、最小検出感度(2σ)の著しい改善(低下)が可能となり、低濃度のSPMも高感度に測定することができる。また、放射線吸収量も少なく、厚さが均一にもできるフッ素系樹脂であるので、測定スポットごとの透過する放射線強度を均一にできる。また、補強層を含めてフィルタ全体の吸湿性が非常に低く結露が発生しても水分を吸着保持せず、フッ素系樹脂の特性から水分をフイルムテープの外に逃がす撥水作用が得られるために、吸湿による変質もなくて測定感度を高くすることができる。なぜならば、フッ素系樹脂には吸湿性はないが、多孔質であるので、孔に水が入り込み吸着される。この多孔質フィルムを薄くし、通気性の補強層を設けることで、吸湿性がなくなるからである。   The filter according to the present invention having the above-described characteristic configuration has a tensile strength as a whole filter even if the thickness of the porous film made of a fluororesin is very thin as a range of 3 to 35 μm by laminating a reinforcing layer. It is possible to ensure a strength that can sufficiently withstand continuous measurement. In this way, the thickness of the porous film is made very thin within a range where sufficient strength can be secured, so that the amount of β-ray transmission can be increased and the minimum detection sensitivity (2σ) can be significantly improved (decreased). Thus, even a low concentration SPM can be measured with high sensitivity. In addition, since the fluororesin has a small amount of radiation absorption and can have a uniform thickness, the intensity of transmitted radiation for each measurement spot can be uniform. In addition, the hygroscopicity of the entire filter including the reinforcing layer is very low, and even if dew condensation occurs, it does not absorb and retain moisture, and the water-repellent action that allows moisture to escape outside the film tape is obtained due to the characteristics of the fluororesin. In addition, the measurement sensitivity can be increased without deterioration due to moisture absorption. This is because the fluororesin is not hygroscopic but is porous, so that water enters the pores and is adsorbed. This is because the hygroscopic property is lost by thinning the porous film and providing a breathable reinforcing layer.

しかも、補強層との積層構造であるから、フッ素系樹脂よりなる多孔質フィルム単体からなるフィルタに比べて帯電性が非常に少なく、静電気の発生によるSPMの付着もなく、それらの相乗効果によって、所定の濃度測定感度の著しい向上を達成することができる。さらに、多孔質フィルムが薄くかつ静電気の発生が少ないため、成分分析時に必要な捕集SPMのリリース性にも優れ、成分分析性能の向上も図ることができる。
なお、これら多孔質フィルムの厚みによる濃度測定感度及び成分分析性能への影響については、フッ素系樹脂よりなる多孔質フィルム単体からなるフィルタと比較して示す後記の表で明らかにする。
Moreover, since it has a laminated structure with a reinforcing layer, it has very little chargeability compared to a filter made of a porous film made of a fluorine-based resin, there is no adhesion of SPM due to generation of static electricity, and their synergistic effect, A significant improvement in the predetermined concentration measurement sensitivity can be achieved. Furthermore, since the porous film is thin and does not generate static electricity, it is excellent in the release property of the collected SPM necessary for component analysis, and the component analysis performance can be improved.
The influence of the thickness of the porous film on the concentration measurement sensitivity and the component analysis performance will be clarified in the following table shown in comparison with a filter made of a single porous film made of a fluororesin.

本発明に係る浮遊粒子状物測定用フィルタにおいて、前記補強層は、ポリエチレン、ポリエチレンテレフタレート、ナイロン、ポリエステル、ポリアミドのいずれか、または、それらの少なくとも二つ以上の組み合わせよりなる不織布から構成されていることが好ましい。   In the filter for measuring suspended particulate matter according to the present invention, the reinforcing layer is made of a nonwoven fabric made of polyethylene, polyethylene terephthalate, nylon, polyester, polyamide, or a combination of at least two of them. It is preferable.

以下、本発明の実施の形態を、図面を参照しながら説明する。なお、本実施の形態では、フィルタがテープ状に形成されたもの(以下、フィルタテープと称する)について説明する。
図1は本発明に係る浮遊粒子状物質(SPM)測定用フィルタテープ1を用いてSPMの濃度測定を行なうSPM濃度測定装置全体の概略構成図である。このSPM測定装置20は、リールホルダー2Aにセットされた供給リール2から繰り出され、リールホルダー3Aにセットされモータ18を介して回転駆動される巻取りロール3に巻き取られるようにこれら両リール2,3とフィルタープ押え4a付きアイドルローラ4並びに二つのテンションローラ5,6を介して一定経路に沿って一定時間毎に所定の長さ単位に走行移動可能に張設されたフィルタテープ1の走行移動経路の一方側に、大気からサンプリングポンプ17により吸引されるSPMを含むサンプルガスGの導入管7が連通接続されてフィルタテープ1に対してシリンダなどのアクチュエータ19を介して接近離反移動自在に構成された可動式測定チャンバー部8が配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a description will be given of a filter formed in a tape shape (hereinafter referred to as a filter tape).
FIG. 1 is a schematic configuration diagram of an entire SPM concentration measuring apparatus for measuring the concentration of SPM using a filter tape 1 for measuring suspended particulate matter (SPM) according to the present invention. The SPM measuring device 20 is fed out from the supply reel 2 set in the reel holder 2A, and is wound on a take-up roll 3 that is set on the reel holder 3A and driven to rotate via a motor 18. , 3 and the filter tape 1 stretched so as to be able to run and move in a predetermined length unit at regular intervals along a fixed path via the idle roller 4 with the filter retainer 4a and the two tension rollers 5 and 6. An introduction pipe 7 for sample gas G containing SPM sucked from the atmosphere by the sampling pump 17 is connected to one side of the movement path so that the filter tape 1 can move toward and away from the filter tape 1 via an actuator 19 such as a cylinder. A configured movable measurement chamber portion 8 is arranged.

前記測定チャンバー部8内には、サンプルガスGが前記フィルタテープ1をその一面(上面)側から他面(下面)側を通過するときに、そのサンプルガスG中のSPMを捕集して形成される測定スポット10(後述する)に対してβ線を照射するβ線源(放射線源)9が設けられているとともに、前記フィルタテープ1の走行移動経路の他方側には、前記測定スポット10を透過したβ線を検出してその強度に応じた信号を出力する、例えば比例計数管よりなるβ線検出器11が配置されている。   In the measurement chamber portion 8, when the sample gas G passes through the filter tape 1 from the one surface (upper surface) side to the other surface (lower surface) side, the SPM in the sample gas G is collected and formed. A β-ray source (radiation source) 9 for irradiating β-rays to a measurement spot 10 (described later) is provided, and the measurement spot 10 is disposed on the other side of the travel movement path of the filter tape 1. A β-ray detector 11 made up of, for example, a proportional counter is arranged to detect β-rays transmitted through and output a signal corresponding to the intensity.

前記β線源9とフィルタテープ1との間には薄肉の板状部材12が前記チャンバー8に固定支持される状態で配置されており、この薄肉板状部材12には、図2に明示するような四つ以上の排気孔13,14が形成され、これら排気孔13,14に前記サンプルガスGを通過させることによって、サンプルガスG中のSPMを捕集して前述の測定スポット10を形成するようにしている。   A thin plate-like member 12 is disposed between the β-ray source 9 and the filter tape 1 in a state of being fixedly supported by the chamber 8. This thin plate-like member 12 is clearly shown in FIG. Four or more exhaust holes 13 and 14 are formed. By passing the sample gas G through the exhaust holes 13 and 14, the SPM in the sample gas G is collected to form the measurement spot 10 described above. Like to do.

前記フィルタテープ1は、長さが例えば約21mで、幅Wが例えば約4cmである。また、このフィルタテープ1は、図3に明示するように、例えば四フッ化エチレン樹脂等のフッ素系樹脂よりなる多孔質フィルム15と、この多孔質フィルム15に積層される通気性の補強層16とから構成されている。   The filter tape 1 has a length of about 21 m, for example, and a width W of about 4 cm, for example. Further, as clearly shown in FIG. 3, the filter tape 1 includes a porous film 15 made of a fluorine-based resin such as a tetrafluoroethylene resin, and a breathable reinforcing layer 16 laminated on the porous film 15. It consists of and.

前記補強層16は、ポリエチレン、ポリエチレンテレフタレート、ナイロン、ポリエステル、ポリアミドのうちのいずれか、あるいは、ポリエチレンとポリエチレンテレフタレートをラミネートしたもの、上記のものの少なくとも二つ以上を組み合わせて吸湿性の低い不織布から構成されており、前記多孔質フィルム15に貼付けや縫い付け等の適宜手段により積層一体化されている。   The reinforcing layer 16 is made of polyethylene, polyethylene terephthalate, nylon, polyester, polyamide, or a laminate of polyethylene and polyethylene terephthalate, or a combination of at least two of the above, and a non-hygroscopic nonwoven fabric. It is laminated and integrated with the porous film 15 by appropriate means such as sticking or sewing.

前記フィルタテープ1の多孔質フィルム15は、厚みが3〜35μmの範囲で、望ましくはさらに、フィルタ重量が0.1〜1.2mg/cm2 の範囲に設定されている。 The porous film 15 of the filter tape 1 has a thickness in the range of 3 to 35 μm, and more preferably a filter weight in the range of 0.1 to 1.2 mg / cm 2 .

そして、前記積層構造のフィルタテープ1は、前記供給リール2への巻回時において前記補強層16が多孔質フィルム15よりも内側に位置するように巻回されたものと、前記多孔質フィルム15が前記補強層16よりも内側に位置するように巻回されたものとの二種が準備されている。本発明に係る浮遊粒子状物質(SPM)測定装置は、これらのフィルタテープ1を取付け可能に構成されており、前者のものをリールホルダー2Aにセットすることで、図4の(A)に示すように、前記フィルタテープ1をその通気性補強層16がサンプルガスGの通気方向上流側に位置する第1使用状態と、後者のものをリールホルダー2Aにセットすることで、図4の(B)に示すように、前記フィルタテープ1をその多孔質フィルム15がサンプルガスGの通気方向上流側に位置する第2使用状態とに切替え使用可能に構成されている。   The laminated structure of the filter tape 1 is wound such that the reinforcing layer 16 is positioned inside the porous film 15 when wound around the supply reel 2, and the porous film 15. Are prepared so as to be wound so as to be located inside the reinforcing layer 16. The suspended particulate matter (SPM) measuring apparatus according to the present invention is configured so that these filter tapes 1 can be attached, and the former is set in the reel holder 2A, which is shown in FIG. As shown in FIG. 4B, the filter tape 1 is set in the first use state in which the breathable reinforcing layer 16 is located upstream of the sample gas G in the ventilation direction, and the latter is set in the reel holder 2A. ), The filter tape 1 is configured to be switchable to a second use state in which the porous film 15 is located upstream of the sample gas G in the ventilation direction.

一方、前記サンプリングポンプ17の作動を司るポンプドライバー21、前記巻取りリール駆動用モータ18の作動を司るリールモータドライバー22、前記アクチュエータ19の作動を司るアクチュエータドライバー23及びそれら各ドライバー21,22,23を予め設定された順番に動作制御する動作プログラムメモリ24並びにβ線検出器11による検出信号及びサンプルガスの流量測定部30からの測定信号が入力されてSPMの濃度演算や成分分析などを行う演算処理部25を有する、例えば専用又は汎用コンピュータなどの演算制御部26には、前記フィルタテープ1を前記第1使用状態としたとき、前記サンプリングポンプ17の作動によるSPM捕集時間が例えばJIS、USEPAで規定されている1時間となり、また、前記フィルタテープ1を前記第2使用状態に切替えたとき、前記サンプリングポンプ17の作動によるSPM捕集時間が例えば1時間以上24時間未満となるようにSPM捕集時間を例えば二段に切替え可能な捕集時間切替手段27並びに前記第1使用状態及び第2使用状態の捕集時間を各別に設定変更可能な捕集時間設定手段28A,28Bが設けられている。   On the other hand, a pump driver 21 that controls the operation of the sampling pump 17, a reel motor driver 22 that controls the operation of the take-up reel drive motor 18, an actuator driver 23 that controls the operation of the actuator 19, and the drivers 21, 22, 23. Are input to the operation program memory 24 for controlling the operation in a preset order, the detection signal from the β-ray detector 11 and the measurement signal from the flow rate measuring unit 30 of the sample gas, and the concentration calculation or component analysis of the SPM is performed. An arithmetic control unit 26 such as a dedicated or general-purpose computer having a processing unit 25 has an SPM collection time due to the operation of the sampling pump 17 when the filter tape 1 is in the first use state, for example, JIS, USEPA. 1 hour as stipulated in When the filter tape 1 is switched to the second use state, the SPM collection time can be switched, for example, in two stages so that the SPM collection time by the operation of the sampling pump 17 is, for example, 1 hour or more and less than 24 hours Collection time switching means 27 and collection time setting means 28A, 28B are provided which can change the collection times of the first use state and the second use state separately.

上記のように構成されたSPM測定装置20によるSPM測定動作を、JIS、USEPAで規定の成分分析のための短時間(1時間仕様)の場合と、1時間を越え24時間未満の長時間に亘ってサンプルガスを吸引通過させて測定スポットに捕集されたSPMの濃度測定や成分分析を行うための長時間仕様とに分けて説明する。   The SPM measuring operation by the SPM measuring apparatus 20 configured as described above can be performed in a short time (one hour specification) for component analysis specified in JIS and USEPA, and in a long time exceeding 1 hour and less than 24 hours. The description will be divided into long-term specifications for measuring the concentration and analyzing the components of the SPM collected by suction through the sample gas.

短時間仕様の場合:
(1−1)前記フィルタテープ1を、前記補強層16が多孔質フィルム15よりも内側に位置するように巻回された供給リール2をリールホルダー2Aにセットし、この供給リール2から繰り出したフィルタテープ1の先端を、アイドルローラ4及び二つのテンションローラ5,6を経てリールホルダー3A側にセットした巻取りリール3の芯に固定した上、装置運転を開始すると、動作プログラムメモリ24からリールモータドライバー22への動作信号の伝達によりリールモータ18を介して巻取りリール3が回転駆動され、これによって、フィルタテープ1が測定チャンバー8とβ線検出器11との間を含む一定経路に沿って所定の長さ単位で走行移動されて停止する。
For short-time specifications:
(1-1) The supply reel 2 wound with the filter tape 1 wound so that the reinforcing layer 16 is positioned on the inner side of the porous film 15 is set on a reel holder 2A, and is fed out from the supply reel 2. When the tip of the filter tape 1 is fixed to the core of the take-up reel 3 set on the reel holder 3A side through the idle roller 4 and the two tension rollers 5 and 6, and when the operation of the apparatus is started, the reel is read from the operation program memory 24. When the operation signal is transmitted to the motor driver 22, the take-up reel 3 is rotationally driven via the reel motor 18, whereby the filter tape 1 follows a fixed path including between the measurement chamber 8 and the β-ray detector 11. The vehicle is moved and stopped by a predetermined length unit.

(2−1)次に、前記動作プログラムメモリ24からアクチュエータドライバー23への動作信号の伝達によりアクチュエータ19が作動されて前記測定チャンバー8が前記フィルタテープ1側に接近移動した後、ポンプドライバー21を経てサンプリングポンプ17が作動されて大気から吸引されるSPMを含むサンプルガスGが導入管7を通して測定チャンバー8内に導入されるとともに、そのサンプルガスGが図4の(A)で示すように、フィルタテープ1の上面側である通気性補強層16から下面側の多孔質フィルム15を順に通過される(第1使用状態)。この状態は捕集時間切替手段27により切替えられている規定時間(1時間)保たれることになり、サンプルガスG中のSPMがフィルタテープ1の肉厚中間部位である多孔質フィルル15の上面に捕集されてフィルタテープ1に測定スポット10が形成される。   (2-1) Next, after the actuator 19 is actuated by transmission of an operation signal from the operation program memory 24 to the actuator driver 23 and the measurement chamber 8 moves closer to the filter tape 1 side, the pump driver 21 is moved. After the sampling pump 17 is activated and the sample gas G containing SPM sucked from the atmosphere is introduced into the measurement chamber 8 through the introduction pipe 7, the sample gas G is as shown in FIG. The air-permeable reinforcing layer 16 on the upper surface side of the filter tape 1 is sequentially passed through the porous film 15 on the lower surface side (first use state). This state is maintained for the specified time (1 hour) switched by the collection time switching means 27, and the upper surface of the porous film 15 where the SPM in the sample gas G is the thick intermediate portion of the filter tape 1. And the measurement spot 10 is formed on the filter tape 1.

(3−1)続いて、前記測定スポット10に対してβ線源9からβ線が照射され、その測定スポット10を透過したβ線の強度がβ線検出器11で検出されてその検出信号及びサンプルガスの流量測定部30からの測定信号が演算処理部25に入力され、この演算処理部25において検出β線強度と所定の演算式とを用いて演算を行うことにより、測定対象とするSPMの濃度分析が行われる。   (3-1) Subsequently, the β-ray source 9 irradiates the measurement spot 10 with β-rays, and the intensity of β-rays transmitted through the measurement spot 10 is detected by the β-ray detector 11 to detect the detection signal. And a measurement signal from the flow rate measurement unit 30 of the sample gas is input to the arithmetic processing unit 25, and the arithmetic processing unit 25 performs an operation using the detected β-ray intensity and a predetermined arithmetic expression to obtain a measurement target. SPM concentration analysis is performed.

(4−1)上記のようにしてSPMの濃度分析が行われた後は、前記動作プログラムメモリ24からアクチュエータドライバー23への動作信号の伝達によりアクチュエータ19が作動されて前記測定チャンバー8がフィルタテープ1に対して離反移動された後、前記動作プログラムメモリ24からリールモータドライバー22への動作信号の伝達によりリールモータ18を介して巻取りリール3が再び回転駆動され、これによって、フィルタテープ1が所定の長さ単位で巻取りリール3側に走行移動され、フィルタテープ1に対して前記(2−1)及び(3−1)の動作を繰り返して所定の濃度分析が連続的に行われる。   (4-1) After the SPM concentration analysis is performed as described above, the actuator 19 is activated by the transmission of the operation signal from the operation program memory 24 to the actuator driver 23, and the measurement chamber 8 is filtered by the filter tape. Then, the take-up reel 3 is rotated again via the reel motor 18 by the transmission of the operation signal from the operation program memory 24 to the reel motor driver 22, whereby the filter tape 1 is moved. It is moved to the take-up reel 3 side by a predetermined length unit, and the operations (2-1) and (3-1) are repeated on the filter tape 1 to perform a predetermined concentration analysis continuously.

上記した(1−1)〜(4−1)のような動作からなる短時間仕様の場合は、サンプルガスG中のSPMがフィルタテープ1の表面側の補強層16でなくテープ肉厚の中間に位置する多孔質フィルム15で捕集されているので、フィルタテープ1の走行移動時に捕集SPMが、測定スポット10以外のフィルタテープ部分やテープ走行移動経路の周辺部分、例えばβ線源9や検出器11などに転移付着することがない。したがって、所定の分析性能を常に高い状態に維持することができる。   In the case of short-time specifications consisting of the operations (1-1) to (4-1) described above, the SPM in the sample gas G is not in the reinforcing layer 16 on the surface side of the filter tape 1 but in the middle of the tape thickness. Is collected by the porous film 15 positioned at the position of the filter tape 1 so that when the filter tape 1 travels, the collected SPM is filtered around the filter tape part other than the measurement spot 10 or the peripheral part of the tape travel path, such as the β-ray source 9 or There is no transfer adhesion to the detector 11 or the like. Therefore, the predetermined analysis performance can always be maintained in a high state.

長時間仕様の場合:
(1−2)前記フィルタテープ1を、前記多孔質フィルム15が補強層16よりも内側に位置するように巻回された供給リール2をリールホルダー2Aにセットし、この供給リール2から繰り出したフィルタテープ1の先端を、アイドルローラ4及び二つのテンションローラ5,6を経てリールホルダー3A側にセットした巻取りリール3の芯に固定した上、装置運転を開始すると、動作プログラムメモリ24からリールモータドライバー22への動作信号の伝達によりリールモータ18を介して巻取りリール3が回転駆動され、これによって、フィルタテープ1が測定チャンバー8とβ線検出器11との間を含む一定経路に沿って所定の長さ単位で走行移動されて停止する。
For long-time specifications:
(1-2) The supply reel 2 on which the porous film 15 is wound so that the porous film 15 is positioned on the inner side of the reinforcing layer 16 is set on a reel holder 2A, and the filter tape 1 is fed out from the supply reel 2. When the tip of the filter tape 1 is fixed to the core of the take-up reel 3 set on the reel holder 3A side through the idle roller 4 and the two tension rollers 5 and 6, and when the operation of the apparatus is started, the reel is read from the operation program memory 24. When the operation signal is transmitted to the motor driver 22, the take-up reel 3 is rotationally driven via the reel motor 18, whereby the filter tape 1 follows a fixed path including between the measurement chamber 8 and the β-ray detector 11. The vehicle is moved and stopped by a predetermined length unit.

(2−2)次に、前記動作プログラムメモリ24からアクチュエータドライバー23への動作信号の伝達によりアクチュエータ19が作動されて前記測定チャンバー8が前記フィルタテープ1側に接近移動した後、ポンプドライバー21を経てサンプリングポンプ17が作動されて大気から吸引されるSPMを含むサンプルガスGが導入管7を通して測定チャンバー8内に導入されるとともに、そのサンプルガスGが図4の(B)で示すように、フィルタテープ1上面側の多孔質フィルム15から下面側の通気性補強層16を順に通過される(第2使用状態)。この状態が捕集時間切替手段27により切替えられ、前記第1使用状態よりも長い規定時間(1時間以上24時間未満)保たれることになり、サンプルガスG中のSPMがフィルタテープ1上面側の多孔質フィルム15の上面に捕集されてフィルタテープ1に測定スポット10が形成される。   (2-2) Next, the actuator 19 is actuated by transmission of an operation signal from the operation program memory 24 to the actuator driver 23 to move the measurement chamber 8 closer to the filter tape 1 side. After the sampling pump 17 is activated and the sample gas G containing SPM sucked from the atmosphere is introduced into the measurement chamber 8 through the introduction pipe 7, the sample gas G is as shown in FIG. The porous film 15 on the upper surface side of the filter tape 1 is sequentially passed through the breathable reinforcing layer 16 on the lower surface side (second use state). This state is switched by the collection time switching means 27, and the specified time (1 hour to less than 24 hours) longer than the first use state is maintained, so that the SPM in the sample gas G is on the upper surface side of the filter tape 1 The measurement spot 10 is formed on the filter tape 1 by being collected on the upper surface of the porous film 15.

(3−2)続いて、前記測定スポット10に対してβ線源9からβ線が照射され、その測定スポット10を透過したβ線の強度がβ線検出器11で検出されてその検出信号及びサンプルガスの流量測定部30からの測定信号が演算処理部25に入力され、この演算処理部25において検出β線強度と所定の演算式とを用いて演算を行うことにより、測定対象とするSPMの濃度測定が行われる。   (3-2) Subsequently, the β-ray source 9 irradiates the measurement spot 10 with β-rays, and the intensity of the β-rays transmitted through the measurement spot 10 is detected by the β-ray detector 11 to detect the detection signal. And a measurement signal from the flow rate measurement unit 30 of the sample gas is input to the arithmetic processing unit 25, and the arithmetic processing unit 25 performs an operation using the detected β-ray intensity and a predetermined arithmetic expression to obtain a measurement target. SPM concentration measurement is performed.

(4−2)上記のようにしてSPMの濃度測定が行われた後は、前記動作プログラムメモリ24からアクチュエータドライバー23への動作信号の伝達によりアクチュエータ19が作動されて前記測定チャンバー8がフィルタテープ1に対して離反移動された後、前記動作プログラムメモリ24からリールモータドライバー22への動作信号の伝達によりリールモータ18を介して巻取りリール3が再び回転駆動され、これによって、フィルタテープ1が所定の長さ単位で巻取りリール3側に走行移動され、フィルタテープ1に対して前記(2−2)及び(3−2)の動作を繰り返して長時間に亘るSPM捕集による所定の濃度測定が連続的に行われる。   (4-2) After the SPM concentration measurement is performed as described above, the actuator 19 is activated by the transmission of the operation signal from the operation program memory 24 to the actuator driver 23, and the measurement chamber 8 is filtered by the filter tape. Then, the take-up reel 3 is rotated again via the reel motor 18 by the transmission of the operation signal from the operation program memory 24 to the reel motor driver 22, whereby the filter tape 1 is moved. A predetermined concentration is obtained by SPM collection over a long period of time by moving to the take-up reel 3 side in a predetermined length unit and repeating the operations (2-2) and (3-2) with respect to the filter tape 1. Measurements are made continuously.

上記した(1−2)〜(4−2)のような動作からなる長時間仕様の場合は、多くのSPMを捕集することになる多孔質フィルム15が補強層16でしっかりと支えられることになるので、その多孔質フィルム15の測定スポット10部分が大きく変形したり、破孔したりするなどのトラブルの発生がなく、所定の質量濃度あるいは成分分析を非常に正確かつ精度よく行うことができる。   In the case of long-time specifications consisting of the operations (1-2) to (4-2) described above, the porous film 15 that collects a large amount of SPM is firmly supported by the reinforcing layer 16. Therefore, the measurement spot 10 portion of the porous film 15 is not greatly deformed or broken, and a predetermined mass concentration or component analysis can be performed very accurately and accurately. it can.

なお、多孔質フィルム15を上面側に設けることにより、第1使用状態に比べ、破孔を生じさせることなく、長時間にわたり一つの測定スポット10においてSPMを捕集することができたことが確認できた。   In addition, it was confirmed that by providing the porous film 15 on the upper surface side, it was possible to collect SPM in one measurement spot 10 over a long period of time without causing breakage as compared with the first use state. did it.

上記のようなSPMの捕集及び濃度の連続測定であっても、厚みが3〜35μm範囲と非常に薄いフッ素系樹脂よりなる多孔質フィルム15と通気性の補強層16との積層構造からなるフィルタテープ1を用いることによって、該フィルタテープ1全体として連続測定時に破断などが生じないように十分な引っ張り強度を確保することが可能である。また、このような十分な引張り強度を確保し得る範囲で非常に厚みの薄い多孔質フィルム15を用いているので、β線透過量も増大され、これによって、最小検出感度(2σ)を著しく改善(低下)して低濃度のSPMも高感度に測定することが可能である。また、放射線(β線)吸収量も少なく、厚さが均一にもできるフッ素系樹脂であるので、測定スポット10ごとの透過する放射線強度を均一にできる。   Even in the SPM collection and concentration measurement as described above, it has a laminated structure of the porous film 15 made of a very thin fluorine resin and a breathable reinforcing layer 16 having a thickness in the range of 3 to 35 μm. By using the filter tape 1, it is possible to ensure a sufficient tensile strength so that the filter tape 1 as a whole does not break during continuous measurement. In addition, since the porous film 15 having a very thin thickness is used as long as sufficient tensile strength can be ensured, the β-ray transmission amount is also increased, thereby significantly improving the minimum detection sensitivity (2σ). It is possible to measure (decrease) low-concentration SPM with high sensitivity. Further, since the fluororesin has a small amount of radiation (β-ray) absorption and can have a uniform thickness, the radiation intensity transmitted through each measurement spot 10 can be made uniform.

また、補強層16を含めてテープ1全体の吸湿性が非常に低く結露が発生しても水分を吸着保持しないので、吸湿による変質もなく測定感度を高くすることができる。加えて、補強層16との積層構造であるから、フッ素系樹脂よりなる多孔質フィルム15単体からなるフィルタテープに比べて帯電性が非常に少なく、静電気の発生によるSPMの付着もなく、それらの相乗効果によって、所定の濃度測定感度の著しい向上を達成することができる。さらに、多孔質フィルム15が薄くかつ静電気の発生が少ないため、濃度測定後の成分分析時に必要な捕集SPMのリリース性にも優れ、成分分析性能の向上も図ることができる。   Further, since the hygroscopic property of the entire tape 1 including the reinforcing layer 16 is very low and moisture is not adsorbed and retained even when dew condensation occurs, the measurement sensitivity can be increased without deterioration due to moisture absorption. In addition, since it has a laminated structure with the reinforcing layer 16, it has very little chargeability compared to a filter tape made of a porous film 15 made of a fluororesin alone, there is no adhesion of SPM due to generation of static electricity, and those Due to the synergistic effect, it is possible to achieve a significant improvement in the predetermined concentration measurement sensitivity. Furthermore, since the porous film 15 is thin and generates little static electricity, it is excellent in the release property of the collected SPM necessary for component analysis after concentration measurement, and the component analysis performance can be improved.

さらに、上述したSPM捕集時間に応じてフィルタテープ1の表裏両面を適切かつ合理的に使い分けることもでき、所定の濃度測定感度及び成分分析性能のより一層の向上を図ることができる。   Furthermore, both the front and back surfaces of the filter tape 1 can be appropriately and rationally used according to the SPM collection time described above, and the predetermined concentration measurement sensitivity and component analysis performance can be further improved.

因みに、多孔質フィルムの厚みによる濃度測定感度及び成分分析性能への影響に関し本発明者が行った試験結果について以下に説明する。
供試体 本発明品→四フッ化エチレン樹脂からなる多孔質フィルムと通気性補強層との積層構造品
比較例品1,2→四フッ化エチレン樹脂からなる多孔質フィルム単体
基本仕様及び特性 表1に示す通り
性能比較 表2に示す通り
Incidentally, the test results conducted by the present inventor regarding the influence of the thickness of the porous film on the concentration measurement sensitivity and the component analysis performance will be described below.
Specimen Product of the present invention → Laminated structure product of porous film made of tetrafluoroethylene resin and breathable reinforcing layer
Comparative example products 1, 2 → Porous film made of tetrafluoroethylene resin Basic specifications and characteristics As shown in Table 1 Performance comparison As shown in Table 2

Figure 0004590367
Figure 0004590367

Figure 0004590367
Figure 0004590367

なお、本発明品は、上述のとおり多孔質フィルムと通気性補強層との積層構造のフィルタである。一方、比較例品1,2は多孔質フィルムのみのフィルタである。また、表1中の重量において多孔質フィルムの厚みが3〜35μmと薄い本発明品は多孔質フィルムだけでは強度が足りないため、多孔質フィルムに補強層を設けたフィルタ全体の重量を示している。     The product of the present invention is a filter having a laminated structure of a porous film and a breathable reinforcing layer as described above. On the other hand, Comparative Examples 1 and 2 are filters made of only a porous film. Moreover, since the thickness of the porous film having a thickness of 3 to 35 μm in the weight shown in Table 1 is insufficient for the strength of the porous film alone, the weight of the entire filter provided with the reinforcing layer on the porous film is shown. Yes.

上記の試験結果からも明らかなとおり、本発明品は、比較例品1,2に比べて、サンプルガス通気の通気量が多くて圧損が少ない、帯電性半減期が短くて静電気の発生が非常に少ない、吸湿率が0%で吸湿性がほとんどない、β線透過量が2〜4倍程度多い、ことから質量濃度の測定感度に優れ、測定精度の著しい向上が図り得るとともに、捕集したSPMのリリース性にも優れ、元素やイオンなどの成分分析性能の向上にも有効であることが確認された。   As is clear from the above test results, the product of the present invention has a larger amount of sample gas flow and less pressure loss than the comparative products 1 and 2, and the static half-life is short and the generation of static electricity is extremely low. The moisture absorption rate is 0%, there is almost no hygroscopicity, and the amount of β-ray transmission is about 2 to 4 times higher. Therefore, it has excellent mass concentration measurement sensitivity and can improve the measurement accuracy significantly. It was confirmed that SPM was excellent in releasability and effective in improving the performance of analyzing components such as elements and ions.

なお、上記実施の形態では、フィルタテープ1を、短時間仕様時と長時間仕様時とで表裏(多孔質フィルム15と通気性補強層16)を反転して用いるものについて説明したが、短時間仕様または長時間仕様のいずれかに専用的に用いる場合であっても、フィルタテープ1としての既述のような効果を奏し得るものである。   In the above-described embodiment, the filter tape 1 is described in which the front and back (the porous film 15 and the breathable reinforcing layer 16) are reversed between the short time specification and the long time specification. Even if it is used exclusively for either the specification or the long-time specification, the above-described effects as the filter tape 1 can be obtained.

また、上記実施の形態では、フィルタをテープ状に形成したフィルタテープについて説明したが、本発明はこれに限定されることなく、図5の(A),(B)に示すように、例えば円板状のフィルタ1Aを形成し、これをバッチ測定に用いることもできる。   Moreover, in the said embodiment, although the filter tape which formed the filter in tape shape was demonstrated, as shown to (A) and (B) of FIG. 5, this invention is not limited to this, For example, a circle | round | yen A plate-like filter 1A can be formed and used for batch measurement.

本発明に係る浮遊粒子状物質測定用フィルタをテープ状に形成してSPMの濃度測定に用いるSPM測定装置全体の概略構成図である。It is a schematic block diagram of the whole SPM measuring apparatus which forms the filter for suspended particulate matter measurement concerning this invention in tape shape, and is used for the density | concentration measurement of SPM. 同上フィルタテープへの測定スポットの形成動作を説明する要部の拡大斜視図である。It is an expansion perspective view of the principal part explaining the formation operation of the measurement spot to a filter tape same as the above. 図2のA部におけるフィルタテープの拡大断面図である。It is an expanded sectional view of the filter tape in the A section of FIG. (A)は短時間仕様時におけるフィルタテープの使用状態、(B)は長時間仕様時におけるフィルタテープの使用状態を説明する図である。(A) is a figure explaining the use condition of the filter tape at the time of short time specification, (B) is a figure explaining the use condition of the filter tape at the time of long time specification. (A),(B)は本発明の他の実施の形態である円板状フィルタの使用状態の説明図である。(A), (B) is explanatory drawing of the use condition of the disk shaped filter which is other embodiment of this invention.

符号の説明Explanation of symbols

1,1A フィルタ
10 測定スボット
15 フッ素系樹脂よりなる多孔質フィルム
16 通気性補強層
1,1A filter 10 measuring sbot 15 porous film made of fluororesin 16 breathable reinforcing layer

Claims (3)

大気から吸引されたサンプルガス中に含まれている浮遊粒子状物質を捕集して、その捕集された浮遊粒子状物質の濃度測定に用いられる浮遊粒子状物質測定用フィルタにおいて、
フィルタが、フッ素系樹脂よりなる多孔質フィルムと、この多孔質フィルムに積層される通気性の補強層との積層構造から構成され、
前記多孔質フィルムが、3〜35μm範囲の厚さに設定されていることを特徴とする浮遊粒子状物質測定用フィルタ。
In the filter for measuring suspended particulate matter used to measure the concentration of suspended particulate matter collected in the sample gas aspirated from the atmosphere,
The filter is composed of a laminated structure of a porous film made of a fluororesin and a breathable reinforcing layer laminated on the porous film,
The filter for measuring suspended particulate matter, wherein the porous film has a thickness in the range of 3 to 35 µm.
前記フィルタが、0.1〜1.2mg/cm2 範囲の重量に設定されている請求項1に記載の浮遊粒子状物質測定用フィルタ。 It said filter, suspended particulate matter measuring filter according to claim 1 which is set on the weight of 0.1~1.2mg / cm 2 range. 前記補強層は、ポリエチレン、ポリエチレンテレフタレート、ナイロン、ポリエステル、ポリアミドのいずれか、または、それらの少なくとも二つ以上の組み合わせよりなる不織布から構成されている請求項1または2に記載の浮遊粒子状物質測定用フィルタ。   The suspended particulate matter measurement according to claim 1 or 2, wherein the reinforcing layer is made of a nonwoven fabric made of polyethylene, polyethylene terephthalate, nylon, polyester, polyamide, or a combination of at least two of them. Filter.
JP2006077626A 2006-03-20 2006-03-20 Airborne particulate matter measurement filter Active JP4590367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077626A JP4590367B2 (en) 2006-03-20 2006-03-20 Airborne particulate matter measurement filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077626A JP4590367B2 (en) 2006-03-20 2006-03-20 Airborne particulate matter measurement filter

Publications (2)

Publication Number Publication Date
JP2007255940A JP2007255940A (en) 2007-10-04
JP4590367B2 true JP4590367B2 (en) 2010-12-01

Family

ID=38630351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077626A Active JP4590367B2 (en) 2006-03-20 2006-03-20 Airborne particulate matter measurement filter

Country Status (1)

Country Link
JP (1) JP4590367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980840A (en) * 2012-11-02 2013-03-20 青岛佳明测控科技股份有限公司 Manufacturing method for standard mass membrane used for beta-ray particulate matter calibration
CN109269885A (en) * 2018-09-26 2019-01-25 薛振宇 A kind of PPS fiber bag dust filter device for detecting performance applied to cement industry

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134905A (en) * 2012-12-29 2013-06-05 聚光科技(杭州)股份有限公司 Gas on-line analysis system and method
JP6655971B2 (en) * 2015-12-11 2020-03-04 株式会社堀場製作所 Analysis apparatus, analysis method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012199A (en) * 2002-06-04 2004-01-15 Horiba Ltd Suspended particulate matter densitometry system, method, and filter tape for suspended particulate matter densitometries
JP2004069450A (en) * 2002-08-06 2004-03-04 Shimadzu Corp Measuring apparatus for suspended particulate matter
JP2004205491A (en) * 2002-08-16 2004-07-22 Horiba Ltd Apparatus for measuring concentration of suspended particulate matter, and filter tape for use in measuring concentration of the suspended particulate matter
JP2004333465A (en) * 2003-04-16 2004-11-25 Horiba Ltd Filter for collecting suspended particulate matter in atmospheric air
JP2005134270A (en) * 2003-10-31 2005-05-26 Horiba Ltd Particulate matter analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012199A (en) * 2002-06-04 2004-01-15 Horiba Ltd Suspended particulate matter densitometry system, method, and filter tape for suspended particulate matter densitometries
JP2004069450A (en) * 2002-08-06 2004-03-04 Shimadzu Corp Measuring apparatus for suspended particulate matter
JP2004205491A (en) * 2002-08-16 2004-07-22 Horiba Ltd Apparatus for measuring concentration of suspended particulate matter, and filter tape for use in measuring concentration of the suspended particulate matter
JP2004333465A (en) * 2003-04-16 2004-11-25 Horiba Ltd Filter for collecting suspended particulate matter in atmospheric air
JP2005134270A (en) * 2003-10-31 2005-05-26 Horiba Ltd Particulate matter analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980840A (en) * 2012-11-02 2013-03-20 青岛佳明测控科技股份有限公司 Manufacturing method for standard mass membrane used for beta-ray particulate matter calibration
CN109269885A (en) * 2018-09-26 2019-01-25 薛振宇 A kind of PPS fiber bag dust filter device for detecting performance applied to cement industry
CN109269885B (en) * 2018-09-26 2021-03-16 亚泰集团铁岭水泥有限公司 PPS (polyphenylene sulfite) fiber dust filter bag performance detection device applied to cement industry

Also Published As

Publication number Publication date
JP2007255940A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4590367B2 (en) Airborne particulate matter measurement filter
JP3574045B2 (en) Continuous measurement system for suspended particulate matter
US7992426B2 (en) Apparatus and method for increasing the selectivity of FET-based gas sensors
JP2008261712A (en) System for measuring suspended particular substance
US20050188746A1 (en) Particulate matter concentration measuring apparatus
CN106769741B (en) Particulate matter concentration detection device and detection method
JP2014518398A (en) Gas detector
US8302461B2 (en) Gas detector having an acoustic measuring cell and selectively adsorbing surface
WO2013133872A1 (en) Detection and measurement of volatile organic compounds
CN104359816A (en) Beta-ray atmospheric particulate matter monitoring device
JP2007501395A5 (en)
JP2010520793A5 (en)
JP6495312B2 (en) Sensing system
KR101514300B1 (en) Measuring method and filter performance measuring device of filter use of clean room
JP2007255939A (en) Instrument of measuring suspended particulate matter
KR101721606B1 (en) Apparatus for reel-type analyzing particles in particulate matter and analyzing method using the same
JP2007255914A (en) Instrument of measuring suspended particulate matter
CN204228580U (en) β ray atmosphere particle monitoring device
TWI581305B (en) Apparatus and method for detecting pollution location and computer readable recording medium
JP2010032225A (en) Dust meter
Almstrand et al. An explorative study on respiratory health among operators working in polymer additive manufacturing
JP2005134270A (en) Particulate matter analyzer
KR102164220B1 (en) Test apparatus in filter manufacturing
JP6586929B2 (en) measuring device
JP4294421B2 (en) Filter for collecting suspended particulate matter in the atmosphere and analysis method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

R150 Certificate of patent or registration of utility model

Ref document number: 4590367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250