JP4588320B2 - Fuel processor with heat pipe cooling - Google Patents

Fuel processor with heat pipe cooling Download PDF

Info

Publication number
JP4588320B2
JP4588320B2 JP2003520856A JP2003520856A JP4588320B2 JP 4588320 B2 JP4588320 B2 JP 4588320B2 JP 2003520856 A JP2003520856 A JP 2003520856A JP 2003520856 A JP2003520856 A JP 2003520856A JP 4588320 B2 JP4588320 B2 JP 4588320B2
Authority
JP
Japan
Prior art keywords
heat pipe
hydrogen
heat
reactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003520856A
Other languages
Japanese (ja)
Other versions
JP2004538232A (en
Inventor
クラウス、カーティス、エル
スティーブンス、ジェームズ、エフ
バンク、ケネス、ジェイ
チャイルドレス、ロバート、エイ
ファファウル、マイケル
ファレル、ジョン、アール
ライムバッハ、ウェンデル、ビー
マースホール、ジェームズ、ダブリュ
ナグレ、デニス、シー
ウォレス、リック
Original Assignee
テキサコ ディベラップメント コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テキサコ ディベラップメント コーポレイション filed Critical テキサコ ディベラップメント コーポレイション
Publication of JP2004538232A publication Critical patent/JP2004538232A/en
Application granted granted Critical
Publication of JP4588320B2 publication Critical patent/JP4588320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/0015Plates; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00185Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00194Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00203Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00092Tubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0455Purification by non-catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

米国仮出願第60/311,459号(2001年8月11日出願)の優先権が主張され、これの内容は本明細書に援用される。   The priority of US Provisional Application No. 60 / 311,459 (filed Aug. 11, 2001) is claimed, the contents of which are incorporated herein by reference.

燃料電池は、化学的酸化−還元反応から電気を発生させ、清浄性及び効率性の見地から、他の形式の電力発生を凌駕する顕著な利点を有する。典型的には、燃料電池は、燃料としての水素と、酸化剤としての酸素とを用いる。電力発生は、反応物質の消費率に比例する。   Fuel cells generate electricity from chemical oxidation-reduction reactions and have significant advantages over other types of power generation in terms of cleanliness and efficiency. Typically, fuel cells use hydrogen as the fuel and oxygen as the oxidant. The power generation is proportional to the consumption rate of the reactants.

燃料電池のさらに広範囲な使用を妨げる顕著な欠点は、広く行き渡った水素構造基盤(infrastructure)の欠如である。水素は、比較的低い体積エネルギー密度を有し、大抵の電力発生システムに現在用いられている炭化水素燃料よりも、貯蔵及び輸送が困難である。この困難性を克服するための1つの方法は、炭化水素を、燃料電池のためのフィード(feed)として用いることができる水素富化ガス流に転化させるリホーマーの使用である。   A significant drawback that prevents more widespread use of fuel cells is the lack of a widespread hydrogen structure. Hydrogen has a relatively low volumetric energy density and is more difficult to store and transport than the hydrocarbon fuels currently used in most power generation systems. One way to overcome this difficulty is the use of a reformer that converts hydrocarbons into a hydrogen-enriched gas stream that can be used as a feed for the fuel cell.

例えば天然ガス、LPG、ガソリン及びディーゼルのような、炭化水素に基づく燃料は、大抵の燃料電池のための燃料源として用いられるために、転化方法を必要とする。現在の技術は、初期の転化方法を幾つかの浄化方法と組み合わせた多工程方法を用いている。初期方法は最も頻繁には水蒸気リホーミング(SMR)、オートサーマル・リホーミング(ATR)、接触部分酸化(CPOX)又は非接触部分酸化(POX)である。浄化方法は通常、脱硫、高温水性ガスシフト(high temperature water−gas shift)、低温水性ガスシフト(low temperature water−gas shift)、選択的CO酸化、又は選択的COメタン化の組み合わせから構成される。代替方法は、水素選択的膜反応器及びフィルターを包含する。   Fuels based on hydrocarbons, such as natural gas, LPG, gasoline and diesel, require a conversion process in order to be used as a fuel source for most fuel cells. Current technology uses a multi-step process that combines the initial conversion process with several purification processes. The initial method is most often water vapor reforming (SMR), autothermal reforming (ATR), catalytic partial oxidation (CPOX) or non-contact partial oxidation (POX). The purification method usually consists of a combination of desulfurization, high temperature water-gas shift, low temperature water-gas shift, selective CO oxidation, or selective CO methanation. Alternative methods include hydrogen selective membrane reactors and filters.

上記研究にも拘わらず、炭化水素燃料を、燃料電池に関連して用いる水素富化ガス流に転化させるための簡単なユニットの必要性が依然として存在する。   Despite the above work, there remains a need for a simple unit for converting hydrocarbon fuels into a hydrogen-enriched gas stream for use in connection with fuel cells.

本発明は、一般に、炭化水素燃料を水素富化ガスに転化させる装置であって、協力関係で水素富化ガスを生成する、炭化水素リホーミング反応器;水性ガスシフト反応器(water gas shift reactor);及び選択的酸化反応器を含み、該反応器床の温度がヒート・パイプの使用によって調節される装置に関する。   The present invention generally relates to an apparatus for converting a hydrocarbon fuel into a hydrogen-enriched gas, which produces a hydrogen-enriched gas in a cooperative relationship; a water gas shift reactor. And an apparatus comprising a selective oxidation reactor, wherein the temperature of the reactor bed is regulated by the use of heat pipes.

このような具体的実施態様の1つでは、炭化水素リホーミング反応器は、燃料混合物をリホーミング条件下で反応させて、水素含有ガス混合物を得るための触媒を包含する。該触媒は、オートサーマル改質触媒、水蒸気リホーミング触媒又はこれらの組み合わせのいずれかでありうる。水性ガスシフト反応器は、該水素含有ガス混合物を水性ガスシフト反応条件下で反応させて、中間水素含有ガス混合物を、実質的に減少した一酸化炭素内容物と共に得るための触媒を包含する。選択的酸化反応器は、該中間水素含有ガス混合物を選択的酸化反応条件下で反応させて、水素富化ガスを得るための触媒を包含する。1つの具体的実施態様では、ヒート・パイプを用いて、選択的酸化反応器内で発生した熱を伝えて、炭化水素燃料を予熱して、高温炭化水素燃料にする、この場合、該高温炭化水素燃料は、炭化水素リホーミング反応器のための炭化水素燃料フィードになる。リホーミング反応ヒート・パイプのための熱源は、好ましくは、燃料電池のためのアノード・テール・ガス酸化装置(anode tail gas oxidizer)でありうる。本発明で用いるヒート・パイプの設計及び選択は、単純なヒート・パイプ、可変伝導性ヒート・パイプ又は自己調節性可変伝導性ヒート・パイプ、又はこれらの組み合わせを包含しうる。   In one such specific embodiment, the hydrocarbon reforming reactor includes a catalyst for reacting the fuel mixture under reforming conditions to obtain a hydrogen-containing gas mixture. The catalyst can be either an autothermal reforming catalyst, a steam reforming catalyst, or a combination thereof. The water gas shift reactor includes a catalyst for reacting the hydrogen-containing gas mixture under water gas shift reaction conditions to obtain an intermediate hydrogen-containing gas mixture with a substantially reduced carbon monoxide content. A selective oxidation reactor includes a catalyst for reacting the intermediate hydrogen-containing gas mixture under selective oxidation reaction conditions to obtain a hydrogen-enriched gas. In one specific embodiment, a heat pipe is used to transfer the heat generated in the selective oxidation reactor to preheat the hydrocarbon fuel into a high temperature hydrocarbon fuel, in which case the high temperature carbonization The hydrogen fuel becomes the hydrocarbon fuel feed for the hydrocarbon reforming reactor. The heat source for the reforming reaction heat pipe may preferably be an anode tail gas oxidizer for the fuel cell. The design and selection of the heat pipe used in the present invention may include a simple heat pipe, a variable conductivity heat pipe or a self-regulating variable conductivity heat pipe, or a combination thereof.

(具体的な実施態様の説明)
本発明は、一般に、炭化水素燃料を水素富化ガスに転化させるための装置であって、種々な反応段階の温度がヒート・パイプの使用によって調節される該装置に関する。好ましい態様では、本明細書に記載する装置及び方法は、燃料電池に用いるための炭化水素燃料から水素富化ガス流を得るための該コンパクト・プロセッサであって、反応温度及び熱統合(heat integration)がヒート・パイプの使用によって達成される該コンパクト・プロセッサに関する。しかし、本明細書に記載する装置及び方法のために、水素富化流が望ましい任意の使用を含めて、他の可能な使用が考えられる。したがって、本明細書では、本発明を、燃料電池に関連して用いられるものとして記載するが、本発明の範囲は、このような使用に限定されない。
(Description of specific embodiments)
The present invention relates generally to an apparatus for converting hydrocarbon fuel to a hydrogen-enriched gas, wherein the temperature of the various reaction stages is regulated by the use of heat pipes. In a preferred embodiment, the apparatus and method described herein is a compact processor for obtaining a hydrogen-enriched gas stream from a hydrocarbon fuel for use in a fuel cell, comprising reaction temperature and heat integration. Relates to the compact processor achieved by the use of heat pipes. However, other possible uses are contemplated for the apparatus and methods described herein, including any use where a hydrogen-enriched stream is desired. Accordingly, although the present invention is described herein as being used in connection with a fuel cell, the scope of the present invention is not limited to such use.

反応器フィード(reactor feed)は、炭化水素、酸素及び水を包含する。酸素は、空気、補強空気(enriched air)又は実質的に純粋な酸素の形態でありうる。水は、液体又は蒸気として導入することができる。フィード成分の組成%は、以下で考察するように、所望の操作条件によって決定される。   The reactor feed includes hydrocarbons, oxygen and water. The oxygen may be in the form of air, enriched air, or substantially pure oxygen. Water can be introduced as a liquid or vapor. The composition percentage of the feed component is determined by the desired operating conditions, as discussed below.

炭化水素燃料は、それが気化されうる限り、周囲条件において液体でも、また気体でもよい。本明細書で用いる“炭化水素”なる用語は、部分的酸化又は水蒸気リホーミング反応から水素を生成することができる、C−H結合を有する有機化合物を包含する。該化合物の分子構造内に炭素及び水素以外の原子の存在が、排除される訳ではない。したがって、本明細書に開示する方法及び装置に用いるために適した燃料は、(非限定的に)、天然ガス、メタン、エタン、プロパン、ブタン、ナフサ、ガソリン、及びディーゼル燃料のような燃料のみではなく、例えば、メタノール、エタノール、プロパノール等のようなアルコールをも包含する。   The hydrocarbon fuel may be liquid or gas at ambient conditions as long as it can be vaporized. As used herein, the term “hydrocarbon” includes organic compounds having a C—H bond that are capable of producing hydrogen from a partial oxidation or steam reforming reaction. The presence of atoms other than carbon and hydrogen in the molecular structure of the compound is not excluded. Accordingly, fuels suitable for use in the methods and apparatus disclosed herein are (but not limited to) only fuels such as natural gas, methane, ethane, propane, butane, naphtha, gasoline, and diesel fuel. Rather, for example, alcohols such as methanol, ethanol, propanol and the like are also included.

本発明の燃料プロセッサを出る流出流は、合成ガス(水素及び一酸化炭素)を包含し、若干の水、二酸化炭素、未転化炭化水素、不純物(例えば、硫化水素)及び不活性成分(特に、空気がフィード流の成分である場合には、例えば、窒素及びアルゴン)をも包含する可能性がある。   The effluent stream exiting the fuel processor of the present invention contains synthesis gas (hydrogen and carbon monoxide) and contains some water, carbon dioxide, unconverted hydrocarbons, impurities (eg, hydrogen sulfide) and inert components (particularly, If air is a component of the feed stream, it may also include, for example, nitrogen and argon.

本明細書に開示する反応器及び構造は、本明細書に開示する反応の操作条件及び化学的環境に耐えることができる任意の物質から製造することができ、例えば、ステンレス鋼、インコネル(Inconel)、インコロイ(Incoloy)、ハステロイ(Hastelloy)等を包含しうる。反応圧力は、約0〜約100psigが好ましいが、これより高い圧力を用いることもできる。反応器の操作圧力は、燃料電池によって要求される出口圧力(delivery pressure)に依存する。1〜20kW範囲で作動する燃料電池に関して、0〜約100psigの操作圧力が一般に充分である。   The reactors and structures disclosed herein can be made from any material that can withstand the operating conditions and chemical environment of the reactions disclosed herein, eg, stainless steel, Inconel. , Incoloy, Hastelloy and the like. The reaction pressure is preferably from about 0 to about 100 psig, although higher pressures can be used. The operating pressure of the reactor depends on the outlet pressure required by the fuel cell. For fuel cells operating in the 1-20 kW range, an operating pressure of 0 to about 100 psig is generally sufficient.

一般に、本発明の例示的実施態様の各々は、下記工程の1つ以上を包含する。図1は、本発明の例示的実施態様に包含される工程を説明する、一般的な工程流れ図を示す。当業者は、本明細書に開示した反応器を通る反応物質の流動に、進行的オーダー(progressive order)のある一定量が必要であることを認識する筈である。   In general, each exemplary embodiment of the present invention includes one or more of the following steps. FIG. 1 shows a general process flow diagram illustrating the steps involved in an exemplary embodiment of the present invention. Those skilled in the art will recognize that a certain amount of progressive order is required for the flow of reactants through the reactors disclosed herein.

工程Aは、2種類の異なる反応が行なわれうるリホーミング工程である。式I及びIIは、メタンが炭化水素として考えられる、模範的な反応式である:

Figure 0004588320
Step A is a reforming step in which two different reactions can be performed. Formulas I and II are exemplary reaction formulas in which methane is considered as a hydrocarbon:
Figure 0004588320

部分的酸化反応(式I)は、加えた酸素の完全な転化まで非常に迅速に行なわれ、発熱性である(即ち、熱を発生する)。フィード流中の高濃度の酸素は、部分的酸化反応に有利に作用する。   The partial oxidation reaction (Formula I) takes place very rapidly until complete conversion of the added oxygen and is exothermic (ie generates heat). A high concentration of oxygen in the feed stream favors the partial oxidation reaction.

水蒸気リホーミング反応(式II)は、緩慢に行なわれ、吸熱性である(即ち、熱を消耗する)。高濃度の水蒸気は、水蒸気リホーミングに有利に作用する。   The steam reforming reaction (formula II) is slow and endothermic (ie, consumes heat). A high concentration of water vapor favors water vapor reforming.

当業者は、部分的酸化と水蒸気リホーミングとを組み合わせて、フィード流Fを、水素及び一酸化炭素を含有する合成ガスに転化させることができることを理解し、認識する筈である。このような場合に、酸素対炭化水素の比率及び水対炭化水素の比率が、特徴的なパラメータになる。これらの比率は、操作温度及び水素収率に影響を及ぼす。   Those skilled in the art will understand and appreciate that a combination of partial oxidation and steam reforming can convert the feed stream F into a synthesis gas containing hydrogen and carbon monoxide. In such cases, the oxygen to hydrocarbon ratio and the water to hydrocarbon ratio are characteristic parameters. These ratios affect the operating temperature and hydrogen yield.

リホーミング工程の操作温度は、フィード条件及び触媒に依存して、約550℃〜約900℃の範囲でありうる。本発明は、ペレット、球、押出物、モノリス(monolith)等、又は本明細書に記載するような、フィン若しくはヒート・パイプの表面を覆った薄い塗膜(wash)を含めた任意の形態でありうる触媒床を用いる。   The operating temperature of the reforming process can range from about 550 ° C. to about 900 ° C., depending on the feed conditions and the catalyst. The present invention may be in any form including pellets, spheres, extrudates, monoliths, etc., or a thin wash over the surface of fins or heat pipes as described herein. A possible catalyst bed is used.

部分的酸化触媒は、当業者に周知である筈であり、しばしば、モノリス、押出物、ペレット又は他の担体上のアルミナ・ウォッシュコート(washcoat)上の例えば白金、パラジウム、ロジウム及び(又は)ルテニウムのような貴金属から構成される。例えばニッケル又はコバルトのような非貴金属も用いられている。例えばチタニア、ジルコニア、シリカ及びマグネシアのような、他のウォッシュコートが、文献に挙げられている。例えばランタン、セリウム及びカリウムのような、多くの他の物質が、部分的酸化触媒の性能を改良する“促進剤”(助触媒,プロモータ;promoter)として、文献に挙げられている。   Partial oxidation catalysts should be well known to those skilled in the art and are often, for example, platinum, palladium, rhodium and / or ruthenium on an alumina washcoat on a monolith, extrudate, pellet or other support. It is composed of noble metals such as Non-noble metals such as nickel or cobalt are also used. Other washcoats are listed in the literature, such as titania, zirconia, silica and magnesia. Many other materials, such as lanthanum, cerium and potassium, are listed in the literature as “promoters” (promoters, promoters) that improve the performance of partial oxidation catalysts.

水蒸気リホーミング触媒は、当業者に知られている筈であり、この触媒は、コバルト又は例えば白金、パラジウム、ロジウム、ルテニウム及び(又は)イリジウムのような貴金属の量と共にニッケルを包含することができる。該触媒は、例えば、単独の又は組み合わせた、マグネシア、アルミナ、シリカ、ジルコニア、又はアルミン酸マグネシウム上に担持されることができる。或いは、水蒸気リホーミング触媒は、好ましくは、単独の又は組み合わせた、マグネシア、アルミナ、シリカ、ジルコニア、又はアルミン酸マグネシウム上に担持されたニッケルを包含することができ、例えばカリウムのようなアルカリ金属によってプロモートされることができる。   Steam reforming catalysts should be known to those skilled in the art and can include nickel with cobalt or an amount of noble metals such as platinum, palladium, rhodium, ruthenium and / or iridium. . The catalyst can be supported, for example, on magnesia, alumina, silica, zirconia, or magnesium aluminate, alone or in combination. Alternatively, the steam reforming catalyst can preferably include nickel supported on magnesia, alumina, silica, zirconia, or magnesium aluminate, alone or in combination, for example with an alkali metal such as potassium. Can be promoted.

工程Aが主としてオートサーマル・リホーミング工程である場合には、工程Bは、工程Aからの合成ガス流を約600℃から約200℃、好ましくは約500℃から約300℃に、より好ましくは約425℃から約375℃の温度に冷却して、次の工程のために合成ガス流出物の温度を最適化するための冷却工程である。この冷却は、設計仕様及び、ガス流の熱容量を回収/リサイクルする必要性に依存して、ヒート・シンク、ヒート・パイプ又は熱交換器によって達成することができる。1つの例示的実施態様では、ヒート・パイプの凝縮端部(condensing end)は、フィード流が反応器に流入するときにヒート・シンクとしてフィード流を用いて、それによって、フィード流を予熱し、反応生成物ガスを冷却する。該ヒート・パイプは、以下でさらに詳細に考察するように、当業者に知られた、任意の適当な構造であることができる。代替的に、又はこれに加えて、冷却工程Bを、例えば燃料、空気又は水のような、追加のフィード成分を注入することによって、達成することができる。水は気化して、水蒸気になるときに多量の熱を吸収することができるので、水が好ましい。添加する成分の量は、必要な冷却度に依存して、当業者によって容易に決定される。   If step A is primarily an autothermal reforming step, then step B will generate a synthesis gas stream from step A from about 600 ° C to about 200 ° C, preferably from about 500 ° C to about 300 ° C, more preferably Cooling step to cool to a temperature of about 425 ° C. to about 375 ° C. to optimize the temperature of the syngas effluent for the next step. This cooling can be achieved by heat sinks, heat pipes or heat exchangers depending on the design specifications and the need to recover / recycle the heat capacity of the gas stream. In one exemplary embodiment, the condensing end of the heat pipe uses the feed stream as a heat sink when the feed stream enters the reactor, thereby preheating the feed stream, The reaction product gas is cooled. The heat pipe can be any suitable structure known to those skilled in the art, as discussed in more detail below. Alternatively or in addition, the cooling step B can be achieved by injecting additional feed components such as fuel, air or water. Water is preferred because it can absorb a large amount of heat when it vaporizes and becomes water vapor. The amount of component added is readily determined by those skilled in the art depending on the degree of cooling required.

工程Aが主として水蒸気リホーミング工程である場合には、該水蒸気リホーミング工程が吸熱性質であるために、工程Bは任意である。このような場合には、触媒床に組み入れられた凝縮端部を有するヒート・パイプによって、熱が水蒸気リホーミング工程に与えられる。即ち、このような例示的実施態様では、触媒床が、ヒート・パイプのためのヒート・シンクとして役立つ。このような例示的実施態様における熱源は、工程Gとして以下に開示する、アノード・テール・ガス酸化装置(anode tail gas oxidizer)又は部分的酸化反応器であることができる。   When the process A is mainly a steam reforming process, the process B is optional because the steam reforming process is endothermic. In such cases, heat is provided to the steam reforming process by a heat pipe having a condensation end incorporated into the catalyst bed. That is, in such exemplary embodiments, the catalyst bed serves as a heat sink for the heat pipe. The heat source in such exemplary embodiments can be an anode tail gas oxidizer or partial oxidation reactor, disclosed below as step G.

工程Cは精製工程である。炭化水素流の主要な不純物の1つは、硫黄であり、この硫黄は、リホーミング工程Aによって、硫化水素に転化される。工程Cで用いるプロセシング・コア(processing core)は、好ましくは、硫化水素を吸収し、転化させることができる、酸化亜鉛及び(又は)他の物質を包含し、担体(例えば、モノリス、押出物、ペレット等)を包含することができる。下記反応式IIIに従って、硫化水素を水に転化させることによって、脱硫が達成される:

Figure 0004588320
Step C is a purification step. One of the major impurities in the hydrocarbon stream is sulfur, which is converted to hydrogen sulfide by reforming step A. The processing core used in Step C preferably includes zinc oxide and / or other materials that can absorb and convert hydrogen sulfide, and supports (eg, monoliths, extrudates, Pellets and the like). Desulfurization is achieved by converting hydrogen sulfide to water according to Scheme III below:
Figure 0004588320

例えば塩化物のような、他の不純物も除去することができる。この反応は、好ましくは約300℃〜約500℃、より好ましくは約375〜約425℃の温度で行なわれる。酸化亜鉛は、約25℃〜約700℃の広範囲な温度範囲にわたって、効果的な硫化水素吸収剤であり、操作温度の適当な選択によって工程シーケンスを最適化するための大きなフレキシビリティーを与える。先行技術の場合と同様に、反応温度は、当業者に自明であるように、ヒート・パイプを用いて、調節することができる。   Other impurities, such as chloride, can also be removed. This reaction is preferably carried out at a temperature of about 300 ° C to about 500 ° C, more preferably about 375 to about 425 ° C. Zinc oxide is an effective hydrogen sulfide absorber over a wide temperature range from about 25 ° C. to about 700 ° C., providing great flexibility to optimize the process sequence by appropriate selection of operating temperatures. As in the prior art, the reaction temperature can be adjusted using a heat pipe, as will be apparent to those skilled in the art.

該流出流は、次に、任意の混合工程Dに送られて、そこで、水が該ガス流に加えられる。水の添加は、水が気化して、工程E(以下で考察)の水性ガスシフト反応のためにさらに多くの水を供給するときに、反応物質流の温度を低下させる。水蒸気及び他の流出流成分は、水を効果的に混合し及び(又は)水の気化を助ける、例えばセラミックビーズ又は他の同様な物質のような、不活性物質のプロセシング・コアを通過させることによって混合することができる。或いは、任意の追加の水をフィードと共に導入することができ、混合工程を再配置して、以下で開示するCO酸化工程Gにおいてオキシダントガスをより良好に混合することができる。   The effluent stream is then sent to an optional mixing step D where water is added to the gas stream. The addition of water lowers the temperature of the reactant stream as it evaporates and supplies more water for the water gas shift reaction in step E (discussed below). Water vapor and other effluent components are passed through an inert material processing core, such as ceramic beads or other similar materials, which effectively mix the water and / or help vaporize the water. Can be mixed by. Alternatively, any additional water can be introduced with the feed and the mixing process can be rearranged to better mix the oxidant gas in the CO oxidation process G disclosed below.

工程Eは、式IV:

Figure 0004588320

に従って一酸化炭素を二酸化炭素に転化させる水性ガスシフト反応である。 Step E is represented by formula IV:
Figure 0004588320

Is a water gas shift reaction that converts carbon monoxide to carbon dioxide.

この工程では、燃料電池にとって有害である一酸化炭素が、該ガス流から実質的に除去され、二酸化炭素に転化される、二酸化炭素は一般に燃料電池において不活性ガスと見なされる。一酸化炭素の濃度は、好ましくは、燃料電池によって許容されうるレベルまで、典型的には50ppm未満まで低下させるべきである。一般には、水性ガスシフト反応は、用いる触媒に依存して、150℃〜600℃の温度で行なわれることができる。このような条件下で、ガス流中の一酸化炭素の大部分は、二酸化炭素に酸化される。   In this step, carbon monoxide that is harmful to the fuel cell is substantially removed from the gas stream and converted to carbon dioxide, which is generally considered an inert gas in the fuel cell. The concentration of carbon monoxide should preferably be reduced to a level acceptable by the fuel cell, typically below 50 ppm. In general, the water gas shift reaction can be performed at a temperature of 150 ° C. to 600 ° C., depending on the catalyst used. Under such conditions, most of the carbon monoxide in the gas stream is oxidized to carbon dioxide.

低温シフト触媒は、約150℃〜約300℃の範囲で作用する、このような触媒は、例えば酸化銅、又は例えばジルコニアのような他の遷移金属酸化物に担持された銅、遷移金属酸化物若しくは例えばシリカ、アルミナ、ジルコニア等のような耐火性担体に担持された亜鉛、又は例えばシリカ、アルミナ、ジルコニア等のような、適当な担体に担持された、例えば白金、レニウム、パラジウム、ロジウム若しくは金のような貴金属を包含する。   Low temperature shift catalysts operate in the range of about 150 ° C. to about 300 ° C., such catalysts are copper, transition metal oxides supported on, for example, copper oxide or other transition metal oxides such as zirconia Or zinc supported on a refractory support such as silica, alumina, zirconia, etc., or platinum, rhenium, palladium, rhodium or gold supported on a suitable support such as silica, alumina, zirconia, etc. Including noble metals such as

高温シフト触媒は、好ましくは、約300℃〜約600℃の範囲の温度で用いられる、このような触媒は、例えば酸化第二鉄又は酸化第二クロムのような遷移金属酸化物を包含することができ、任意に、例えばケイ化銅又はケイ化鉄のような促進剤を包含することができる。さらに、高温シフト触媒が担持される場合には、例えば、担持された白金、パラジウム及び(又は)他の白金族メンバーのような貴金属も包含される。   High temperature shift catalysts are preferably used at temperatures in the range of about 300 ° C. to about 600 ° C., such catalysts including transition metal oxides such as ferric oxide or chromium oxide. And optionally can include accelerators such as copper silicide or iron silicide. Further, where a high temperature shift catalyst is supported, noble metals such as supported platinum, palladium and / or other platinum group members are also included.

この工程を行なうために用いられるプロセシング・コアは、例えば上述したような、高温シフト触媒若しくは低温シフト触媒、又は高温シフト触媒と低温シフト触媒の両方の組み合わせの充填床を包含することができる。この処理過程は、水性ガスシフト反応に適した任意の温度で、好ましくは、用いる触媒の種類に依存して、150℃〜約400℃の温度において操作されるべきである。任意に、触媒の充填床内の反応温度を制御するために、例えばヒート・パイプのような要素を、該シフト反応器のプロセシング・コアに配置することができる。このような例示的実施態様では、高温シフト反応が最初に行なわれ、その後に低温シフト反応が行なわれる。反応温度の制御は、一酸化炭素から二酸化炭素への転化に有利である。さらに、例えば脱硫反応(例えば、工程C)のような、精製プロセシングは、高シフト転化と低シフト転化との間で、高温シフト及び低温シフトに対して別々の工程を用意して、高温シフト工程と低温シフト工程との間の脱硫モジュールによって行なうことができる。   The processing core used to perform this step can include a packed bed of high temperature or low temperature shift catalysts, or a combination of both high temperature and low temperature shift catalysts, eg, as described above. This process should be operated at any temperature suitable for the water gas shift reaction, preferably between 150 ° C. and about 400 ° C., depending on the type of catalyst used. Optionally, elements such as heat pipes can be placed in the processing core of the shift reactor to control the reaction temperature in the packed bed of catalyst. In such exemplary embodiments, the high temperature shift reaction is performed first, followed by the low temperature shift reaction. Controlling the reaction temperature is advantageous for the conversion of carbon monoxide to carbon dioxide. Furthermore, refining processing, such as desulfurization reaction (eg, Step C), provides separate steps for high temperature shift and low temperature shift between high shift conversion and low shift conversion, and high temperature shift step. And a desulfurization module between the low temperature shift process.

工程Fは、1つの実施態様では、ヒート・パイプによって行なわれる冷却工程である。ヒート・パイプは、以下で説明するように、任意の適当な構造でありうる。ヒート・パイプの目的は、ガス流の温度を下げて、好ましくは約90℃〜約150℃の範囲内の温度を有する流出物を生成することである。   Step F is a cooling step performed by a heat pipe in one embodiment. The heat pipe can be any suitable structure, as described below. The purpose of the heat pipe is to reduce the temperature of the gas stream to produce an effluent preferably having a temperature in the range of about 90 ° C to about 150 ° C.

工程Fにおける処理過程に酸素が加えられる。この酸素は、以下で説明する工程Gの反応によって消耗される。この酸素は、空気、補強空気、又は実質的に純粋な酸素の形態でありうる。この工程で、ヒート・パイプを用いて、ガスの温度を調節することができ、ヒート・パイプは、バッフル付き、酸素と水素富化ガスとの混合を生じるような、他の乱流誘導構造のフィン付きで設計されうる。   Oxygen is added to the process in step F. This oxygen is consumed by the reaction in step G described below. The oxygen can be in the form of air, reinforced air, or substantially pure oxygen. In this process, a heat pipe can be used to regulate the temperature of the gas, and the heat pipe is baffled and produces other turbulence-inducing structures that produce a mixture of oxygen and hydrogen-enriched gas. Can be designed with fins.

工程Gは、流出流中の残留一酸化炭素が実質的に二酸化炭素に転化される酸化工程である。2つの反応が、工程G:以下のような、一酸化炭素の所望の酸化(式V)と、水素の好ましくない酸化(工程VI)で行なわれる。

Figure 0004588320
Process G is an oxidation process in which residual carbon monoxide in the effluent is substantially converted to carbon dioxide. The two reactions are performed in Step G: the desired oxidation of carbon monoxide (Formula V) and the undesired oxidation of hydrogen (Step VI) as follows:
Figure 0004588320

該プロセシングは、一酸化炭素の酸化のための触媒の存在下で行なわれ、触媒は、例えばペレット、球、モノリス等のような、任意の適当な形態でありうる。一酸化炭素の酸化触媒は知られており、典型的に、貴金属(例えば、白金、パラジウム)及び(又は)遷移金属(例えば、鉄、クロム、マンガン)及び(又は)貴金属若しくは遷移金属の化合物、特に酸化物を包含する。好ましい酸化触媒は、アルミナ・ウォッシュコート上の白金である。ウォッシュコートは、モノリス、押出物、ペレット又は他の担体に塗布することができる。例えばセリウム又はランタンのような、付加的物質を加えて、性能を改善することができる。数人の実施者によって、アルミナ担体付きロジウム触媒より優れた性能が主張される、他の多くの製剤が文献に挙げられている。ルテニウム、パラジウム、金及び他の物質が、この使用のために有効であるとして文献に挙げられている。   The processing is performed in the presence of a catalyst for the oxidation of carbon monoxide, and the catalyst can be in any suitable form, such as pellets, spheres, monoliths, and the like. Carbon monoxide oxidation catalysts are known and typically include noble metals (eg, platinum, palladium) and / or transition metals (eg, iron, chromium, manganese) and / or compounds of noble metals or transition metals, In particular, oxides are included. A preferred oxidation catalyst is platinum on an alumina washcoat. The washcoat can be applied to monoliths, extrudates, pellets or other carriers. Additional materials such as cerium or lanthanum can be added to improve performance. Several other formulations have been cited in the literature by several practitioners claiming performance superior to alumina-supported rhodium catalysts. Ruthenium, palladium, gold and other materials are listed in the literature as being effective for this use.

一酸化炭素の優先的酸化は、低温によって有利に作用される。両方の反応は熱を生じるので、工程で発生した熱を除去するように、ヒート・パイプを反応器内に配置することができる。工程の操作温度は、好ましくは、約90℃〜約150℃の範囲内に維持される。このようにして、当業者は、この工程が実質的な熱源として役立ちうること、したがって、適当なヒート・パイプを用いて、吸熱性である他の工程、例えば、工程Aの水蒸気リホーミングと統合されうることを認識する筈である。   The preferential oxidation of carbon monoxide is favored by low temperatures. Since both reactions generate heat, a heat pipe can be placed in the reactor to remove the heat generated in the process. The operating temperature of the process is preferably maintained within the range of about 90 ° C to about 150 ° C. In this way, those skilled in the art will understand that this process can serve as a substantial heat source and therefore integrate with other processes that are endothermic, eg, steam reforming in process A, using a suitable heat pipe. It should be recognized that it can be done.

工程Gは、好ましくは、一酸化炭素レベルを、燃料電池に用いるために適当なレベルである50ppm未満にまで減ずるが、当業者は、本発明が、一酸化炭素のこれより高い及び低いレベルを有する水素富化生成物の製造に適用されうることを認識する筈である。   Step G preferably reduces the carbon monoxide level to less than 50 ppm, which is a suitable level for use in a fuel cell, but those skilled in the art will recognize that the present invention reduces higher and lower levels of carbon monoxide. It should be recognized that it can be applied to the production of hydrogen-enriched products having.

燃料プロセッサを出る流出物Pは、二酸化炭素と、例えば水、不活性成分(例えば、窒素、アルゴン)、残留炭化水素等のような、存在しうる他の成分とを含有する水素富化ガスである。生成物ガスは、燃料電池のため又は、水素富化フィード流が望ましい他の用途のためのフィードとして用いることができる。任意に、生成物ガスは、例えば、二酸化炭素、水又は他の成分を除去するために、更なるプロセシングに送ることができる。   The effluent P exiting the fuel processor is a hydrogen enriched gas containing carbon dioxide and other components that may be present, such as water, inert components (eg, nitrogen, argon), residual hydrocarbons, etc. is there. The product gas can be used as a feed for a fuel cell or for other applications where a hydrogen enriched feed stream is desired. Optionally, the product gas can be sent to further processing, for example to remove carbon dioxide, water or other components.

一般的な方法を述べてきたが、当業者は、燃料プロセッサの経済的な実行可能性に関する主要な課題(challenge)が低コストの熱管理であることを認識し、理解する筈である。克服すべき課題は、触媒床における反応温度の制御;迅速な始動のための床への迅速な熱添加;恒温の床温度を維持するような方法での熱の除去;経済的に実行可能なコストでの燃料プロセッサの営利的な製造;並びに当業者に当然周知である、他の課題を包含する。   Although general methods have been described, those skilled in the art should recognize and understand that a major challenge with regard to the economic viability of the fuel processor is low cost thermal management. Challenges to overcome include control of reaction temperature in the catalyst bed; rapid heat addition to the bed for rapid start-up; heat removal in such a way as to maintain a constant bed temperature; economically feasible Commercial production of fuel processors at cost; as well as other challenges that are well known to those skilled in the art.

ヒート・パイプは、熱を迅速に除去して、温度を正確な設定に維持するために用いられるデバイスである。燃料プロセッサの酸化亜鉛(工程C)、水性ガスシフト(工程E)及び部分的酸化(工程G)触媒床の温度範囲において、簡単で、費用のかからない銅/水ヒート・パイプを用いることができる。例えばオートサーマル改質触媒(工程A)の出口におけるように、温度が500℃を超える場合には、この高温は、例えばステンレス鋼/ナトリウムヒート・パイプのような、他の物質の使用を必要とする。   A heat pipe is a device used to quickly remove heat and maintain the temperature at an accurate setting. Simple and inexpensive copper / water heat pipes can be used in the temperature range of the fuel processor zinc oxide (step C), water gas shift (step E) and partial oxidation (step G) catalyst beds. If the temperature exceeds 500 ° C., for example at the outlet of the autothermal reforming catalyst (Step A), this high temperature requires the use of other materials, such as stainless steel / sodium heat pipes. To do.

当業者は、サーモ−サイホンとしても知られるヒート・パイプが、高速の熱流を無視できる温度低下で移送するために広く用いられるデバイス、即ち、固有の超高熱伝導性を有するデバイスであることを理解し、認識する筈である。非常に多様なヒート・パイプが、文献に開示されており、当業者に知られている筈である。適当なヒート・パイプの選択は、調節される反応がヒート・シンク又は熱源のいずれとして役立つことになるのか;所望の温度範囲;反応に受容される温度変化の許容範囲;効率;コスト;及び当業者に自明である他の要因を含めた、幾つかの要因に依存する。このような熟練した技術者を助成するために、数種類のヒート・パイプについての次の記載を以下に提供する。しかし、多くの種類のヒート・パイプが存在し、本発明の範囲内で使用可能であることを理解すべきである。   Those skilled in the art understand that heat pipes, also known as thermo-siphons, are devices that are widely used to transport high-speed heat flows at negligible temperature drops, that is, devices that have inherent ultra-high thermal conductivity. And should recognize. A great variety of heat pipes are disclosed in the literature and should be known to those skilled in the art. Selection of an appropriate heat pipe will determine whether the controlled reaction will serve as a heat sink or a heat source; the desired temperature range; the acceptable range of temperature changes accepted by the reaction; the efficiency; the cost; Depends on several factors, including other factors that are obvious to the vendor. To subsidize such skilled technicians, the following descriptions of several types of heat pipes are provided below. However, it should be understood that many types of heat pipes exist and can be used within the scope of the present invention.

次に、図2を参照すると、“定伝導性ヒート・パイプ”とも呼ばれる、その最も単純で、最も普及した“一般的な”形態でのヒート・パイプ210は、飽和熱平衡状態の作動流体214(液体及び蒸気)を含有する、一般的パイプ形状の閉鎖圧力容器212を包含する。外部熱が蒸発器区分216にインプットされ、凝縮器区分218から外部ヒート・シンク(図示せず)に、熱が排除される。蒸発器区分216と凝縮器区分218とは、蒸気流量と内部細管ウィック(internal capillary wick)222とによって接続される。例えばアンモニア又は水又は他の流体のような、作動流体214は、それが蒸発器区分216で蒸発するときに、その相−変化“蒸発熱”を吸収し、ダッシュ矢印221で示すような、凝縮器区分218に流動し、凝縮して、その熱をヒート・パイプの212壁に与える。次に、作動流体は、液体形態で、ウィック222内の細管ポンピングによって蒸発器区分16に戻る。有用なヒート・パイプ材料の1つは、それが器壁に微細なチャンネルのインテグラル・ウィックを有するように容易に押出成形されるという理由から、アルミニウムである。しかし、銅及びステンレス鋼を含めた、他の金属からヒート・パイプを製造することもできる。   Referring now to FIG. 2, the heat pipe 210, in its simplest and most popular “generic” form, also referred to as a “constant conductivity heat pipe”, is a saturated thermal equilibrium working fluid 214 ( Including a general pipe-shaped closed pressure vessel 212 containing liquid and vapor). External heat is input to the evaporator section 216 and heat is removed from the condenser section 218 to an external heat sink (not shown). The evaporator section 216 and the condenser section 218 are connected by a vapor flow rate and an internal capillary wick 222. The working fluid 214, such as ammonia or water or other fluid, absorbs its phase-change “heat of vaporization” as it evaporates in the evaporator section 216 and condenses as shown by the dash arrow 221. Flows to the condenser section 218 and condenses to give its heat to the 212 wall of the heat pipe. The working fluid is then returned to the evaporator section 16 in liquid form by capillary pumping in the wick 222. One useful heat pipe material is aluminum because it is easily extruded to have a fine channel integral wick in the vessel wall. However, heat pipes can also be made from other metals, including copper and stainless steel.

上述した一般的ヒート・パイプは受動性である;即ち、その伝導性は本質的に一定であり、該ヒート・パイプは、伝導性をモジュレートして、“能動的に”温度を制御するという特徴はない。他の形態のヒート・パイプは、能動的な温度制御又はダイオード作用を生じる特徴を有する、これらの例は図3aと図3bに示す。“能動的制御”ヒート・パイプ320の1つの形態は、“可変伝導性”ヒート・パイプと呼ばれる。該可変伝導性ヒート・パイプは、含有される非凝縮性ガス329の量に依存して、凝縮器318内の作動流体314の制御された一部を排除して、作動流体314を含有する凝縮器318の部分を熱的に不活性にする。非凝縮性ガスは、凝縮器端部に接続したリザーバ(reservoir)328(即ち、非凝縮性ガス・リザーバ)中に貯蔵され、該リザーバ328から凝縮器318中へ一部排除される。図3aに示すように、これは、リザーバ328壁上の電気ヒーター332によって加熱されるときに、生じる。図3bに示すように、これは、フィン330によって例えば空気又は冷却液のような冷却流体(図示せず)に分散される熱を制御することによって、生じる。非凝縮性ガスの量は、主として、リザーバ328の温度の関数である。図3aでは、該量は、サーモスタットによって制御される、又は蒸発器316上の温度センサー334が非凝縮性リザーバ・ヒーター332の操作を、したがって、蒸発器316の温度を制御する。図3bでは、該量は、冷却フィン330上の冷却流体(図示せず)の流量及び速度を制御することによって、制御される。可変伝導性ヒート・パイプ320は非常に良好に作用し、信頼することができ、予測可能である。非凝縮性ガス・リザーバ328の容量は可変伝導性ヒート・パイプ320の凝縮器318長さに比例する;したがって、凝縮器318長さは、非凝縮性ガス・リザーバ328に関連した、容量、質量及びヒーター332の電力制限によって通常限定され、必要なラジエーター面積に基づく、実際の凝縮器318長さ必要条件によって定義されない。   The general heat pipe described above is passive; that is, its conductivity is essentially constant, said heat pipe modulates the conductivity and "actively" controls the temperature. There are no features. Other forms of heat pipes have features that produce active temperature control or diode action, examples of which are shown in FIGS. 3a and 3b. One form of “active control” heat pipe 320 is referred to as a “variable conductivity” heat pipe. The variable conductive heat pipe eliminates a controlled portion of the working fluid 314 in the condenser 318 depending on the amount of non-condensable gas 329 contained and condenses containing the working fluid 314. The portion of vessel 318 is thermally inactive. Non-condensable gas is stored in a reservoir 328 (ie, non-condensable gas reservoir) connected to the end of the condenser and is partially removed from the reservoir 328 into the condenser 318. As shown in FIG. 3a, this occurs when heated by an electric heater 332 on the reservoir 328 wall. As shown in FIG. 3b, this occurs by controlling the heat that is distributed by the fins 330 to a cooling fluid (not shown) such as air or coolant. The amount of noncondensable gas is primarily a function of the temperature of the reservoir 328. In FIG. 3a, the amount is controlled by a thermostat, or a temperature sensor 334 on the evaporator 316 controls the operation of the non-condensable reservoir heater 332 and thus the temperature of the evaporator 316. In FIG. 3 b, the amount is controlled by controlling the flow rate and speed of the cooling fluid (not shown) on the cooling fins 330. The variable conductive heat pipe 320 works very well, is reliable and predictable. The capacity of the non-condensable gas reservoir 328 is proportional to the condenser 318 length of the variable conductive heat pipe 320; thus, the condenser 318 length is the capacity, mass associated with the non-condensable gas reservoir 328. And usually limited by the power limitation of the heater 332 and not defined by the actual condenser 318 length requirements based on the required radiator area.

例えば図3a及び図3bに示すような、幾つかの可変伝導性ヒート・パイプ320は、蒸発器の恒温状態を維持するのに非常に効率的に作用する。例えば、可変伝導性ヒート・パイプ凝縮器318は、1℃又は2℃のオーダーの、狭い蒸発器温度帯に対応する完全0〜100%の有効範囲を有することができる。   Several variable conductive heat pipes 320, for example as shown in FIGS. 3a and 3b, work very efficiently to maintain the constant temperature of the evaporator. For example, the variable conductivity heat pipe condenser 318 can have a full 0-100% effective range corresponding to a narrow evaporator temperature zone, on the order of 1 ° C or 2 ° C.

自己調節性の可変伝導性ヒート・パイプは、米国特許第4,799,537号明細書に開示されており、この特許の内容は本明細書に援用される。該特許に記載されるように、自己調節性ヒート・パイプは、密閉された中空ケーシング;該ケーシング内のある一定量の、気化可能な伝熱流体;該ケーシング内のある一定量の非凝縮性ガス;開口部付きの、膨張可能な第1リザーバ容量(第1リザーバは、該ケーシング内の、熱が加えられ、第1リザーバ容量の膨張に抵抗する加圧手段によって作用される、該ケーシングの蒸発器領域に配置される、この場合、該加圧手段は非凝縮性ガスで充填された第2リザーバであり、第1リザーバ容量は第2リザーバ内に封入される);並びに第1リザーバの開口部に結合した1端と、ヒート・パイプの凝縮器領域中への他端開口部(ここから、熱が除去される)とを有する導管手段を包含する。次に、図4では、米国特許第4,799,537号明細書に記載された種類の自己調節性ヒート・パイプの軸に沿った簡略化断面図を説明する、この場合には、ヒート・パイプ410が非凝縮性ガス第1リザーバ412及び第2リザーバ414を封入する。   A self-regulating variable conductive heat pipe is disclosed in US Pat. No. 4,799,537, the contents of which are incorporated herein. As described in the patent, a self-regulating heat pipe is a sealed hollow casing; a quantity of vaporizable heat transfer fluid in the casing; a quantity of non-condensable in the casing. Gas; an inflatable first reservoir volume with an opening (the first reservoir being acted on by pressure means within the casing to which heat is applied and resists expansion of the first reservoir volume; Disposed in the evaporator region, in which case the pressurizing means is a second reservoir filled with non-condensable gas and the first reservoir volume is enclosed in the second reservoir); It includes conduit means having one end coupled to the opening and the other end opening (from which heat is removed) into the condenser region of the heat pipe. Next, FIG. 4 illustrates a simplified cross-sectional view along the axis of a self-regulating heat pipe of the type described in US Pat. No. 4,799,537, in which case the heat A pipe 410 encloses the non-condensable gas first reservoir 412 and the second reservoir 414.

ヒート・パイプ410は慣用的に、ケーシング416の内壁を覆う細管ウィック418付きの密閉ケーシング416から構成される。操作中に、ヒート・パイプ410の1端は蒸発器領域420であり、該領域420に熱が加えられ、他端は凝縮器領域422であり、この領域から熱が除去される。ヒート・パイプ410が空にされ、これに、気化可能な作動流体のみが充填管424から装填されるならば、これは慣用的なヒート・パイプとして機能する。   The heat pipe 410 is conventionally comprised of a sealed casing 416 with a thin tube wick 418 that covers the inner wall of the casing 416. During operation, one end of the heat pipe 410 is the evaporator region 420 and heat is applied to the region 420 and the other end is the condenser region 422 from which heat is removed. If the heat pipe 410 is emptied and only vaporizable working fluid is loaded from the fill tube 424, this functions as a conventional heat pipe.

しかし、さらに、例えば窒素のような非凝縮性ガスもヒート・パイプ410に装填される場合には、このヒート・パイプ410は幾らか異なって機能する。当該技術分野で充分に理解されるように、作動流体蒸気の移動によって、非凝縮性ガスはヒート・パイプ410の凝縮器領域422に排除され、該ガスはそこに回収されて、該ガスが占有するヒート・パイプ部分が、ヒート・パイプとして機能することを妨害する。実際に、非凝縮性ガスを含有するヒート・パイプ容量と、含有しないヒート・パイプ容量との間には境界426が形成される。   However, if a non-condensable gas, such as nitrogen, is also loaded into the heat pipe 410, the heat pipe 410 functions somewhat differently. As is well understood in the art, the movement of the working fluid vapor removes non-condensable gas to the condenser region 422 of the heat pipe 410, where it is recovered and occupied by the gas. This prevents the heat pipe part from functioning as a heat pipe. Indeed, a boundary 426 is formed between the heat pipe volume containing non-condensable gas and the heat pipe volume not containing.

膨張不能な構造を有する第2リザーバ414は、蒸発器領域420中に配置される。第2リザーバは第1リザーバ412を封入し、第1リザーバ412の開口部は導管428に結合し、クランプ430によって適所に維持される。第1リザーバ414から遠く離れた、導管428端部は、蒸発器領域420から最も離れた凝縮器領域422端部近くで、ヒート・パイプ410の内部に開口する。導管428の開放端部は、該ヒート・パイプの、非凝縮性ガス含有領域中に充分入って配置される。それ故、公称的操作中に、非凝縮性ガスは導管428を充填し、膨張可能な第1リザーバ412を部分的に膨張させる。この膨張は、第2リザーバ414中にその充填管432から装填された非凝縮性ガスの圧力によって抑制され、制限される。   A second reservoir 414 having a non-expandable structure is disposed in the evaporator region 420. The second reservoir encloses the first reservoir 412, the opening of the first reservoir 412 is coupled to the conduit 428 and is maintained in place by the clamp 430. The end of conduit 428 remote from first reservoir 414 opens into the interior of heat pipe 410 near the end of condenser region 422 furthest from evaporator region 420. The open end of conduit 428 is positioned well within the non-condensable gas containing region of the heat pipe. Thus, during nominal operation, non-condensable gas fills conduit 428 and partially expands inflatable first reservoir 412. This expansion is suppressed and limited by the pressure of the non-condensable gas loaded into the second reservoir 414 from its fill tube 432.

第2リザーバ414中のガスの圧力が、ヒート・パイプの温度制御点を決定し、この圧力は設計パラメータの1つである。第2リザーバ414中のガスの圧力は、公称的操作温度でのヒート・パイプ中の伝熱流体の蒸気圧と同じであるべきである。   The pressure of the gas in the second reservoir 414 determines the temperature control point of the heat pipe, and this pressure is one of the design parameters. The pressure of the gas in the second reservoir 414 should be the same as the vapor pressure of the heat transfer fluid in the heat pipe at the nominal operating temperature.

第2リザーバ414中のガスの圧力が決定されると、第2リザーバ414と、膨張可能な第1リザーバ412中のガスと蒸気の混合物との間に圧力平衡が達成され、それが作動流体蒸気圧及び蒸気と非凝縮性ガスとの混合物の圧力を同様に均等であるようにさせる箇所に、境界426が配置される。   Once the pressure of the gas in the second reservoir 414 is determined, a pressure balance is achieved between the second reservoir 414 and the gas and vapor mixture in the expandable first reservoir 412, which is the working fluid vapor. A boundary 426 is located where pressure and the pressure of the mixture of vapor and non-condensable gas are equally even.

自動制御現象が、次のように機能すると開示されている。条件が蒸発器領域420の温度を上昇させようとする場合には、伝熱流体の蒸気圧は上昇しようとする。これは境界426を、蒸発器領域420から遠ざけるように押し進めるので、凝縮器領域422内のヒート・パイプ410のより大きい表面を活性化して、さらに大きな冷却を与えて、蒸発器420における温度上昇を制限する。   It is disclosed that the automatic control phenomenon functions as follows. If the condition seeks to increase the temperature of the evaporator region 420, the vapor pressure of the heat transfer fluid tends to increase. This pushes the boundary 426 away from the evaporator region 420, thus activating the larger surface of the heat pipe 410 in the condenser region 422 to provide more cooling and to increase the temperature rise in the evaporator 420. Restrict.

境界426の移動は、境界426から、複合ガス蒸気帯の反対端部に事実上存在する第1リザーバ412の膨張によって、調整させれるので、僅かな抵抗に遭うに過ぎない。第1リザーバ412自体の膨張は、その移動が、上述したように伝熱流体の蒸気圧と公称的に同じである、第2リザーバ414内のガス圧によってのみ抑制されるので、殆ど抵抗に遭わない。それ故、第1リザーバ412の容量増加は、蒸発器領域420の温度上昇を制限し、第1リザーバ412の容量減少も、蒸発器領域420の温度低下を限定するように生じる。   The movement of the boundary 426 is adjusted from the boundary 426 by the expansion of the first reservoir 412 that is effectively present at the opposite end of the composite gas vapor zone, so only a slight resistance is encountered. The expansion of the first reservoir 412 itself is almost in resistance because its movement is limited only by the gas pressure in the second reservoir 414, which is nominally the same as the vapor pressure of the heat transfer fluid as described above. Absent. Therefore, an increase in the capacity of the first reservoir 412 limits the temperature increase in the evaporator region 420, and a decrease in the capacity of the first reservoir 412 also occurs to limit the temperature decrease in the evaporator region 420.

このフィードバック系は、第2リザーバ414及び第1リザーバ412内の非凝縮性ガスが本質的に蒸発器領域420の温度であるので、一定温度であり、したがって圧力に及ぼす如何なる温度変化をも排除するという事実によって、助成される。さらに、該ガスの温度は該系における最高温度とほぼ同じであるので、膨張可能な第1リザーバ412では蒸気の凝縮は生じない。   This feedback system is a constant temperature since the non-condensable gas in the second reservoir 414 and the first reservoir 412 is essentially the temperature of the evaporator region 420, thus eliminating any temperature change that affects the pressure. It is subsidized by the fact that. Further, since the temperature of the gas is approximately the same as the highest temperature in the system, no vapor condensation occurs in the expandable first reservoir 412.

上述した種類の自己調節性ヒート・パイプは、作動流体として水を有し、例えばMYLAR(登録商標)のようなアルミニウム処理プラスチックフィルムから構築された膨張可能な第1リザーバを有する、銅から構成されたヒート・パイプで試験されている。開示された実施態様は、マイナス0.23℃からプラス29.4℃までの範囲にわたるヒート・シンク温度の変化によって、ヒート・パイプ蒸発器温度が36.1℃の設定点温度から僅かに1.15℃変化するということから、優れた自己調節性を示したと報告されている。これに反して、固定壁の非凝縮性ガスリザーバを含む、より慣用的なヒート・パイプは、約4倍大きい、蒸発器温度の変化を有すると予想することができる。   Self-regulating heat pipes of the type described above are composed of copper with water as the working fluid and with an inflatable first reservoir constructed from an aluminized plastic film such as MYLAR®. Has been tested with a heat pipe. The disclosed embodiment shows that the heat pipe evaporator temperature is only 1. from the set point temperature of 36.1 ° C., with a change in heat sink temperature ranging from minus 0.23 ° C. to plus 29.4 ° C. It is reported that it showed excellent self-regulation because it changed by 15 ° C. On the other hand, more conventional heat pipes, including fixed wall non-condensable gas reservoirs, can be expected to have a change in evaporator temperature that is about four times greater.

本発明の1つの例示的実施態様を図5に、らせん形状ヒート・パイプ504が配置されている反応室502の水平断面図として示す。該ヒート・パイプのらせん形は、触媒かららせんヒート・パイプへの伝熱が生じるような、触媒の添加(図示せず)を可能にする。反応器の統合性を保証するために、伝熱ブロック506が用いられる。該伝熱ブロックの反応器端部は、該らせんヒート・パイプと熱連絡する。伝熱ブロックの外部側は、伝熱ブロックの熱を消散させる第2ヒート・パイプ508と熱連絡する。図示するように、第2ヒート・パイプの凝縮器端部は、熱消散用フィン(heat dissipating fin)を有する。   One exemplary embodiment of the present invention is shown in FIG. 5 as a horizontal cross-sectional view of a reaction chamber 502 in which a helical heat pipe 504 is disposed. The helical shape of the heat pipe allows the addition of a catalyst (not shown) such that heat transfer from the catalyst to the helical heat pipe occurs. A heat transfer block 506 is used to ensure reactor integrity. The reactor end of the heat transfer block is in thermal communication with the helical heat pipe. The exterior side of the heat transfer block is in thermal communication with a second heat pipe 508 that dissipates the heat of the heat transfer block. As shown, the condenser end of the second heat pipe has a heat dissipating fin.

本発明の他の例示的実施態様を図6に示す、この図は、小型燃料プロセッサ600を概略的断面図として示す。図示するように、アノード・テール・ガス酸化装置602はフィードガス(F)を予熱し、リホーマー区分(工程A)のための第1熱源として用いられる。該リホーマー区分はオートサーマル・リホーマーであるように設計することができるが、アノード・テール・ガス酸化装置が密接に近接するために、該リホーマー区分が水蒸気リホーマーであることが好ましい。リホーマー区分604からの水素含有ガスは、硫化水素/酸化亜鉛反応器(工程C)に入り、周囲ヒート・パイプ612によって冷却される。水素含有ガスは次に、水性ガスシフト反応区分608(工程E)に進み、そこでCO含有量が実質的に減少する。水素含有ガスは、ヒート・パイプ又はヒート・フィン614によって冷却される部分的酸化反応器610(工程G)中に進行する。生成物の水素富化ガスPは該リホーマーを出て、好ましくは燃料電池において用いられる状態になる。   Another exemplary embodiment of the present invention is shown in FIG. 6, which shows a small fuel processor 600 as a schematic cross-sectional view. As shown, the anode tail gas oxidizer 602 preheats the feed gas (F) and is used as the first heat source for the reformer section (Step A). Although the reformer section can be designed to be an autothermal reformer, it is preferred that the reformer section be a steam reformer because of the close proximity of the anode tail gas oxidizer. The hydrogen-containing gas from reformer section 604 enters the hydrogen sulfide / zinc oxide reactor (Step C) and is cooled by ambient heat pipe 612. The hydrogen-containing gas then proceeds to the water gas shift reaction section 608 (Step E) where the CO content is substantially reduced. The hydrogen-containing gas proceeds into a partial oxidation reactor 610 (Step G) that is cooled by heat pipes or heat fins 614. The product hydrogen enriched gas P exits the reformer and is preferably ready for use in a fuel cell.

本発明の第3の例示的実施態様を図7に示す。例えば、公開米国特許出願第US2002/0083646A1号;US2002/0094310A1;US2002/0098129A1;US2002/0090334A1;US2002/0090326A1;US2002/0088740A1;US2002/0090327A1;US2002/0090328A1(これらの内容の全ては、本明細書に援用される)に開示されるような、小型燃料プロセッサ700の、従来の流体ベースの熱交換器の代わりに用いられる、ヒート・パイプを水平断面図で示す。次に図7では、反応器702は、蒸発端部704及び凝縮端部706を有するヒート・パイプ(704及び706)を有する。図示するように、該ヒート・パイプの蒸発端部704(即ち、熱源)は、反応器内に含有され、凝縮端部706(ヒート・シンク)は反応器の外部である。当業者は、反応器の内部がヒート・シンクであるように、両端部が相互交換可能であることを認識し、理解する筈である。このような場合は、例えば水蒸気リホーミングのような、吸熱反応が行なわれることになる反応器の場合である。ヒート・フィン708は、触媒を担持し、さらに伝熱を促進するという二重の機能的役割を有する。1つの例示的実施態様では、水蒸気リホーマーに入る前のフィードガスを予熱するために、ヒート・パイプが用いられる。当業者はさらに、図8に示すような、図示したヒート・パイプの凝縮器区分704が、燃料リホーマーの他の区分における同様な形状のフィン付きヒート・パイプ(fined heat pipe)に接続可能であることをも理解する筈である。側面断面図に示すように、燃料リホーマー800は、ヒート・パイプの凝縮区分802及び蒸発区分804の両方を封入する。両区分は、1つ以上のサーマル導管806又は第2ヒート・パイプによって一緒に接続される。   A third exemplary embodiment of the present invention is shown in FIG. For example, published U.S. Patent Application No. US2002 / 0083646A1; US2002 / 0094310A1; US2002 / 0098129A1; US2002 / 0090334A1; US2002 / 0090326A1; US2002 / 0088740A1; US2002 / 0090327A1; US2002 / 0090328A1. FIG. 4 shows a horizontal cross-sectional view of a heat pipe used in place of a conventional fluid-based heat exchanger of a small fuel processor 700, as disclosed in US Pat. Next, in FIG. 7, the reactor 702 has heat pipes (704 and 706) having an evaporation end 704 and a condensation end 706. As shown, the evaporation end 704 (i.e., heat source) of the heat pipe is contained within the reactor and the condensation end 706 (heat sink) is external to the reactor. Those skilled in the art will recognize and understand that both ends are interchangeable, such that the interior of the reactor is a heat sink. Such a case is the case of a reactor in which an endothermic reaction is performed, such as steam reforming, for example. The heat fins 708 have a dual functional role of supporting the catalyst and further promoting heat transfer. In one exemplary embodiment, a heat pipe is used to preheat the feed gas prior to entering the steam reformer. One skilled in the art can further connect the illustrated heat pipe condenser section 704, as shown in FIG. 8, to a similarly shaped finned heat pipe in other sections of the fuel reformer. I should understand that too. As shown in the side cross-sectional view, the fuel reformer 800 encloses both the condensation section 802 and the evaporation section 804 of the heat pipe. Both sections are connected together by one or more thermal conduits 806 or a second heat pipe.

当業者はさらに、ヒート・パイプの外表面及び(又は)フィンを触媒及び(又は)触媒粒子で被覆することができると、本発明者らが考慮することを認識する筈である。フィンをセラミック触媒によって比較的簡単に被覆することができることが、報告されている。図7に示した考案は、該ヒート・パイプがフィンを通過することによって、該フィンを触媒で被覆することである。これを利用して、発熱反応を冷却する他に、例えば水蒸気リホーミングのような反応を生じるために外部熱を必要とする触媒床を加熱することもできる。該被覆方法は、ヒート・パイプが製造された直後に、フィンの表面上に微粒子状触媒をウォッシュコートすることを必要とする。この考案は、ヒート・パイプ上にフィン付き押出成形体(finned extrusion)を取り付けて、これらのフィンを触媒で被覆することによって、ヒート・パイプ上の反応及び熱交換の表面積をできるだけ大きく最大化するものである。図7には、“フォーク形に造形された”ヒート・パイプであると示すが、ヒート・パイプが図5に示すようならせん形でありうることも考えられる。ヒート・パイプの表面積を拡大するための他の同様な変形が、当業者には自明である筈である。   Those skilled in the art will further recognize that we consider that the outer surface of the heat pipe and / or the fins can be coated with catalyst and / or catalyst particles. It has been reported that fins can be coated relatively easily with ceramic catalysts. The idea shown in FIG. 7 is to coat the fin with a catalyst by passing the heat pipe through the fin. Utilizing this, in addition to cooling the exothermic reaction, it is also possible to heat a catalyst bed that requires external heat to cause a reaction such as steam reforming, for example. The coating process requires that the particulate catalyst be washcoated on the surface of the fin immediately after the heat pipe is manufactured. This device maximizes the surface area of reaction and heat exchange on the heat pipe by mounting finned extrusions on the heat pipe and coating these fins with a catalyst. Is. FIG. 7 shows a heat pipe “shaped in a fork shape”, but it is also conceivable that the heat pipe may be helical as shown in FIG. Other similar variations to increase the surface area of the heat pipe should be obvious to those skilled in the art.

本発明の装置及び方法を好ましい実施態様に関して記載したが、本発明の概念及び範囲から逸脱せずに、本明細書に述べた工程(process)に変化を加えることができることは、当業者に明らかであろう。当業者に明らかな、このような、同様な置換及び変形の全ては、本発明の範囲及び概念に含まれると見なされる。   Although the apparatus and method of the present invention have been described with reference to preferred embodiments, it will be apparent to those skilled in the art that changes can be made to the processes described herein without departing from the concept and scope of the present invention. Will. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the scope and concept of the invention.

添付図面に関連して、説明する:
図1は、本発明の1つの例示的実施態様の簡単な工程流れ図を示す。 図2は、本発明の例示的実施態様に用いることができるような、単純なヒート・パイプを示す。 図3a,bは、本発明の例示的実施態様に用いることができるような、可変伝導性ヒート・パイプを示す。 図4は、本発明の例示的実施態様に用いることができるような、自己調節性可変伝導性ヒート・パイプを示す。 図5は、本発明の例示的実施態様に用いることができるようなヒート・パイプを水平断面図で示す。 図6は、本発明の例示的実施態様に用いることができるような、燃料リホーマー内の熱管理の統合に用いられるヒート・パイプを側面断面図で示す。 図7は、本発明の例示的実施態様に用いることができるような、フィン付きヒート・パイプを水平断面図で示す。 図8は、本発明の例示的実施態様に用いることができるような、燃料リホーマー内の熱管理の統合に用いられるヒート・パイプを側面断面図で示す。
With reference to the attached drawings, the explanation is as follows:
FIG. 1 shows a simple process flow diagram of one exemplary embodiment of the present invention. FIG. 2 shows a simple heat pipe that can be used in an exemplary embodiment of the invention. Figures 3a, b show a variable conductivity heat pipe, as can be used in an exemplary embodiment of the invention. FIG. 4 shows a self-regulating variable conductive heat pipe that can be used in an exemplary embodiment of the present invention. FIG. 5 shows in horizontal cross section a heat pipe that can be used in an exemplary embodiment of the present invention. FIG. 6 illustrates in side cross-sectional view a heat pipe used for thermal management integration within a fuel reformer, such as can be used in an exemplary embodiment of the present invention. FIG. 7 shows a finned heat pipe in a horizontal cross-sectional view that can be used in an exemplary embodiment of the present invention. FIG. 8 shows in side cross-sectional view a heat pipe used for the integration of thermal management within a fuel reformer, as can be used in an exemplary embodiment of the present invention.

Claims (8)

炭化水素燃料を燃料電池用水素富化ガスに転化させるための装置であって、
燃料混合物をリホーミング条件下で反応させて、水素含有ガス混合物を得るための触媒を含む炭化水素リホーミング反応器;
該水素含有ガス混合物を水性ガスシフト反応条件下で反応させて、減少した一酸化炭素内容物と共に中間水素含有ガス混合物を得るための触媒を含む水性ガスシフト反応器;及び
該中間水素含有ガス混合物を選択的酸化反応条件下で反応させて、水素富化ガスを得るための触媒を含む選択的酸化反応器
を含み、
炭化水素リホーミング反応器床、水性ガスシフト反応器床、及び選択的酸化反応器床の各温度がヒート・パイプの使用によって制御され、
選択的酸化反応器内で発生した熱を伝達して、炭化水素燃料を予熱し、高温炭化水素燃料にするためのヒート・パイプをさらに含み、該高温炭化水素燃料が炭化水素リホーミング反応器への炭化水素燃料フィードになり、
該リホーミング反応が水蒸気リホーミングであり、該リホーミング反応がヒート・パイプのためのヒート・シンクとして役立ち、
ヒート・パイプが、銅/水ヒート・パイプであるか又はステンレス鋼/ナトリウムヒート・パイプであり、
該水素含有ガス混合物を脱硫条件下で反応させて、脱硫された水素含有ガス混合物を得るための触媒を含む脱硫反応器をさらに含み、該脱硫された水素含有ガス混合物が該水性ガスシフト反応器への水素含有ガス混合物フィードになる、
上記装置。
An apparatus for converting a hydrocarbon fuel into a hydrogen enriched gas for a fuel cell,
A hydrocarbon reforming reactor comprising a catalyst for reacting the fuel mixture under reforming conditions to obtain a hydrogen-containing gas mixture;
A water gas shift reactor comprising a catalyst for reacting the hydrogen-containing gas mixture under water gas shift reaction conditions to obtain an intermediate hydrogen-containing gas mixture with reduced carbon monoxide content; and selecting the intermediate hydrogen-containing gas mixture A selective oxidation reactor comprising a catalyst for reacting under selective oxidation reaction conditions to obtain a hydrogen-enriched gas,
The hydrocarbon reforming reactor bed, water gas shift reactor bed, and selective oxidation reactor bed temperatures are controlled by the use of heat pipes,
A heat pipe for transferring the heat generated in the selective oxidation reactor to preheat the hydrocarbon fuel into a high temperature hydrocarbon fuel, wherein the high temperature hydrocarbon fuel is directed to the hydrocarbon reforming reactor; Becomes a hydrocarbon fuel feed,
The reforming reaction is steam reforming, the reforming reaction serves as a heat sink for a heat pipe;
The heat pipe is a copper / water heat pipe or a stainless steel / sodium heat pipe;
And further comprising a desulfurization reactor comprising a catalyst for reacting the hydrogen-containing gas mixture under desulfurization conditions to obtain a desulfurized hydrogen-containing gas mixture, wherein the desulfurized hydrogen-containing gas mixture is supplied to the water gas shift reactor. Of hydrogen-containing gas mixture feeds,
The above device.
ヒート・パイプが、単純なヒート・パイプ、可変伝導性ヒート・パイプ又は自己調節性可変伝導性ヒート・パイプから選択される、請求項1記載の装置。The apparatus of claim 1, wherein the heat pipe is selected from a simple heat pipe, a variable conductivity heat pipe, or a self-regulating variable conductivity heat pipe. ヒート・パイプが、自己調節性可変伝導性ヒート・パイプである、請求項1記載の装置。The apparatus of claim 1, wherein the heat pipe is a self-regulating variable conductive heat pipe. 炭化水素燃料が、天然ガス、メタン、エタン、プロパン、ブタン、液化石油ガス、ナフサ、ガソリン、ケロセン、ディーゼル、メタノール、エタノール、プロパノール及びそれらの組み合わせから成る群から選択される、請求項1記載の装置。The hydrocarbon fuel of claim 1, wherein the hydrocarbon fuel is selected from the group consisting of natural gas, methane, ethane, propane, butane, liquefied petroleum gas, naphtha, gasoline, kerosene, diesel, methanol, ethanol, propanol, and combinations thereof. apparatus. 水素富化ガスが、50ppm未満の一酸化炭素を含有する、請求項1記載の装置。The apparatus of claim 1, wherein the hydrogen-enriched gas contains less than 50 ppm of carbon monoxide. 燃料電池からの未転化水素を酸化条件下で反応させて、高温アノード排ガス酸化装置流出物を生成するための触媒を含むアノード排ガス酸化装置をさらに含む、請求項1記載の装置。The apparatus of claim 1, further comprising an anode exhaust gas oxidizer comprising a catalyst for reacting unconverted hydrogen from the fuel cell under oxidizing conditions to produce a hot anode exhaust gas oxidizer effluent. 高温アノード排ガス酸化装置流出物を、ヒート・パイプを用いて、炭化水素リホーミング反応器と熱統合させる、請求項6記載の装置。7. The apparatus of claim 6, wherein the hot anode exhaust gas oxidizer effluent is heat integrated with a hydrocarbon reforming reactor using a heat pipe. ヒート・パイプが、炭化水素リホーミング反応器、水性ガスシフト反応器、及び選択的酸化反応器の少なくとも1つの内部の恒温の床温度を維持する、請求項1記載の装置。The apparatus of claim 1, wherein the heat pipe maintains a constant bed temperature within at least one of the hydrocarbon reforming reactor, the water gas shift reactor, and the selective oxidation reactor.
JP2003520856A 2001-08-11 2002-08-12 Fuel processor with heat pipe cooling Expired - Fee Related JP4588320B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31145901P 2001-08-11 2001-08-11
PCT/US2002/025195 WO2003015908A1 (en) 2001-08-10 2002-08-12 Fuel processors utilizing heat pipe cooling

Publications (2)

Publication Number Publication Date
JP2004538232A JP2004538232A (en) 2004-12-24
JP4588320B2 true JP4588320B2 (en) 2010-12-01

Family

ID=23206955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003520856A Expired - Fee Related JP4588320B2 (en) 2001-08-11 2002-08-12 Fuel processor with heat pipe cooling

Country Status (12)

Country Link
US (1) US20030103880A1 (en)
EP (1) EP1453599A4 (en)
JP (1) JP4588320B2 (en)
KR (1) KR100929887B1 (en)
CN (1) CN1261200C (en)
AU (1) AU2002326570B2 (en)
BR (1) BR0211820A (en)
CA (1) CA2456763A1 (en)
HK (1) HK1072570A1 (en)
MX (1) MXPA04001280A (en)
NO (1) NO20041000L (en)
WO (1) WO2003015908A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108933B2 (en) * 2002-02-28 2006-09-19 Intel Corporation Thermally efficient hydrogen storage system
US20040197619A1 (en) * 2003-04-04 2004-10-07 Deshpande Vijay A. Coolant system for fuel processor
US7264788B2 (en) * 2003-11-26 2007-09-04 Cabot Corporation Fuel reformer catalyst and absorbent materials
US7267811B2 (en) 2003-11-26 2007-09-11 Cabot Corporation Fuel reformer catalyst and absorbent materials
EP1791629A4 (en) * 2004-08-11 2008-07-02 Nuvera Fuel Cells Inc Catalyst coated heat exchanger
WO2006045746A1 (en) * 2004-10-20 2006-05-04 Shell Internationale Research Maatschappij B.V. Process to prepare a mixture of carbon monoxide and hydrogen
DE102004063151A1 (en) * 2004-12-22 2006-07-06 Webasto Ag Reformer for a fuel cell
CA2491950A1 (en) * 2005-01-11 2006-07-11 Shec Labs - Solar Hydrogen Energy Corporation Heat transfer pipe with control
US20070000173A1 (en) * 2005-06-28 2007-01-04 Michael Boe Compact reforming reactor
US20070000172A1 (en) * 2005-06-28 2007-01-04 Michael Boe Compact reforming reactor
CN101321690B (en) * 2006-04-05 2012-03-14 花王株式会社 Reaction device
US7832364B2 (en) 2006-12-14 2010-11-16 Texaco Inc. Heat transfer unit for steam generation and gas preheating
US8073096B2 (en) * 2007-05-14 2011-12-06 Stc.Unm Methods and apparatuses for removal and transport of thermal energy
US8906334B2 (en) 2007-05-14 2014-12-09 Invista North America S.A R.L. High efficiency reactor and process
US8940660B2 (en) * 2008-12-04 2015-01-27 Uop Llc Simultaneous warm gas desulfurization and complete CO-shift for improved syngas cleanup
WO2010098860A1 (en) * 2009-02-24 2010-09-02 James Charles Juranitch High temperature sensible heat recovery system
DE102010001848B4 (en) * 2010-02-11 2015-03-05 Highterm Research Gmbh Heat pipe and fluidized bed reactor with such a heat pipe
DE102010011207A1 (en) 2010-03-09 2011-09-15 B. Braun Melsungen Ag Apparatus for cutting composite plastic composite medical products
US10184730B2 (en) 2016-08-17 2019-01-22 Harris Corporation Phase change cell
US11051431B2 (en) * 2018-06-29 2021-06-29 Juniper Networks, Inc. Thermal management with variable conductance heat pipe
CN112007588A (en) * 2020-08-31 2020-12-01 江苏永大化工机械有限公司 Bisphenol A reactor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020898A (en) * 1973-02-14 1977-05-03 Q-Dot Corporation Heat pipe and method and apparatus for fabricating same
US4293315A (en) * 1979-03-16 1981-10-06 United Technologies Corporation Reaction apparatus for producing a hydrogen containing gas
US4315893A (en) * 1980-12-17 1982-02-16 Foster Wheeler Energy Corporation Reformer employing finned heat pipes
US4548258A (en) * 1984-07-02 1985-10-22 Whirlpool Corporation Method and means for inhibiting corrosion in a heat pipe
JPS63162503A (en) * 1986-12-25 1988-07-06 Toyo Eng Corp Gas producer
US4799537A (en) * 1987-10-13 1989-01-24 Thermacore, Inc. Self regulating heat pipe
JPH02124701A (en) * 1988-11-01 1990-05-14 Toshiba Corp Shell-and-tube reformer
GB9225188D0 (en) 1992-12-02 1993-01-20 Rolls Royce & Ass Combined reformer and shift reactor
JPH0881202A (en) * 1994-09-13 1996-03-26 Toyota Motor Corp Methanol reformer for fuel cell
JPH09315801A (en) * 1996-03-26 1997-12-09 Toyota Motor Corp Fuel reforming method, fuel reformer and fuel-cell system provided with the reformer
JPH10122775A (en) * 1996-10-24 1998-05-15 Furukawa Electric Co Ltd:The Variable conductance heat pipe
DE19746251C2 (en) * 1997-10-20 1999-09-09 Dbb Fuel Cell Engines Gmbh Plant for the steam reforming of a hydrocarbon and operating method therefor
JP2000277177A (en) * 1999-03-29 2000-10-06 Hitachi Ltd Secondary battery module
US6190623B1 (en) * 1999-06-18 2001-02-20 Uop Llc Apparatus for providing a pure hydrogen stream for use with fuel cells
US6835354B2 (en) * 2000-04-05 2004-12-28 Hyradix, Inc. Integrated reactor
KR100929886B1 (en) * 2000-12-05 2009-12-04 텍사코 디벨롭먼트 코포레이션 Compact Fuel Processor for High Hydrogen Gas Production
WO2002047804A1 (en) * 2000-12-12 2002-06-20 Texaco Development Corporation Dual stack compact fuel processor for producing a hydrogen rich gas
BR0116092B1 (en) * 2000-12-13 2009-08-11 compact fuel processor to convert a hydrocarbon fuel feed into a hydrogen rich gas.

Also Published As

Publication number Publication date
HK1072570A1 (en) 2005-09-02
WO2003015908A1 (en) 2003-02-27
KR100929887B1 (en) 2009-12-04
CN1558791A (en) 2004-12-29
EP1453599A1 (en) 2004-09-08
JP2004538232A (en) 2004-12-24
KR20040036906A (en) 2004-05-03
EP1453599A4 (en) 2006-05-17
MXPA04001280A (en) 2004-05-27
BR0211820A (en) 2004-08-31
CA2456763A1 (en) 2003-02-27
AU2002326570B2 (en) 2008-09-11
NO20041000L (en) 2004-03-10
CN1261200C (en) 2006-06-28
US20030103880A1 (en) 2003-06-05

Similar Documents

Publication Publication Date Title
JP4588320B2 (en) Fuel processor with heat pipe cooling
JP4335535B2 (en) Single chamber compact fuel processor
JP4285992B2 (en) Single chamber compact fuel processor
JP5015690B2 (en) Apparatus and method for heating a catalyst for start-up of a compact fuel processor
US6824577B2 (en) Nested compact fuel processor for producing hydrogen rich gas
AU2002326570A1 (en) Fuel processors utilizing heat pipe cooling
AU2002305234A1 (en) Single chamber compact fuel processor
JP2010513834A (en) Heat transfer unit for steam generation and gas preheating
AU2002230936A1 (en) Single chamber compact fuel processor
JP2003081610A (en) Reforming apparatus
JP2003081609A (en) Reforming apparatus
AU2013206509A1 (en) Heat transfer unit for steam generation and gas preheating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081029

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081201

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081211

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090722

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090821

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090918

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100414

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100421

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100514

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100521

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100611

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees