JP4587521B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4587521B2
JP4587521B2 JP2000090970A JP2000090970A JP4587521B2 JP 4587521 B2 JP4587521 B2 JP 4587521B2 JP 2000090970 A JP2000090970 A JP 2000090970A JP 2000090970 A JP2000090970 A JP 2000090970A JP 4587521 B2 JP4587521 B2 JP 4587521B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
conductivity type
emitting device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000090970A
Other languages
Japanese (ja)
Other versions
JP2001284637A (en
Inventor
憲一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000090970A priority Critical patent/JP4587521B2/en
Publication of JP2001284637A publication Critical patent/JP2001284637A/en
Application granted granted Critical
Publication of JP4587521B2 publication Critical patent/JP4587521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体発光素子に関し、特に上面から光を取り出すために半導体接合部を上部に形成したジャンクションアップ型の半導体発光素子に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来のジャンクションアップ型の半導体発光素子を図2に示す。従来のジャンクションアップ型の半導体発光素子は、n型のGaAsなどから成る基板1上にn型のAlGaAsなどから成るキャリア注入層2、p型のAlGaAsなどから成る活性層3、p型のAlGaAsなどから成るクラッド層4、およびp型のコンタクト層5を順次積層し、p型のコンタクト層5にp側電極6を接続して設けるとともに、基板1の裏面にn側電極7を設けた構造となっている。
【0003】
しかしながら、従来のAlGaAs系ジャンクションアップ型の半導体発光素子では基板1と電極7とをオーミックコンタクトさせるために、基板1には例えばシリコンからなるn型不純物が1×1018atoms/cm3程度の比較的高濃度に添加されている。
【0004】
ところで、活性層3で発光した光λaは、発光素子の表面側だけでなく、その裏面側にも放射される。発光素子の裏面側に放射された光λaは、図3に示すように、バンドギャップの大きいn型AlGaAsからなるキャリア注入層2では吸収されず、バンドギャップの小さいGaAsからなる基板1中にまで到達する。高不純物濃度のGaAs基板1中に到達した光λaは基板1中のキャリアを励起し、そのバンドギャップに対応した光λaとは波長の異なる光λbを放射する。
【0005】
ところが、基板1を構成するGaAsは不純物濃度が高くなると光学的活性が顕著に増加する特性を有しているため、二次発光強度が強く、その結果、発光素子の発光スペクトルは本来の光λaに加えてサブピークである光λbを持つことになり、これがメインピークの光λaに対する雑音になるという問題があった。
【0006】
本発明はこのような従来技術の問題点に鑑みてなされたものであり、発光素子の発光スペクトル中にサブピークの雑音が発生するという従来の問題点を解消した半導体発光素子を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る半導体発光装置では、一導電型を呈する半導体基板上に、一導電型を呈するキャリア注入層、逆導電型を呈する活性層、およびクラッド層とを順次積層して形成し、この半導体基板の裏面側とクラッド層上に電極を設けた半導体発光素子において、前記キャリア注入層の下側に前記活性層よりもバンドギャップの小さい光吸収層を設けたことを特徴とする。
【0008】
上記半導体発光素子では、前記キャリア注入層、活性層、およびクラッド層がAlGaAsもしくはGaAsから成り、前記光吸収層がInGaAsから成り、前記半導体基板がGaAsから成ることを特徴とする。さらに、本発明に係る半導体発光素子では、一導電型を呈する半導体基板上に、一導電型を呈するキャリア注入層、逆導電型を呈する活性層、およびクラッド層とを順次積層して形成し、この半導体基板の裏面側とクラッド層上に電極を設けた半導体発光素子において、前記キャリア注入層の下側に前記基板側から順にバッファ層と前記活性層よりもバンドギャップの小さい光吸収層とを設け、前記キャリア注入層、活性層、およびクラッド層がAlGaAsから成り、前記光吸収層がInGaAsから成り、前記バッファ層がGaAsから成ることを特徴とする。
【0009】
また、上記半導体発光素子では、前記光吸収層の厚みが0.05〜0.2μmであることが望ましい。
【0010】
【発明の実施の形態】
以下、本発明を添付図面に基づき詳細に説明する。
図1は本発明に係る半導体発光素子の一実施形態を示す断面図である。なお、ここでは赤色AlGaAs系発光ダイオードを例に説明する。図1において、8は半導体基板、9はバッファ層、10は光吸収層、11はキャリア注入層、12は活性層、13はクラッド層、14はコンタクト層、15と16は電極である。
【0011】
半導体基板8は一導電型不純物を1×1017〜1019atoms/cm3程度含有し、シリコン(Si)、ガリウム砒素(GaAs)、あるいはインジウム燐(InP)などの単結晶半導体基板や、サファイア(Al23)などの単結晶絶縁基板から成る。単結晶半導体基板の場合、(100)面を<011>方向に2〜7°オフさせた基板などが好適に用いられる。サファイアの場合、C面基板が好適に用いられる。
【0012】
バッファ層9はガリウム砒素(GaAs)などからなり、Si等の一導電型不純物を1×1017〜1019atoms/cm3程度含有し、基板8と半導体層との格子不整合に基づくミスフィット転位を防止もしくは低減させるために、1〜4μm程度の厚みに形成する。
【0013】
光吸収層10はインジウムガリウム砒素(InGaAs)などからなり、Si等の一導電型不純物を1×1017〜1019atoms/cm3程度含有し、0.05〜0.2μmの厚みに形成する。光吸収層10はGaAsからなるバッファ層9とアルミニウムガリウム砒素(AlGaAs)から成るクラッド層11とに挟まれているため、格子不整合によって内部に応力を持ち光学的に活性の小さい膜となっている。
【0014】
このように光学的に活性が小さく、後述する活性層よりもバンドギャップの小さい光吸収層10を設けると、基板8側に放射された発光が二次発光なしに吸収される。
【0015】
この光吸収層10の厚みが0.05μm以下であると反射効果が小さく、また0.2μm以上では光学的活性が強くなり、二次発光し易くなる。よって、この光吸収層10は0.05〜0.2μmの厚みに形成することが望ましい。
【0016】
一導電型を呈するキャリア注入層11は、アルミニウムガリウム砒素(AlGaAs)などで形成され、シリコンなどの一導電型半導体不純物を1×1016〜1019atoms/cm3程度含有し、0.2〜4μm程度の厚みを有する。
【0017】
逆導電型を呈する活性層12は、アルミニウムガリウム砒素(AlGaAs)などで形成され、亜鉛(Zn)などの逆導電型半導体不純物を1×1016〜1021atoms/cm3程度含有し、0.1〜4μm程度の厚みを有する。
【0018】
逆導電型を呈するクラッド層13はアルミニウムガリウム砒素(AlGaAs)から形成され、亜鉛(Zn)などの逆導電型半導体不純物を1×1016〜1021atoms/cm3程度含有し、0.2〜4μm程度の厚みを有する。なお、キャリア閉じ込め効果と光透過性を考慮して活性層12とクラッド層13のアルミニウム砒素(AlAs)とガリウム砒素(GaAs)の混晶比を異ならせている。
【0019】
オーミックコンタクト層14はガリウム砒素(GaAs)などで形成され、亜鉛(Zn)などの逆導電型半導体不純物を1×1019〜1020atoms/cm3程度含有し、0.01〜1μm程度の厚みを有する。
【0020】
次に、このような半導体発光素子の製造方法を説明する。まず、MOCVD法により基板8を水素(H2)とアルシンガス(AsH3)雰囲気中で700〜1000℃まで昇温し、基板8の表面の酸化物を除去する。
【0021】
次に、基板温度400〜700℃でトリメチルガリウム(以下TMG)とアルシンガス(AsH3)とシランガス(SiH4)をドーパントガスとして供給してバッファ層9を1〜4μm程度の厚みに形成する。
【0022】
その上に原料ガスとしてTMG、トリメチルインジウム(以下TMI)、アルシンガス(AsH3)とシランガス(SiH4)をドーパントガスを用いて、光吸収層10を0.05〜0.2μm程度の厚みに形成する。
【0023】
その後、シランガス(SiH4)をドーパントガスとして用いて一導電型のキャリア注入層11を形成する。その上にジメチル亜鉛(以下DMZ)をドーパントガスとして用いて活性層12、クラッド層13、およびオーミックコンタクト層14を順次形成する。
【0024】
このように各半導体層9〜14を成長させた後、硫酸過酸化水素系のエッチング液を用いてメサ構造にする。その後、蒸着法やスパッタリング法を用いて金・ゲルマニウム(AuGe)などによって電極15、16を形成する。
【0025】
【発明の効果】
以上のように、本発明に係る半導体発光素子では、一導電型を呈する半導体基板上に、一導電型を呈するキャリア注入層、逆導電型を呈する活性層、およびクラッド層とを順次積層して形成し、この半導体基板の裏面側とクラッド層上に電極を設け、上記キャリア注入層の下側に光吸収層を設けたことから、活性層で発光して基板の裏面側に放射した光が二次発光せずに光吸収層で吸収されるため、サブピークの反射光の発生を防止することができ、メインピークの光に対する雑音を低くすることが可能となる。
【図面の簡単な説明】
【図1】本発明に係る半導体発光素子の一実施形態を示す断面図である。
【図2】従来の半導体発光素子を示す示す断面図である。
【図3】従来の半導体発光素子のバイアス状態時のバンドダイヤグラムを示す図である。
【符号の説明】
8:基板、9:バッファ層、10:光吸収層、11:キャリア注入層、12:活性層、13:クラッド層、14:コンタクト層、15,16:電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device, and more particularly to a junction-up type semiconductor light emitting device in which a semiconductor junction is formed on the top in order to extract light from the upper surface.
[0002]
[Background Art and Problems to be Solved by the Invention]
A conventional junction-up type semiconductor light emitting device is shown in FIG. A conventional junction-up type semiconductor light emitting device has a carrier injection layer 2 made of n-type AlGaAs, an active layer 3 made of p-type AlGaAs, a p-type AlGaAs, etc. on a substrate 1 made of n-type GaAs. And a p-type contact layer 5 and a p-side electrode 6 connected to the p-type contact layer 5, and an n-side electrode 7 on the back surface of the substrate 1. It has become.
[0003]
However, in the conventional AlGaAs junction-up type semiconductor light emitting device, since the substrate 1 and the electrode 7 are brought into ohmic contact, the substrate 1 is compared with an n-type impurity made of, for example, silicon of about 1 × 10 18 atoms / cm 3. It is added to a high concentration.
[0004]
Incidentally, the light λa emitted from the active layer 3 is emitted not only to the front surface side of the light emitting element but also to the back surface side thereof. As shown in FIG. 3, the light λa radiated to the back surface side of the light emitting element is not absorbed by the carrier injection layer 2 made of n-type AlGaAs having a large band gap, and reaches the substrate 1 made of GaAs having a small band gap. To reach. The light λa that has reached the GaAs substrate 1 having a high impurity concentration excites carriers in the substrate 1 and emits light λb having a wavelength different from that of the light λa corresponding to the band gap.
[0005]
However, since GaAs constituting the substrate 1 has a characteristic that the optical activity increases remarkably when the impurity concentration is increased, the secondary emission intensity is strong, and as a result, the emission spectrum of the light emitting element has the original light λa. In addition to this, there is a problem that it has a light λb which is a sub-peak, which becomes noise with respect to the light λa of the main peak.
[0006]
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a semiconductor light emitting device that solves the conventional problem of generating sub-peak noise in the emission spectrum of the light emitting device. And
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in a semiconductor light emitting device according to the present invention, a carrier injection layer exhibiting one conductivity type, an active layer exhibiting a reverse conductivity type, and a cladding layer are sequentially formed on a semiconductor substrate exhibiting one conductivity type. In a semiconductor light emitting device formed by stacking and providing electrodes on the back side and the cladding layer of the semiconductor substrate, a light absorption layer having a smaller band gap than the active layer is provided below the carrier injection layer. It is characterized by.
[0008]
In the semiconductor light-emitting element, the carrier injection layer, the active layer, and the cladding layer is composed of AlGaAs or GaAs, the light absorbing layer is Ri consists InGaAs, the semiconductor substrate is characterized in that it consists of GaAs. Furthermore, in the semiconductor light emitting device according to the present invention, a carrier injection layer exhibiting one conductivity type, an active layer exhibiting a reverse conductivity type, and a cladding layer are sequentially stacked on a semiconductor substrate exhibiting one conductivity type, In the semiconductor light emitting device in which electrodes are provided on the back surface side and the clad layer of the semiconductor substrate, a buffer layer and a light absorption layer having a band gap smaller than that of the active layer are sequentially provided from the substrate side below the carrier injection layer. The carrier injection layer, the active layer, and the cladding layer are made of AlGaAs, the light absorption layer is made of InGaAs, and the buffer layer is made of GaAs.
[0009]
In the semiconductor light emitting device, the thickness of the light absorption layer is preferably 0.05 to 0.2 μm.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor light emitting device according to the present invention. Here, a red AlGaAs light emitting diode will be described as an example. In FIG. 1, 8 is a semiconductor substrate, 9 is a buffer layer, 10 is a light absorption layer, 11 is a carrier injection layer, 12 is an active layer, 13 is a cladding layer, 14 is a contact layer, and 15 and 16 are electrodes.
[0011]
The semiconductor substrate 8 contains about 1 × 10 17 to 10 19 atoms / cm 3 of one conductivity type impurity, a single crystal semiconductor substrate such as silicon (Si), gallium arsenide (GaAs), or indium phosphorus (InP), sapphire It consists of a single crystal insulating substrate such as (Al 2 O 3 ). In the case of a single crystal semiconductor substrate, a substrate in which the (100) plane is turned off by 2 to 7 degrees in the <011> direction is preferably used. In the case of sapphire, a C-plane substrate is preferably used.
[0012]
The buffer layer 9 is made of gallium arsenide (GaAs) or the like, contains about 1 × 10 17 to 10 19 atoms / cm 3 of one conductivity type impurity such as Si, and is misfit based on lattice mismatch between the substrate 8 and the semiconductor layer. In order to prevent or reduce dislocation, it is formed to a thickness of about 1 to 4 μm.
[0013]
The light absorption layer 10 is made of indium gallium arsenide (InGaAs) or the like and contains about 1 × 10 17 to 10 19 atoms / cm 3 of one conductivity type impurity such as Si and is formed to a thickness of 0.05 to 0.2 μm. . Since the light absorption layer 10 is sandwiched between the buffer layer 9 made of GaAs and the clad layer 11 made of aluminum gallium arsenide (AlGaAs), the optical absorption layer 10 has a stress inside due to lattice mismatch and becomes a film having low optical activity. Yes.
[0014]
When the light absorption layer 10 having a small optical activity and a band gap smaller than that of an active layer to be described later is provided, light emitted to the substrate 8 side is absorbed without secondary light emission.
[0015]
When the thickness of the light absorption layer 10 is 0.05 μm or less, the reflection effect is small, and when it is 0.2 μm or more, the optical activity becomes strong and secondary light emission is facilitated. Therefore, it is desirable to form this light absorption layer 10 in a thickness of 0.05 to 0.2 μm.
[0016]
The carrier injection layer 11 exhibiting one conductivity type is formed of aluminum gallium arsenide (AlGaAs) or the like, contains about 1 × 10 16 to 10 19 atoms / cm 3 of one conductivity type semiconductor impurity such as silicon, and is 0.2 to It has a thickness of about 4 μm.
[0017]
The active layer 12 having the reverse conductivity type is formed of aluminum gallium arsenide (AlGaAs) or the like, and contains about 1 × 10 16 to 10 21 atoms / cm 3 of a reverse conductivity type semiconductor impurity such as zinc (Zn). It has a thickness of about 1 to 4 μm.
[0018]
The clad layer 13 having the reverse conductivity type is formed of aluminum gallium arsenide (AlGaAs), and contains about 1 × 10 16 to 10 21 atoms / cm 3 of a reverse conductivity type semiconductor impurity such as zinc (Zn). It has a thickness of about 4 μm. Note that the mixed crystal ratios of aluminum arsenide (AlAs) and gallium arsenide (GaAs) in the active layer 12 and the cladding layer 13 are made different in consideration of the carrier confinement effect and the light transmittance.
[0019]
The ohmic contact layer 14 is formed of gallium arsenide (GaAs) or the like, contains about 1 × 10 19 to 10 20 atoms / cm 3 of a reverse conductivity type semiconductor impurity such as zinc (Zn), and has a thickness of about 0.01 to 1 μm. Have
[0020]
Next, a method for manufacturing such a semiconductor light emitting device will be described. First, the substrate 8 is heated to 700 to 1000 ° C. in an atmosphere of hydrogen (H 2 ) and arsine gas (AsH 3 ) by MOCVD, and the oxide on the surface of the substrate 8 is removed.
[0021]
Next, trimethyl gallium (hereinafter TMG), arsine gas (AsH 3 ), and silane gas (SiH 4 ) are supplied as dopant gases at a substrate temperature of 400 to 700 ° C. to form the buffer layer 9 with a thickness of about 1 to 4 μm.
[0022]
A light absorption layer 10 is formed to a thickness of about 0.05 to 0.2 μm using TMG, trimethylindium (hereinafter TMI), arsine gas (AsH 3 ), and silane gas (SiH 4 ) as dopant gases. To do.
[0023]
Thereafter, the carrier injection layer 11 of one conductivity type is formed using silane gas (SiH 4 ) as a dopant gas. An active layer 12, a cladding layer 13, and an ohmic contact layer 14 are sequentially formed thereon using dimethyl zinc (hereinafter referred to as DMZ) as a dopant gas.
[0024]
After the semiconductor layers 9 to 14 are grown in this way, a mesa structure is formed using a sulfuric acid hydrogen peroxide-based etchant. Thereafter, the electrodes 15 and 16 are formed of gold / germanium (AuGe) or the like by vapor deposition or sputtering.
[0025]
【The invention's effect】
As described above, in the semiconductor light emitting device according to the present invention, a carrier injection layer exhibiting one conductivity type, an active layer exhibiting a reverse conductivity type, and a cladding layer are sequentially stacked on a semiconductor substrate exhibiting one conductivity type. Since the electrode is provided on the back side and the cladding layer of the semiconductor substrate and the light absorption layer is provided below the carrier injection layer, the light emitted from the active layer and emitted to the back side of the substrate is generated. Since the light absorption layer does not emit secondary light but is absorbed by the light absorption layer, it is possible to prevent generation of reflected light of sub-peaks and to reduce noise with respect to light of the main peak.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor light emitting device according to the present invention.
FIG. 2 is a cross-sectional view showing a conventional semiconductor light emitting device.
FIG. 3 is a diagram showing a band diagram in a bias state of a conventional semiconductor light emitting device.
[Explanation of symbols]
8: Substrate, 9: Buffer layer, 10: Light absorption layer, 11: Carrier injection layer, 12: Active layer, 13: Cladding layer, 14: Contact layer, 15, 16: Electrode

Claims (3)

一導電型を呈する半導体基板上に、一導電型を呈するキャリア注入層、逆導電型を呈する活性層、およびクラッド層とを順次積層して形成し、この半導体基板の裏面側とクラッド層上に電極を設けた半導体発光素子において、前記キャリア注入層の下側に前記活性層よりもバンドギャップの小さい光吸収層を設け、前記キャリア注入層、活性層、およびクラッド層がAlGaAsから成り、前記光吸収層がInGaAsから成り、前記半導体基板がGaAsから成ることを特徴とする半導体発光素子。On a semiconductor substrate exhibiting one conductivity type, a carrier injection layer exhibiting one conductivity type, an active layer exhibiting a reverse conductivity type, and a cladding layer are sequentially stacked, and formed on the back surface side of the semiconductor substrate and the cladding layer. In the semiconductor light emitting device provided with the electrode, a light absorption layer having a band gap smaller than the active layer is provided below the carrier injection layer, the carrier injection layer, the active layer, and the cladding layer are made of AlGaAs, and the light An absorption layer is made of InGaAs, and the semiconductor substrate is made of GaAs . 一導電型を呈する半導体基板上に、一導電型を呈するキャリア注入層、逆導電型を呈する活性層、およびクラッド層とを順次積層して形成し、この半導体基板の裏面側とクラッド層上に電極を設けた半導体発光素子において、前記キャリア注入層の下側に前記基板側から順にバッファ層と前記活性層よりもバンドギャップの小さい光吸収層とを設け、前記キャリア注入層、活性層、およびクラッド層がAlGaAsから成り、前記光吸収層がInGaAsから成り、前記バッファ層がGaAsから成ることを特徴とする半導体発光素子。On a semiconductor substrate exhibiting one conductivity type, a carrier injection layer exhibiting one conductivity type, an active layer exhibiting a reverse conductivity type, and a cladding layer are sequentially stacked, and formed on the back surface side of the semiconductor substrate and the cladding layer. In the semiconductor light emitting device provided with an electrode, a buffer layer and a light absorption layer having a band gap smaller than that of the active layer are sequentially provided below the carrier injection layer from the substrate side, and the carrier injection layer, the active layer, and A semiconductor light emitting device, wherein a cladding layer is made of AlGaAs, the light absorption layer is made of InGaAs, and the buffer layer is made of GaAs. 前記光吸収層が0.05〜0.2μmの厚みであることを特徴とする請求項1または請求項2に記載の半導体発光素子。  The semiconductor light emitting element according to claim 1, wherein the light absorption layer has a thickness of 0.05 to 0.2 μm.
JP2000090970A 2000-03-29 2000-03-29 Semiconductor light emitting device Expired - Lifetime JP4587521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090970A JP4587521B2 (en) 2000-03-29 2000-03-29 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090970A JP4587521B2 (en) 2000-03-29 2000-03-29 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2001284637A JP2001284637A (en) 2001-10-12
JP4587521B2 true JP4587521B2 (en) 2010-11-24

Family

ID=18606492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090970A Expired - Lifetime JP4587521B2 (en) 2000-03-29 2000-03-29 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4587521B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879610B2 (en) * 2002-09-27 2005-04-12 Sarnoff Corporation Narrow spectral width light emitting devices
CN100416871C (en) * 2004-12-09 2008-09-03 璨圆光电股份有限公司 LED package structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224405A (en) * 1993-01-27 1994-08-12 Nec Corp Planar waveguide type optical semiconductor element and its manufacture
JPH07131065A (en) * 1993-10-29 1995-05-19 Mitsubishi Cable Ind Ltd Semiconductor light emitting element
JPH0974220A (en) * 1995-09-07 1997-03-18 Mitsubishi Cable Ind Ltd Semiconductor light emitting element and manufacture thereof
JPH09172197A (en) * 1995-12-19 1997-06-30 Mitsubishi Cable Ind Ltd Semiconductor light emitting device
JPH09181358A (en) * 1995-12-25 1997-07-11 Mitsubishi Cable Ind Ltd Semiconductor light emitting device
JP2000068587A (en) * 1998-08-21 2000-03-03 Hitachi Ltd Semiconductor laser device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224405A (en) * 1993-01-27 1994-08-12 Nec Corp Planar waveguide type optical semiconductor element and its manufacture
JPH07131065A (en) * 1993-10-29 1995-05-19 Mitsubishi Cable Ind Ltd Semiconductor light emitting element
JPH0974220A (en) * 1995-09-07 1997-03-18 Mitsubishi Cable Ind Ltd Semiconductor light emitting element and manufacture thereof
JPH09172197A (en) * 1995-12-19 1997-06-30 Mitsubishi Cable Ind Ltd Semiconductor light emitting device
JPH09181358A (en) * 1995-12-25 1997-07-11 Mitsubishi Cable Ind Ltd Semiconductor light emitting device
JP2000068587A (en) * 1998-08-21 2000-03-03 Hitachi Ltd Semiconductor laser device

Also Published As

Publication number Publication date
JP2001284637A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP3448450B2 (en) Light emitting device and method for manufacturing the same
JP3643665B2 (en) Semiconductor light emitting device
US20220181513A1 (en) Hybrid growth method for iii-nitride tunnel junction devices
US20030231683A1 (en) Nitride based semiconductor structures with highly reflective mirrors
US6593595B2 (en) Semiconductor light-emitting device and method for producing same
US7485902B2 (en) Nitride-based semiconductor light-emitting device
US8796711B2 (en) Light-emitting element
JP2006332205A (en) Nitride semiconductor light emitting element
KR20080087135A (en) Nitride semiconductor light emitting element
US8120050B2 (en) Light-emitting element
US6631149B1 (en) Laser diode using group III nitride group compound semiconductor
JP5245529B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US7541622B2 (en) Super luminescent diode and manufacturing method thereof
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
JP2006040998A (en) Semiconductor light emitting device and epitaxial wafer therefor
JP4587521B2 (en) Semiconductor light emitting device
Wong et al. Progress in III-Nitride Tunnel Junctions for Optoelectronic Devices
JP2011176001A (en) Light emitting device and method of manufacturing the same
JP2720554B2 (en) Light emitting diode with light reflecting layer
Modak et al. AlGaInP microcavity light-emitting diodes at 650 nm on Ge substrates
JP2002076518A (en) Semiconductor laser, semiconductor device and production method therefor
JP3665911B2 (en) Semiconductor optical device manufacturing method and semiconductor optical device
JPH08116092A (en) Semiconductor light emitting element and its manufacture
JP2002026381A (en) Semiconductor light emitting element and led array
JP2000200924A (en) Semiconductor light emitting element and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R150 Certificate of patent or registration of utility model

Ref document number: 4587521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

EXPY Cancellation because of completion of term