JP4588171B2 - Method for producing aryl chloroformate - Google Patents

Method for producing aryl chloroformate Download PDF

Info

Publication number
JP4588171B2
JP4588171B2 JP2000157699A JP2000157699A JP4588171B2 JP 4588171 B2 JP4588171 B2 JP 4588171B2 JP 2000157699 A JP2000157699 A JP 2000157699A JP 2000157699 A JP2000157699 A JP 2000157699A JP 4588171 B2 JP4588171 B2 JP 4588171B2
Authority
JP
Japan
Prior art keywords
phosgene
reaction
group
catalyst
chloroformate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000157699A
Other languages
Japanese (ja)
Other versions
JP2001335540A (en
JP2001335540A5 (en
Inventor
昌治 河村
央 大亀
良和 青木
繁 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2000157699A priority Critical patent/JP4588171B2/en
Publication of JP2001335540A publication Critical patent/JP2001335540A/en
Publication of JP2001335540A5 publication Critical patent/JP2001335540A5/ja
Application granted granted Critical
Publication of JP4588171B2 publication Critical patent/JP4588171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【0001】
【発明の属する技術分野】
本発明はヒドロキシ基含有アリール化合物とホスゲンを反応させて得られるクロロ蟻酸アリールエステルの製造法に関するものである。更に詳しくは反応性の低いヒドロキシ基含有アリール化合物とホスゲンの反応において高収率で高純度のクロロ蟻酸アリールエステルを生成する効率的な触媒に関するものである。
【0002】
【従来の技術】
クロロ蟻酸アリールエステルは高反応性の修飾剤として、医薬や農薬等の用途で広く使用されている。
脂肪族アルコールは一般に無触媒でもホスゲンと反応し、相当するクロロギ酸エステルを生成するの対して、ヒドロキシ基含有アリール化合物は反応性が低く、反応進行には触媒存在下でかなりの高温を必要とする。この反応において、触媒は単に反応速度的な面だけでなく不純物生成においても大きな影響を及ぼすことが知られており、触媒の選定を中心に広く検討されている。
【0003】
たとえば、EP−743298では、単環の環状ウレアを触媒とし、フェノール類に60〜180℃でホスゲンを反応させる方法が提案されているが、触媒活性が低く、EP−542117および特公昭62−61581では、フェノールとホスゲンの反応において、有機リン系化合物を触媒として用いる方法が提案されているが、排水上問題がある。また、特公昭51−33897では、N,N−ジアルキル化酸アミド、具体的にはN,N,N’,N’−テトラメチルウレア(以下TMUと略称する)を触媒とし、70〜130℃でホスゲンを導入し反応させる方法が提案されている。TMUはヒドロキシ基含有化合物とホスゲンの反応における触媒活性は比較的高いが、反応中にTMUがホスゲンと反応し、N,N−ジメチルカルバモイルクロライドを生成すると共に、更に共存するヒドロキシ含有アリール化合物との反応物を副生し、医薬品用途向け製品の製造法としては問題が残っており、EP−32245では、フェノール類とホスゲンの反応において、4級アンモニウム塩を触媒として用いる方法が提案されているが、特公昭51−33897同様副生物の生成が多い。
【0004】
【発明が解決しようとする課題】
本発明は前記のような従来技術に伴う問題点を解決しようとするものであり、具体的な課題はヒドロキシ基含有アリール化合物とホスゲンの反応によるクロロ蟻酸アリールエステルの製造法において、第1に副生不純物が少なく高純度製品が得られることであり、第2に反応中における触媒の安定性が良好で、触媒のリサイクルが可能であり、第3に高収率である、高品質クロロ蟻酸アリールエステルの効率的な製造法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は前記課題を解決するために種々の検討を行い、本発明を完成させた。すなわち、本発明はヒドロキシ基含有アリール化合物とホスゲンと下記一般式(1)でされるウレア化合物を触媒として反応させることを特徴とするクロロ蟻酸アリールエステルの製造法である。
【化2】

Figure 0004588171
(式中、R1,R2は同一であっても異なっていても良く、炭素数2〜炭素数5のアルキレン基、または1個もしくは2個のメチル基または1個のエチル基を側鎖に有する炭素数2〜炭素数5のアルキレン基、または−CH2CH(R3)OCH(R3)CH2−で示されるアルキレンエーテル基を表す。ただし、R3は水素原子、メチル基またはエチル基を表す。)
【0006】
本発明の触媒は上記一般式(1)で示されるもので特に限定されないが、具体的な例としてはモルホリン、2,6−ジメチルモルホリン、ピロリジン、2,4−ジメチルピロリジン、2,5−ジメチルピロリジン、ピペリジン、2−エチルピペリジン、3,5−ジメチルピペリジン、2,6−ジメチルピペリジン等の環状アミンの1種以上とホスゲンを反応して得られるウレア化合物が挙げられる。特に好ましい触媒は下記化学式(2)で示されるN,N‘−カルボニルジモルホリン(以下CDMと略称する)である。
【化3】
Figure 0004588171
【0007】
本発明のこれらの触媒は繰り返し使用が可能であり、反応物を単蒸留することにより不純物の少ない高品質のクロロ蟻酸アリールエステルが高収率で得られる。
【0008】
本発明の実施におけるヒドロキシ基含有アリール化合物に対する触媒の使用量は0.005〜0.050倍モルである。特に好ましくは0.010〜0.030倍モルである。
本発明のヒドロキシ基含有アリール化合物の具体例としてはフェノール、o−クレゾール、m−クレゾール、p−クレゾール、キシレノール、4−クロロフェノール、ハイドロキノン、レゾルシン、4−ニトロフェノール、1−ナフトール、2−ナフトール、1,5−ジヒドロキシナフタレン、4,4’−メチレンビスフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、4,4’−シクロヘキシリデン−ビスフェノール、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルサルファイド、4,4’−ジヒドロキシジフェニルスルホン等が挙げられる。
【0009】
本発明で使用するホスゲンは通常ガス状で導入されるが、液状で滴下反応にしてもよい。ホスゲンの代わりにホスゲンダイマーやホスゲントリマーを常法により分解して使用することもできる。
本発明の実施におけるヒドロキシ基含有アリール化合物に対するホスゲンの使用量は1.1〜6.0倍モルである。
【0010】
本発明は好ましくは無溶剤で実施されるが、使用するヒドロキシ基含有アリール化合物の融点が高い場合には溶剤中で行うことができる。使用できる溶剤としてはホスゲンに不活性な有機溶剤を用いることが出来るが、例えばトルエン、キシレン等の芳香族炭化水素系、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素系、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル系、テトラヒドロフラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系を使用する事ができる。
【0011】
本発明による反応は50〜180℃、特に好ましくは70〜150℃の温度範囲で実施される。50℃以下では反応終了迄に長時間を要し、180℃以上の高温反応ではカーボネート化合物が副生しやすく好ましくない。反応時間は反応温度やホスゲン導入速度により変化するが通常3〜40時間である。
【0012】
【発明の実施の形態】
本発明に係わるクロロ蟻酸アリールエステル製造法につき、クロロ蟻酸フェニルエステルを具体例として説明する。反応器にフェノールを添加して融解し、これに本発明の触媒であるCDMを添加して溶解後、90〜120℃でホスゲンガスを反応系に導入し反応させる。フェノールの消失をガスクロマトグラフィーで確認した後、窒素を通気し系内の残存ホスゲンを除去する。ついで、減圧蒸留により精製したクロロ蟻酸フェニルエステルを得る。本発明の触媒であるCDMはホスゲンとコンプレックスを生成し、クロロ蟻酸フェニルエステルの蒸留条件では留出せず、一部副生したジフェニルカーボネートと共に触媒活性を保持したまま蒸留残として反応器に残る。このため2回目以降の反応は触媒を添加することなしにフェノールを仕込み、ホスゲンガスを反応系に導入し反応させることができる。
本発明を実施例でさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
純度分析は島津製作所のガスクロマトグラフィー(型式:GC−7A)を、構造解析は日本電子製NMR(型式:JMX400)を用いて行った。
【0013】
[触媒の製造例]
N,N’−カルボニルジモルホリン(CDM)の製造法
撹拌機、ガス導入菅、内部温度計、コンデンサーを取付けたフラスコにモルホリン34.85g、トルエン139.4gを仕込み混合した。21〜33℃で撹拌しながらガス導入管よりホスゲンガスを9.89gを1.5時間かけて吹き込み反応させた。モルホリン塩酸塩の白色結晶が析出したスラリー液を更に60〜65℃で1時間撹拌し、ホスゲンが無いことを確認した後濾過した。濾液を減圧下で蒸留しトルエン137gを留出させた後、水冷し結晶を析出させた。ついで結晶を濾過し、トルエンで洗浄した後に、乾燥し白色結晶を収率81.5%で得た。白色結晶のmpは142.3〜144.1℃で、NMR分析によりN,N’−カルボニルジモルホリン構造である事を確認した。
N,N’−カルボニルビス(2,6−ジメチルモルホリン)の製造法
CDMの製造例においてモルホリンの代わりに2,6一ジメチルモルホリン46.07gを使用する以外は同様な操作で反応し、白色結晶を得た。白色結晶のmpは104.2〜105.5℃で、NMR分析によりN,N’−カルボニルビス(2,6−ジメチルモルホリン)構造である事を確認した。
【0014】
〔実施例1〕
攪拌機、ガス導入管、内部温度計、コンデンサーを取付けたフラスコに融解したフェノール75.29g(0.8モル)及びN,N’−カルボニルジモルホリン(CDM)3.84g(フェノールに対して0.024倍モル)を仕込み、120℃に加温した。次に攪拌下、120℃でガス導入管からホスゲンガスを0.316mol/時間の速度で反応装置に吹き込み反応させた。反応経過はガスクロマトグラフィー(以下GCと略す)でフェニルクロロホーメート(以下PCFと略す)の生成量とフェノールの消失量を分析し、フェノール量が0.2%(GCピーク面積比)以下となった時点を反応終点とした。反応の進行とともに反応液は無色から淡黄色〜淡褐色に着色した。反応終点迄に8.5時間を要し、導入したホスゲン量は合計で265.9g(2.69mol)であった。次いで反応液を90〜100に保持しながら窒素ガスを流し、系内の塩化水素及びホスゲンを逸散させた。ホスゲン検知紙でホスゲンの無いことを確認した後に単蒸留装置を取り付け、90〜130℃/100〜30mmHgの減圧下で蒸留を行い、無色透明液体を110.5g(得率88.2%)得た。GC分析によるPCF純度は99.95%(GCピーク面積比)で、他に微量のフェノール、ジフェニルカーボネートが認められた。
【0015】
〔実施例2〕
実施例1の蒸留残査に融解したフェノール75.29g(0.8モル)を仕込み、120℃に加温した。次からの操作は実施例1と同様に撹拌下、120℃で、ガス導入管からホスゲンガスを0.336mol/時間の速度で反応装置に吹き込み、GC分析でフェノール量が0.2%以下になるまで反応させた。反応終点迄に10時間を要し、導入したホスゲン量は322.4g(3.36mol)であった。系内の塩化水素及びホスゲンを窒素で逸散後に90〜130℃/100〜30mmHgの減圧下で蒸留を行い、無色透明液体を115.6g(得率92.3%)得た。GC分析によるPCF純度は99.94%(GCピーク面積比)で、他に微量のフェノール、ジフェニルカーボネートが認められた。
【0016】
〔実施例3〕
実施例2の蒸留残査に融解したフェノール75.29g(0.8モル)を仕込み、120℃に加温した。次からの操作は実施例1と同様に攪拌下、120℃で、ガス導入管からホスゲンガスを0.354mol/時間の速度で反応装置に吹き込み、GC分析でフェノール量が0.2%以下になるまで反応させた。反応終点迄に12時間を要し、導入したホスゲン量は420.6g(4.25mol)であった。系内の塩化水素及びホスゲンを窒素で逸散後に90〜130℃/100〜30mmHgの減圧下で蒸留を行い、無色透明液体を115.0g(得率91.8%)得た。GC分析によるPCF純度は99.94%(GCピーク面積比)で、他に微量のフェノール、ジフェニルカーボネートが認められた。
【0017】
〔実施例4〕
実施例1のN,N’−カルボニルジモルホリンの代わりにN,N’−カルボニルビス(2,6−ジメチルモルホリン)4.92g(フェノールに対して0.024倍モル)を使用した他は実施例1と同様に反応した結果、反応終点迄に要した時間は7.5時間、導入したホスゲン量は250.1g(2.53mol)であった。90〜130℃/100〜30mmHgの減圧蒸留で無色透明液体109.7g(得率87.6%)を得た。GC分析によるPCF純度は99.94%(GCピーク面積比)で、他に微量のフェノール、ジフェニルカーボネートが認められた。
【0018】
〔比較例〕
実施例1のN,N’−カルボニルジモルホリンの代わりにN,N,N’,N’−テトラメチルウレア(以下TMUと略す)2.23g(フェノールに対して0.024倍モル)を使用した以外は実施例1と同様に反応した結果、反応終点迄に要した時間は9時間、導入したホスゲン量は281.3g(2.844mol)であった。90〜130℃/100〜30mmHgの減圧蒸留で無色透明液体108.0g(得率86.2%)を得た。GC分析によるPCF純度は99.25%(GCピーク面積比)で、他にTMUがホスゲンにより分解し副生するN,N’−ジメチルフェニルカーバメート0.455%(GCピーク面積比)、ジフェニルカーボネート0.152%(GCピーク面積比)、微量のフェノール他が認められた。
なお、TMU触媒はホスゲンにより分解し、フェノールと反応した触媒作用を持たないN,N’−ジメチルフェニルカーバメートを生成するため、繰り返し使用は困難なことが確認された。
【0019】
【発明の効果】
本発明のクロロ蟻酸アリールエステルの製造法は触媒の繰り返し反応が可能な効率的な製造方法であり、かつ得られたクロロ蟻酸アリールエステルは非常に高純度であり、工業的価値は高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aryl chloroformate obtained by reacting a hydroxy group-containing aryl compound with phosgene. More particularly, the present invention relates to an efficient catalyst for producing a high-purity and high-purity aryl ester of chloroformate in a reaction of a low-reactivity hydroxy group-containing aryl compound with phosgene.
[0002]
[Prior art]
Chloroformate aryl ester is widely used as a highly reactive modifier in applications such as medicine and agricultural chemicals.
Aliphatic alcohols generally react with phosgene even without catalyst to produce the corresponding chloroformate, whereas hydroxy group-containing aryl compounds are less reactive, and the reaction requires a fairly high temperature in the presence of the catalyst. To do. In this reaction, it is known that the catalyst has a great influence not only on the reaction rate but also on the generation of impurities, and has been widely studied focusing on the selection of the catalyst.
[0003]
For example, EP-743298 proposes a method in which monocyclic cyclic urea is used as a catalyst and phosgene is reacted with phenols at 60 to 180 ° C., but the catalytic activity is low, and EP-542117 and JP-B-62-61581 are proposed. Then, although the method of using an organophosphorus compound as a catalyst in the reaction of phenol and phosgene has been proposed, there is a problem in drainage. In Japanese Patent Publication No. 51-33897, N, N-dialkylated acid amide, specifically, N, N, N ′, N′-tetramethylurea (hereinafter abbreviated as TMU) is used as a catalyst. Has proposed a method of introducing phosgene and reacting them. Although TMU has a relatively high catalytic activity in the reaction of a hydroxy group-containing compound and phosgene, TMU reacts with phosgene during the reaction to produce N, N-dimethylcarbamoyl chloride and further coexist with a hydroxy-containing aryl compound. Although a reaction product is produced as a by-product, a problem remains as a method for producing a product for pharmaceutical use, and EP-32245 proposes a method of using a quaternary ammonium salt as a catalyst in the reaction of phenols and phosgene. As with Japanese Patent Publication No. 51-33897, there are many by-products.
[0004]
[Problems to be solved by the invention]
The present invention is intended to solve the problems associated with the prior art as, in specific challenges producing how chloroformate aryl esters by reaction of hydroxy group-containing aryl compound with phosgene, to the first High-quality products with few by-product impurities, secondly, high stability of the catalyst during the reaction, recyclability of the catalyst, and third, high-yield chloroformate to provide an efficient manufacturing how aryl ester.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have made various studies in order to solve the above-described problems and completed the present invention. That is, the present invention is the preparation how chloroformate aryl ester, wherein Rukoto urea compounds Table reacted as a catalyst by the following general formula and a hydroxy group-containing aryl compound with phosgene (1).
[Chemical 2]
Figure 0004588171
(Wherein, R 1, R 2 is optionally substituted by one or more same or rather good, the side of the alkylene group or one or two methyl groups or one ethyl group, the carbon number of 2 to 5 carbon atoms Represents an alkylene group having 2 to 5 carbon atoms in the chain , or an alkylene ether group represented by —CH 2 CH (R 3 ) OCH (R 3 ) CH 2 —, wherein R 3 represents a hydrogen atom or a methyl group. Or represents an ethyl group .)
[0006]
The catalyst of the present invention is represented by the general formula (1) and is not particularly limited. Specific examples include morpholine, 2,6-dimethylmorpholine, pyrrolidine, 2,4-dimethylpyrrolidine, 2,5-dimethyl. Examples include urea compounds obtained by reacting phosgene with one or more cyclic amines such as pyrrolidine, piperidine, 2-ethylpiperidine, 3,5-dimethylpiperidine, and 2,6-dimethylpiperidine. A particularly preferred catalyst is N, N′-carbonyldimorpholine (hereinafter abbreviated as CDM) represented by the following chemical formula (2).
[Chemical 3]
Figure 0004588171
[0007]
These catalysts of the present invention can be used repeatedly, and a high-quality chloroformate aryl ester with few impurities can be obtained in high yield by simple distillation of the reaction product.
[0008]
The usage-amount of the catalyst with respect to the hydroxy group containing aryl compound in implementation of this invention is 0.005-0.050 times mole. Especially preferably, it is 0.010-0.030 times mole.
Specific examples of the hydroxy group-containing aryl compound of the present invention include phenol, o-cresol, m-cresol, p-cresol, xylenol, 4-chlorophenol, hydroquinone, resorcin, 4-nitrophenol, 1-naphthol and 2-naphthol. 1,5-dihydroxynaphthalene, 4,4′-methylenebisphenol, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane, 4,4′-cyclohexylidene -Bisphenol, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone and the like.
[0009]
The phosgene used in the present invention is usually introduced in the form of a gas, but it may be in the form of a liquid drop reaction. Instead of phosgene, phosgene dimer or phosgene trimer can be used after being decomposed by a conventional method.
In the practice of the present invention, the amount of phosgene used relative to the hydroxy group-containing aryl compound is 1.1 to 6.0 moles.
[0010]
The present invention is preferably carried out without a solvent, but can be carried out in a solvent when the melting point of the hydroxy group-containing aryl compound used is high. As the solvent that can be used, an organic solvent inert to phosgene can be used. For example, aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as chlorobenzene and dichlorobenzene, ethyl acetate, butyl acetate, and acetic acid. Esters such as amyl, and ethers such as tetrahydrofuran, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether can be used.
[0011]
The reaction according to the invention is carried out in the temperature range from 50 to 180 ° C., particularly preferably from 70 to 150 ° C. If it is 50 ° C. or lower, it takes a long time to complete the reaction, and if it is a high temperature reaction of 180 ° C. or higher, a carbonate compound is easily produced as a by-product. The reaction time varies depending on the reaction temperature and phosgene introduction rate, but is usually 3 to 40 hours.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing an aryl ester of chloroformate according to the present invention will be described by using phenyl chloroformate as a specific example. Phenol is added to the reactor and melted, and then CDM, which is the catalyst of the present invention, is added and dissolved therein, and then phosgene gas is introduced into the reaction system at 90 to 120 ° C. to cause reaction. After confirming the disappearance of phenol by gas chromatography, nitrogen is passed to remove residual phosgene in the system. Subsequently, the chloroformic acid phenyl ester refine | purified by vacuum distillation is obtained. CDM, which is the catalyst of the present invention, forms a complex with phosgene and does not distill under the distillation conditions of chloroformic acid phenyl ester, but remains in the reactor as a distillation residue while maintaining catalytic activity together with diphenyl carbonate that is partially produced as a by-product. For this reason, in the second and subsequent reactions, phenol can be charged without adding a catalyst, and phosgene gas can be introduced into the reaction system for reaction.
The present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
Purity analysis was performed using Shimadzu gas chromatography (model: GC-7A), and structural analysis was performed using JEOL NMR (model: JMX400).
[0013]
[Example of catalyst production]
Production method of N, N'-carbonyldimorpholine (CDM) 34.85 g of morpholine and 139.4 g of toluene were charged and mixed in a flask equipped with a stirrer, a gas introduction tank, an internal thermometer, and a condenser. While stirring at 21 to 33 ° C., 9.89 g of phosgene gas was blown from the gas introduction tube over 1.5 hours to cause a reaction. The slurry liquid in which the white crystals of morpholine hydrochloride were precipitated was further stirred at 60 to 65 ° C. for 1 hour, and after confirming the absence of phosgene, it was filtered. The filtrate was distilled under reduced pressure to distill 137 g of toluene, and then cooled with water to precipitate crystals. The crystals were then filtered, washed with toluene and dried to give white crystals in a yield of 81.5%. The mp of the white crystal was 142.3 to 144.1 ° C., and it was confirmed by NMR analysis that it had an N, N′-carbonyldimorpholine structure.
Production method of N, N′-carbonylbis (2,6-dimethylmorpholine) In the production example of CDM, the reaction was conducted in the same manner except that 46.07 g of 2,6-dimethylmorpholine was used instead of morpholine, and white crystals Got. The mp of the white crystals was 104.2 to 105.5 ° C., and it was confirmed by NMR analysis that the structure was N, N′-carbonylbis (2,6-dimethylmorpholine) structure.
[0014]
[Example 1]
75.29 g (0.8 mol) of phenol and 3.84 g of N, N′-carbonyldimorpholine (CDM) melted in a flask equipped with a stirrer, gas inlet tube, internal thermometer, condenser were added. 024 times mole) was charged and heated to 120 ° C. Next, phosgene gas was blown into the reactor at a rate of 0.316 mol / hour from a gas introduction tube at 120 ° C. with stirring to cause the reaction. The course of the reaction was analyzed by gas chromatography (hereinafter abbreviated as GC) for the amount of phenylchloroformate (hereinafter abbreviated as PCF) and the disappearance of phenol, and the amount of phenol was 0.2% (GC peak area ratio) or less. The reaction end point was taken as the time point. As the reaction progressed, the reaction solution colored from colorless to light yellow to light brown. It took 8.5 hours to complete the reaction, and the total amount of phosgene introduced was 265.9 g (2.69 mol). Next, nitrogen gas was allowed to flow while maintaining the reaction solution at 90 to 100 to dissipate hydrogen chloride and phosgene in the system. After confirming the absence of phosgene with phosgene detection paper, a simple distillation apparatus was attached and distillation was performed under reduced pressure of 90 to 130 ° C./100 to 30 mmHg to obtain 110.5 g of a colorless transparent liquid (yield 88.2%). It was. The PCF purity by GC analysis was 99.95% (GC peak area ratio), and trace amounts of phenol and diphenyl carbonate were also observed.
[0015]
[Example 2]
The distillation residue of Example 1 was charged with 75.29 g (0.8 mol) of molten phenol and heated to 120 ° C. In the same manner as in Example 1, the subsequent operation was carried out at 120 ° C. with stirring, and phosgene gas was blown into the reactor at a rate of 0.336 mol / hour from the gas introduction tube. The amount of phenol was 0.2% or less by GC analysis. Reacted until. It took 10 hours to complete the reaction, and the amount of phosgene introduced was 322.4 g (3.36 mol). Hydrogen chloride and phosgene in the system were diffused with nitrogen and distilled under reduced pressure of 90 to 130 ° C./100 to 30 mmHg to obtain 115.6 g of colorless transparent liquid (yield 92.3%). The PCF purity by GC analysis was 99.94% (GC peak area ratio), and trace amounts of phenol and diphenyl carbonate were also observed.
[0016]
Example 3
The distillation residue of Example 2 was charged with 75.29 g (0.8 mol) of melted phenol and heated to 120 ° C. In the same manner as in Example 1, the subsequent operation was carried out at 120 ° C. with stirring, and phosgene gas was blown into the reactor at a rate of 0.354 mol / hour from a gas introduction tube. The amount of phenol was 0.2% or less by GC analysis. Reacted until. It took 12 hours to complete the reaction, and the amount of phosgene introduced was 420.6 g (4.25 mol). Hydrogen chloride and phosgene in the system were diffused with nitrogen and distilled under reduced pressure of 90 to 130 ° C./100 to 30 mmHg to obtain 115.0 g of colorless transparent liquid (yield 91.8%). The PCF purity by GC analysis was 99.94% (GC peak area ratio), and trace amounts of phenol and diphenyl carbonate were also observed.
[0017]
Example 4
The procedure was carried out except that 4.92 g of N, N′-carbonylbis (2,6-dimethylmorpholine) (0.024 mol per mol of phenol) was used instead of N, N′-carbonyldimorpholine of Example 1. As a result of the reaction in the same manner as in Example 1, the time required until the end of the reaction was 7.5 hours, and the amount of phosgene introduced was 250.1 g (2.53 mol). The colorless transparent liquid 109.7g (yield 87.6%) was obtained by vacuum distillation of 90-130 degreeC / 100-30mmHg. The PCF purity by GC analysis was 99.94% (GC peak area ratio), and trace amounts of phenol and diphenyl carbonate were also observed.
[0018]
[Comparative Example]
In place of N, N′-carbonyldimorpholine of Example 1, 2.23 g (0.024 times mol of phenol) of N, N, N ′, N′-tetramethylurea (hereinafter abbreviated as TMU) was used. The reaction was conducted in the same manner as in Example 1 except that the reaction time was 9 hours, and the amount of phosgene introduced was 281.3 g (2.844 mol). 108.0 g (yield 86.2%) of a colorless transparent liquid was obtained by distillation under reduced pressure at 90 to 130 ° C./100 to 30 mmHg. The PCF purity by GC analysis is 99.25% (GC peak area ratio), and N, N'-dimethylphenylcarbamate 0.455% (GC peak area ratio) which TMU decomposes by phosgene as a by-product, diphenyl carbonate 0.152% (GC peak area ratio), trace amounts of phenol and others were observed.
The TMU catalyst was decomposed by phosgene to produce non-catalytic N, N′-dimethylphenylcarbamate that reacted with phenol, and it was confirmed that repeated use was difficult.
[0019]
【The invention's effect】
Producing how chloroformate aryl esters of the present invention, repeating the reaction of the catalyst is capable of efficient manufacturing methods, and chloroformic acid aryl ester obtained is very pure, industrial value is high.

Claims (2)

ヒドロキシ基含有アリール化合物とホスゲンと、下記一般式(1)で示されるウレア化合物を触媒として反応させることを特徴とするクロロ蟻酸アリールエステルの製造方法。
Figure 0004588171
(式中、R1,R2は同一であっても異なっていても良く、炭素数2〜炭素数5のアルキレン基、または1個もしくは2個のメチル基または1個のエチル基を側鎖に有する炭素数2〜炭素数5のアルキレン基、または−CH2CH(R3)OCH(R3)CH2−で示されるアルキレンエーテル基を表す。ただし、R3は水素原子、メチル基またはエチル基を表す。)
A hydroxy group-containing aryl compound with phosgene method chloroformate aryl ester, wherein Rukoto a urea compound represented by the following general formula (1) is reacted as a catalyst.
Figure 0004588171
(Wherein, R 1, R 2 is optionally substituted by one or more same or rather good, the side of the alkylene group or one or two methyl groups or one ethyl group, the carbon number of 2 to 5 carbon atoms Represents an alkylene group having 2 to 5 carbon atoms in the chain , or an alkylene ether group represented by —CH 2 CH (R 3 ) OCH (R 3 ) CH 2 —, wherein R 3 represents a hydrogen atom or a methyl group. Or represents an ethyl group .)
前記一般式(1)で表されるウレア化合物が、モルホリン、2,6−ジメチルモルホリン、ピロリジン、2,4−ジメチルピロリジン、2,5−ジメチルピロリジン、ピペリジン、2−エチルピペリジン、3,5−ジメチルピペリジンおよび2,6−ジメチルピペリジンから選ばれた1種以上の環状アミンとホスゲンを反応して得られるウレア化合物である、請求項1記載のクロロ蟻酸アリールエステルの製造方法。 The urea compound represented by the general formula (1) is morpholine, 2,6-dimethylmorpholine, pyrrolidine, 2,4-dimethylpyrrolidine, 2,5-dimethylpyrrolidine, piperidine, 2-ethylpiperidine, 3,5- The method for producing an aryl chloroformate according to claim 1, which is a urea compound obtained by reacting one or more cyclic amines selected from dimethylpiperidine and 2,6-dimethylpiperidine with phosgene.
JP2000157699A 2000-05-29 2000-05-29 Method for producing aryl chloroformate Expired - Fee Related JP4588171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157699A JP4588171B2 (en) 2000-05-29 2000-05-29 Method for producing aryl chloroformate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157699A JP4588171B2 (en) 2000-05-29 2000-05-29 Method for producing aryl chloroformate

Publications (3)

Publication Number Publication Date
JP2001335540A JP2001335540A (en) 2001-12-04
JP2001335540A5 JP2001335540A5 (en) 2007-07-12
JP4588171B2 true JP4588171B2 (en) 2010-11-24

Family

ID=18662285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157699A Expired - Fee Related JP4588171B2 (en) 2000-05-29 2000-05-29 Method for producing aryl chloroformate

Country Status (1)

Country Link
JP (1) JP4588171B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616771A (en) * 1995-05-19 1997-04-01 Basf Aktiengesellschaft Preparation of aryl chloroformates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913784B1 (en) * 1969-07-03 1974-04-03
JPS4814648B1 (en) * 1969-12-26 1973-05-09 Tokyo Shibaura Electric Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616771A (en) * 1995-05-19 1997-04-01 Basf Aktiengesellschaft Preparation of aryl chloroformates

Also Published As

Publication number Publication date
JP2001335540A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
KR870000673B1 (en) Process for the continuous production of n-methyl-carbamates
JPWO2007018221A1 (en) Method for producing 2-hydroxyester compound
CN101981041A (en) Isothermal process for phosphoromonochloridite synthesis
JP2013515045A (en) Process for the production of dithiocarbamates from polyols, in particular glycerol type polyols
TWI462898B (en) Process for removing an alkanol impurity from an organic carbonate stream
KR101684044B1 (en) Methods for producing 1,5,7-triazabicyclo[4.4.0] dec-5-ene by reaction of a disubstituted carbodiimide and dipropylene triamine
JP4588171B2 (en) Method for producing aryl chloroformate
JP2569351B2 (en) Method for producing aromatic carbonate compound
BRPI0707429A2 (en) processes for the production of alkylene carbonate, and for the preparation of alkane diol and dialkyl carbonate
JPH0625056A (en) Preparation of alkylphenyl alkyl ether or alkyl phenyl alkyl thioether
US5274164A (en) Preparation of aryl chloroformates
CN103182325B (en) Catalyst, its preparation method and use its prepare the method for aromatic carbonate from dialkyl carbonate
US5616771A (en) Preparation of aryl chloroformates
JPH06179644A (en) Production of n-@(3754/24)alpha-alkoxyethyl)formamide
JPS5941984B2 (en) Method for producing chlorothiol formate
TWI511953B (en) Process for removing an alkanol impurity from a dialkyl carbonate stream
JP3417418B2 (en) Method for producing alkylene carbonate
JPH06293727A (en) Production of substituted urea
KR100271564B1 (en) Process for producing n,n-disubstituted aminophenol
JP4127017B2 (en) Method for producing benzylcarbazate compound
KR101232125B1 (en) Method and catalyst for preparing alkylene carbonates
US6812360B2 (en) Process for preparing bis(fluoroaryl)boron derivatives
JP2506376B2 (en) Method for producing 2- (4-methylaminobutoxy) diphenylmethane hydrochloride
JPH0648993A (en) Production of dialkyl carbonate
EP2468706A1 (en) Process for the preparation of resveratrol

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees