JP4586258B2 - Vehicle steering control device - Google Patents

Vehicle steering control device Download PDF

Info

Publication number
JP4586258B2
JP4586258B2 JP2000335815A JP2000335815A JP4586258B2 JP 4586258 B2 JP4586258 B2 JP 4586258B2 JP 2000335815 A JP2000335815 A JP 2000335815A JP 2000335815 A JP2000335815 A JP 2000335815A JP 4586258 B2 JP4586258 B2 JP 4586258B2
Authority
JP
Japan
Prior art keywords
steering
temperature
motor
angle
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000335815A
Other languages
Japanese (ja)
Other versions
JP2002137749A (en
Inventor
武昭 小幡
欣高 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000335815A priority Critical patent/JP4586258B2/en
Publication of JP2002137749A publication Critical patent/JP2002137749A/en
Application granted granted Critical
Publication of JP4586258B2 publication Critical patent/JP4586258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両の操舵制御装置に関する。
【0002】
【従来の技術】
従来、操舵ハンドルの回転伝達系と機械的に分離された転舵輪を駆動するために転舵モータを備え、操舵ハンドルの操舵角に対応する転舵角だけ転舵モータを駆動して転舵輪を転舵する車両の操舵制御装置として、特開平10‐310074号公報に記載されたものが知られている。
【0003】
この従来の車両の操舵制御装置では、転舵モータに加わる負荷を軸力センサを用いることなく検出する目的で、転舵モータに流れる電流を電流センサによって検出することによって転舵負荷を検出し、この検出された転舵負荷に基づいて操舵軸へ加える操舵反力を制御するものである。
【0004】
【発明が解決しようとする課題】
ところで、このような操舵ハンドルの回転伝達系と機械的に分離された転舵輪を転舵モータで転舵する車両の操舵制御装置では、ドライバーが車両の停止状態で操舵を行った場合(つまり、据え切りを行った場合)には、図9に示すように、転舵輪100のタイヤにねじれが生じ、接地面の向きAと転舵輪100の向きB(転舵角δf又はδr)とにずれ(ねじれ角ν)が生じる。このため、据え切りを行った後にドライバーが操舵ハンドルをその状態のまま保持していると、この転舵輪100のねじれ角νと釣り合うために必要となる転舵負荷によって転舵モータに継続的に電流が流れ、転舵モータが温度上昇する問題がある。
【0005】
この問題に対して、上述した公報に記載された従来技術を適用した場合、転舵負荷が減少する方向に操舵反力を発生させて操舵ハンドルの位置を変化させることによって転舵輪のねじれを減少させることができ、結果的に前輪あるいは後輪のいずれか一方に転舵モータが設けられているシステムの場合にはその転舵モータの温度上昇を防止することができるようになる。
【0006】
しかしながら、上述した公報に記載された従来技術を、前輪と後輪の転舵角を各々に設けた転舵モータで個別に制御するシステムに適用しようとすれば、前輪と後輪の転舵負荷が異なるために、前輪と後輪のいずれか一方の転舵モータの負荷状態に基づいて操舵反力を発生させたとしても、据え切りを行った後の前後両方の転舵負荷を効果的に減少させることができるとは限らず、転舵モータの温度上昇を効果的に防止することができないという問題点があった。
【0007】
本発明は、このような従来の技術的課題を解決するためのされたものであって、車両の前輪と後輪の転舵角を各々に設けられた転舵モータによって個別に制御するシステムにおいて、前輪と後輪の転舵モータの温度上昇を効果的に抑制することができる車両の操舵制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明は、操舵ハンドルと機械的に分離された前輪と後輪とを個別に駆動するための転舵モータを備え、前記操舵ハンドルの操舵角に対応する転舵角が得られるように前記転舵モータを駆動して前記前輪と後輪を個別に転舵する車両の操舵制御装置において、前記操舵ハンドルの操作量に基づいて前記前輪と後輪の目標転舵角を算出する目標転舵角算出手段と、前記目標転舵角に基づいて前記前輪と後輪の転舵角を制御する転舵角制御手段と、前記前輪と後輪との転舵負荷として前記前輪、後輪それぞれのタイヤのねじれによって生じる力と釣り合う負荷を検出あるいは推定する転舵負荷検出手段と、前記前輪と後輪の転舵モータの温度を検出あるいは推定する転舵モータ温度検出手段と、車両がほぼ停止した状態である場合に、前記転舵モータ温度検出手段の出力する前記前輪と後輪の転舵モータの温度各々を予め設定されている動作許容温度の上限値と比較し、余裕代が小さい方の転舵モータに加わっている転舵負荷を所定量以下とする向きに操舵反力を発生させる操舵反力発生手段とを備えたものである。
【0009】
請求項2の発明は、操舵ハンドルと機械的に分離された前輪と後輪とを個別に駆動するための転舵モータを備え、前記操舵ハンドルの操舵角に対応する転舵角が得られるように前記転舵モータを駆動して前記前輪と後輪を個別に転舵する車両の操舵制御装置において、前記操舵ハンドルの操作量に基づいて前記前輪と後輪の目標転舵角を算出する目標転舵角算出手段と、前記目標転舵角に基づいて前記前輪と後輪の転舵角を制御する転舵角制御手段と、前記前輪と後輪との転舵負荷として前記前輪、後輪それぞれのタイヤのねじれによって生じる力と釣り合う負荷を検出あるいは推定する転舵負荷検出手段と、前記前輪と後輪の転舵モータの温度を検出あるいは推定する転舵モータ温度検出手段と、車両がほぼ停止した状態である場合に、前記転舵モータ温度検出手段の出力する前記前輪と後輪の転舵モータの温度各々を予め設定されている動作許容温度の上限値と比較し、余裕代が小さい方の転舵モータに加わっている転舵負荷をより大きく減少させる向きに操舵反力を発生させる操舵反力発生手段とを備えたものである。
【0010】
請求項3の発明は、請求項1又は2の車両の操舵制御装置において、前記転舵モータ温度検出手段は、前記前輪と後輪の転舵モータの電流値に基づいて温度値を推定することを特徴とするものである。
【0013】
【発明の効果】
請求項1の発明の車両の操舵制御装置では、操舵ハンドルの操作量に基づいて前輪と後輪との目標転舵角を算出し、この目標転舵角に基づいて前輪と後輪の転舵角を制御するときに、前輪と後輪の転舵負荷を検出あるいは推定し、前輪と後輪の転舵モータの温度を検出あるいは推定し、車両がほぼ停止した状態である場合には、前輪と後輪の転舵モータの温度各々を予め設定されている動作許容温度の上限値と比較し、余裕代が小さい方の転舵モータに加わっている転舵負荷を所定量以下とする向きに操舵反力を発生させ、それぞれの操舵負荷を減少させる制御を行う。
【0014】
これにより、ドライバーが操舵ハンドルを保持する力を弱めた場合に、操舵ハンドルの操作量と転舵角の関係を所定の関係に維持した状態で、操舵反力を発生させることで操舵ハンドルの操舵角を自動的に変化させ、前輪と後輪の転舵負荷を減少させることができ、転舵負荷の減少に応じて前輪と後輪の転舵モータの温度上昇を抑制することができる。
さらにまた、前輪と後輪の転舵モータの温度を検出あるいは推定し、これら前輪と後輪の転舵モータの温度各々を予め設定されている動作許容温度の上限値と比較し、余裕代が小さい方の転舵モータに加わっている転舵負荷を所定量以下とする向きに操舵反力を発生させるので、前輪と後輪のうち転舵モータの動作許容温度の上限値までの温度余裕代が小さい方の転舵負荷を確実に所定範囲内に抑えることができ、これに応じてその転舵モータの温度上昇を抑制することができる。
【0015】
請求項2の発明の車両の操舵制御装置では、前輪と後輪の転舵モータの温度を検出あるいは推定し、これら前輪と後輪の転舵モータの温度各々を予め設定されている動作許容温度の上限値と比較し、余裕代が小さい方の転舵モータに加わっている転舵負荷をより大きく減少させる向きに操舵反力を発生させるので、前輪と後輪の転舵モータの動作許容温度の上限値までの温度余裕代のバランスを考慮して転舵負荷を減少させることができ、これに応じて前輪と後輪の両方の転舵モータの温度上昇を抑制することができる。
【0016】
請求項3の発明の車両の操舵制御装置では、転舵モータ温度検出手段が前輪と後輪の転舵モータの電流値に基づいて温度値を推定するので、請求項1又は2の発明の効果に加えて、転舵モータ内部の巻線など温度センサを設置するのが困難であるような部分の温度を推定することができ、転舵モータの温度上昇を抑制するための制御の信頼性を高められる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳説する。図1は本発明の第1の実施の形態の車両の操舵制御装置の構成を示している。本実施の形態では、前輪1、後輪2は共に転舵輪として操舵ハンドル3の操舵角に応じて互いに逆向きにそれぞれの所定の転舵角だけ転舵するように制御される。例えば、操舵ハンドル3が右に操舵された場合、前輪1は右方向に所定の転舵角だけ駆動され、後輪には逆に左方向に所定の転舵角だけ駆動される。操舵角センサ4は操舵ハンドル3の左右の操舵角を検出する。この操舵角センサ4は、例えばエンコーダ式のセンサを使用して操舵軸の回転量を検出する。前輪転舵モータ5はDCモータや誘導モータが用いられ、その回転出力によってステアリングシャフトを駆動し、前輪1を転舵する。前輪舵角センサ6は、前輪1の転舵角を検出する。後輪転舵モータ7は前輪転舵モータ5と同様に後輪2を転舵し、後輪舵角センサ8は後輪2の転舵角を検出する。これらの前輪舵角センサ6、後輪舵角センサ8は、例えばエンコーダ式のセンサを使用し、ステアリングシャフトの回転量を検出する。車速センサ9は車両11の車速を検出するものである。ヨーレートセンサ10は車両11のヨーレートを検出する。
【0020】
操舵制御装置12はマイクロコンピュータで構成されており、外部との情報の入出力を制御するI/Oインターフェイス、諸演算を実行するCPU、制御プログラムや各種の固定データを記憶するROM、そしてプログラム実行中に一時的にデータを記憶するRAMを備えている。駆動回路13はこの操舵制御装置12の指令に基づき前輪転舵モータ5、後輪転舵モータ7各々を駆動するものである。なお、前輪1、後輪2それぞれに対する転舵モータ5,7には転舵モータ5,7の温度を検出するための温度センサ15,16が取り付けられている。
【0021】
次に操舵制御装置12が実行する操舵制御機能について図2に基づいて説明する。実際には、この図2は操舵制御装置12のROMに組み込まれた制御プログラムの操舵制御機能の構成をブロックに分けて示したものである。操舵制御装置12の操舵制御機能は、前輪1と後輪2の目標転舵角を算出する目標転舵角算出部21、その目標転舵角に基づいて前輪1と後輪2の転舵角を制御する転舵角制御部22、前輪1と後輪2の転舵負荷を検出する転舵負荷検出部23、前輪1と後輪2の転舵モータ5,7の温度を検出する転舵モータ温度検出部24、転舵負荷と転舵モータ温度とに基づいて操舵反力を発生する操舵反力生成部25から構成される。
【0022】
目標転舵角算出部21は、操舵ハンドル3の操舵角に基づいて所定の関係となるように前輪1と後輪2の目標転舵角を算出する。そのためにまず、操舵ハンドル3の操舵角δsを操舵角センサ4の出力に基づいて演算し、操舵角δsに基づいて前輪1の目標転舵角δf* と後輪2の目標転舵角δr* を算出する。例えば、前輪1の目標転舵角δf* を操舵角δsのk倍(例えば、k=40/540とし、操舵角540°で転舵角40°)の関係とし、また、後輪2の目標転舵角δr* を操舵角δsの−k/2倍に等しくする。すなわち、前輪1に対して後輪2を逆相に1/2の角度だけ転舵するのである。
【0023】
【数1】

Figure 0004586258
なお、操舵角δsと前輪1及び後輪2の目標転舵角δf* ,δr* との関係は上記に限定されるものではない。
【0024】
転舵角制御部22は、次のようにして転舵角の制御を行う。前輪舵角センサ6の出力によって前輪転舵角δfを算出し、後輪舵角センサ8によって後輪転舵角δrを算出する。そして目標転舵角算出部21が出力する前輪目標転舵角δf* 及び後輪目標転舵角δr* に対する実際の転舵角との差分に応じて前輪1及び後輪2の転舵モータ5,7の電流指令If* とIr* を演算し、転舵モータ5,7に対して与えて転舵角のフィードバック制御を行う。このフィードバック制御には、PID制御やモデル規範型制御が一般的に用いられる。
【0025】
転舵負荷検出部23は、前後輪の転舵モータ5,7の電流指令値や実際の電流値、転舵モータ5,7の出力トルクの検出値を用いる方法や、ステアリングラックに軸圧センサなどを取り付けて転舵軸力を検出する方法などを採用することができるが、ここでは転舵モータ5,7の電流指令値If* ,Ir* に基づいて転舵負荷の検出(推定)を行う場合について説明する。そのためには、まず転舵負荷、すなわち転舵モータ5,7の電流指令値If* ,Ir* に基づいて転舵輪である前輪1、後輪2それぞれのねじれ角νf,νrの大きさを推定する。これには、転舵輪1,2のねじれ角νf,νrの大きさに対する転舵モータ5,7の電流指令値If* ,Ir* の変化を車両11において計測し、テーブルデータとして予めROMに記憶させておき、これを参照することにより転舵輪1,2のねじれ角νf,νrを推定する方法をとる。なお、このテーブルデータでは、電流指令値If* ,Ir* の増加に対してねじれ角νf,νrが増加する関係になる。また、転舵負荷の推定においては、転舵負荷の車速による補正(車速が大きくなるほど転舵負荷を減少させる)や路面摩擦係数による補正(路面摩擦係数が小さいほど転舵負荷を減少させる)、車両重量による補正(車両重量が大きくなるほど転舵負荷を増加させる)を行ってもよい。
【0026】
転舵モータ温度検出部24による転舵モータの温度検出あるいは温度推定には、転舵モータ5,7それぞれの内部や表面に温度センサを取り付けてその温度信号を用いることができ、また巻線部分などの温度センサの取り付けが困難な部分の温度は電流指令値を積分することによって温度の補正を行い、温度を推定する方法を採用してもよい。さらには、モータの電流値等に基づいてモータの抵抗値を算出し、その抵抗値に基づいてモータの温度を推定する方法を採用することもできる。しかしながら、本実施の形態では転舵モータ5,7に対する電流指令値If* ,Ir* に基づいてモータ内部の温度を推定する方法を採用している。
【0027】
このため、本実施の形態の転舵モータ温度検出部24では、図3に示すように転舵モータ5,7の電流指令値If* ,Ir* の絶対値に対して温度上昇係数を定めている。これは、予め電流指令値に対して単位時間当たりのモータ内部の温度上昇を実験的に決めてもよいし、モータの特性データに基づいて決めてもよい。転舵モータ温度検出部24では、この温度上昇係数を積算して転舵モータの温度Tf,Trを推定する。温度上昇係数の積算値の初期値はモータの表面に取り付けた温度センサ15,16の電源投入時の温度検出値Tfo,Troを利用する。そして、推定した転舵モータ5,7それぞれの温度に基づいて、モータ仕様で定められている動作許容温度の上限値までの温度余裕代を計算する。この温度余裕代は、電流指令値に対する温度上昇率に応じて補正を行ってもよく、例えば、ある一定の電流指令値に対する温度上昇率が大きいほど温度余裕代が小さくなるように補正してもよい。
【0028】
操舵反力生成部25は操舵ハンドル3に対する反力モータ14に所定の操舵反力を発生させるものであり、発生させる操舵反力の大きさは次のようにして算出する。本実施の形態では前輪1、後輪2のうち転舵モータ5,7の温度余裕代が小さい方の転舵負荷、ここでは、転舵負荷検出部23の出力するねじれ角νf,νrの大きさに基づいて操舵角δsの目標変化量Δδs* を算出する。これは、転舵モータ5,7の温度余裕代が小さい方のねじれ角に対応する操舵角を数1式を用いて算出し、操舵角の目標変化量Δδs* とする。そして図4に示したように操舵ハンドル3の操舵角の目標変化量Δδs* に対して反力モータ14の電流指令値Ih* を定めるデータテーブルをROM若しくはRAMに予め格納しておき、このデータテーブルを参照して目標変化量Δδs* に対する電流指令値Ih* を算出する。
【0029】
こうして算出した電流指令値Ih* を反力モータ14に対して出力することにより、図5のグラフに示すように、反力モータ14によって操舵ハンドル3に操舵角δsがδs* に戻るような操舵反力を発生させる。そしてこの結果、元の転舵角δf1,δr1は、ねじれ角νf,νrを所定値以下にするような転舵角δf2,δr2に変化し、転舵モータ5,7に流れる電流が0若しくは0近くまで小さくなり、その温度上昇を抑制できることになる。
【0030】
以上の構成による第1の実施の形態の車両の操舵制御装置の動作を、図6に示したフローチャートに基づいて説明する。この処理は、例えば100msの周期で繰り返し実行される。まず目標転舵角算出部21において操舵ハンドル3に対する操舵角センサ4から操舵角δsを入力し、目標転舵角算出処理を行い、前後輪1,2に対する目標転舵角δf* ,δr* を算出する。そして転舵角制御部22は検出した実転舵角δf,δrと目標転舵角δf* ,δr* との差分から目標電流指令値If* ,Ir* を算出し、前輪転舵モータ5、後輪転舵モータ7をフィードバック制御する(ステップS1,S2)。
【0031】
続いて、転舵負荷検出部23において前輪1と後輪2のねじれ角νf,νrの推定演算を行う(ステップS3)。そして転舵モータ温度検出部24が、前後輪の転舵モータ5,7の温度Tf,Trの推定演算を行う(ステップS4)。
【0032】
続いて、操舵制御装置12は車速センサ9の車速信号Vに基づき、車両11がほぼ停止状態にあるかどうかを判断する(ステップS5)。ここで車両11がほぼ停止状態である場合とは、車速が例えば2km/h以下であることをいう。
【0033】
ステップS5において、車両11がほぼ停止状態であると判断された場合には、ステップS6に進む。ステップS6では、操舵反力生成部25が必要な操舵反力Δδs* を算出し、この操舵反力に対応する反力モータ14に対する電流指令値Ih* を求め、反力モータ14を駆動して操舵ハンドル3の操舵反力を制御する。
【0034】
他方、ステップS5において車両11が停止状態でないと判断された場合(つまり、走行状態の場合)には、ステップS7に進む。ステップS7では、走行中に操舵ハンドル3が中立位置に戻る動きを実現するための操舵反力を発生させる。この場合には、例えば、操舵ハンドル3の操舵角が大きくなるのにしたがって操舵反力モータ14の電流指令値を大きくするようにして、ドライバーが操舵力を弱めた場合に操舵ハンドル3が自身で中立位置に戻る動きをするように制御する。
【0035】
以上の制御により、図7(a)〜(c)に示すように、いま据え切りの操舵を行って、時刻t1で操舵を停止させた場合に、前輪転舵モータ5の温度余裕代が後輪転舵モータ7の温度余裕代よりも小さかったとして、時刻t2で前輪1の推定されるねじれ角νfを所定量以下(ここでは、0)とするような操舵反力を発生させて操舵角δsをΔδs* だけ補正する。この結果、時刻t3で前輪1のねじれ角がほぼ0となり、また後輪2のねじれ角も0に近づくようになる。
【0036】
これにより、第1の実施の形態によれば、操舵ハンドルの操舵操作により転舵輪の向きと接地面の向きとにずれが生じても、短時間内に転舵輪の向きを接地面の向きと可能な限り近づくように自動的に補正することができ、転舵モータに転舵電流が流れ続けることにより温度上昇するのを抑制することができる。
【0037】
なお、上記の第1の実施の形態において、図2の機能ブロック図における操舵反力生成部25が実行する操舵反力の演算方法は、次のようであってもよい(第2の実施の形態)。
【0038】
すなわち、操舵反力生成部25は、前輪1と後輪2の転舵負荷、ここでは前輪1と後輪2のねじれ角νf,νrの大きさと、前輪1と後輪2の転舵モータ5,7の温度余裕代に基づいて操舵ハンドル3の操舵角δsの目標変化量Δδs* を算出する。いま、前輪1のねじれ角νf、後輪1のねじれ角νrであって(接地面の方向に対して右方向に転舵角がずれている場合を正として)、前輪1と後輪2の転舵モータ5,7の温度余裕代がそれぞれΔTf,ΔTrである(この数値が大きいほど温度余裕代が大きい)であるとすると、操舵角δsを変化させた後の前輪1と後輪2のねじれ角の大きさが、前輪1と後輪2の温度余裕代の比(ΔTf/ΔTr)に応じて減少するように、次の数2式によって操舵角の目標変化量Δδs* を算出する。
【0039】
【数2】
Figure 0004586258
そして、第1の実施の形態と同様に、図4に示したように操舵ハンドル3の操舵角の目標変化量Δδs* に対して反力モータ14の電流指令値Ih* を定めるデータテーブルを参照して目標変化量Δδs* に対する電流指令値Ih* を算出する。そして、この電流指令値Ih* を反力モータ14に対して出力することにより、図5のグラフに示すように、反力モータ14によって操舵ハンドル3に操舵角δsがδs* に戻るような操舵反力を発生させる。
【0040】
これにより、元の転舵角δf1,δr1は、ねじれ角νf,νrを所定値以下にするような転舵角δf2,δr2に変化し、転舵モータ5,7に流れる電流が0若しくは0近くまで小さくなり、その温度上昇を抑制できることになる。
【0041】
以上の制御により、図8(a)〜(c)に示すように、いま据え切りの操舵を行って時刻t1で操舵を停止させた場合に、時刻t2で前輪1と後輪2のねじれ角νf,νrを前輪1と後輪2の転舵モータ5,7の温度余裕代ΔTf,ΔTrの比等の関係で重み付けして減少させるような操舵反力を発生して操舵角δsをΔδs* だけ補正する。この結果、時刻t3で前輪1と後輪2のねじれ角が前輪1と後輪2の温度余裕代の比等の関係で重み付けされた大きさとなり、ほぼ0若しくは0に近くなり、転舵モータに転舵電流が流れ続けることにより温度上昇するのを抑制できる。
【0042】
さらになお、上記の第2の実施の形態では、操舵ハンドル3の操作量に対して前輪1と後輪2を逆相に転舵する転舵制御を前提としたが、車両によっては前輪1と後輪2とを同相に転舵する転舵制御をとることもある。そのような場合には、数2式に代えて、次の数3式を用いて操舵ハンドル3の操舵角δsの目標変化量Δδs* を算出し、上記と同様の操舵反力の制御を行えばよい。
【0043】
【数3】
Figure 0004586258
また、より一般的には、次の数4式を満たす複数の操舵角の目標変化量Δδs* のそれぞれに対して、操舵角δsを変化させた後の前輪1と後輪2のねじれ角の大きさの和、すなわち、|νf−Δδf|+|νr−Δδr|を算出し、この和を最小とする操舵角の目標変化量Δδs* を選択すればよい。
【0044】
【数4】
Figure 0004586258
なお、ここでは転舵モータ5,7の温度余裕代に応じて重み付けした操舵角の目標変化量Δδs* を算出したが、転舵モータ5,7の仕様(定格電流など)や軸荷重の比などから予め定めておいた比に応じて重み付けした操舵角の目標変化量Δδs* を算出するようにしてもよい。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のシステム構成を示すブロック図。
【図2】上記の第1の実施の形態における操舵制御装置の機能構成を示すブロック図。
【図3】上記の実施の形態における転舵モータの電流指令値と温度上昇係数との関係を示すグラフ。
【図4】上記の実施の形態における操舵ハンドルの目標変化量と反力モータの電流指令値との関係を示すグラフ。
【図5】上記の実施の形態における操舵角の変化と転舵角の変化との関係を示すグラフ。
【図6】上記の実施の形態による操舵制御処理のフローチャート。
【図7】上記の実施の形態による操舵制御処理のタイミングチャート。
【図8】本発明の第2の実施の形態による操舵制御処理のタイミングチャート。
【図9】転舵輪の向きと接地面の向きとの間のずれ発生のメカニズムを示す説明図。
【符号の説明】
1 前輪
2 後輪
3 操舵ハンドル
4 操舵角センサ
5 前輪転舵モータ
6 前輪舵角センサ
7 後輪転舵モータ
8 後輪舵角センサ
9 車速センサ
10 ヨーレートセンサ
11 車両
12 操舵制御装置
13 駆動回路
14 反力モータ
15 温度センサ
16 温度センサ
21 目標転舵角算出部
22 転舵角制御部
23 転舵負荷検出部
24 転舵モータ温度検出部
25 操舵反力生成部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle steering control device.
[0002]
[Prior art]
Conventionally, a steering motor is provided to drive a steered wheel mechanically separated from the rotation transmission system of the steering handle, and the steered wheel is driven by driving the steered motor by a steered angle corresponding to the steering angle of the steering handle. As a steering control device for a vehicle to be steered, a device described in JP-A-10-310074 is known.
[0003]
In this conventional vehicle steering control device, for the purpose of detecting the load applied to the steering motor without using an axial force sensor, the steering load is detected by detecting the current flowing through the steering motor with a current sensor, The steering reaction force applied to the steering shaft is controlled based on the detected turning load.
[0004]
[Problems to be solved by the invention]
By the way, in a vehicle steering control device that steers a steered wheel that is mechanically separated from the rotation transmission system of the steering handle with a steered motor, when the driver steers with the vehicle stopped (that is, 9), the tire of the steered wheel 100 is twisted, and the ground contact surface direction A and the steered wheel 100 direction B (steering angle δf or δr) are shifted. (Twist angle ν) is generated. For this reason, if the driver holds the steering handle in that state after performing the stationary stop, the steering motor continuously receives the steering load necessary to balance the twist angle ν of the steered wheel 100. There is a problem that current flows and the temperature of the steering motor rises.
[0005]
When the conventional technology described in the above-mentioned publication is applied to this problem, the twist of the steered wheels is reduced by changing the position of the steering handle by generating a steering reaction force in a direction in which the steered load is reduced. As a result, in the case of a system in which a steered motor is provided on either the front wheel or the rear wheel, temperature rise of the steered motor can be prevented.
[0006]
However, if the prior art described in the above-mentioned publication is applied to a system that individually controls the turning angles of the front wheels and the rear wheels, the turning loads of the front wheels and the rear wheels Therefore, even if the steering reaction force is generated based on the load condition of the steering motor of either the front wheel or the rear wheel, both the front and rear steering loads are effectively There is a problem that the temperature rise of the steered motor cannot be effectively prevented without being necessarily reduced.
[0007]
The present invention has been made to solve such a conventional technical problem, and is a system in which the turning angles of the front wheels and the rear wheels of a vehicle are individually controlled by the respective turning motors. Another object of the present invention is to provide a vehicle steering control device that can effectively suppress the temperature rise of the front and rear wheel steering motors.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is provided with a steering motor for individually driving the front wheel and the rear wheel mechanically separated from the steering handle so that a steering angle corresponding to the steering angle of the steering handle can be obtained. In a vehicle steering control device for individually driving the front wheel and the rear wheel by driving the steering motor, a target for calculating a target turning angle of the front wheel and the rear wheel based on an operation amount of the steering handle Steering angle calculating means, steered angle control means for controlling the steered angle of the front and rear wheels based on the target steered angle, and the front wheel and rear wheel as steered loads of the front wheel and rear wheel A steering load detection means for detecting or estimating a load that balances the force generated by the torsion of each tire, a steering motor temperature detection means for detecting or estimating the temperature of the front and rear wheel steering motors, and a vehicle If stopped, before The temperature of the steering motor for the front and rear wheels output from the steering motor temperature detecting means is compared with the preset upper limit value of the allowable operating temperature, and is added to the steering motor with the smaller margin. Steering reaction force generating means for generating a steering reaction force in a direction in which the turning load is set to a predetermined amount or less is provided.
[0009]
According to a second aspect of the present invention, a steering motor for individually driving a front wheel and a rear wheel mechanically separated from the steering handle is provided, so that a steering angle corresponding to the steering angle of the steering handle can be obtained. In a vehicle steering control device for individually driving the front wheel and the rear wheel by driving the steering motor, a target for calculating a target turning angle of the front wheel and the rear wheel based on an operation amount of the steering handle Steering angle calculating means, steered angle control means for controlling the steered angle of the front and rear wheels based on the target steered angle, and the front wheel and rear wheel as steered loads of the front wheel and rear wheel A steering load detection means for detecting or estimating a load that balances the force generated by the torsion of each tire, a steering motor temperature detection means for detecting or estimating the temperature of the front and rear wheel steering motors, and a vehicle If stopped, before The temperature of the steering motor for the front and rear wheels output from the steering motor temperature detecting means is compared with the preset upper limit value of the allowable operating temperature, and is added to the steering motor with the smaller margin. Steering reaction force generating means for generating a steering reaction force in a direction to greatly reduce the turning load is provided.
[0010]
According to a third aspect of the present invention, in the steering control device for a vehicle according to the first or second aspect , the steered motor temperature detecting means estimates a temperature value based on current values of the steered motors of the front and rear wheels. It is characterized by.
[0013]
【The invention's effect】
In the vehicle steering control device according to the first aspect of the invention, the target turning angle between the front wheels and the rear wheels is calculated based on the operation amount of the steering handle, and the steering of the front wheels and the rear wheels is calculated based on the target turning angle. when controlling the angular detects or estimates a steering load between the front wheels and the rear wheels, to detect or estimate the temperature of the steering motor of the front wheels and the rear wheels, when the vehicle is in a state of almost stopped, the front wheel Compare the temperature of each of the rear wheel steering motors with the preset upper limit value of the allowable operating temperature, and set the steering load applied to the steering motor with the smaller margin to a predetermined amount or less. Control is performed to generate a steering reaction force and reduce the respective steering loads.
[0014]
Thus, when the driver has weakened force holding the steering wheel, while maintaining the relationship of the steering angle and the operation amount of the steering wheel in a predetermined relationship, the steering wheel by generating steering steering reaction force The steering angle can be automatically changed to reduce the steering load on the front wheels and the rear wheels, and the temperature increase of the steering motor on the front wheels and the rear wheels can be suppressed according to the decrease in the steering load.
Furthermore, the temperature of the front and rear wheel steering motors is detected or estimated, and the temperature of each of the front wheel and rear wheel steering motors is compared with a preset upper limit value of the allowable operating temperature. Since the steering reaction force is generated in such a direction that the steering load applied to the smaller steering motor is less than or equal to the predetermined amount, the margin of temperature up to the upper limit of the allowable operating temperature of the steering motor among the front wheels and rear wheels The steering load with a smaller value can be reliably suppressed within a predetermined range, and the temperature increase of the steering motor can be suppressed accordingly.
[0015]
In the vehicle steering control device according to the second aspect of the invention, the temperatures of the front and rear wheel steering motors are detected or estimated, and the temperatures of the front and rear wheel steering motors are set in advance. The steering reaction force is generated in a direction that greatly reduces the steering load applied to the steering motor with the smaller margin compared to the upper limit value of the steering wheel. The steering load can be reduced in consideration of the balance of the temperature margin up to the upper limit value, and the temperature rise of the steering motors of both the front wheels and the rear wheels can be suppressed accordingly.
[0016]
In the vehicle steering control device according to the third aspect of the invention, the steering motor temperature detecting means estimates the temperature value based on the current values of the front and rear wheel steering motors. In addition, it is possible to estimate the temperature of parts where it is difficult to install a temperature sensor such as a winding inside the steering motor, and to improve the reliability of the control to suppress the temperature rise of the steering motor. Enhanced.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of a vehicle steering control apparatus according to a first embodiment of the present invention. In the present embodiment, both the front wheel 1 and the rear wheel 2 are controlled so as to be steered by a predetermined turning angle in opposite directions according to the steering angle of the steering handle 3 as turning wheels. For example, when the steering handle 3 is steered to the right, the front wheel 1 is driven right by a predetermined turning angle, and the rear wheel is driven leftward by a predetermined turning angle. The steering angle sensor 4 detects the left and right steering angles of the steering handle 3. The steering angle sensor 4 detects the amount of rotation of the steering shaft using, for example, an encoder type sensor. A DC motor or an induction motor is used as the front wheel turning motor 5, and the steering shaft is driven by the rotation output to steer the front wheel 1. The front wheel steering angle sensor 6 detects the turning angle of the front wheel 1. The rear wheel steering motor 7 steers the rear wheel 2 in the same manner as the front wheel steering motor 5, and the rear wheel steering angle sensor 8 detects the steering angle of the rear wheel 2. These front wheel rudder angle sensor 6 and rear wheel rudder angle sensor 8 use, for example, encoder type sensors to detect the rotation amount of the steering shaft. The vehicle speed sensor 9 detects the vehicle speed of the vehicle 11. The yaw rate sensor 10 detects the yaw rate of the vehicle 11.
[0020]
The steering control device 12 is composed of a microcomputer, an I / O interface for controlling input / output of information with the outside, a CPU for executing various operations, a ROM for storing control programs and various fixed data, and program execution A RAM for temporarily storing data is provided. The drive circuit 13 drives each of the front wheel steering motor 5 and the rear wheel steering motor 7 based on a command from the steering control device 12. Note that temperature sensors 15 and 16 for detecting the temperature of the steered motors 5 and 7 are attached to the steered motors 5 and 7 for the front wheels 1 and the rear wheels 2, respectively.
[0021]
Next, the steering control function executed by the steering control device 12 will be described with reference to FIG. Actually, FIG. 2 shows the configuration of the steering control function of the control program incorporated in the ROM of the steering control device 12 in blocks. The steering control function of the steering control device 12 includes a target turning angle calculation unit 21 that calculates the target turning angles of the front wheels 1 and the rear wheels 2, and the turning angles of the front wheels 1 and the rear wheels 2 based on the target turning angles. A steering angle control unit 22 for controlling the steering wheel, a steering load detection unit 23 for detecting the steering load of the front wheel 1 and the rear wheel 2, and a steering for detecting the temperature of the steering motors 5 and 7 for the front wheel 1 and the rear wheel 2. The motor temperature detection unit 24 includes a steering reaction force generation unit 25 that generates a steering reaction force based on the steering load and the steering motor temperature.
[0022]
The target turning angle calculation unit 21 calculates the target turning angles of the front wheels 1 and the rear wheels 2 so as to have a predetermined relationship based on the steering angle of the steering handle 3. For this purpose, first, the steering angle δs of the steering wheel 3 is calculated based on the output of the steering angle sensor 4, and the target turning angle δf * of the front wheels 1 and the target turning angle δr * of the rear wheels 2 are calculated based on the steering angle δs. Is calculated. For example, the target turning angle δf * of the front wheel 1 is k times the steering angle δs (for example, k = 40/540, the steering angle is 540 ° and the turning angle is 40 °), and the rear wheel 2 target The turning angle δr * is made equal to −k / 2 times the steering angle δs. That is, the rear wheel 2 is steered by a half angle in reverse phase with respect to the front wheel 1.
[0023]
[Expression 1]
Figure 0004586258
The relationship between the steering angle δs and the target turning angles δf * and δr * of the front wheels 1 and the rear wheels 2 is not limited to the above.
[0024]
The turning angle control unit 22 controls the turning angle as follows. A front wheel steering angle δf is calculated from the output of the front wheel steering angle sensor 6, and a rear wheel steering angle δr is calculated by the rear wheel steering angle sensor 8. Then, according to the difference between the actual turning angle with respect to the front wheel target turning angle δf * and the rear wheel target turning angle δr * output by the target turning angle calculation unit 21, the turning motors 5 of the front wheels 1 and the rear wheels 2. calculates 7 a current command If * and Ir * of, performs feedback control of the steering angle given to the steering motor 5 and 7. For this feedback control, PID control or model reference control is generally used.
[0025]
The steered load detection unit 23 uses a method of using current command values and actual current values of the steering motors 5 and 7 for the front and rear wheels, and a detected value of output torque of the steered motors 5 and 7, and a shaft pressure sensor for the steering rack. Can be used to detect the turning axial force. Here, the detection (estimation) of the turning load is detected based on the current command values If * and Ir * of the turning motors 5 and 7. The case where it performs is demonstrated. For this purpose, first, the magnitudes of the torsion angles νf and νr of the front wheels 1 and the rear wheels 2 as the steered wheels are estimated based on the steering load, that is, the current command values If * and Ir * of the steering motors 5 and 7. To do. For this purpose, changes in the current command values If * and Ir * of the steered motors 5 and 7 with respect to the torsion angles νf and νr of the steered wheels 1 and 2 are measured in the vehicle 11 and stored in advance in the ROM as table data. Then, by referring to this, a method of estimating the twist angles νf and νr of the steered wheels 1 and 2 is adopted. In this table data, the torsional angles νf and νr increase with increasing current command values If * and Ir * . Moreover, in the estimation of the steering load, correction by the vehicle speed of the steering load (decrease the steering load as the vehicle speed increases) and correction by the road surface friction coefficient (decrease the steering load as the road surface friction coefficient decreases), You may perform correction | amendment by vehicle weight (a steering load is increased, so that vehicle weight becomes large).
[0026]
For the temperature detection or temperature estimation of the turning motor by the turning motor temperature detection unit 24, a temperature sensor can be attached to the inside or the surface of each of the turning motors 5 and 7, and the temperature signal can be used. For the temperature of the portion where it is difficult to attach the temperature sensor, a method of correcting the temperature by integrating the current command value and estimating the temperature may be adopted. Furthermore, it is possible to employ a method of calculating the resistance value of the motor based on the current value of the motor and the like and estimating the temperature of the motor based on the resistance value. However, in this embodiment, a method of estimating the internal temperature of the motor based on the current command values If * and Ir * for the steered motors 5 and 7 is adopted.
[0027]
For this reason, in the steered motor temperature detection unit 24 of the present embodiment, as shown in FIG. 3, a temperature increase coefficient is determined for the absolute values of the current command values If * and Ir * of the steered motors 5 and 7. Yes. This may be preliminarily determined experimentally in advance of the temperature inside the motor per unit time with respect to the current command value, or may be determined based on the characteristic data of the motor. The steered motor temperature detecting unit 24 adds the temperature increase coefficients to estimate the steered motor temperatures Tf and Tr. As the initial value of the integrated value of the temperature increase coefficient, temperature detection values Tfo and Tro at the time of power-on of the temperature sensors 15 and 16 attached to the surface of the motor are used. Then, based on the estimated temperatures of the steered motors 5 and 7, a temperature margin up to the upper limit value of the allowable operation temperature defined in the motor specifications is calculated. This temperature margin may be corrected in accordance with the temperature increase rate with respect to the current command value. For example, the temperature margin may be corrected so that the temperature margin becomes smaller as the temperature increase rate with respect to a certain current command value increases. Good.
[0028]
The steering reaction force generator 25 generates a predetermined steering reaction force in the reaction force motor 14 for the steering handle 3, and the magnitude of the generated steering reaction force is calculated as follows. In the present embodiment, of the front wheels 1 and the rear wheels 2, the steered load having the smaller temperature margin of the steered motors 5 and 7, in this case, the torsion angles νf and νr output from the steered load detector 23 are large. Based on this, a target change amount Δδs * of the steering angle δs is calculated. This is to calculate the steering angle corresponding to the torsion angle with the smaller temperature margin of the steered motors 5 and 7 using the formula 1, and set it as the target change amount Δδs * of the steering angle. As shown in FIG. 4, a data table for determining the current command value Ih * of the reaction force motor 14 with respect to the target change amount Δδs * of the steering angle of the steering wheel 3 is stored in advance in the ROM or RAM. The current command value Ih * for the target change amount Δδs * is calculated with reference to the table.
[0029]
By outputting the current command value Ih * calculated in this way to the reaction force motor 14, as shown in the graph of FIG. 5, the reaction force motor 14 causes the steering handle 3 to return the steering angle δs to δs *. Generate reaction force. As a result, the original steered angles δf1 and δr1 are changed to steered angles δf2 and δr2 so that the torsion angles νf and νr are not more than predetermined values, and the current flowing through the steered motors 5 and 7 is 0 or 0. It becomes small near, and the temperature rise can be suppressed.
[0030]
The operation of the vehicle steering control apparatus according to the first embodiment having the above configuration will be described with reference to the flowchart shown in FIG. This process is repeatedly executed at a cycle of 100 ms, for example. First, the target turning angle calculation unit 21 inputs the steering angle δs from the steering angle sensor 4 for the steering handle 3, performs target turning angle calculation processing, and sets the target turning angles δf * and δr * for the front and rear wheels 1 and 2. calculate. The turning angle control unit 22 calculates the target current command values If * and Ir * from the difference between the detected actual turning angles δf and δr and the target turning angles δf * and δr *, and the front wheel turning motor 5, The rear wheel steering motor 7 is feedback controlled (steps S1, S2).
[0031]
Subsequently, the steering load detection unit 23 performs estimation calculation of the twist angles νf and νr of the front wheels 1 and the rear wheels 2 (step S3). Then, the steered motor temperature detector 24 performs an estimation calculation of the temperatures Tf and Tr of the steered motors 5 and 7 for the front and rear wheels (step S4).
[0032]
Subsequently, the steering control device 12 determines whether or not the vehicle 11 is almost stopped based on the vehicle speed signal V of the vehicle speed sensor 9 (step S5). Here, the case where the vehicle 11 is almost stopped means that the vehicle speed is 2 km / h or less, for example.
[0033]
If it is determined in step S5 that the vehicle 11 is almost stopped, the process proceeds to step S6. In step S6, the steering reaction force generator 25 calculates a necessary steering reaction force Δδs *, obtains a current command value Ih * for the reaction force motor 14 corresponding to the steering reaction force, and drives the reaction force motor 14 to drive the reaction force motor 14. The steering reaction force of the steering handle 3 is controlled.
[0034]
On the other hand, when it is determined in step S5 that the vehicle 11 is not in a stopped state (that is, in a traveling state), the process proceeds to step S7. In step S7, a steering reaction force is generated for realizing a movement of the steering handle 3 to return to the neutral position during traveling. In this case, for example, when the driver weakens the steering force by increasing the current command value of the steering reaction force motor 14 as the steering angle of the steering handle 3 increases, the steering handle 3 itself Control to move back to the neutral position.
[0035]
With the above control, as shown in FIGS. 7A to 7C, when the stationary steering is now performed and the steering is stopped at time t1, the temperature margin of the front wheel steering motor 5 is reduced. Assuming that the temperature margin of the wheel steering motor 7 is smaller than the margin of temperature, a steering reaction force is generated such that the estimated torsion angle νf of the front wheel 1 is less than or equal to a predetermined amount (here, 0) at time t2. Is corrected by Δδs *. As a result, at the time t3, the twist angle of the front wheel 1 becomes substantially zero, and the twist angle of the rear wheel 2 approaches zero.
[0036]
As a result, according to the first embodiment, even if a deviation occurs between the direction of the steered wheel and the direction of the grounding surface due to the steering operation of the steering handle, the direction of the steered wheel is changed to the direction of the grounding surface within a short time. The correction can be automatically made so as to be as close as possible, and the temperature rise can be suppressed by continuing the flow of the steering current to the steering motor.
[0037]
In the first embodiment, the steering reaction force calculation method executed by the steering reaction force generator 25 in the functional block diagram of FIG. 2 may be as follows (second embodiment). Form).
[0038]
That is, the steering reaction force generator 25 is configured to turn the front wheels 1 and the rear wheels 2, here, the torsion angles νf and νr of the front wheels 1 and the rear wheels 2, and the steering motor 5 for the front wheels 1 and the rear wheels 2. , 7, the target change amount Δδs * of the steering angle δs of the steering wheel 3 is calculated on the basis of the temperature margin. Now, the torsion angle νf of the front wheel 1 and the torsion angle νr of the rear wheel 1 (when the turning angle is shifted to the right with respect to the direction of the ground contact surface), the front wheel 1 and the rear wheel 2 Assuming that the temperature margins of the steered motors 5 and 7 are ΔTf and ΔTr, respectively (the larger the value, the larger the temperature margin is), the front wheels 1 and the rear wheels 2 after the steering angle δs is changed. The target change amount Δδs * of the steering angle is calculated by the following equation (2) so that the magnitude of the torsion angle decreases in accordance with the ratio of the temperature margin of the front wheels 1 and the rear wheels 2 (ΔTf / ΔTr).
[0039]
[Expression 2]
Figure 0004586258
Then, as in the first embodiment, as shown in FIG. 4, refer to the data table that determines the current command value Ih * of the reaction force motor 14 with respect to the target change amount Δδs * of the steering angle of the steering wheel 3. Then, a current command value Ih * for the target change amount Δδs * is calculated. Then, by outputting this current command value Ih * to the reaction force motor 14, as shown in the graph of FIG. 5, the reaction force motor 14 causes the steering handle 3 to return the steering angle δs to δs *. Generate reaction force.
[0040]
As a result, the original turning angles δf1 and δr1 change to the turning angles δf2 and δr2 so that the torsion angles νf and νr are equal to or less than predetermined values, and the current flowing through the turning motors 5 and 7 is 0 or close to 0. And the temperature rise can be suppressed.
[0041]
With the above control, as shown in FIGS. 8A to 8C, when the stationary steering is performed and the steering is stopped at time t1, the twist angles of the front wheel 1 and the rear wheel 2 at time t2. Steering angle δs is generated by reducing the steering angle δs by weighting and reducing νf and νr by the relationship between the temperature margins ΔTf and ΔTr of the steering motors 5 and 7 of the front wheels 1 and rear wheels 2. Only correct. As a result, at the time t3, the torsion angle of the front wheel 1 and the rear wheel 2 is weighted according to the relationship of the temperature margin of the front wheel 1 and the rear wheel 2, and is almost 0 or close to 0. It is possible to suppress the temperature rise due to the continuous flow of the steering current.
[0042]
Furthermore, in the second embodiment described above, it is assumed that the front wheel 1 and the rear wheel 2 are turned in opposite phases with respect to the operation amount of the steering handle 3, but depending on the vehicle, Steering control may be taken to steer the rear wheels 2 in phase. In such a case, the target change amount Δδs * of the steering angle δs of the steering wheel 3 is calculated using the following equation 3 instead of equation 2, and the steering reaction force is controlled in the same manner as described above. Just do it.
[0043]
[Equation 3]
Figure 0004586258
More generally, the twist angles of the front wheel 1 and the rear wheel 2 after the steering angle δs is changed with respect to each of the target change amounts Δδs * of the plurality of steering angles satisfying the following equation (4): The sum of the magnitudes, that is, | νf−Δδf | + | νr−Δδr | may be calculated, and the target change amount Δδs * of the steering angle that minimizes the sum may be selected.
[0044]
[Expression 4]
Figure 0004586258
Here, the target change amount Δδs * of the steering angle weighted according to the temperature margin of the steered motors 5 and 7 is calculated. However, the specifications (rated current, etc.) of the steered motors 5 and 7 and the ratio of the axial load are calculated. For example, the target change amount Δδs * of the steering angle weighted according to a predetermined ratio may be calculated.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a system configuration according to a first embodiment of this invention.
FIG. 2 is a block diagram showing a functional configuration of the steering control device in the first embodiment.
FIG. 3 is a graph showing a relationship between a current command value of a steered motor and a temperature increase coefficient in the above embodiment.
FIG. 4 is a graph showing a relationship between a target change amount of the steering wheel and a current command value of the reaction force motor in the embodiment.
FIG. 5 is a graph showing a relationship between a change in steering angle and a change in steering angle in the embodiment.
FIG. 6 is a flowchart of steering control processing according to the embodiment.
FIG. 7 is a timing chart of steering control processing according to the embodiment.
FIG. 8 is a timing chart of steering control processing according to the second embodiment of the present invention.
FIG. 9 is an explanatory diagram showing a mechanism of occurrence of deviation between the direction of the steered wheels and the direction of the ground contact surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Front wheel 2 Rear wheel 3 Steering handle 4 Steering angle sensor 5 Front wheel steering motor 6 Front wheel steering angle sensor 7 Rear wheel steering motor 8 Rear wheel steering angle sensor 9 Vehicle speed sensor 10 Yaw rate sensor 11 Vehicle 12 Steering control device 13 Drive circuit 14 Force motor 15 Temperature sensor 16 Temperature sensor 21 Target turning angle calculation unit 22 Steering angle control unit 23 Steering load detection unit 24 Steering motor temperature detection unit 25 Steering reaction force generation unit

Claims (3)

操舵ハンドルと機械的に分離された前輪と後輪とを個別に駆動するための転舵モータを備え、前記操舵ハンドルの操舵角に対応する転舵角が得られるように前記転舵モータを駆動して前記前輪と後輪を個別に転舵する車両の操舵制御装置において、
前記操舵ハンドルの操作量に基づいて前記前輪と後輪の目標転舵角を算出する目標転舵角算出手段と、
前記目標転舵角に基づいて前記前輪と後輪の転舵角を制御する転舵角制御手段と、
前記前輪と後輪との転舵負荷として前記前輪、後輪それぞれのタイヤのねじれによって生じる力と釣り合う負荷を検出あるいは推定する転舵負荷検出手段と、
前記前輪と後輪の転舵モータの温度を検出あるいは推定する転舵モータ温度検出手段と、
車両がほぼ停止した状態である場合に、前記転舵モータ温度検出手段の出力する前記前輪と後輪の転舵モータの温度各々を予め設定されている動作許容温度の上限値と比較し、余裕代が小さい方の転舵モータに加わっている転舵負荷を所定量以下とする向きに操舵反力を発生させる操舵反力発生手段とを備えて成る車両の操舵制御装置。
A steering motor for individually driving the front and rear wheels mechanically separated from the steering handle is provided, and the steering motor is driven so as to obtain a steering angle corresponding to the steering angle of the steering handle. In the vehicle steering control device for individually turning the front wheel and the rear wheel,
Target turning angle calculation means for calculating a target turning angle of the front wheel and the rear wheel based on an operation amount of the steering handle;
Turning angle control means for controlling the turning angles of the front wheels and the rear wheels based on the target turning angle;
Steering load detection means for detecting or estimating a load that balances the force generated by the twisting of the tires of the front wheels and the rear wheels as the steering load of the front wheels and the rear wheels ,
Steering motor temperature detection means for detecting or estimating the temperature of the front and rear wheel steering motors;
When the vehicle is almost stopped, the temperature of the steering motor for the front and rear wheels output from the steering motor temperature detecting means is compared with the preset upper limit value of the allowable operating temperature. A steering control device for a vehicle, comprising steering reaction force generating means for generating a steering reaction force in a direction in which a steering load applied to a steering motor with a smaller margin is set to a predetermined amount or less.
操舵ハンドルと機械的に分離された前輪と後輪とを個別に駆動するための転舵モータを備え、前記操舵ハンドルの操舵角に対応する転舵角が得られるように前記転舵モータを駆動して前記前輪と後輪を個別に転舵する車両の操舵制御装置において、
前記操舵ハンドルの操作量に基づいて前記前輪と後輪の目標転舵角を算出する目標転舵角算出手段と、
前記目標転舵角に基づいて前記前輪と後輪の転舵角を制御する転舵角制御手段と、
前記前輪と後輪との転舵負荷として前記前輪、後輪それぞれのタイヤのねじれによって生じる力と釣り合う負荷を検出あるいは推定する転舵負荷検出手段と、
前記前輪と後輪の転舵モータの温度を検出あるいは推定する転舵モータ温度検出手段と、
車両がほぼ停止した状態である場合に、前記転舵モータ温度検出手段の出力する前記前輪と後輪の転舵モータの温度各々を予め設定されている動作許容温度の上限値と比較し、余裕代が小さい方の転舵モータに加わっている転舵負荷をより大きく減少させる向きに操舵反力を発生させる操舵反力発生手段とを備えて成る車両の操舵制御装置。
A steering motor for individually driving the front and rear wheels mechanically separated from the steering handle is provided, and the steering motor is driven so as to obtain a steering angle corresponding to the steering angle of the steering handle. In the vehicle steering control device for individually turning the front wheel and the rear wheel,
Target turning angle calculation means for calculating a target turning angle of the front wheel and the rear wheel based on an operation amount of the steering handle;
Turning angle control means for controlling the turning angles of the front wheels and the rear wheels based on the target turning angle;
Steering load detection means for detecting or estimating a load that balances the force generated by the twisting of the tires of the front wheels and the rear wheels as the steering load of the front wheels and the rear wheels ,
Steering motor temperature detection means for detecting or estimating the temperature of the front and rear wheel steering motors;
When the vehicle is almost stopped, the temperature of the steering motor for the front and rear wheels output from the steering motor temperature detecting means is compared with the preset upper limit value of the allowable operating temperature. A steering control device for a vehicle, comprising steering reaction force generating means for generating a steering reaction force in a direction in which a steering load applied to a steering motor having a smaller margin is further reduced.
前記転舵モータ温度検出手段は、前記前輪と後輪の転舵モータの電流値に基づいて温度値を推定することを特徴とする請求項1又は2に記載の車両の操舵制御装置。  The vehicle steering control device according to claim 1 or 2, wherein the steered motor temperature detecting means estimates a temperature value based on current values of the steered motors of the front wheels and the rear wheels.
JP2000335815A 2000-11-02 2000-11-02 Vehicle steering control device Expired - Fee Related JP4586258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335815A JP4586258B2 (en) 2000-11-02 2000-11-02 Vehicle steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335815A JP4586258B2 (en) 2000-11-02 2000-11-02 Vehicle steering control device

Publications (2)

Publication Number Publication Date
JP2002137749A JP2002137749A (en) 2002-05-14
JP4586258B2 true JP4586258B2 (en) 2010-11-24

Family

ID=18811497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335815A Expired - Fee Related JP4586258B2 (en) 2000-11-02 2000-11-02 Vehicle steering control device

Country Status (1)

Country Link
JP (1) JP4586258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359160A (en) * 2012-03-30 2013-10-23 日产自动车株式会社 Steering control device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411576B2 (en) * 2003-10-30 2008-08-12 Sensable Technologies, Inc. Force reflecting haptic interface
JP4635602B2 (en) * 2004-12-24 2011-02-23 日産自動車株式会社 Vehicle steering control device
EP2407370B1 (en) * 2009-03-10 2014-09-24 Honda Motor Co., Ltd. Vehicle rear wheel toe angle control device
GB2618544A (en) * 2022-05-09 2023-11-15 Jaguar Land Rover Ltd Control system for a steering system of a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278625A (en) * 1993-03-24 1994-10-04 Nippondenso Co Ltd Front wheel steering control device of vehicle
JPH11208493A (en) * 1998-01-20 1999-08-03 Honda Motor Co Ltd Electric power steering device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278625A (en) * 1993-03-24 1994-10-04 Nippondenso Co Ltd Front wheel steering control device of vehicle
JPH11208493A (en) * 1998-01-20 1999-08-03 Honda Motor Co Ltd Electric power steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359160A (en) * 2012-03-30 2013-10-23 日产自动车株式会社 Steering control device

Also Published As

Publication number Publication date
JP2002137749A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
US7849957B2 (en) Control apparatus for electric power steering
US20080217099A1 (en) Electric Power Steering Apparatus, Control Method Thereof and Program for Electric Power Steering Apparatus
JP4807422B2 (en) Electric power steering system
JP3593898B2 (en) Steering control device
JP3901928B2 (en) Control device for electric power steering device
JP6592067B2 (en) Electric power steering device
JP2011109769A (en) Motor control unit and vehicular steering device
US20030121716A1 (en) Apparatus and method for controlling electric power steering system
JP2004042691A (en) Electric power steering device
WO2008075552A1 (en) Steering device for vehicle
JP2018039351A (en) Steering control device
JP2011051409A (en) Electric power steering device
JP5174596B2 (en) Electric power steering device
JP2004338562A (en) Electric power steering controller
JP4189664B2 (en) Electric power steering control device
JP5155815B2 (en) Electric power steering device
WO2015181948A1 (en) Steering control device
JP5552744B2 (en) Electric power steering device
JP4586258B2 (en) Vehicle steering control device
JP7147473B2 (en) steering controller
JP3974391B2 (en) Control device for electric power steering device
JP2002120745A (en) Control device for motor-driven power steering device
JP2017109581A (en) Electric power steering apparatus
CN112550434A (en) Steering control device
JP2006168649A (en) Power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees