JP4588520B2 - Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various kinds of gas medium - Google Patents

Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various kinds of gas medium Download PDF

Info

Publication number
JP4588520B2
JP4588520B2 JP2005123604A JP2005123604A JP4588520B2 JP 4588520 B2 JP4588520 B2 JP 4588520B2 JP 2005123604 A JP2005123604 A JP 2005123604A JP 2005123604 A JP2005123604 A JP 2005123604A JP 4588520 B2 JP4588520 B2 JP 4588520B2
Authority
JP
Japan
Prior art keywords
light
gas medium
infrared
difference frequency
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005123604A
Other languages
Japanese (ja)
Other versions
JP2006300760A (en
Inventor
滋 山口
功一 和家
悟 田之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP2005123604A priority Critical patent/JP4588520B2/en
Publication of JP2006300760A publication Critical patent/JP2006300760A/en
Application granted granted Critical
Publication of JP4588520B2 publication Critical patent/JP4588520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、試料ガスに含まれるガス媒質の濃度を光学的に測定するガス媒質分析装置およびガス媒質分析方法に関する。さらに詳しくは、本発明は、赤外分光分析によって試料ガスに含まれる多種類のガス媒質の濃度を同時に測定するガス媒質分析装置およびガス媒質分析方法に関する。   The present invention relates to a gas medium analyzing apparatus and a gas medium analyzing method for optically measuring the concentration of a gas medium contained in a sample gas. More specifically, the present invention relates to a gas medium analyzer and a gas medium analysis method for simultaneously measuring the concentrations of various types of gas media contained in a sample gas by infrared spectroscopic analysis.

火力発電所等では、発電機のタービン、ボイラ等から燃焼後の排ガスを排出し、通常は廃熱を回収した後に大気に放出するが、放出ガス中の窒素酸化物濃度の減少を図るために、触媒を有する脱硝装置に排ガスを導いて接触還元法によってアンモニアと反応させ、窒素酸化物を窒素ガスと水に分解してから大気にその処理ガスを放出している。   In thermal power plants, etc., exhaust gas after combustion is discharged from generator turbines, boilers, etc., and usually exhausted to the atmosphere after recovering waste heat, but in order to reduce the concentration of nitrogen oxides in the emitted gas Then, exhaust gas is introduced into a denitration apparatus having a catalyst and reacted with ammonia by a catalytic reduction method, nitrogen oxides are decomposed into nitrogen gas and water, and then the treated gas is released to the atmosphere.

この他、自動車等のディーゼルエンジンからの燃焼排気ガスにも窒素酸化物が含まれている。この窒素酸化物濃度の減少を図るために、触媒を有する脱硝装置に燃焼排気ガスを導いて接触還元法によってアンモニアと反応させ、窒素酸化物を窒素ガスと水に分解してから大気にその処理ガスを放出している。   In addition, nitrogen oxides are also contained in combustion exhaust gas from diesel engines such as automobiles. In order to reduce the concentration of nitrogen oxides, the combustion exhaust gas is introduced into a denitration device having a catalyst and reacted with ammonia by a catalytic reduction method. The nitrogen oxides are decomposed into nitrogen gas and water, and then treated in the atmosphere. The gas is released.

このような用途に用いられる脱硝装置(特許文献1〜3)では、窒素酸化物の発生量に応じてアンモニアの供給量を調節する必要があるため、窒素酸化物とアンモニアとの両方の濃度をリアルタイムで高精度に検出、監視するシステムが必要になる。
特開2000−266724号公報 特開2000−234723号公報 特開2003−80026号公報
In a denitration apparatus (Patent Documents 1 to 3) used for such applications, it is necessary to adjust the supply amount of ammonia in accordance with the generation amount of nitrogen oxides. A system to detect and monitor with high accuracy in real time is required.
JP 2000-266724 A JP 2000-234723 A Japanese Patent Laid-Open No. 2003-80026

窒素酸化物、アンモニアなどのガス媒質を光学的に検出する手段としては、レーザ吸収、レーザ誘起蛍光、ラマン散乱などがある。レーザ吸収を用いたガス検出では、光源の出力が比較的低出力であってもよいが、1種類の被測定媒質に対して一対の光源を必要とする。このため、多種類のガス媒質を同時に検出する場合、光源が複数個必要になるため装置は大型で高価になる。   Means for optically detecting a gas medium such as nitrogen oxide or ammonia include laser absorption, laser-induced fluorescence, and Raman scattering. In gas detection using laser absorption, the output of the light source may be relatively low, but a pair of light sources is required for one type of measured medium. For this reason, when detecting many types of gas media simultaneously, since a plurality of light sources are required, the apparatus becomes large and expensive.

ラマン散乱を用いたガス検出では、数W以上の高出力のレーザ光源が必要になり、装置は大型で高価になる。
一方、2つの近赤外レーザ光源からの近赤外光により差周波光を発生させ、この差周波光によって中赤外領域の分子の固有吸収線を測定する技術が知られているが、従来では、差周波光の発生に利用した近赤外光を除去し、中赤外の差周波光のみを用いて1種類の被測定ガスの測定を行っている。
Gas detection using Raman scattering requires a high-power laser light source of several W or more, and the apparatus is large and expensive.
On the other hand, a technique for generating difference frequency light by near infrared light from two near infrared laser light sources and measuring intrinsic absorption lines of molecules in the middle infrared region by this difference frequency light is known. Then, near-infrared light used for generation of difference frequency light is removed, and only one kind of gas to be measured is measured using only mid-infrared difference frequency light.

本発明は、試料ガスに含まれる2種類以上のガス媒質、特に、近赤外領域に吸収帯をもつガス媒質と、中赤外領域に吸収帯をもつガス媒質の絶対濃度を同時にリアルタイムで高精度に検出可能なガス媒質分析装置およびガス媒質分析方法を提供することを目的としている。   In the present invention, the absolute concentrations of two or more kinds of gas media contained in a sample gas, in particular, a gas medium having an absorption band in the near infrared region and a gas medium having an absorption band in the mid infrared region are simultaneously increased in real time. An object of the present invention is to provide a gas medium analyzing apparatus and a gas medium analyzing method capable of accurately detecting.

本発明のガス媒質分析装置は、試料ガスに含まれる複数種類のガス媒質の濃度を光学的
に測定するガス媒質分析装置であって、
特定波長のポンプ光を発生する第1の近赤外光源と、
前記試料ガスに含まれる少なくとも1種類のガス媒質の吸収帯に対応する特定波長のシグナル光を発生する第2の近赤外光源と、
前記ポンプ光と前記シグナル光とを結合して合波光を生成する合波光生成手段と、
前記合波光から、前記試料ガスに含まれる他の少なくとも1種類のガス媒質における近赤外または中赤外の吸収帯に対応する前記ポンプ光と前記シグナル光との差周波光を発生する差周波光発生手段と、
前記試料ガスが封入され、前記シグナル光、差周波光およびポンプ光の合波光が入射するセルと、
前記セルを通過した近赤外の前記シグナル光およびポンプ光と、近赤外または中赤外の前記差周波光とを分離する分離フィルタと、
前記フィルタによって分離された前記シグナル光と前記ポンプ光との合波光から該ポンプ光を除去するポンプ光除去フィルタと、
前記ポンプ光除去フィルタを通過した前記シグナル光と、前記分離フィルタからの前記差周波光との光軸を同一光軸上に合わせる光軸結合手段と、
前記光軸結合手段によって光軸が合わされた前記シグナル光と前記差周波光とを同時に検出して電気信号に変換する赤外検出器と、
前記赤外検出器からの電気信号に基づいて複数種類の前記ガス媒質の濃度を解析する解析装置と、
を備えることを特徴とする。
The gas medium analyzer of the present invention is a gas medium analyzer that optically measures the concentration of a plurality of types of gas media contained in a sample gas,
A first near-infrared light source that generates pump light of a specific wavelength;
A second near-infrared light source that generates signal light of a specific wavelength corresponding to an absorption band of at least one gas medium contained in the sample gas;
A combined light generating means for combining the pump light and the signal light to generate combined light;
A difference frequency that generates a difference frequency light between the pump light and the signal light corresponding to a near-infrared or mid-infrared absorption band in at least one other gas medium included in the sample gas from the combined light. Light generating means;
A cell in which the sample gas is sealed and the combined light of the signal light, difference frequency light and pump light is incident;
A separation filter that separates the near-infrared signal light and pump light that has passed through the cell, and the near-infrared or mid-infrared difference frequency light;
A pump light removal filter that removes the pump light from the combined light of the signal light and the pump light separated by the filter;
Optical axis coupling means for aligning optical axes of the signal light that has passed through the pump light removal filter and the difference frequency light from the separation filter on the same optical axis;
An infrared detector that simultaneously detects and converts the signal light and the difference frequency light whose optical axes are matched by the optical axis coupling means into an electrical signal;
An analyzer for analyzing the concentration of a plurality of types of the gas medium based on an electrical signal from the infrared detector;
It is characterized by providing.

本発明のガス媒質分析方法は、試料ガスに含まれる複数種類のガス媒質の濃度を光学的に測定するガス媒質分析方法であって、
特定の近赤外波長のポンプ光と、前記試料ガスに含まれる少なくとも1種類のガス媒質の吸収帯に対応する近赤外波長のシグナル光とを結合して合波光を生成し、
前記合波光から、前記試料ガスに含まれる他の少なくとも1種類のガス媒質における近赤外または中赤外の吸収帯に対応する前記ポンプ光と前記シグナル光との差周波光を発生し、
前記シグナル光、差周波光およびポンプ光の合波光を、前記試料ガスが封入されたセルに入射し、
前記セルを通過した前記シグナル光、差周波光およびポンプ光の合波光から、前記シグナル光および差周波光のみを同一光軸上に取り出し、
前記同一光軸上に取り出された前記シグナル光および差周波光を赤外検出器に入射させて同時に検出し、
前記赤外検出器からの電気信号に基づいて複数種類の前記ガス媒質の濃度を解析することを特徴とする。
The gas medium analysis method of the present invention is a gas medium analysis method for optically measuring the concentrations of a plurality of types of gas media contained in a sample gas,
Combining a pump light having a specific near-infrared wavelength with a signal light having a near-infrared wavelength corresponding to an absorption band of at least one gas medium contained in the sample gas to generate a combined light;
From the combined light, a difference frequency light between the pump light and the signal light corresponding to a near-infrared or mid-infrared absorption band in at least one other gas medium included in the sample gas is generated,
The combined light of the signal light, the difference frequency light and the pump light is incident on a cell in which the sample gas is sealed,
From the signal light that has passed through the cell, the difference frequency light and the combined light of the pump light, only the signal light and the difference frequency light are extracted on the same optical axis,
The signal light and difference frequency light taken out on the same optical axis are incident on an infrared detector and simultaneously detected,
The concentration of the gas medium of a plurality of types is analyzed based on an electrical signal from the infrared detector.

本発明によれば、試料ガスに含まれる多種類のガス媒質の絶対濃度、例えば近赤外領域に吸収帯をもつガス媒質と、中赤外領域に吸収帯をもつガス媒質の絶対濃度を、同時にリアルタイムで高精度に検出することができる。   According to the present invention, the absolute concentration of various types of gas medium contained in the sample gas, for example, the gas medium having an absorption band in the near infrared region and the absolute concentration of the gas medium having an absorption band in the mid infrared region, At the same time, it can be detected in real time with high accuracy.

以下、図面を参照しながら本発明の実施形態について説明する。なお、本明細書において「近赤外領域」とは2.5μm未満の赤外波長領域を表し、「中赤外領域」とは2.5μm以上25μm以下の波長領域を表すものとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification, the “near infrared region” represents an infrared wavelength region of less than 2.5 μm, and the “middle infrared region” represents a wavelength region of 2.5 μm to 25 μm.

図1は、本発明の1つの実施形態におけるガス媒質分析装置の構成を示した図である。このガス媒質分析装置31は、ガス媒質としてNH3とNO2とを含む試料ガス中のNH3
とNO2の絶対濃度を同時にリアルタイムで測定する構成になっている。
FIG. 1 is a diagram showing a configuration of a gas medium analyzer in one embodiment of the present invention. This gas medium analyzer 31 is a sample of NH 3 in a sample gas containing NH 3 and NO 2 as a gas medium.
And the absolute concentration of NO 2 are measured simultaneously in real time.

ガス媒質分析装置31は、ポンプ光を発生させる近赤外光源として、波長1064nmのポンプ光を発生させるYbファイバーレーザ1を備えている。
また、NH3を検出するためのシグナル光を発生する近赤外光源として、波長1536
nmのシグナル光を発生させるDFB(Distributed Feedback:分布帰還型)半導体レーザ2を備えている。
The gas medium analyzer 31 includes a Yb fiber laser 1 that generates pump light having a wavelength of 1064 nm as a near-infrared light source that generates pump light.
As a near-infrared light source that generates signal light for detecting NH 3 , a wavelength 1536
A DFB (Distributed Feedback) semiconductor laser 2 that generates a signal light of nm is provided.

Ybファイバーレーザ1から出射したポンプ光と、DFB半導体レーザ2から出射したシグナル光は、偏光子3a,3bをそれぞれ通過させることによって直線偏光とされた後、WDM(Wavelength Division Multiplexing:光波長多重伝送)合波器4で結合される。   The pump light emitted from the Yb fiber laser 1 and the signal light emitted from the DFB semiconductor laser 2 are linearly polarized by passing through the polarizers 3a and 3b, respectively, and then WDM (Wavelength Division Multiplexing). ) Coupled by a multiplexer 4.

この結合された合波光は、PPLN(Periodically Poled Lithium Niobate)結晶5に集光されて、このPPLN結晶5を通過することによって波長1064nmのポンプ光と波長1536nmのシグナル光との差周波光である波長3.46μmの中赤外光が発生する。この中赤外の差周波光によって試料ガス中のNO2が検出される。 The combined multiplexed light is condensed on a PPLN (Periodically Poled Lithium Niobate) crystal 5 and passes through the PPLN crystal 5 to be a difference frequency light between pump light having a wavelength of 1064 nm and signal light having a wavelength of 1536 nm. Mid-infrared light having a wavelength of 3.46 μm is generated. NO 2 in the sample gas is detected by this mid-infrared difference frequency light.

これらのシグナル光と差周波光とポンプ光は、測定対象の試料ガスが封入されたマルチパスセル7に導光され、マルチパスセル7を複数回往復する間に試料ガス中に含まれるNH3によってシグナル光が吸収され、試料ガス中に含まれるNO2によって差周波光が吸収される。 These signal light, difference frequency light, and pump light are guided to the multipass cell 7 in which the sample gas to be measured is sealed, and NH 3 contained in the sample gas while reciprocating the multipass cell 7 a plurality of times. The signal light is absorbed by, and the difference frequency light is absorbed by NO 2 contained in the sample gas.

マルチパスセル7を通過した光はGeフィルタ9に導光される。Geフィルタ9は、中赤外光である差周波光を透過し、近赤外光であるシグナル光およびポンプ光を反射する。これにより、差周波光と、シグナル光およびポンプ光とが分離される。   The light that has passed through the multipass cell 7 is guided to the Ge filter 9. The Ge filter 9 transmits difference frequency light that is mid-infrared light and reflects signal light and pump light that are near-infrared light. Thereby, the difference frequency light, the signal light and the pump light are separated.

Geフィルタ9を反射したシグナル光およびポンプ光は、ロングパスフィルタ10に導光され、測定に不必要なポンプ光はロングパスフィルタ10によって除去されてシグナル光のみがロングパスフィルタ10を透過する。   The signal light and the pump light reflected from the Ge filter 9 are guided to the long pass filter 10, and the pump light unnecessary for measurement is removed by the long pass filter 10, and only the signal light is transmitted through the long pass filter 10.

シグナル光はND(Neutral Density)フィルタによって出力を減衰させた後、ウェッ
ジ型のCaF2基板11に導光されて、CaF2基板11によってシグナル光と差周波光とが同一光軸に合わせられる。
The output of the signal light is attenuated by an ND (Neutral Density) filter and then guided to the wedge-shaped CaF 2 substrate 11 so that the signal light and the difference frequency light are aligned on the same optical axis by the CaF 2 substrate 11.

この同一光軸に合わせられたシグナル光と差周波光との合波光は、放物面鏡12によってMCT検出器13の受光面に集光される。
MCT検出器13によって光電変換された電気信号は、DCアンプ14で増幅された後A/D変換されてコンピュータ15に入力され、NH3とNO2の絶対濃度が解析される。
The combined light of the signal light and the difference frequency light matched to the same optical axis is condensed on the light receiving surface of the MCT detector 13 by the parabolic mirror 12.
The electrical signal photoelectrically converted by the MCT detector 13 is amplified by the DC amplifier 14, then A / D converted, and input to the computer 15, where the absolute concentrations of NH 3 and NO 2 are analyzed.

絶対濃度を算出するための信号処理および解析は、従来から知られている各種の手法を適用して行うことができるが、一例としては、次のように行われる。シグナル光に対してドライバーによって鋸歯状の周期信号となるように変調を掛け、縦軸をレーザ出力、横軸を波長(時間)とした鋸歯状の入力信号を生成する。MCT検出器13では、シグナル光と差周波光のそれぞれの光路にシャッターを設置し、シグナル光を測定する際には差周波光側のシャッターを閉じ、差周波光を測定する際にはシグナル光側のシャッターを閉じる。セルを通過してMCT検出器13で検出された信号を入力信号で割り算して規格化し、吸収線の面積を求める。この吸収線の面積より濃度換算を行う。濃度換算は、既知濃度の試料から作成した検量線によって行ってもよく、吸収線の面積をランベルト・ベール(Lambert−Beer)の式に代入して計算してもよい。   The signal processing and analysis for calculating the absolute density can be performed by applying various conventionally known methods, but as an example, it is performed as follows. The signal light is modulated by a driver so as to be a sawtooth periodic signal, and a sawtooth input signal is generated with the vertical axis representing laser output and the horizontal axis representing wavelength (time). In the MCT detector 13, a shutter is installed in each optical path of the signal light and the difference frequency light. When measuring the signal light, the shutter on the difference frequency light side is closed, and when measuring the difference frequency light, the signal light is closed. Close the side shutter. The signal detected by the MCT detector 13 after passing through the cell is divided by the input signal and normalized to obtain the area of the absorption line. The concentration is converted from the area of the absorption line. Concentration conversion may be performed by a calibration curve prepared from a sample having a known concentration, or may be calculated by substituting the area of the absorption line into a Lambert-Beer equation.

ガス媒質の濃度を解析する解析装置として、通常はCPU、メモリ等を備えたコンピュータが使用され、予め格納されたプログラムにしたがって上記の信号処理、演算処理が行われる。   As an analysis device for analyzing the concentration of the gas medium, a computer having a CPU, a memory, and the like is usually used, and the above signal processing and arithmetic processing are performed according to a program stored in advance.

図2は、本実施形態のガス媒質分析装置を用いてNH3とNO2の吸収線を分光した結果を示した図である。このように、NH3とNO2の両方を同時かつ高精度に検出できることが確認された。 FIG. 2 is a diagram showing the result of spectroscopy of the absorption lines of NH 3 and NO 2 using the gas medium analyzer of the present embodiment. Thus, it was confirmed that both NH 3 and NO 2 can be detected simultaneously and with high accuracy.

本実施形態のガス媒質分析装置は、差周波光を発生させるために用いた近赤外光を測定光として利用しているので、全体として高価にならず、さらに小型化が可能であるため持ち運びが容易である。   The gas medium analyzer of the present embodiment uses near infrared light used for generating the difference frequency light as measurement light, so it is not expensive as a whole, and can be further miniaturized. Is easy.

以上、本発明の実施形態について説明したが、本発明はこの実施形態に限定されることはなく、その要旨を逸脱しない範囲内において各種の変形、変更が可能である。
例えば、DFB半導体レーザの波長と、ファイバーレーザのFBG(Fiber Bragg Grating)を取り替える等の変更をすることにより、NH3とNO2以外の他分子の測定も可能
である。具体的には、例えば波長941nmのポンプ光用レーザ光源と、波長1605nmのシグナル光用レーザ光源を利用すれば、2.27μmの差周波が発生する。波長1605nmにはCO2とCOの吸収帯域が存在し、波長2.27μmにはNH3の吸収帯域が存在するので、これらの分光検出を同時に行うことができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, In the range which does not deviate from the summary, various deformation | transformation and change are possible.
For example, by changing the wavelength of the DFB semiconductor laser and the fiber laser FBG (Fiber Bragg Grating), it is possible to measure molecules other than NH 3 and NO 2 . Specifically, for example, if a pump light laser light source with a wavelength of 941 nm and a signal light laser light source with a wavelength of 1605 nm are used, a difference frequency of 2.27 μm is generated. Since the absorption band of CO 2 and CO exists at a wavelength of 1605 nm and the absorption band of NH 3 exists at a wavelength of 2.27 μm, these spectral detections can be performed simultaneously.

また、波長941nmのポンプ光用レーザ光源と、波長1577nmのシグナル光用レーザ光源を利用すれば、2.33μmの差周波が発生する。波長1577nmにはCO2
とCOの吸収帯域が存在し、波長2.33μmにはCH4の吸収帯域が存在するので、こ
れらの分光検出を同時に行うことができる。
Further, if a pump light laser light source with a wavelength of 941 nm and a signal light laser light source with a wavelength of 1577 nm are used, a difference frequency of 2.33 μm is generated. CO 2 at a wavelength of 1577 nm
And a CO absorption band, and a CH 4 absorption band exists at a wavelength of 2.33 μm. Therefore, these spectral detections can be performed simultaneously.

また、複数の分子の吸収線が存在する波長領域をシグナル光の波長として選択すれば、3種類以上の多数の分子を同時に測定することも可能である。例えば、1605nmの波長領域にはCO2とCOの吸収帯が存在し、またこれらの同位体の吸収帯が存在するので
、シグナル光によりこれらの複数の分子を測定するとともに、差周波光によりNH3を測
定することによって、3種類以上の分子を同時に測定することができる。
Further, if a wavelength region where absorption lines of a plurality of molecules exist is selected as the wavelength of the signal light, it is possible to simultaneously measure a large number of three or more types of molecules. For example, in the wavelength region of 1605 nm, there are CO 2 and CO absorption bands, and there are absorption bands of these isotopes. By measuring 3 , three or more types of molecules can be measured simultaneously.

なお、ポンプ光を発生するファイバーレーザは、励起用光ファイバ内にレーザ媒体および光共振器を形成したレーザ発振器である。励起光源にはレーザダイオードなどが用いられ、励起光源からのレーザ光は光ファイバによって励起用光ファイバに導光される。例えば、ガラス製コアの外側に、シリカ等のインナークラッドとポリマーコート等のアウタークラッドが設けられたダブルクラッドファイバの両端部にFBGを設けたもの、ファイバの光源側端部に反射率の高い多層膜コートが施され、出射側端部に反射率の低い多層膜コートが施されたものなどがあり、励起光はインナークラッド内に集光されてファイバの中を伝搬する。コアにドープされる希土類元素には、Yb以外に例えばEr、Tm、Ndなどがある。   The fiber laser that generates pump light is a laser oscillator in which a laser medium and an optical resonator are formed in an excitation optical fiber. A laser diode or the like is used as the excitation light source, and laser light from the excitation light source is guided to the excitation optical fiber by an optical fiber. For example, FBGs are provided at both ends of a double clad fiber in which an inner clad such as silica and an outer clad such as a polymer coat are provided on the outside of a glass core, and a multilayer having high reflectivity at the light source side end of the fiber In some cases, a film coat is applied and a multi-layer film coat having a low reflectance is applied to the output side end portion, and the excitation light is condensed in the inner clad and propagates in the fiber. Examples of rare earth elements doped in the core include Er, Tm, and Nd in addition to Yb.

シグナル光を発生するDFB半導体レーザには、通信用に一般に用いられているCWタイプのものが使用できる。DFB半導体レーザは、活性層周辺に周期的な回折格子構造(分布帰還型構造)を有し、電流注入による屈折率変化、ペルチェ素子やヒータ電極による温度変化などを利用した波長チューニングが可能である。   As the DFB semiconductor laser that generates signal light, a CW type laser that is generally used for communication can be used. The DFB semiconductor laser has a periodic diffraction grating structure (distributed feedback structure) around the active layer, and can be tuned using a refractive index change by current injection, a temperature change by a Peltier element or a heater electrode, and the like. .

ポンプ光源およびシグナル光源からのレーザ光を偏光とするための偏光子には、赤外透過基板上に金属の格子を形成したグリッド偏光子などが用いられる。
WDM合波器には、2本の光ファイバをそのコア部を近接させて溶融させたもの、ガラス基板にコートされた誘電体多層膜の透過(反射)率の波長依存性を利用したものなどがある。
As a polarizer for polarizing laser light from a pump light source and a signal light source, a grid polarizer in which a metal lattice is formed on an infrared transmission substrate is used.
A WDM multiplexer includes two optical fibers fused with their cores close to each other, and one using the wavelength dependence of the transmittance (reflection) of a dielectric multilayer film coated on a glass substrate. There is.

差周波光を発生する波長変換素子には、周期的な分極反転構造を形成した非線形光学結晶、例えば、5μm以下の波長ではLiNbO3、LiTaO3、KTiOPO4などで形
成されたものがあり、5μmを超える波長ではAgGaS2、AgGaSe2などで形成されたものがある。また、これらの結晶に酸化マグネシウムをドープしたものなどがある。
The wavelength conversion element that generates the difference frequency light includes a nonlinear optical crystal having a periodically poled structure, for example, one formed of LiNbO 3 , LiTaO 3 , KTiOPO 4 or the like at a wavelength of 5 μm or less. At wavelengths exceeding 1 , there are those formed of AgGaS 2 , AgGaSe 2 or the like. In addition, these crystals are doped with magnesium oxide.

図1は、本発明の1つの実施形態におけるガス媒質分析装置の構成を示した図である。FIG. 1 is a diagram showing a configuration of a gas medium analyzer in one embodiment of the present invention. 図2は、図1のガス媒質分析装置を用いてNH3とNO2の吸収線を分光した結果を示した図である。FIG. 2 is a diagram showing the result of spectroscopy of NH 3 and NO 2 absorption lines using the gas medium analyzer of FIG.

符号の説明Explanation of symbols

1 ファイバーレーザ
2 DFB半導体レーザ
3a,3b 偏光子
4 WDM合波器
5 PPLN結晶
6 CaF2レンズ
7 マルチパスセル
8 圧力計
9 Geフィルタ
10 ロングパスフィルタ
11 ウェッジ型CaF2基板
12 放物面鏡
13 MCT検出器
14 DCアンプ
15 コンピュータ
16a〜16f 反射鏡
31 ガス媒質分析装置
DESCRIPTION OF SYMBOLS 1 Fiber laser 2 DFB semiconductor laser 3a, 3b Polarizer 4 WDM multiplexer 5 PPLN crystal 6 CaF 2 lens 7 Multipass cell 8 Pressure gauge 9 Ge filter 10 Long pass filter 11 Wedge type CaF 2 substrate 12 Parabolic mirror 13 MCT Detector 14 DC amplifier 15 Computers 16a to 16f Reflector 31 Gas medium analyzer

Claims (9)

試料ガスに含まれる複数種類のガス媒質の濃度を光学的に測定するガス媒質分析装置であって、
特定波長のポンプ光を発生する第1の近赤外光源と、
前記試料ガスに含まれる少なくとも1種類のガス媒質の吸収帯に対応する特定波長のシグナル光を発生する第2の近赤外光源と、
前記ポンプ光と前記シグナル光とを結合して合波光を生成する合波光生成手段と、
前記合波光から、前記試料ガスに含まれる他の少なくとも1種類のガス媒質における近赤外または中赤外の吸収帯に対応する前記ポンプ光と前記シグナル光との差周波光を発生する差周波光発生手段と、
前記試料ガスが封入され、前記シグナル光、差周波光およびポンプ光の合波光が入射するセルと、
前記セルを通過した近赤外の前記シグナル光およびポンプ光と、近赤外または中赤外の前記差周波光とを分離する分離フィルタと、
前記フィルタによって分離された前記シグナル光と前記ポンプ光との合波光から該ポンプ光を除去するポンプ光除去フィルタと、
前記ポンプ光除去フィルタを通過した前記シグナル光と、前記分離フィルタからの前記差周波光との光軸を同一光軸上に合わせる光軸結合手段と、
前記光軸結合手段によって光軸が合わされた前記シグナル光と前記差周波光とを順に検出して電気信号に変換する赤外検出器と、
前記赤外検出器からの電気信号に基づいて複数種類の前記ガス媒質の濃度を解析する解析装置と、
を備えることを特徴とするガス媒質分析装置。
A gas medium analyzer for optically measuring the concentration of a plurality of types of gas media contained in a sample gas,
A first near-infrared light source that generates pump light of a specific wavelength;
A second near-infrared light source that generates signal light of a specific wavelength corresponding to an absorption band of at least one gas medium contained in the sample gas;
A combined light generating means for combining the pump light and the signal light to generate combined light;
A difference frequency that generates a difference frequency light between the pump light and the signal light corresponding to a near-infrared or mid-infrared absorption band in at least one other gas medium included in the sample gas from the combined light. Light generating means;
A cell in which the sample gas is sealed and the combined light of the signal light, difference frequency light and pump light is incident;
A separation filter that separates the near-infrared signal light and pump light that has passed through the cell, and the near-infrared or mid-infrared difference frequency light;
A pump light removal filter that removes the pump light from the combined light of the signal light and the pump light separated by the filter;
Optical axis coupling means for aligning optical axes of the signal light that has passed through the pump light removal filter and the difference frequency light from the separation filter on the same optical axis;
An infrared detector that sequentially detects the signal light and the difference frequency light whose optical axes are aligned by the optical axis coupling means and converts them into an electrical signal;
An analyzer for analyzing the concentration of a plurality of types of the gas medium based on an electrical signal from the infrared detector;
A gas medium analyzing apparatus comprising:
前記ガス媒質分析装置が、前記シグナル光と前記差周波光のそれぞれの光路にシャッターをさらに備え、The gas medium analyzer further includes a shutter in each optical path of the signal light and the difference frequency light,
前記赤外検出器が、前記シャッターの開閉を切り換えることにより、前記光軸結合手段によって光軸が合わされた前記シグナル光と前記差周波光とを順に検出して電気信号に変換するように構成されていることを特徴とする請求項1に記載のガス媒質分析装置。The infrared detector is configured to sequentially detect and convert the signal light and the difference frequency light, whose optical axes are aligned by the optical axis coupling means, by switching between opening and closing of the shutter and converting them into electrical signals. The gas medium analyzer according to claim 1, wherein
前記第1の近赤外光源は、ファイバーレーザであることを特徴とする請求項1または2に記載のガス媒質分析装置。 The first near-infrared light source, a gas medium analyzer according to claim 1 or 2, characterized in that a fiber laser. 前記第2の近赤外光源は、DFB半導体レーザであることを特徴とする請求項1〜3のいずれかに記載のガス媒質分析装置。 The gas medium analyzer according to any one of claims 1 to 3, wherein the second near-infrared light source is a DFB semiconductor laser. 前記合波光生成手段は、WDM合波器であることを特徴とする請求項1〜のいずれかに記載のガス媒質分析装置。 The combined beam generating means, the gas medium analyzer according to any one of claims 1 to 4, characterized in that a WDM multiplexer. 前記差周波光発生手段は、PPLN結晶であることを特徴とする請求項1〜のいずれかに記載のガス媒質分析装置。 It said difference frequency light generating means, a gas medium analyzer according to any one of claims 1 to 5, characterized in that a PPLN crystal. 前記光軸結合手段は、ウェッジ型のCaF2基板であることを特徴とする請求項1〜のいずれかに記載のガス媒質分析装置。 The optical axis coupling means, the gas medium analyzer according to any one of claims 1 to 6, characterized in that a CaF 2 substrate wedge type. 試料ガスに含まれる複数種類のガス媒質の濃度を光学的に測定するガス媒質分析方法であって、
特定の近赤外波長のポンプ光と、前記試料ガスに含まれる少なくとも1種類のガス媒質の吸収帯に対応する近赤外波長のシグナル光とを結合して合波光を生成し、
前記合波光から、前記試料ガスに含まれる他の少なくとも1種類のガス媒質における近赤外または中赤外の吸収帯に対応する前記ポンプ光と前記シグナル光との差周波光を発生し、
前記シグナル光、差周波光およびポンプ光の合波光を、前記試料ガスが封入されたセルに入射し、
前記セルを通過した前記シグナル光、差周波光およびポンプ光の合波光から、前記シグ
ナル光および差周波光のみを同一光軸上に取り出し、
前記同一光軸上に取り出された前記シグナル光および差周波光を赤外検出器に入射させてに検出し、
前記赤外検出器からの電気信号に基づいて複数種類の前記ガス媒質の濃度を解析することを特徴とするガス媒質分析方法。
A gas medium analysis method for optically measuring the concentrations of a plurality of types of gas media contained in a sample gas,
Combining a pump light having a specific near-infrared wavelength with a signal light having a near-infrared wavelength corresponding to an absorption band of at least one gas medium contained in the sample gas to generate a combined light;
From the combined light, a difference frequency light between the pump light and the signal light corresponding to a near-infrared or mid-infrared absorption band in at least one other gas medium included in the sample gas is generated,
The combined light of the signal light, the difference frequency light and the pump light is incident on a cell in which the sample gas is sealed,
From the signal light that has passed through the cell, the difference frequency light and the combined light of the pump light, only the signal light and the difference frequency light are extracted on the same optical axis,
The signal light and difference frequency light taken out on the same optical axis are incident on an infrared detector and detected in order ,
A gas medium analysis method, comprising: analyzing concentrations of a plurality of types of the gas medium based on an electrical signal from the infrared detector.
前記シグナル光と前記差周波光のそれぞれの光路に備えられたシャッターの開閉を切り換えることにより、前記同一光軸上に取り出された前記シグナル光と前記差周波光とを順に検出することを特徴とする請求項8に記載のガス媒質分析方法。The signal light extracted on the same optical axis and the difference frequency light are sequentially detected by switching opening and closing of shutters provided in the optical paths of the signal light and the difference frequency light, respectively. The gas medium analysis method according to claim 8.
JP2005123604A 2005-04-21 2005-04-21 Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various kinds of gas medium Expired - Fee Related JP4588520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123604A JP4588520B2 (en) 2005-04-21 2005-04-21 Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various kinds of gas medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123604A JP4588520B2 (en) 2005-04-21 2005-04-21 Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various kinds of gas medium

Publications (2)

Publication Number Publication Date
JP2006300760A JP2006300760A (en) 2006-11-02
JP4588520B2 true JP4588520B2 (en) 2010-12-01

Family

ID=37469221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123604A Expired - Fee Related JP4588520B2 (en) 2005-04-21 2005-04-21 Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various kinds of gas medium

Country Status (1)

Country Link
JP (1) JP4588520B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2627988A4 (en) * 2010-10-14 2017-11-15 Thermo Fisher Scientific (Bremen) GmbH Optical chamber module assembly
JP5533586B2 (en) * 2010-11-18 2014-06-25 新日鐵住金株式会社 Exhaust gas analysis method and exhaust gas emission control method
JP2013015409A (en) * 2011-07-04 2013-01-24 Toshiba Corp Gas sensor
ES2611192T3 (en) * 2012-06-08 2017-05-05 Valmet Technologies Oy Measurement of gaseous compound using spectroscopy
GB2514387B (en) * 2013-05-22 2015-08-12 M Squared Lasers Ltd Maturation monitoring apparatus and methods
JP6560983B2 (en) * 2013-09-09 2019-08-14 国立研究開発法人理化学研究所 Gas analyzer and gas analysis method
CN111504945B (en) * 2020-06-08 2023-06-13 朗思传感科技(深圳)有限公司 Optical fiber photo-thermal gas sensing device and method
CN114235700B (en) * 2021-12-21 2023-11-03 长春理工大学 Multi-component gas concentration detection device and method
CN114486791B (en) * 2022-01-17 2023-08-08 吉林大学 Light-heat interference spectrum gas sensing device and detection method based on second-order photonic band gap slow optical waveguide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326521A (en) * 1996-06-06 1997-12-16 Mitsui Petrochem Ind Ltd Differential cyclic light generating device and infrared ray absorption and analyzing apparatus
JP2001289785A (en) * 2000-04-06 2001-10-19 Oyo Kogaku Kenkyusho Infrared laser component detector
JP2003042950A (en) * 2001-07-25 2003-02-13 Oyo Kogaku Kenkyusho Instrument for measuring gas component
JP2004325099A (en) * 2003-04-22 2004-11-18 Yokogawa Electric Corp Laser light source and laser spectroscopic analyzer using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326521A (en) * 1996-06-06 1997-12-16 Mitsui Petrochem Ind Ltd Differential cyclic light generating device and infrared ray absorption and analyzing apparatus
JP2001289785A (en) * 2000-04-06 2001-10-19 Oyo Kogaku Kenkyusho Infrared laser component detector
JP2003042950A (en) * 2001-07-25 2003-02-13 Oyo Kogaku Kenkyusho Instrument for measuring gas component
JP2004325099A (en) * 2003-04-22 2004-11-18 Yokogawa Electric Corp Laser light source and laser spectroscopic analyzer using the same

Also Published As

Publication number Publication date
JP2006300760A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4588520B2 (en) Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various kinds of gas medium
JP4921307B2 (en) Optical absorption analyzer
US9678003B2 (en) Cavity enhanced laser based isotopic gas analyzer
WO2004114011A1 (en) System with an optical parametric broadband light for real-time remote chemical detection
TWI567471B (en) A light source device, an analyzing device, and a light generating method
JP4634956B2 (en) Light absorption measuring device
JP2011106990A (en) Simulated raman spectrum gas analyzer
Whittaker et al. A DFG-based cavity ring-down spectrometer for trace gas sensing in the mid-infrared
JP2014235103A (en) Light absorption measurement laser source and light absorption measurement apparatus using the same
JP4853255B2 (en) Gas analyzer
Mitra Mid-infrared spectroscopy and challenges in industrial environment
JP2012181554A (en) Mid-infrared light source, and infrared light absorption analyzer using the same
Ciaffoni et al. 3.5-μm high-resolution gas sensing employing a LiNbO 3 QPM-DFG waveguide module
JP2011033941A (en) Intermediate-infrared light source, and infrared light absorption analyzer using the same
JP6673774B2 (en) Mid-infrared laser light source and laser spectrometer
Dakin et al. Review of methods of optical gas detection by direct optical spectroscopy, with emphasis on correlation spectroscopy
JP2015176072A (en) Mid-infrared laser beam generation device, gas detection device, mid-infrared laser beam generation method, and gas detection method
Zheng et al. Tunable fiber ring laser absorption spectroscopic sensors for gas detection
JP4553822B2 (en) Wavelength conversion module
Sugiyama et al. In-situ Measurement for Gas Concentrations using Tunable Lasers
US7646951B2 (en) Apparatus for manufacturing optical fiber Bragg grating, optical fiber, and mid-infrared optical fiber laser
JP2010181193A (en) Optical detection apparatus and optical detection method
Yanagawa et al. 4.6 µm-band difference frequency generation and CO isotopologue detection
Yanagawa et al. Methane detection in ambient air by difference frequency generation using a direct-bonded periodically poled LiNbO3 ridge waveguide
Richter Portable mid-infrared gas sensors: development and applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees