JP4582324B2 - Zirconium and manganese containing phosphates - Google Patents

Zirconium and manganese containing phosphates Download PDF

Info

Publication number
JP4582324B2
JP4582324B2 JP2005106154A JP2005106154A JP4582324B2 JP 4582324 B2 JP4582324 B2 JP 4582324B2 JP 2005106154 A JP2005106154 A JP 2005106154A JP 2005106154 A JP2005106154 A JP 2005106154A JP 4582324 B2 JP4582324 B2 JP 4582324B2
Authority
JP
Japan
Prior art keywords
atomic
phosphate
zirconium
atoms
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005106154A
Other languages
Japanese (ja)
Other versions
JP2006282907A (en
Inventor
正実 金吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005106154A priority Critical patent/JP4582324B2/en
Publication of JP2006282907A publication Critical patent/JP2006282907A/en
Application granted granted Critical
Publication of JP4582324B2 publication Critical patent/JP4582324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、特徴的な蛍光特性を有するジルコニウム及びマンガン含有りん酸塩に関する。 The present invention relates to zirconium-time及 beauty manganese-containing phosphate having characteristic fluorescence properties.

ジルコニウム(Zr)やハフニウム(Hf)は、蛍光体において、CaZrO3などの形で発光元素を添加する母結晶となったり(特許文献1:特開平8−283713号公報参照)、Euと共にアルミン酸塩系の母結晶に添加して蛍光の残光を長くする効果を付与したり(特許文献2:特開平8−73845号公報参照)、Ceと共に希土類元素のオキシ塩化物やオキシ臭化物に添加して、放射線励起の蛍光体の変換効率を向上させたり(特許文献3:特開平11−349939号公報参照)するといった機能を有することが知られている。
しかし、それ自体では能動的光特性を示さない単なる透明結晶にジルコニウム又はハフニウムのみが少量成分として添加された系については、蛍光などの特性はほとんど検討がなされていないのが現状である。
Zirconium (Zr) or hafnium (Hf) becomes a mother crystal to which a light emitting element is added in the form of CaZrO 3 or the like in the phosphor (see Patent Document 1: Japanese Patent Laid-Open No. 8-283713), or aluminate and aluminate It is added to a salt-based mother crystal to increase the afterglow of fluorescence (see Patent Document 2: Japanese Patent Laid-Open No. 8-73845), or added to oxychloride or oxybromide of rare earth elements together with Ce. Thus, it is known to have a function of improving the conversion efficiency of radiation-excited phosphors (see Patent Document 3: Japanese Patent Application Laid-Open No. 11-349939).
However, regarding a system in which only zirconium or hafnium is added as a small amount component to a simple transparent crystal that does not exhibit active light characteristics by itself, the properties such as fluorescence have hardly been studied.

特開平8−283713号公報JP-A-8-283713 特開平8−73845号公報JP-A-8-73845 特開平11−349939号公報Japanese Patent Laid-Open No. 11-349939

本発明は、上記事情に鑑みなされたもので、真空紫外領域の光で励起したとき可視領域の蛍光を発するジルコニウム及びマンガン含有りん酸塩を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a zirconium arm及 beauty manganese-containing phosphate fluoresce in the visible region when excited by light in the vacuum ultraviolet region.

本発明者は、上記目的を達成するため鋭意検討を行った結果、全原子に対し、Zrを1原子%以上15原子%以下、Mnを0.01原子%以上5原子%以下、アルカリ土類金属元素を3原子%以上35原子%以下、及びPを5原子%以上20原子%以下の割合でそれぞれ含有するりん酸塩が、真空紫外領域の波長で励起した際に、ピーク波長500〜600nm、特に510〜590nmの緑から橙の領域の発光を呈し、その輝度は大きく、蛍光体として有用であることを見出した。 The present inventor has conducted extensive investigations to achieve the above objects, the total atoms, Z r 1 atomic% to 15 atomic% or less, 0.01 atomic% or more Mn 5 atomic% or less, alkaline earth When a phosphate containing 3 to 35 atomic percent of a metal group element and 5 to 20 atomic percent of P is excited at a wavelength in the vacuum ultraviolet region, a peak wavelength of 500 to It has been found that it emits light in a green to orange region of 600 nm, particularly 510 to 590 nm, has a high luminance, and is useful as a phosphor.

なお、近年プラズマディスプレイパネルや水銀を使用しない希ガス放電ランプへの応用をめざして、真空紫外領域で励起される蛍光体の研究開発が行われており、本発明者は、アルカリ土類金属又は希土類元素のりん酸塩、珪酸塩、アルミン酸塩などを母結晶として、ジルコニウム又はハフニウムを添加することで、真空紫外励起下で近紫外域の発光を呈する蛍光体が得られることを見出している(特開2005−298583公報参照)。さらに、本発明者は、上記のような母結晶に、ジルコニウム又はハフニウムに加えて所定量のマンガンを添加したものが、真空紫外領域の波長で励起した際に、可視領域の発光を呈し、母結晶の種類によって決まる発光ピーク波長は青色から赤色の幅広い領域に広がることも見出している(特開2005−298584号、同2006−104049公報参照)が、さらなる応用のためには、発光強度の向上が望まれており、本発明はかかる点からなされたものである。 In recent years, phosphors excited in the vacuum ultraviolet region have been researched and developed for application to plasma display panels and rare gas discharge lamps that do not use mercury. It has been found that phosphors exhibiting near-ultraviolet light emission under vacuum ultraviolet excitation can be obtained by adding zirconium or hafnium with rare earth phosphates, silicates, aluminates, etc. as mother crystals. (see Japanese Patent Laid-open 2005-298583). Furthermore, the present inventor has shown that when a predetermined amount of manganese in addition to zirconium or hafnium is added to the mother crystal as described above, the phosphor emits light in the visible region when excited at a wavelength in the vacuum ultraviolet region. emission peak wavelength determined by the type of crystal be found that (Japanese open No. 2005-298584, see the 2006-104049 JP) to spread wide range of red from blue, for further applications, the luminous intensity Improvement is desired, and the present invention has been made in view of this point.

即ち、本発明は、下記のりん酸塩を提供する。
(1)CaZr(PO4 2 にMnを添加・固溶して得られ、全原子に対し、Zrを1原子%以上15原子%以下、Mnを0.01原子%以上5原子%以下、アルカリ土類金属元素を3原子%以上35原子%以下、及びPを5原子%以上20原子%以下の割合でそれぞれ含有し、130〜220nmの真空紫外光による励起によって、500〜600nmの緑から橙の領域の蛍光を発することを特徴とするりん酸塩。
(2)(Ca0.93Mn0.07)Zr(PO42である(1)記載のりん酸塩。
)(Ca0.973Mn0.027)Zr(PO42である(1)記載のりん酸塩。
That is, the present invention provides the following phosphates.
(1) C aZr (PO 4 ) 2 to obtain the addition-solid solution M n, the total atoms, Z r 1 atomic% to 15 atomic% or less, Mn of 0.01 atomic% to 5 atomic % Or less, 3 to 35 atom% of an alkaline earth metal element, and P to 5 to 20 atom% in proportions of 500 to 600 nm by excitation with vacuum ultraviolet light of 130 to 220 nm, respectively. A phosphate characterized by emitting fluorescence in the green to orange region.
(2 ) The phosphate according to (1), which is ( Ca 0.93 Mn 0.07 ) Zr (PO 4 ) 2 .
( 3 ) The phosphate according to (1), which is (Ca 0.973 Mn 0.027 ) Zr (PO 4 ) 2 .

本発明のジルコニウム又はハフニウムとマンガンとを添加したりん酸塩は、キセノン原子の共鳴線発光の147nmなど、真空紫外領域の光で励起したとき、効率良く波長500〜600nmの緑から橙の領域の蛍光を示し、水銀を用いない陰極線ランプ、液晶表示用バックライトなどの蛍光体、さらに、半導体製造工程など真空紫外光を用いる工業的装置における真空紫外光の監視表示などへの展開が期待できる。   The phosphate of the present invention to which zirconium or hafnium and manganese are added has a wavelength in the range from green to orange having a wavelength of 500 to 600 nm when excited with light in the vacuum ultraviolet region, such as 147 nm of resonance line emission of xenon atoms. Development of fluorescent materials such as cathode ray lamps that do not use mercury and fluorescent materials such as backlights for liquid crystal displays, and monitoring and display of vacuum ultraviolet light in industrial devices using vacuum ultraviolet light such as semiconductor manufacturing processes can be expected.

本発明に係るりん酸塩は、全原子に対し、Zr又はHfを1原子%以上15原子%以下、Mnを0.01原子%以上5原子%以下、アルカリ土類金属元素を3原子%以上35原子%以下、及びPを5原子%以上20原子%以下の割合でそれぞれ含有するりん酸塩である。   In the phosphate according to the present invention, Zr or Hf is 1 atom% or more and 15 atom% or less, Mn is 0.01 atom% or more and 5 atom% or less, and alkaline earth metal element is 3 atom% or more with respect to all atoms. It is a phosphate containing 35 atomic percent or less and P in a proportion of 5 atomic percent to 20 atomic percent.

ここで、本発明のりん酸塩に用いられる母結晶としては、粉末X線回折によって同定される組成式が、Mg227、Ca3(PO42、CaZr(PO42、SrMgP27、BaZr(PO42、Ba7Zr(PO46などのアルカリ土類金属含有りん酸塩が好適に選択できる。 Here, as a mother crystal used for the phosphate of the present invention, the composition formula identified by powder X-ray diffraction is Mg 2 P 2 O 7 , Ca 3 (PO 4 ) 2 , CaZr (PO 4 ) 2. , SrMgP 2 O 7 , BaZr (PO 4 ) 2 , Ba 7 Zr (PO 4 ) 6 and other alkaline earth metal-containing phosphates can be suitably selected.

本発明のZr又はHf及びMn含有りん酸塩は、上記母結晶にZr又はHf及びMnを添加・固溶して得られるものであるが、上記の母結晶は、構成元素の価数と結晶中での結合距離の点からみて、Zr又はHf、並びにMnの両方を均一にある程度の量を含有したり、固溶しやすいうえ、構造上、Zr又はHfのみ含有する場合に観測される紫外発光のエネルギーをMnに伝達して可視発光させる効率の点からも有利である。これらの母結晶を構成するアルカリ土類金属元素は、1種単独で又は2種以上の元素の組み合わせであってもよい。   The Zr, Hf, and Mn-containing phosphate of the present invention is obtained by adding and solid-solving Zr, Hf, and Mn to the above-mentioned mother crystal. In view of the bond distance in the medium, both Zr, Hf, and Mn are uniformly contained in a certain amount or are easily dissolved, and the structure is observed when containing only Zr or Hf. It is also advantageous from the viewpoint of efficiency of transmitting light emission energy to Mn and causing visible light emission. The alkaline earth metal elements constituting these mother crystals may be used alone or in combination of two or more elements.

本発明においては、上記母結晶にZr又はHfを全原子の1原子%以上15原子%以下、好ましくは3原子%以上12原子%以下添加する。さらに、Mnを全原子の0.01原子%以上5原子%以下、好ましくは0.1原子%以上2原子%以下添加する。Zr又はHfの添加量が全原子の1原子%未満であると、発光の励起に寄与する真空紫外光の吸収が十分でなく、発光が弱くなり、またMnの添加量が全原子の0.01原子%未満であると蛍光発光を実質的に観測できなくなる。一方、Zr又はHfが15原子%、Mnが5原子%を超えて添加、置換を増やしても励起エネルギーが発光に寄与しないまま近くの原子を伝っていくうちに失われる度合いが多くなる。また、ZrとHfの中では、資源量の豊富さと価格の点からZrがより好ましい。   In the present invention, Zr or Hf is added to the above mother crystal in an amount of 1 atom% to 15 atom%, preferably 3 atom% to 12 atom% of all atoms. Further, Mn is added in an amount of 0.01 atomic% to 5 atomic%, preferably 0.1 atomic% to 2 atomic% of all atoms. When the amount of Zr or Hf added is less than 1 atomic% of all atoms, the absorption of vacuum ultraviolet light contributing to the excitation of light emission is not sufficient, the light emission becomes weak, and the amount of Mn added is 0.2% of all atoms. If it is less than 01 atomic%, fluorescence emission cannot be substantially observed. On the other hand, even if Zr or Hf is added in excess of 15 atomic% and Mn exceeds 5 atomic% and the substitution is increased, the degree to which the excitation energy is lost while traveling through nearby atoms without contributing to light emission increases. Moreover, among Zr and Hf, Zr is more preferable from the viewpoint of abundant resources and price.

本発明のりん酸塩に含まれるアルカリ土類金属及びりんの割合については、アルカリ土類金属は、全原子の3原子%以上35原子%以下であり、好ましくは4原子%以上25原子%以下である。アルカリ土類金属の割合が3原子%未満であると、発光に寄与しない化合物が生じやすく、35原子%を超えると、結果的に後述するりんの量が少なくなる。なお、結晶を構成する元素の結合距離の観点から、アルカリ土類金属全体の50原子%以上、特に60原子%以上がカルシウムであるものが好ましい。上限は特に制限されず、100原子%がカルシウムであってもよい。   Regarding the ratio of alkaline earth metal and phosphorus contained in the phosphate of the present invention, the alkaline earth metal is 3 atomic% to 35 atomic% of all atoms, preferably 4 atomic% to 25 atomic%. It is. When the proportion of the alkaline earth metal is less than 3 atomic%, a compound that does not contribute to light emission is likely to be generated, and when it exceeds 35 atomic%, the amount of phosphorus described later decreases as a result. In addition, from the viewpoint of the bond distance of the elements constituting the crystal, it is preferable that 50 atomic% or more, particularly 60 atomic% or more of the entire alkaline earth metal is calcium. The upper limit is not particularly limited, and 100 atomic% may be calcium.

また、りんの含有量は全原子の5原子%以上20原子%以下であり、好ましくは10原子%以上20原子%以下である。りんの含有量が5原子%未満であると、りん酸イオンを形成しない、独立した酸素原子が多く含まれることとなり、そのような系では発光が弱くなる。また、りんを20原子%を超えて含有するということは、りんが形式上の5価でない低い原子価、つまり亜りん酸基や次亜りん酸基として存在しなければ実現せず、そのような場合、化学的安定性の点でも不利であるし、発光も実際に弱まる。
なお、上記各元素の含有割合は、試料を分解して溶液とした後、ICP発光分光法等による定量に基づき求めることができる。
Further, the phosphorus content is 5 atom% or more and 20 atom% or less, preferably 10 atom% or more and 20 atom% or less of all atoms. When the phosphorus content is less than 5 atomic%, a large number of independent oxygen atoms that do not form phosphate ions are contained, and in such a system, light emission is weakened. In addition, containing phosphorus in excess of 20 atomic% is not realized unless phosphorus is not a formal pentavalent low valence, that is, a phosphite group or a hypophosphite group. In this case, it is disadvantageous in terms of chemical stability, and light emission is actually weakened.
The content ratio of each element can be obtained based on quantitative determination by ICP emission spectroscopy after decomposing the sample into a solution.

次に、本発明のりん酸塩の製造方法について述べる。
本発明の製造方法は特に制限されないが、原料として、アルカリ土類金属、ジルコニウム又はハフニウム、及びマンガンの各元素を含む酸化物、炭酸塩、蓚酸塩などの粉体と、りん酸、りん酸アンモニウム等のりんを含む原料を混合して、800℃以上1800℃以下、特に850℃以上1500℃以下で30分以上24時間以下、特に1時間以上8時間以下の条件下で加熱して反応させる方法が最も一般的で適用範囲が広く、本発明においてもこれを好適に採用することができる。この場合、金属元素については、目標組成に応じて計量、混合するのが好ましいが、りん酸基の原料は、当量以上2倍程度までの範囲で目標組成より多めに混合することも有効である。また、反応を促進するため、アルカリ金属ふっ化物、ほう酸などの融剤等を加えても良い。
Next, the manufacturing method of the phosphate of this invention is described.
The production method of the present invention is not particularly limited, but as raw materials, powders such as oxides, carbonates and oxalates containing alkaline earth metal, zirconium or hafnium, and manganese elements, phosphoric acid, and ammonium phosphate A raw material containing phosphorus such as 800 ° C. or higher and 1800 ° C. or lower, especially 850 ° C. or higher and 1500 ° C. or lower for 30 minutes or longer and 24 hours or shorter, particularly 1 hour or longer and 8 hours or shorter. Is the most common and has a wide range of applications, and can be suitably employed in the present invention. In this case, it is preferable to measure and mix the metal element according to the target composition. However, it is also effective to mix the phosphate group raw material more than the target composition within the range of the equivalent amount to about twice. . Moreover, in order to accelerate | stimulate reaction, you may add fluxes, such as an alkali metal fluoride and a boric acid.

また、上記の原料の一部に代えて、上記各金属元素の1種以上を含むりん酸塩を用い、必要に応じて他の原料を混合して、上記温度範囲内及び時間で加熱し、反応させる方法も好ましく用いることができる。   Moreover, it replaces with a part of said raw material, uses the phosphate containing 1 or more types of each said metal element, mixes other raw materials as needed, and heats within the said temperature range and time, A method of reacting can also be preferably used.

更に、本発明のりん酸塩を構成する金属元素の一部又は全部を含む水溶性化合物を溶液の形でりん酸基を含有する水溶性化合物と反応させて沈殿を生成し、これを乾燥又は焼成して脱水することにより目的とするりん酸塩を合成したり、中間体として用いたりするのも有効な方法である。   Further, a water-soluble compound containing a part or all of the metal elements constituting the phosphate of the present invention is reacted with a water-soluble compound containing a phosphate group in the form of a solution to form a precipitate, which is dried or It is also an effective method to synthesize the target phosphate by baking and dehydrating or to use it as an intermediate.

粉体同士を混合する場合、混合方法については特に制限されないが、乳鉢、流動混合機、傾斜回転式混合機などを用いて行うことができる。   When the powders are mixed, the mixing method is not particularly limited, but can be performed using a mortar, a fluid mixer, a tilt rotary mixer, or the like.

加熱反応を行う雰囲気としては、大気、不活性ガス雰囲気、還元性ガス雰囲気など母結晶の種類に応じて選択できるが、一般的には窒素、アルゴンなどの不活性ガス雰囲気が、Mnを2価の状態に保ち易いので好ましい。   The atmosphere in which the heating reaction is performed can be selected according to the type of mother crystal such as air, inert gas atmosphere, reducing gas atmosphere, etc. Generally, an inert gas atmosphere such as nitrogen or argon is divalent to Mn. It is preferable because it is easy to keep in this state.

以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following example.

[出発物質の合成]
(1)蓚酸マンガン
以下の合成に用いる蓚酸マンガンは、塩化マンガン水溶液と蓚酸アンモニウム水溶液の混合によって沈殿を生成し、濾別、乾燥したものを用いた。
(2)カルシウム・マンガン炭酸塩
カルシウム・マンガン炭酸塩は、目標組成に従って塩化カルシウムと塩化マンガンを溶解した水溶液に、CaとMnの合計モル数の2倍モル数の炭酸水素アンモニウム(NH4HCO3)水溶液を加えて沈殿を生成し、乾燥することにより得た。
(3)りん酸ジルコニウム
酸化塩化ジルコニウム(ZrOCl2・8H2O、試薬特級)193.4gを純水900cm3に溶解し、これに蓚酸(H224・2H2O、試薬特級)151.3gを純水1400cm3に溶解した液を加え、ここへさらに撹拌下259gの75%りん酸水溶液を加え、濃アンモニアを加えて液のpHを約2に調節した後、水浴で85℃に加熱し、撹拌しながら15時間反応させた。得られた沈殿を濾別、乾燥して、りん酸ジルコニウムを得た。
(4)りん酸水素カルシウム
りん酸水素カルシウム(CaHPO4)は、水酸化カルシウムを水中に分散させ、ここにやや過剰のりん酸を加え、撹拌して反応させて生成し、濾別、乾燥したものを用いた。
[Synthesis of starting materials]
(1) Manganese oxalate Manganese oxalate used in the following synthesis was a precipitate produced by mixing an aqueous manganese chloride solution and an aqueous ammonium oxalate solution, and was filtered and dried.
(2) Calcium / manganese carbonate Calcium / manganese carbonate is dissolved in an aqueous solution in which calcium chloride and manganese chloride are dissolved in accordance with the target composition, and ammonium hydrogen carbonate (NH 4 HCO 3) having twice the total number of moles of Ca and Mn. ) An aqueous solution was added to form a precipitate, which was obtained by drying.
(3) phosphate of zirconium oxide chloride, zirconium (ZrOCl 2 · 8H 2 O, guaranteed reagent) and 193.4g was dissolved in pure water 900 cm 3, this oxalic acid (H 2 C 2 O 4 · 2H 2 O, special grade reagent) A solution prepared by dissolving 151.3 g in 1400 cm 3 of pure water was added, and 259 g of 75% phosphoric acid aqueous solution was further added thereto with stirring. Concentrated ammonia was added to adjust the pH of the solution to about 2, and then 85 ° C. in a water bath. And reacted for 15 hours with stirring. The resulting precipitate was filtered and dried to obtain zirconium phosphate.
(4) Calcium hydrogen phosphate Calcium hydrogen phosphate (CaHPO 4 ) is produced by dispersing calcium hydroxide in water, adding a slight excess of phosphoric acid, stirring and reacting, and filtering and drying. A thing was used.

[実施例1]
カルシウム・マンガン炭酸塩4.05g、りん酸ジルコニウム12.21gを自動乳鉢で混合し、アルミナるつぼに入れ、窒素ガスを毎分0.7dm3(標準状態)流した電気炉中で1200℃まで加熱し、3時間保ってから同じ窒素気流中で冷却した。得られた試料を乳鉢で解砕して粉状にした。得られた試料の組成は、
(Ca0.93Mn0.07)Zr(PO42
で表され、粉末X線回折のパターンはCaZr(PO42にほぼ一致した。組成式から計算するとZrは全原子の8.3原子%、Mnは0.58原子%、Caは7.8原子%、Pは16.7原子%である。
[Example 1]
Calcium manganese carbonate (4.05 g) and zirconium phosphate (12.21 g) were mixed in an automatic mortar, placed in an alumina crucible, and heated to 1200 ° C in an electric furnace with a nitrogen gas flow of 0.7 dm 3 (standard condition) per minute. Then, after being kept for 3 hours, it was cooled in the same nitrogen stream. The obtained sample was pulverized with a mortar to form powder. The composition of the obtained sample is
(Ca 0.93 Mn 0.07 ) Zr (PO 4 ) 2
The powder X-ray diffraction pattern almost coincided with CaZr (PO 4 ) 2 . When calculated from the composition formula, Zr is 8.3 atomic% of all atoms, Mn is 0.58 atomic%, Ca is 7.8 atomic%, and P is 16.7 atomic%.

[実施例2]
炭酸カルシウム(試薬99.99%CaCO3、和光純薬工業(株)製)3.89g、
蓚酸マンガン0.173g、酸化ジルコニウム(ZrO2)(TZ−0、東ソー(株)製)4.93g、及びりん酸水素二アンモニウム((NH42HPO4、試薬特級)11.09gを自動乳鉢で混合し、アルミナるつぼに入れ、窒素ガスを毎分0.7dm3(標準状態)流した電気炉中で1200℃まで加熱し、3時間保ってから同じ窒素気流中で冷却した。得られた試料を乳鉢で解砕して粉状にした。得られた試料の組成は、
(Ca0.973Mn0.027)Zr(PO42
で表され、粉末X線回折のパターンはCaZr(PO42にほぼ一致した。組成式から計算するとZrは全原子の8.3原子%、Mnは0.22原子%、Caは8.1原子%、Pは16.7原子%である。
[Example 2]
3.89 g of calcium carbonate (reagent 99.99% CaCO 3 , manufactured by Wako Pure Chemical Industries, Ltd.)
Automatically 0.173 g of manganese oxalate, 4.93 g of zirconium oxide (ZrO 2 ) (TZ-0, manufactured by Tosoh Corporation), and 11.09 g of diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 , reagent special grade) The mixture was mixed in a mortar, placed in an alumina crucible, heated to 1200 ° C. in an electric furnace with nitrogen gas flowing at 0.7 dm 3 (standard state) per minute, kept for 3 hours, and then cooled in the same nitrogen stream. The obtained sample was pulverized with a mortar to form powder. The composition of the obtained sample is
(Ca 0.973 Mn 0.027 ) Zr (PO 4 ) 2
The powder X-ray diffraction pattern almost coincided with CaZr (PO 4 ) 2 . When calculated from the composition formula, Zr is 8.3 atomic% of all atoms, Mn is 0.22 atomic%, Ca is 8.1 atomic%, and P is 16.7 atomic%.

[比較例1]
炭酸カルシウム3.60g、酸化アルミニウム(Al23)(タイミクロンTM−DA、大明化学工業(株)製)4.08g、酸化珪素(SiO2)(1−FX、龍森製)4.81g、蓚酸マンガン0.256g、酸化ジルコニウム0.099g、及びふっ化ナトリウム(試薬特級NaF、和光純薬工業(株)製)0.067gを自動乳鉢で混合し、アルミナるつぼに入れ、窒素ガスを毎分0.7dm3(標準状態)流した電気炉中で1200℃まで加熱し、4時間保ってから同じ窒素気流中で冷却した。得られた試料を乳鉢で解砕して粉状にした。得られた試料の組成は、
(Ca0.9Mn0.04Zr0.02Na0.04)Al2Si28
で表され、組成式から計算するとZrは全原子の0.15原子%、Mnは0.31原子%、Caは6.9原子%であり、Pは含まれていない。
[Comparative Example 1]
3.60 g of calcium carbonate, aluminum oxide (Al 2 O 3 ) (Tymicron TM-DA, manufactured by Daimei Chemical Industry Co., Ltd.) 4.08 g, silicon oxide (SiO 2 ) (1-FX, manufactured by Tatsumori) 81 g, manganese oxalate 0.256 g, zirconium oxide 0.099 g, and sodium fluoride (reagent special grade NaF, manufactured by Wako Pure Chemical Industries, Ltd.) 0.067 g were mixed in an automatic mortar, placed in an alumina crucible, and nitrogen gas was added. Heated to 1200 ° C. in a flowing electric furnace at 0.7 dm 3 (standard state) per minute, kept for 4 hours, and then cooled in the same nitrogen stream. The obtained sample was pulverized with a mortar to form powder. The composition of the obtained sample is
(Ca 0.9 Mn 0.04 Zr 0.02 Na 0.04 ) Al 2 Si 2 O 8
When calculated from the composition formula, Zr is 0.15 atomic% of all atoms, Mn is 0.31 atomic%, Ca is 6.9 atomic%, and P is not included.

[比較例2]
酸化イットリウム(Y23)(信越化学工業(株)製4N品)2.26g、酸化アルミニウム3.82g、ほう酸(試薬特級H3BO3、和光純薬工業(株)製)、蓚酸マンガン0.395g、及び酸化ジルコニウム0.308gを自動乳鉢で混合し、アルミナるつぼに入れ、窒素ガスを毎分0.7dm3(標準状態)流した電気炉中で1100℃まで加熱し、3時間保ってから同じ窒素気流中で冷却した。得られた試料を乳鉢で解砕して粉状にした。得られた試料の組成は、
(Y0.8Mn0.1Zr0.1)Al3(BO34
で表され、組成式から計算するとZrは全原子の0.50原子%、Mnは0.50原子%であり、Ca、Pは含まれていない。
[Comparative Example 2]
Yttrium oxide (Y 2 O 3 ) (4N product manufactured by Shin-Etsu Chemical Co., Ltd.) 2.26 g, aluminum oxide 3.82 g, boric acid (reagent special grade H 3 BO 3 , manufactured by Wako Pure Chemical Industries, Ltd.), manganese oxalate 0.395 g and 0.308 g of zirconium oxide were mixed in an automatic mortar, placed in an alumina crucible, heated to 1100 ° C. in an electric furnace with nitrogen gas flowing at 0.7 dm 3 (standard condition) per minute, and maintained for 3 hours. Then, it was cooled in the same nitrogen stream. The obtained sample was pulverized with a mortar to form powder. The composition of the obtained sample is
(Y 0.8 Mn 0.1 Zr 0.1 ) Al 3 (BO 3 ) 4
When calculated from the composition formula, Zr is 0.50 atomic% of all atoms, Mn is 0.50 atomic%, and Ca and P are not included.

[比較例3]
りん酸水素カルシウム8.17g、炭酸カルシウム1.60g、ふっ化カルシウム(試薬特級CaF2、和光純薬工業(株)製)1.56g、蓚酸マンガン0.160g、酸化ジルコニウム0.123g、及びふっ化ナトリウム0.084gを用いた以外は比較例2と同様の操作を行い、粉状の試料を得た。得られた試料の組成は、
(Ca0.96Mn0.01Zr0.01Na0.025(PO43
で表され、組成式から計算するとZrは全原子の0.10原子%、Mnは0.10原子%、Caは22.9原子%、Pは14.3原子%である。
[Comparative Example 3]
8.17 g of calcium hydrogen phosphate, 1.60 g of calcium carbonate, 1.56 g of calcium fluoride (reagent special grade CaF 2 , manufactured by Wako Pure Chemical Industries, Ltd.), 0.160 g of manganese oxalate, 0.123 g of zirconium oxide, and fluorine A powdery sample was obtained by performing the same operation as in Comparative Example 2 except that 0.084 g of sodium chloride was used. The composition of the obtained sample is
(Ca 0.96 Mn 0.01 Zr 0.01 Na 0.02 ) 5 (PO 4 ) 3 F
When calculated from the composition formula, Zr is 0.10 atomic% of all atoms, Mn is 0.10 atomic%, Ca is 22.9 atomic%, and P is 14.3 atomic%.

[蛍光に関する測定]
実施例1,2及び比較例1〜3で合成された下記の各試料について、分光計器(株)製真空紫外域吸光・蛍光測定装置を用い、147nmの光で励起したときの蛍光スペクトルを測定した。
実施例1:(Ca0.93Mn0.07)Zr(PO42
実施例2:(Ca0.973Mn0.027)Zr(PO42
比較例1:(Ca0.9Mn0.04Zr0.02Na0.04)Al2Si28
比較例2:(Y0.8Mn0.1Zr0.1)Al3(BO34
比較例3:(Ca0.96Mn0.01Zr0.01Na0.025(PO43
[Measurement of fluorescence]
For each of the following samples synthesized in Examples 1 and 2 and Comparative Examples 1 to 3, the fluorescence spectrum when excited with 147 nm light was measured using a vacuum ultraviolet absorption / fluorescence measuring device manufactured by Spectrometer Co., Ltd. did.
Example 1: (Ca 0.93 Mn 0.07 ) Zr (PO 4 ) 2
Example 2: (Ca 0.973 Mn 0.027 ) Zr (PO 4 ) 2
Comparative Example 1: (Ca 0.9 Mn 0.04 Zr 0.02 Na 0.04 ) Al 2 Si 2 O 8
Comparative Example 2: (Y 0.8 Mn 0.1 Zr 0.1 ) Al 3 (BO 3 ) 4
Comparative Example 3: (Ca 0.96 Mn 0.01 Zr 0.01 Na 0.02 ) 5 (PO 4 ) 3 F

図1に、実施例1,2及び比較例1〜3で得られた試料について、147nmの光で励起したときの発光スペクトルチャートを示す。縦軸は、実際の発光強度(エネルギー)に比例するように記してある。図中の数字1,2が実施例1,2を、数字3〜5が比較例1〜3にそれぞれ対応している。りん酸塩でない比較例1,2、及びCaとPを含むもののZrの含有量が少ない比較例3に比べて、実施例の発光は明らかに強い。   FIG. 1 shows an emission spectrum chart when the samples obtained in Examples 1 and 2 and Comparative Examples 1 to 3 are excited with light of 147 nm. The vertical axis is shown so as to be proportional to the actual light emission intensity (energy). Numbers 1 and 2 in the figure correspond to Examples 1 and 2, and numbers 3 to 5 correspond to Comparative Examples 1 to 3, respectively. Compared with Comparative Examples 1 and 2, which are not phosphates, and Comparative Example 3 containing Ca and P but having a low Zr content, the light emission of the examples is clearly stronger.

実施例1,2及び比較例1〜3の試料を147nmの光で励起したときの蛍光発光スペクトルのチャートである。It is a chart of the fluorescence-emission spectrum when the sample of Examples 1, 2 and Comparative Examples 1-3 is excited with 147 nm light.

Claims (3)

aZr(PO4 2 にMnを添加・固溶して得られ、全原子に対し、Zrを1原子%以上15原子%以下、Mnを0.01原子%以上5原子%以下、アルカリ土類金属元素を3原子%以上35原子%以下、及びPを5原子%以上20原子%以下の割合でそれぞれ含有し、130〜220nmの真空紫外光による励起によって、500〜600nmの緑から橙の領域の蛍光を発することを特徴とするりん酸塩。 C aZr (PO 4) 2 to obtain the addition-solid solution M n, the total atoms, Z r 1 atomic% to 15 atomic% or less, Mn of 0.01 atomic% to 5 atomic% or less, Alkaline earth metal element is contained in an amount of 3 atomic% to 35 atomic%, and P is contained in a ratio of 5 atomic% to 20 atomic%, respectively, and from green of 500 to 600 nm by excitation with vacuum ultraviolet light of 130 to 220 nm. Phosphate characterized by emitting fluorescence in the orange region. (Ca0.93Mn0.07)Zr(PO42である請求項1記載のりん酸塩。 The phosphate according to claim 1, which is (Ca 0.93 Mn 0.07 ) Zr (PO 4 ) 2 . (Ca0.973Mn0.027)Zr(PO42である請求項1記載のりん酸塩。 The phosphate according to claim 1, which is (Ca 0.973 Mn 0.027 ) Zr (PO 4 ) 2 .
JP2005106154A 2005-04-01 2005-04-01 Zirconium and manganese containing phosphates Expired - Fee Related JP4582324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106154A JP4582324B2 (en) 2005-04-01 2005-04-01 Zirconium and manganese containing phosphates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106154A JP4582324B2 (en) 2005-04-01 2005-04-01 Zirconium and manganese containing phosphates

Publications (2)

Publication Number Publication Date
JP2006282907A JP2006282907A (en) 2006-10-19
JP4582324B2 true JP4582324B2 (en) 2010-11-17

Family

ID=37405151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106154A Expired - Fee Related JP4582324B2 (en) 2005-04-01 2005-04-01 Zirconium and manganese containing phosphates

Country Status (1)

Country Link
JP (1) JP4582324B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016453B (en) * 2006-12-29 2012-04-11 中国科学院上海硅酸盐研究所 Doping zirconium calcium phosphate fluorescent material and preparing method thereof
JP6153383B2 (en) * 2013-05-28 2017-06-28 第一稀元素化学工業株式会社 Phosphor material and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905912A (en) * 1974-09-25 1975-09-16 Gte Sylvania Inc Rare earth activated hafnium phosphate luminescent materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905912A (en) * 1974-09-25 1975-09-16 Gte Sylvania Inc Rare earth activated hafnium phosphate luminescent materials

Also Published As

Publication number Publication date
JP2006282907A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5355613B2 (en) Yellow phosphor having oxyapatite structure, production method and white light emitting diode device thereof
JP4415547B2 (en) Oxynitride phosphor and method for producing the same
Ha et al. Color tunable single-phase Eu 2+ and Ce 3+ co-activated Sr 2 LiAlO 4 phosphors
JP2016508174A (en) Terbium-containing aluminate-based yellow-green to yellow-emitting phosphor
US6187225B1 (en) Blue phosphor for plasma display and lamp application and method of making
CN104073255B (en) A kind of silicic acid zirconates blue colour fluorescent powder, preparation method and application thereof
KR20190111811A (en) Methods for Producing RED-Emitting Fluoride Phosphor and Host Crystal Thereof
JP4466447B2 (en) Oxynitride phosphor
US5989454A (en) Method for making small particle blue emitting lanthanum phosphate based phosphors
CN103275713A (en) Rare earth molybdate red phosphor, and preparation method and application thereof
JP4582324B2 (en) Zirconium and manganese containing phosphates
CN103261367A (en) Composition containing a core-hell aluminate, phosphor obtained from said composition, and preparation methods
CN102492422A (en) Green emitting phosphor for white-light LEDs and preparation method thereof
JP3804804B2 (en) Rare earth element phosphate composition and method for producing the same
JP4793551B2 (en) Zirconium or hafnium and manganese-containing oxides
JPH0141673B2 (en)
CN103370394B (en) Method for producing fluorescent substance
JP3882932B2 (en) Zirconium-containing oxide
TW200813190A (en) A phosphor and method for making the same
JP2005330348A (en) Cerium-containing oxide
JP2004263088A (en) Process for producing fluorescent substance
CN116875311B (en) Lanthanum strontium vanadate-based red luminescent material and preparation method and application thereof
JP2017222868A (en) Terbium-containing aluminate-based yellowish green to yellow light-emitting fluophor
US7682524B2 (en) Phosphor for producing white light under excitation of UV light and method for making the same
CN105860965A (en) Rare earth ion doped red fluorescent powder and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees