JP4585892B2 - Thermoelectric conversion device and cooling device - Google Patents

Thermoelectric conversion device and cooling device Download PDF

Info

Publication number
JP4585892B2
JP4585892B2 JP2005070636A JP2005070636A JP4585892B2 JP 4585892 B2 JP4585892 B2 JP 4585892B2 JP 2005070636 A JP2005070636 A JP 2005070636A JP 2005070636 A JP2005070636 A JP 2005070636A JP 4585892 B2 JP4585892 B2 JP 4585892B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
cooling
insulating layers
light absorber
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005070636A
Other languages
Japanese (ja)
Other versions
JP2006253545A (en
Inventor
荘平 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Thermo Systems Co Ltd
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2005070636A priority Critical patent/JP4585892B2/en
Publication of JP2006253545A publication Critical patent/JP2006253545A/en
Application granted granted Critical
Publication of JP4585892B2 publication Critical patent/JP4585892B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、高温体を冷却する際に放散すべき熱を電力に変換する熱電変換装置、及び、この熱電変換装置を備えた冷却装置に関する。   The present invention relates to a thermoelectric conversion device that converts heat to be dissipated when cooling a high-temperature body into electric power, and a cooling device including the thermoelectric conversion device.

従来より、異種の導体又は半導体の接合部に温度差を与え、高温側と低温側との間にゼーベック効果によって生じた電力を取り出す熱電変換装置が知られている。この熱電変換装置では、高温側と低温側との温度差が大きいほど、得られる電力も大きい。   2. Description of the Related Art Conventionally, there is known a thermoelectric conversion device that gives a temperature difference to a junction of different kinds of conductors or semiconductors and extracts electric power generated by the Seebeck effect between a high temperature side and a low temperature side. In this thermoelectric conversion device, the greater the temperature difference between the high temperature side and the low temperature side, the greater the power that can be obtained.

このため、従来の熱電変換装置は、焼却炉や溶融炉等の工業炉の炉壁に取り付けられている。工業炉では、炉内の温度を高温に維持する必要があることから、炉壁は断熱壁によって構成されている。熱電変換装置は、断熱壁の厚みの一部又は全部を貫通して設けられる場合や断熱壁の外側に設けられる場合がある(例えば、特許文献1及び2参照。)。
特開平10−190073号公報 特開2002−171776号公報
For this reason, the conventional thermoelectric conversion apparatus is attached to the furnace wall of industrial furnaces, such as an incinerator and a melting furnace. In an industrial furnace, since the temperature in the furnace needs to be maintained at a high temperature, the furnace wall is constituted by a heat insulating wall. The thermoelectric conversion device may be provided through a part or all of the thickness of the heat insulating wall or may be provided outside the heat insulating wall (see, for example, Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 10-190073 JP 2002-171776 A

しかしながら、特許文献1及び2に記載された従来の熱電変換装置は、高温状態を維持すべき工業炉に適用されるものであるため断熱壁の存在を前提としており、外部に放出すべき熱を効率的に利用することができない問題があった。   However, since the conventional thermoelectric conversion devices described in Patent Documents 1 and 2 are applied to industrial furnaces that should maintain a high temperature state, they are premised on the existence of heat insulating walls, and heat to be released to the outside. There was a problem that it could not be used efficiently.

例えば、連続炉では、熱処理後における高温のワークが装置から搬出される前に十分に低温状態になっている必要があり、ワークを冷却するための冷却室を備えている。冷却室は、内部に収納したワークをできるだけ早く冷却するために、断熱壁ではなくウォータジャケット等の冷却体からなる壁面で覆われている。   For example, a continuous furnace needs to be in a sufficiently low temperature state before a high-temperature work after heat treatment is carried out of the apparatus, and includes a cooling chamber for cooling the work. The cooling chamber is covered with a wall surface made of a cooling body such as a water jacket, not a heat insulating wall, in order to cool the work housed therein as quickly as possible.

このため、断熱壁の存在を前提として構成された従来の熱電変換装置では、冷却室に収納されたワークから冷却体によって外部に放出される熱を有効に活用することができず、冷却室から放出される熱によって十分な電力を得ることができないだけでなく、冷却室におけるワークの冷却性能を低下させることになる。   For this reason, in a conventional thermoelectric conversion device configured on the premise of the presence of a heat insulating wall, it is not possible to effectively utilize the heat released from the work housed in the cooling chamber to the outside by the cooling body, and from the cooling chamber. In addition to not being able to obtain sufficient power due to the released heat, the cooling performance of the work in the cooling chamber is reduced.

この発明の目的は、冷却室に収納されたワークから冷却体によって外部に放出される熱を有効に活用することができ、冷却室におけるワークの冷却効率を低下させることなく、冷却室から放出される熱によって十分な電力を得ることができる熱電変換装置、及び、この熱電変換装置を備えた冷却装置を提供することにある。   An object of the present invention is to effectively utilize the heat released from the work housed in the cooling chamber to the outside by the cooling body, and is released from the cooling chamber without reducing the cooling efficiency of the work in the cooling chamber. Another object of the present invention is to provide a thermoelectric conversion device capable of obtaining sufficient electric power by the heat generated, and a cooling device provided with the thermoelectric conversion device.

上記の課題を解決するために、この発明の熱電変換装置及び冷却装置は、互いに平行に配置された熱良導体からなる複数の絶縁層のそれぞれの間に多数の熱電変換素子を平面状に配列し、外部に露出した2つの絶縁層のうち一方の絶縁層であって熱処理後の高温ワークに対向する側となる絶縁層に光吸収体を密着させ、他方の絶縁層に熱処理後の高温ワークを冷却するための冷却体を密着させ、熱処理後の高温ワークを収納して冷却するための冷却部に設け、前記多数の熱電変換素子の起電力を出力することを特徴とする。 In order to solve the above problems, a thermoelectric conversion device and a cooling device according to the present invention have a large number of thermoelectric conversion elements arranged in a plane between each of a plurality of insulating layers made of good thermal conductors arranged in parallel to each other. , are brought into close contact with the light absorber in the insulating layer to be a side facing the hot workpiece after the heat treatment a one insulating layer of the two insulating layer exposed to the outside, the hot workpiece after heat treatment to the other insulating layer A cooling body for cooling is closely attached , provided in a cooling section for storing and cooling the high-temperature work after heat treatment, and the electromotive force of the multiple thermoelectric conversion elements is output .

この構成においては、光吸収体と冷却体との間に、熱良導体からなる複数の絶縁層が、それぞれの間に多数の熱電変換素子を挟んだ状態で、光吸収体及び冷却体に密着して配置される。光吸収体を高温物体に対向して配置すると、高温物体から放出された熱が光吸収体及び複数の熱良導体を介して冷却体に向かって流れ、高温物体の放熱が促される。このとき、高温側の光吸収体と低温側の冷却体との温度差により、複数の絶縁層のそれぞれに挟まれた熱電変換素子に電力を生じる。したがって、高温物体の冷却機能を発揮しつつ、高温物体から放出される熱が電力に変換される。   In this configuration, a plurality of insulating layers made of a good thermal conductor are in close contact with the light absorber and the cooling body, with a large number of thermoelectric conversion elements sandwiched between them. Arranged. When the light absorber is disposed so as to face the high temperature object, the heat released from the high temperature object flows toward the cooling body through the light absorber and the plurality of heat good conductors, and the heat dissipation of the high temperature object is promoted. At this time, electric power is generated in the thermoelectric conversion element sandwiched between each of the plurality of insulating layers due to a temperature difference between the light absorber on the high temperature side and the cooling body on the low temperature side. Therefore, the heat released from the high temperature object is converted into electric power while exhibiting the cooling function of the high temperature object.

また、前記複数の絶縁層が、3以上の絶縁層であることを特徴とする。   Further, the plurality of insulating layers are three or more insulating layers.

この構成においては、光吸収体と冷却体との間に、熱良導体からなる3以上の絶縁層が、それぞれの間に多数の熱電変換素子を挟んだ状態で、光吸収体及び冷却体に密着して配置される。したがって、複数の層状の熱電変換素子が、光吸収体と冷却体との間に配置され、互いに異なる温度範囲の熱から電力を発生する。   In this configuration, three or more insulating layers made of a good thermal conductor are in close contact with the light absorber and the cooling body, with a large number of thermoelectric conversion elements sandwiched between them. Arranged. Therefore, a plurality of layered thermoelectric conversion elements are disposed between the light absorber and the cooling body, and generate electric power from heat in different temperature ranges.

さらに、3以上の絶縁層のそれぞれの間について異なる材質の熱電変換素子を平面状に配列したことを特徴とする。   Furthermore, the thermoelectric conversion elements of different materials are arranged in a plane between each of the three or more insulating layers.

この構成においては、光吸収体と冷却体との間に配置されて互いに異なる温度範囲の熱から電力を発生する複数の層状の熱電変換素子が、互いに異なる材質で構成される。したがって、隣接する2つの絶縁層間における温度差に応じてこれらの絶縁層間に配置される熱電変換素子の材質を適宜選択することにより、各熱電変換素子層において熱が効率的に電力に変換される。   In this configuration, a plurality of layered thermoelectric conversion elements that are arranged between the light absorber and the cooling body and generate electric power from heat in different temperature ranges are made of different materials. Therefore, heat is efficiently converted into electric power in each thermoelectric conversion element layer by appropriately selecting the material of the thermoelectric conversion element arranged between these two insulating layers in accordance with the temperature difference between the two adjacent insulating layers. .

この発明の熱電変換装置及び冷却装置によれば、熱良導体からなる複数の絶縁層を光吸収体及び冷却体に密着して配置するとともに、絶縁層のそれぞれの間に多数の熱電変換素子を配置することにより、光吸収体に対向して配置された高温物体の放熱を促進しつつ、高温物体から放出される熱を電力に変換することができる。   According to the thermoelectric conversion device and the cooling device of the present invention, a plurality of insulating layers made of a good thermal conductor are arranged in close contact with the light absorber and the cooling body, and a large number of thermoelectric conversion elements are arranged between the insulating layers. By doing so, the heat released from the high temperature object can be converted into electric power while promoting the heat dissipation of the high temperature object arranged facing the light absorber.

また、熱良導体からなる3以上の絶縁層を光吸収体及び冷却体に密着して配置するとともに、絶縁層のそれぞれの間に多数の熱電変換素子を配置することにより、光吸収体と冷却体との間に配置された複数の層状の熱電変換素子のそれぞれによって、互いに異なる温度範囲の熱から電力を発生させることができる。これによって、熱電変換素子の性能指数曲線により追従した状態で熱電変換を行うことができ、熱電変換効率を向上させることができる。   Further, by arranging three or more insulating layers made of a good heat conductor in close contact with the light absorber and the cooling body, and arranging a large number of thermoelectric conversion elements between the insulating layers, the light absorber and the cooling body are arranged. Each of the plurality of layered thermoelectric conversion elements arranged between the two can generate electric power from heat in different temperature ranges. Thereby, thermoelectric conversion can be performed in a state following the performance index curve of the thermoelectric conversion element, and thermoelectric conversion efficiency can be improved.

さらに、光吸収体と冷却体との間に配置されて互いに異なる温度範囲の熱から電力を発生する複数の層状の熱電変換素子を、互いに異なる材質で構成することにより、隣接する2つの絶縁層間における温度差に応じてこれらの絶縁層間に配置される熱電変換素子の材質を適宜選択することができ、各熱電変換素子層における熱電変換効率をより向上させることができる。   In addition, a plurality of layered thermoelectric conversion elements that are arranged between the light absorber and the cooling body and generate electric power from heat in different temperature ranges are made of different materials, so that two adjacent insulating layers The material of the thermoelectric conversion element disposed between these insulating layers can be appropriately selected according to the temperature difference in the above, and the thermoelectric conversion efficiency in each thermoelectric conversion element layer can be further improved.

図1は、この発明の実施形態に係る熱電変換装置を適用した冷却装置10の構成を示す断面図である。冷却装置10は、半導体の製造時における熱処理後に炉から搬出された半導体基板の冷却に使用される。冷却装置10は、光吸収体11によって構成された中空の冷却室12と、冷却室12の外表面を覆う冷却ジャケット13と、光吸収体11及び冷却ジャケット13の間に配置される熱電変換モジュール14と、を備えている。   FIG. 1 is a cross-sectional view showing a configuration of a cooling device 10 to which a thermoelectric conversion device according to an embodiment of the present invention is applied. The cooling device 10 is used for cooling the semiconductor substrate carried out of the furnace after the heat treatment at the time of manufacturing the semiconductor. The cooling device 10 includes a hollow cooling chamber 12 constituted by the light absorber 11, a cooling jacket 13 covering the outer surface of the cooling chamber 12, and a thermoelectric conversion module disposed between the light absorber 11 and the cooling jacket 13. 14.

光吸収体11は、例えば黒鉛によって構成された平板状を呈し、互いに直交する3方向のそれぞれにおいて対向する計6面に配置され、内部に中空の冷却室12を構成している。冷却室12には、図示しない炉から搬出された高温物体である半導体基板21が収納される。光吸収体11の内側面は、冷却室12内に収納された半導体基板21に対向し、半導体基板21が放出する熱を吸収する。   The light absorber 11 has a flat plate shape made of, for example, graphite, and is disposed on a total of six faces facing each other in three directions orthogonal to each other, and forms a hollow cooling chamber 12 inside. In the cooling chamber 12, a semiconductor substrate 21 which is a high-temperature object carried out from a furnace (not shown) is stored. The inner surface of the light absorber 11 faces the semiconductor substrate 21 accommodated in the cooling chamber 12 and absorbs heat released from the semiconductor substrate 21.

冷却ジャケット13は、この発明の冷却体であり、冷却室12を構成する光吸収体11の外表面を被覆するように配置されている。冷却ジャケット13は、例えば、冷却水の流路となる中空管によって形成されており、中空管内を流通する冷却水によって光吸収体11の外側面を冷却する。   The cooling jacket 13 is a cooling body of the present invention, and is disposed so as to cover the outer surface of the light absorber 11 constituting the cooling chamber 12. The cooling jacket 13 is formed by, for example, a hollow tube serving as a cooling water flow path, and cools the outer surface of the light absorber 11 with cooling water flowing through the hollow tube.

光吸収体11において、半導体基板21に対向する内側面と冷却ジャケット13に被覆された外側面との間には温度差が生じる。光吸収体11の内側面で吸収された熱は、光吸収体11の内部を光吸収体11の外側面に向かって伝播し、冷却ジャケット13の冷却水に吸収される。この結果、光吸収体11の内側面から冷却ジャケット13に向かう方向の熱流が形成され、半導体基板21の冷却が促進される。   In the light absorber 11, a temperature difference is generated between the inner surface facing the semiconductor substrate 21 and the outer surface covered with the cooling jacket 13. The heat absorbed by the inner surface of the light absorber 11 propagates through the light absorber 11 toward the outer surface of the light absorber 11 and is absorbed by the cooling water in the cooling jacket 13. As a result, a heat flow in a direction from the inner side surface of the light absorber 11 toward the cooling jacket 13 is formed, and cooling of the semiconductor substrate 21 is promoted.

熱電変換モジュール14は、光吸収体11の外側面の少なくとも一部において、冷却ジャケット13との間に配置される。熱電変換モジュール14は、内側面を光吸収体11の外側面に密着させ外側面を冷却ジャケット13の内側面に密着させている。図1に示す例では、半導体基板21からの熱流方向を考慮して、熱電変換モジュール14を冷却室12の上面側及び假面側に配置している。熱電変換モジュール14は、特に、冷却室12内にボートに載置された多数の半導体基板を収納する場合には、6面の光吸収体11の外側面の全面に配置することもできる。   The thermoelectric conversion module 14 is disposed between the cooling jacket 13 and at least a part of the outer surface of the light absorber 11. The thermoelectric conversion module 14 has an inner surface in close contact with the outer surface of the light absorber 11 and an outer surface in close contact with the inner surface of the cooling jacket 13. In the example illustrated in FIG. 1, the thermoelectric conversion module 14 is disposed on the upper surface side and the holiday surface side of the cooling chamber 12 in consideration of the direction of heat flow from the semiconductor substrate 21. The thermoelectric conversion module 14 can also be disposed on the entire outer surface of the six light absorbers 11, particularly when a large number of semiconductor substrates placed on a boat are accommodated in the cooling chamber 12.

熱電変換モジュール14は、光吸収体11及び冷却ジャケット13とともにこの発明の熱電変換装置を構成している。冷却ジャケット13に代えて、別の冷却体を備えることもできる。   The thermoelectric conversion module 14 constitutes the thermoelectric conversion device of the present invention together with the light absorber 11 and the cooling jacket 13. Instead of the cooling jacket 13, another cooling body may be provided.

なお、半導体基板21は、必ずしも1枚である必要はなく、例えばボートに搭載された複数の半導体基板であってもよい。   Note that the number of semiconductor substrates 21 is not necessarily one, and may be a plurality of semiconductor substrates mounted on a boat, for example.

図2は、熱電変換モジュール14の断面図である。熱電変換モジュール14は、互いに平行にして所定の間隙を設けて配置された少なくとも2つの平板状の絶縁層31,32を備えている。絶縁層31,32は、窒化珪素膜や酸化膜等の薄膜を含む熱良導体によって構成されている。   FIG. 2 is a cross-sectional view of the thermoelectric conversion module 14. The thermoelectric conversion module 14 includes at least two flat insulating layers 31 and 32 arranged in parallel with each other with a predetermined gap. The insulating layers 31 and 32 are made of a good thermal conductor including a thin film such as a silicon nitride film or an oxide film.

絶縁層31と絶縁層32との間は、例えば、P型半導体素子33及びN型半導体素子34が交互に繰り返して平面状に配列した熱電変換層37にされている。P型半導体素子33及びN型半導体素子34は、PN接合されて1つの熱電変換素子を構成している。これらのうちの所定数の熱電変換素子が、金属薄膜の導電体35,36によって互いに直列に接続されている。   Between the insulating layer 31 and the insulating layer 32, for example, a thermoelectric conversion layer 37 in which P-type semiconductor elements 33 and N-type semiconductor elements 34 are alternately and repeatedly arranged in a planar shape. The P-type semiconductor element 33 and the N-type semiconductor element 34 are PN-junctioned to constitute one thermoelectric conversion element. A predetermined number of thermoelectric conversion elements among them are connected in series with each other by conductors 35 and 36 of metal thin films.

熱電変換モジュール14において、一方の絶縁層31は光吸収体11の外側面に密着しており、他方の絶縁層32は冷却ジャケット13の内側面に密着している。冷却装置10において、熱電変換モジュール14が配置されている部分では、半導体基板21から放出された熱は、光吸収体11の内側面で吸収された後、熱電変換モジュール14の一方の絶縁層31、熱電変換層37及び他方の絶縁層32を経由して冷却ジャケット13内の冷却水に奪われる。   In the thermoelectric conversion module 14, one insulating layer 31 is in close contact with the outer surface of the light absorber 11, and the other insulating layer 32 is in close contact with the inner surface of the cooling jacket 13. In the cooling device 10, in the portion where the thermoelectric conversion module 14 is disposed, the heat released from the semiconductor substrate 21 is absorbed by the inner surface of the light absorber 11 and then one insulating layer 31 of the thermoelectric conversion module 14. Then, it is taken away by the cooling water in the cooling jacket 13 via the thermoelectric conversion layer 37 and the other insulating layer 32.

したがって、熱電変換モジュール14において、一方の絶縁層31と他方の絶縁層32との間に温度差が生じ、熱電変換層37で両端部の温度差に応じた電力を発生する。所定数の熱電変換素子は互いに直列に接続されているため、熱電変換モジュール14から所定数の熱電変換素子のそれぞれの起電力の和として実用レベルの電力が出力される。   Therefore, in the thermoelectric conversion module 14, a temperature difference is generated between the one insulating layer 31 and the other insulating layer 32, and electric power corresponding to the temperature difference between both ends is generated in the thermoelectric conversion layer 37. Since the predetermined number of thermoelectric conversion elements are connected in series with each other, the thermoelectric conversion module 14 outputs power at a practical level as the sum of the electromotive forces of the predetermined number of thermoelectric conversion elements.

絶縁層31,32は熱良導体で構成されており、半導体基板21から放出された熱は熱電変換モジュール14を円滑に通過して冷却ジャケット13に達する。また、熱電変換モジュール14に伝播した熱は、一部が熱電変換層37において電力に変換されて冷却ジャケット13に伝達される。このため、光吸収体11と冷却ジャケット13との間に熱電変換モジュール14が配置されることによっては、冷却装置10において光吸収体11と冷却ジャケット13との間の熱電導性に悪影響を与えることがなく、冷却装置10の冷却効率を低下させることがない。   The insulating layers 31 and 32 are made of a good thermal conductor, and the heat released from the semiconductor substrate 21 smoothly passes through the thermoelectric conversion module 14 and reaches the cooling jacket 13. Further, part of the heat propagated to the thermoelectric conversion module 14 is converted into electric power in the thermoelectric conversion layer 37 and transmitted to the cooling jacket 13. For this reason, by disposing the thermoelectric conversion module 14 between the light absorber 11 and the cooling jacket 13, the cooling device 10 adversely affects the thermal conductivity between the light absorber 11 and the cooling jacket 13. And the cooling efficiency of the cooling device 10 is not reduced.

図3は、この発明の別の実施形態に係る熱電変換装置を構成する熱電変換モジュール40の断面図である。この実施形態に係る熱電変換装置40は、3つの平板状の絶縁層41,42,43を互いに平行にして所定の間隙を設けて配置している。絶縁層41,42,43は、窒化珪素膜や酸化膜等の薄膜を含む熱良導体によって構成されている。   FIG. 3 is a cross-sectional view of a thermoelectric conversion module 40 constituting a thermoelectric conversion device according to another embodiment of the present invention. In the thermoelectric conversion device 40 according to this embodiment, three flat insulating layers 41, 42, 43 are arranged in parallel with each other with a predetermined gap. The insulating layers 41, 42, and 43 are made of a good thermal conductor including a thin film such as a silicon nitride film or an oxide film.

絶縁層41と絶縁層42との間は、例えば、P型半導体素子44及びN型半導体素子45が交互に繰り返して平面状に配列した熱電変換層61にされている。P型半導体素子44及びN型半導体素子45は、PN接合されて1つの熱電変換素子を構成している。これらのうちの所定数の熱電変換素子が、金属薄膜の導電体46,47によって互いに直列に接続されている。   Between the insulating layer 41 and the insulating layer 42, for example, a thermoelectric conversion layer 61 in which P-type semiconductor elements 44 and N-type semiconductor elements 45 are alternately and repeatedly arranged in a plane is provided. The P-type semiconductor element 44 and the N-type semiconductor element 45 are PN-junction and constitute one thermoelectric conversion element. A predetermined number of these thermoelectric conversion elements are connected in series with each other by conductors 46 and 47 of metal thin films.

また、絶縁層42と絶縁層43との間は、例えば、P型半導体素子48及びN型半導体素子49が交互に繰り返して平面状に配列した熱電変換層62にされている。P型半導体素子48及びN型半導体素子49は、PN接合されて1つの熱電変換素子を構成している。これらのうちの所定数の熱電変換素子が、金属薄膜の導電体50,51によって互いに直列に接続されている。   Further, between the insulating layer 42 and the insulating layer 43, for example, a thermoelectric conversion layer 62 in which P-type semiconductor elements 48 and N-type semiconductor elements 49 are alternately and repeatedly arranged in a planar shape. The P-type semiconductor element 48 and the N-type semiconductor element 49 are PN-junction and constitute one thermoelectric conversion element. A predetermined number of these thermoelectric conversion elements are connected to each other in series by metal thin film conductors 50 and 51.

図4は、上記熱電変換モジュール40の第1の実施例における性能指数Zと温度Tとの関係を示す図である。第1の実施例に係る熱電変換モジュール40は、第1の熱電変換層61と第2の熱電変換層62とを同一材料によって構成したものである。   FIG. 4 is a diagram showing the relationship between the figure of merit Z and the temperature T in the first embodiment of the thermoelectric conversion module 40. In the thermoelectric conversion module 40 according to the first embodiment, the first thermoelectric conversion layer 61 and the second thermoelectric conversion layer 62 are made of the same material.

熱電変換素子は材料に応じて、適用すべき温度範囲、及び、熱電変換能力を表す性能指数Zが異なる。また、同一材料であっても温度に応じて性能指数が変化する場合が多い。このような場合に、熱電変換モジュール40に複数の熱電変換層を構成することにより、熱流方向の距離(熱の伝播距離)の増加や熱流方向における多層化等による影響を無視すれば、熱電変換効率が向上する。   The thermoelectric conversion element differs in the figure of merit Z representing the temperature range to be applied and the thermoelectric conversion capability depending on the material. Moreover, even if it is the same material, a figure of merit changes with temperature in many cases. In such a case, by configuring a plurality of thermoelectric conversion layers in the thermoelectric conversion module 40, if the influence of an increase in the distance in the heat flow direction (heat propagation distance) or multilayering in the heat flow direction is ignored, the thermoelectric conversion Efficiency is improved.

例えば、熱電変換素子に使用する材料の性能指数Zが温度に応じて図4に実線で示すように変化する場合、高温側(光吸収体11側)の温度をTH とし、低温側(冷却ジャケット13側)の温度をTC として、熱電変換層を単層で構成した場合に得られる電力Z1は、
Z1∝{(Z(TH )+Z(TC ))/2}×(TH −TC
となり、図4中の台形ABCDの面積に比例する。
For example, when the figure of merit Z of the material used for the thermoelectric conversion element changes as shown by a solid line in FIG. 4 according to the temperature, the temperature on the high temperature side (light absorber 11 side) is T H and the low temperature side (cooling) the temperature of the jacket 13 side) as T C, power Z1 obtained when the thermoelectric conversion layer is constituted by a single layer,
Z1∝ {(Z (T H ) + Z (T C )) / 2} × (T H −T C )
And is proportional to the area of the trapezoid ABCD in FIG.

一方、熱電変換層を2層で構成した場合に得られる電力Z2は、中間部(中央の絶縁層42)の温度をTM として、
Z2∝{(Z(TH )+Z(TM ))/2}×(TH −TM
+{(Z(TM )+Z(TC ))/2}×(TM −TC
となり、図4中の台形AEFDの面積とに台形EBCFの面積との和に比例し、熱電変換層を単層で構成した場合に得られる電力Z1よりも大きくなる。
On the other hand, the electric power Z2 obtained when the thermoelectric conversion layer is composed of two layers is obtained by setting the temperature of the intermediate portion (central insulating layer 42) as T M.
Z2∝ {(Z (T H ) + Z (T M )) / 2} × (T H −T M )
+ {(Z (T M) + Z (T C)) / 2} × (T M -T C)
Thus, it is proportional to the sum of the area of the trapezoid AEFD in FIG. 4 and the area of the trapezoid EBCF, and is larger than the electric power Z1 obtained when the thermoelectric conversion layer is formed of a single layer.

図5は、上記熱電変換モジュール40の第2の実施例における性能指数Zと温度Tとの関係を示す図である。第2の実施例に係る熱電変換モジュール40は、第1の熱電変換層61と第2の熱電変換層62とを異なる材料によって構成したものである。   FIG. 5 is a diagram showing the relationship between the figure of merit Z and the temperature T in the second embodiment of the thermoelectric conversion module 40. In the thermoelectric conversion module 40 according to the second embodiment, the first thermoelectric conversion layer 61 and the second thermoelectric conversion layer 62 are made of different materials.

図5中一点鎖線で示す曲線71のように高温側の温度TH と中間部の温度TM との間で性能指数が最も高い材料によって第1の熱電変換層61を構成し、図5中二点鎖線で示す曲線72のように中間部の温度TM と低温側の温度TC との間で性能指数が最も高い材料によって第2の熱電変換層62を構成することにより、第1の熱電変換層61と第2の熱電変換層62とを同一材料によって構成した場合に比較して得られる電力が大きくなり、熱電変換効率がさらに向上する。 The first thermoelectric conversion layer 61 is formed of a material having the highest figure of merit between the temperature T H on the high temperature side and the temperature T M at the intermediate portion as indicated by a dashed line 71 in FIG. By configuring the second thermoelectric conversion layer 62 with a material having the highest figure of merit between the temperature T M at the intermediate portion and the temperature T C on the low temperature side as shown by a curve 72 indicated by a two-dot chain line, the first thermoelectric conversion layer 62 is formed. Compared with the case where the thermoelectric conversion layer 61 and the second thermoelectric conversion layer 62 are made of the same material, the electric power obtained is increased, and the thermoelectric conversion efficiency is further improved.

なお、第1及び第2の実施例において、理論的には、熱電変換層の層数が増加するにしたがって得られる電力は大きくなるが、熱の伝播距離の増加や熱流方向における多層化等による影響によって熱電変換効率及び冷却効率が低下する可能性がある。このため、熱電変換モジュール40の使用状況に応じて最適な熱電変換層の層数を決定することができる。   Theoretically, in the first and second embodiments, the electric power obtained increases as the number of thermoelectric conversion layers increases, but due to an increase in heat propagation distance, multilayering in the heat flow direction, and the like. Thermoelectric conversion efficiency and cooling efficiency may be reduced due to the influence. For this reason, the optimal number of thermoelectric conversion layers can be determined according to the use situation of the thermoelectric conversion module 40.

また、複数の熱電変換層の間は、動作温度条件、熱電変換材料の種類及び構成、並びに、所望電力値等の条件に応じて、直列接続とするか並列接続とするかを選択することができる。   Further, between the plurality of thermoelectric conversion layers, it is possible to select whether to connect in series or in parallel depending on conditions such as operating temperature conditions, types and configurations of thermoelectric conversion materials, and desired power values. it can.

さらに、上記の実施形態では、この発明の熱電変換装置を半導体の製造に使用される炉に備えられる冷却装置に適用した場合を例に挙げて説明したが、これに限定されるものではなく、高温物体を冷却する他の冷却装置についても、同様にこの発明の熱電変換装置を適用することができる。   Furthermore, in the above embodiment, the case where the thermoelectric conversion device of the present invention is applied to a cooling device provided in a furnace used for manufacturing a semiconductor has been described as an example, but the present invention is not limited thereto. The thermoelectric conversion device of the present invention can be similarly applied to other cooling devices that cool high-temperature objects.

この発明の実施形態に係る熱電変換装置を適用した冷却装置の構成を示す断面図である。It is sectional drawing which shows the structure of the cooling device to which the thermoelectric conversion apparatus which concerns on embodiment of this invention is applied. 同熱電変換装置を構成する熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module which comprises the thermoelectric conversion apparatus. この発明の別の実施形態に係る熱電変換装置を構成する熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module which comprises the thermoelectric conversion apparatus which concerns on another embodiment of this invention. 上記熱電変換モジュールの第1の実施例における性能指数と温度との関係を示す図である。It is a figure which shows the relationship between the figure of merit and temperature in the 1st Example of the said thermoelectric conversion module. 上記熱電変換モジュールの第2の実施例における性能指数と温度との関係を示す図である。It is a figure which shows the relationship between the figure of merit and temperature in the 2nd Example of the said thermoelectric conversion module.

符号の説明Explanation of symbols

10 冷却装置
11 光吸収体
12 冷却室
13 冷却ジャケット
14 熱電変換モジュール
31,32 絶縁層
33 P型半導体素子
34 N型半導体素子
35,36 導電体
DESCRIPTION OF SYMBOLS 10 Cooling device 11 Light absorber 12 Cooling chamber 13 Cooling jacket 14 Thermoelectric conversion module 31, 32 Insulating layer 33 P-type semiconductor element 34 N-type semiconductor element 35, 36 Conductor

Claims (6)

互いに平行に配置された熱良導体からなる複数の絶縁層のそれぞれの間に多数の熱電変換素子を平面状に配列し、外部に露出した2つの絶縁層のうち一方の絶縁層であって熱処理後の高温ワークに対向する側となる絶縁層に光吸収体を密着させ、他方の絶縁層に熱処理後の高温ワークを冷却するための冷却体を密着させ、熱処理後の高温ワークを収納して冷却するための冷却部に設けられ、前記多数の熱電変換素子の起電力を出力する熱電変換装置。 A plurality of thermoelectric conversion elements are arranged in a plane between each of a plurality of insulating layers made of heat good conductors arranged in parallel to each other, and are one of the two insulating layers exposed to the outside, and after heat treatment A light absorber is closely attached to the insulating layer on the side facing the high temperature workpiece, and a cooling body for cooling the high temperature workpiece after heat treatment is closely attached to the other insulating layer, and the high temperature workpiece after heat treatment is stored and cooled. A thermoelectric conversion device that is provided in a cooling unit for outputting the electromotive force of the numerous thermoelectric conversion elements . 前記複数の絶縁層が、3以上の絶縁層であることを特徴とする請求項1に記載の熱電変換装置。   The thermoelectric conversion device according to claim 1, wherein the plurality of insulating layers are three or more insulating layers. 前記3以上の絶縁層のそれぞれの間について異なる材質の熱電変換素子を平面状に配列したことを特徴とする請求項2に記載の熱電変換装置。   The thermoelectric conversion device according to claim 2, wherein thermoelectric conversion elements made of different materials are arranged in a plane between each of the three or more insulating layers. 熱処理後の高温ワークに対向する内側面が光吸収体によって構成され、該熱処理後の高温ワークを収納して冷却するための中空の冷却室と、冷却室の外表面を覆い、該熱処理後の高温のワークを冷却するための冷却ジャケットと、互いに平行に配置された熱良導体からなる複数の絶縁層のそれぞれの間に多数の熱電変換素子を平面状に配列し外部に露出した2つの絶縁層のうち一方の絶縁層を前記光吸収体の外側面に密着させ他方の絶縁層を前記冷却ジャケットの内側面に密着させた熱電変換モジュールと、を備え、熱処理後の高温ワークを収納して冷却するための冷却室に設けられ、前記多数の熱電変換素子の起電力を出力する冷却装置。 The inner surface facing the high-temperature work after heat treatment is constituted by a light absorber, covers a hollow cooling chamber for storing and cooling the high-temperature work after heat treatment, and covers the outer surface of the cooling chamber . Two insulating layers exposed to the outside by arranging a plurality of thermoelectric conversion elements in a plane between a cooling jacket for cooling a high-temperature workpiece and a plurality of insulating layers made of a good thermal conductor arranged in parallel to each other one of the insulating layer and a thermoelectric conversion module obtained by close contact with other insulating layer in close contact with the outer surface to the inner surface of the cooling jacket of the light absorber of cooling houses the hot workpiece after heat treatment A cooling device that is provided in a cooling chamber for outputting the electromotive force of the plurality of thermoelectric conversion elements . 前記複数の絶縁層が、3以上の絶縁層であることを特徴とする請求項4に記載の冷却装置。 The cooling device according to claim 4, wherein the plurality of insulating layers are three or more insulating layers. 前記3以上の絶縁層のそれぞれの間について異なる材質の熱電変換素子を平面状に配列したことを特徴とする請求項5に記載の冷却装置。 6. The cooling device according to claim 5, wherein thermoelectric conversion elements made of different materials are arranged in a plane between each of the three or more insulating layers.
JP2005070636A 2005-03-14 2005-03-14 Thermoelectric conversion device and cooling device Expired - Fee Related JP4585892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070636A JP4585892B2 (en) 2005-03-14 2005-03-14 Thermoelectric conversion device and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070636A JP4585892B2 (en) 2005-03-14 2005-03-14 Thermoelectric conversion device and cooling device

Publications (2)

Publication Number Publication Date
JP2006253545A JP2006253545A (en) 2006-09-21
JP4585892B2 true JP4585892B2 (en) 2010-11-24

Family

ID=37093677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070636A Expired - Fee Related JP4585892B2 (en) 2005-03-14 2005-03-14 Thermoelectric conversion device and cooling device

Country Status (1)

Country Link
JP (1) JP4585892B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010138835A2 (en) * 2009-05-28 2010-12-02 Gmz Energy, Inc. Thermoelectric system and method of operating same
CN105651041B (en) * 2014-12-19 2018-07-17 武汉理工大学 A kind of cement rotary kiln surface waste-heat recovery device and method
KR20220073052A (en) * 2020-11-26 2022-06-03 현대자동차주식회사 Apparatus for controlling led lamp of vehicles and method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216445A (en) * 1999-01-21 2000-08-04 Honda Access Corp Thermoelectric converter using peltier module such as cooler, heater, temperature adjusting machine and generator
JP2002171776A (en) * 2000-12-04 2002-06-14 Ishikawajima Harima Heavy Ind Co Ltd Thermoelectric generating device for industrial furnace
JP2004235525A (en) * 2003-01-31 2004-08-19 Yamaha Corp Multiple step thermoelectric module
JP2004296879A (en) * 2003-03-27 2004-10-21 Yamaha Corp Thermal power generator
JP2004350334A (en) * 2003-03-26 2004-12-09 Yamaha Corp Thermal power generation system
JP2006073447A (en) * 2004-09-06 2006-03-16 Sony Corp Cooling device for lamp and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216445A (en) * 1999-01-21 2000-08-04 Honda Access Corp Thermoelectric converter using peltier module such as cooler, heater, temperature adjusting machine and generator
JP2002171776A (en) * 2000-12-04 2002-06-14 Ishikawajima Harima Heavy Ind Co Ltd Thermoelectric generating device for industrial furnace
JP2004235525A (en) * 2003-01-31 2004-08-19 Yamaha Corp Multiple step thermoelectric module
JP2004350334A (en) * 2003-03-26 2004-12-09 Yamaha Corp Thermal power generation system
JP2004296879A (en) * 2003-03-27 2004-10-21 Yamaha Corp Thermal power generator
JP2006073447A (en) * 2004-09-06 2006-03-16 Sony Corp Cooling device for lamp and electronic equipment

Also Published As

Publication number Publication date
JP2006253545A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
CA2482363C (en) Thermoelectric device utilizing double-sided peltier junctions and method of making the device
JP4432892B2 (en) Semiconductor cooling structure
JP2009295878A (en) Heat exchange device
JP4622577B2 (en) Cascade module for thermoelectric conversion
JP2010245265A (en) Thermoelectric module
WO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic apparatus using it
KR20210145703A (en) Heat conversion device
JP4585892B2 (en) Thermoelectric conversion device and cooling device
KR101822415B1 (en) Thermoelectric conversion module
Min et al. Integrated thin film thermoelectric cooler
JP5378407B2 (en) COOLING ROLL FOR ROLL CROWN CONTROL AND ITS CONTROL METHOD
JP5653455B2 (en) Thermoelectric conversion member
JP2006049736A (en) Thermoelectric module
US11393969B2 (en) Thermoelectric generation cell and thermoelectric generation module
US10897001B2 (en) Thermoelectric conversion module
US20180287038A1 (en) Thermoelectric conversion device
JPWO2018158979A1 (en) Thermoelectric converter
US11316091B2 (en) Thermoelectric module, frame for the same, and vehicle including the thermoelectric module
WO2023248840A1 (en) Thermoelectric conversion module, thermoelectric conversion device, power generation method, and heat transmission method
JP2011082272A (en) Thermoelectric cooling device
JPWO2018158980A1 (en) Thermoelectric converter
JP2013254791A (en) Heat radiation mechanism and electronic apparatus including the same
JP2018125498A (en) Thermoelectric conversion device
WO2018061460A1 (en) Thermoelectric conversion device
JP2019062093A (en) Thermoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4585892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees