JP4579882B2 - Resonant switching power supply - Google Patents

Resonant switching power supply Download PDF

Info

Publication number
JP4579882B2
JP4579882B2 JP2006235123A JP2006235123A JP4579882B2 JP 4579882 B2 JP4579882 B2 JP 4579882B2 JP 2006235123 A JP2006235123 A JP 2006235123A JP 2006235123 A JP2006235123 A JP 2006235123A JP 4579882 B2 JP4579882 B2 JP 4579882B2
Authority
JP
Japan
Prior art keywords
switching element
capacitor
voltage
power supply
primary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006235123A
Other languages
Japanese (ja)
Other versions
JP2008061369A (en
Inventor
徹志 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2006235123A priority Critical patent/JP4579882B2/en
Publication of JP2008061369A publication Critical patent/JP2008061369A/en
Application granted granted Critical
Publication of JP4579882B2 publication Critical patent/JP4579882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

本発明は、ロイヤーの発振回路を応用した共振型スイッチング電源において、スイッチング素子の耐圧、保護問題を解決し、同時に回路の発振動作の安定性を向上させるための技術に関する。   The present invention relates to a technique for solving the breakdown voltage and protection problems of a switching element and simultaneously improving the stability of oscillation operation of a circuit in a resonant switching power supply using a Royer oscillation circuit.

蛍光表示管や放電管などの負荷に駆動電圧を供給する電源回路には様々な回路方式が存在する。ここで、特に駆動電圧に交流が要求される場合には、ロイヤーの発振回路を応用した自励、共振方式の電源回路を使用することが多い。このような自励共振型電源としては、従来、図2のような回路構成を有する電源回路が存在した。図2に示す電源回路の回路構成および動作は、概ね以下のようであった。   There are various circuit systems for a power supply circuit that supplies a driving voltage to a load such as a fluorescent display tube or a discharge tube. Here, especially when an alternating current is required for the drive voltage, a self-excited and resonant power supply circuit using a Royer oscillation circuit is often used. As such a self-excited resonance type power supply, there has conventionally been a power supply circuit having a circuit configuration as shown in FIG. The circuit configuration and operation of the power supply circuit shown in FIG. 2 are generally as follows.

図2において、入力端子1はチョークコイルL1を介してトランスTの1次巻線N1の中間タップに接続されている。1次巻線N1の端子間には共振用容量として共振コンデンサCoが接続され、さらに1次巻線N1の両端はそれぞれ、電界効果型トランジスタ(MOSFET)よりなる第1のスイッチング素子Q1と第2のスイッチング素子Q2の主電流路を介してアースに接続されている。そして、トランスTの2次巻線N2の両端および中間タップはそれぞれ、出力端子2a、2b、2cに接続されている。第1と第2のスイッチング素子Q1、Q2のゲートは、それぞれたすきがけの形で、自らの主電流路が接続された1次巻線N1の巻線端とは反対側の巻線端に、抵抗R1あるいは抵抗R2を介して接続されている。なお、それぞれのゲートとアースとの間に接続されているZ1及びZ2は、第1のスイッチング素子Q1および第2のスイッチング素子Q2を保護するための定電圧ダイオードである。   In FIG. 2, the input terminal 1 is connected to an intermediate tap of the primary winding N1 of the transformer T through a choke coil L1. A resonance capacitor Co is connected as a resonance capacitor between the terminals of the primary winding N1, and both ends of the primary winding N1 are connected to a first switching element Q1 and a second switching element made of a field effect transistor (MOSFET), respectively. The switching element Q2 is connected to the ground via the main current path. Then, both ends and the intermediate tap of the secondary winding N2 of the transformer T are connected to the output terminals 2a, 2b, and 2c, respectively. The gates of the first and second switching elements Q1 and Q2 are in the form of brushes, respectively, at the winding end opposite to the winding end of the primary winding N1 to which the main current path is connected, It is connected via a resistor R1 or a resistor R2. Z1 and Z2 connected between the respective gates and the ground are constant voltage diodes for protecting the first switching element Q1 and the second switching element Q2.

上記のような構成とした回路において、入力端子1に外部より入力電圧Vinを供給すると、マルチバイブレータのごとく、第1のスイッチング素子Q1と第2のスイッチング素子Q2のどちらか一方が導通する。例えば、第1のスイッチング素子Q1が先に導通したと仮定する。第1のスイッチング素子Q1が導通したことにより1次巻線N1に電流が流れ、1次巻線N1には電圧が誘導される。この時に誘導された電圧は帰還電圧として第1、第2のスイッチング素子Q1、Q2のゲートに印加される。すると第1のスイッチング素子Q1には順方向バイアスが、第2のスイッチング素子Q2には逆バイアスがそれぞれ与えられ、第1のスイッチング素子Q1はオン状態、第2のスイッチング素子Q2はオフ状態となる。また、この時に誘導された電圧は、共振コンデンサCoと1次巻線N1が形成する共振回路に共振現象を生じさせる。   In the circuit configured as described above, when the input voltage Vin is supplied to the input terminal 1 from the outside, either the first switching element Q1 or the second switching element Q2 conducts like a multivibrator. For example, it is assumed that the first switching element Q1 is turned on first. Since the first switching element Q1 is turned on, a current flows through the primary winding N1, and a voltage is induced in the primary winding N1. The voltage induced at this time is applied as a feedback voltage to the gates of the first and second switching elements Q1 and Q2. Then, a forward bias is applied to the first switching element Q1, and a reverse bias is applied to the second switching element Q2, so that the first switching element Q1 is turned on and the second switching element Q2 is turned off. . The voltage induced at this time causes a resonance phenomenon in the resonance circuit formed by the resonance capacitor Co and the primary winding N1.

共振現象が生じることにより、1次巻線N1の端子間に現れる電圧(共振電圧)は正弦波状に変化する。この1次巻線N1の端子間に現れた共振電圧の変化に応じて、第1、第2のスイッチング素子Q1、Q2は交互にオン状態あるいはオフ状態となり、以後、継続して自励発振動作を行うことになる。
以上に述べたような回路構成を有し、かつ、自励発振動作を行う電源回路では、第1、第2のスイッチング素子Q1、Q2に直接、1次巻線N1に現れた共振電圧を供給し、駆動用の帰還電圧としている。このため回路素子数が少なくて済み、小型で高効率の電源回路が得られる。
When the resonance phenomenon occurs, the voltage (resonance voltage) appearing between the terminals of the primary winding N1 changes in a sine wave shape. The first and second switching elements Q1 and Q2 are alternately turned on or off in accordance with the change in the resonance voltage appearing between the terminals of the primary winding N1, and thereafter, the self-oscillation operation continues. Will do.
In the power supply circuit having the circuit configuration as described above and performing the self-excited oscillation operation, the resonance voltage appearing in the primary winding N1 is directly supplied to the first and second switching elements Q1 and Q2. The feedback voltage for driving is used. Therefore, the number of circuit elements can be reduced, and a small and highly efficient power supply circuit can be obtained.

しかし、実際に図2に示す構成の電源回路を製作する場合に、以下のような問題点が存在する。
MOSFETのゲー・トソース間耐電圧VGSを超える共振電圧を得ることができず、入力電圧VinはMOSFETのゲート・ソース間耐電圧VGSに制限される。すなわち、MOSFETのゲート・ソース間耐電圧VGSは一般的には20V以下であり、実用的には10V以下と小さい。また、MOSFETのゲート・ソース間耐電圧VGS制限のため、回路負荷(回路の作動Q)を高くとれず歪率を下げることができない。
また、第1、第2のスイッチング素子Q1、Q2は共振電圧によって直接駆動されているが、各スイッチング素子のゲートに印加される駆動電圧は、負荷状態が変化した時、特に負荷側短絡等の異常時には、共振電圧の変化に伴って大きく変化することがある。そこで図2の回路では、第1、第2のスイッチング素子Q1、Q2を保護するために定電圧ダイオードZ1、Z2を用いているが、この保護対策のために電源回路のコストが上昇してしまう。
However, the following problems exist when the power supply circuit having the configuration shown in FIG. 2 is actually manufactured.
Can not be obtained a resonance voltage exceeding the gate-Tososu Withstand voltage V GS of the MOSFET, the input voltage Vin is limited to withstand the voltage V GS between the MOSFET gate and source of. That is, the gate-source withstand voltage V GS of the MOSFET is generally 20 V or less, and practically as small as 10 V or less. Further, because of the limitation on the gate-source withstand voltage V GS of the MOSFET, the circuit load (circuit operation Q) cannot be increased, and the distortion rate cannot be lowered.
In addition, the first and second switching elements Q1 and Q2 are directly driven by the resonance voltage, but the driving voltage applied to the gate of each switching element is not limited to the load side short circuit or the like when the load state changes. At the time of abnormality, it may change greatly with the change of the resonance voltage. Therefore, in the circuit of FIG. 2, constant voltage diodes Z1 and Z2 are used to protect the first and second switching elements Q1 and Q2, but the cost of the power supply circuit increases due to this protection measure. .

このような問題に対して本願発明者は、特許文献1において、共振コンデンサを複数個のコンデンサ素子(C1、C2、C3)の直列回路で構成し、各スイッチング素子の制御端子に所定のコンデンサ同士の接続点を接続した回路(図3−(a))を提案している。また、特許文献2において、共振コンデンサを複数個のコンデンサ素子(C1、C2、C3、C4)の直列回路で構成し、共振容量部の所定位置をアースに接続し、各スイッチング素子に供給する帰還電圧を共振容量の一部のコンデンサを介して制御端子に接続した回路(図3−(b))を提案している。
このように特許文献1と特許文献2は、いずれも共振コンデンサを複数個直列にすることによって、共振作用と分圧作用を兼ね備え、共振コンデンサで分圧された電圧をMOSFETのゲートソース間に印可しようとするものである。
In order to solve such a problem, the inventor of the present application disclosed in Patent Document 1 that a resonant capacitor is constituted by a series circuit of a plurality of capacitor elements (C1, C2, C3), and predetermined capacitors are connected to the control terminal of each switching element. The circuit (FIG. 3- (a)) which connected these connection points is proposed. Further, in Patent Document 2, the resonance capacitor is configured by a series circuit of a plurality of capacitor elements (C1, C2, C3, C4), and a predetermined position of the resonance capacitor portion is connected to the ground, and feedback is supplied to each switching element. The circuit (FIG. 3- (b)) which connected the voltage to the control terminal through the capacitor | condenser of a part of resonance capacity is proposed.
As described above, Patent Document 1 and Patent Document 2 both have a resonance action and a voltage dividing action by connecting a plurality of resonance capacitors in series, and a voltage divided by the resonance capacitor is applied between the gate and source of the MOSFET. It is something to try.

特開平11−164563号公報JP 11-164563 A 特開平11−252940号公報Japanese Patent Laid-Open No. 11-252940

しかしながら、コイルとコンデンサが並列に接続され、かつ、共振した状態においては、その両端、つまり、コイルと複数のコンデンサの接続点の一端ともう一方のコイルとコンデンサの接続点間の電圧、電流は位相差ゼロであり、個別にコイルあるいはコンデンサをみればコイル、コンデンサの接続点間比でコンデンサ側の位相は90度進み、コイル側は90度遅れ位相である。
ところで、発振作用は一般に、入力信号と同相の出力信号をフィードバックすることによって生ずるが、前記した複数のコンデンサを直列にした共振コンデンサから分圧された電圧は、この条件に合致せず、安定な発振を継続させることは難しく、不安定さから免れられない。
そこで本発明は、上記問題点を解決するもので、設計自由度の高い、自励発振動作が安定して行われる共振型スイッチング電源を提供することを目的とする。
However, when the coil and the capacitor are connected in parallel and resonated, the voltage and current between both ends, that is, one end of the connection point between the coil and the plurality of capacitors and the connection point between the other coil and the capacitor are The phase difference is zero, and if the coil or capacitor is viewed individually, the phase on the capacitor side is advanced by 90 degrees and the phase on the coil side is delayed by 90 degrees according to the ratio between the connection points of the coil and capacitor.
By the way, the oscillation action is generally caused by feeding back an output signal having the same phase as the input signal. However, the voltage divided from the resonance capacitor having a plurality of capacitors in series does not meet this condition and is stable. It is difficult to continue oscillation and it is inevitable from instability.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a resonant switching power supply that solves the above-described problems and has a high degree of design freedom and that can stably perform a self-excited oscillation operation.

上記課題を解決するために、本発明の共振型スイッチング電源は、トランスの1次巻線に共振コンデンサを並列に接続し、1次巻線の巻線端にそれぞれ第1のスイッチング素子と第2のスイッチング素子を接続し、2つのスイッチング素子の主電流路の共通接続点と1次巻線の所定の巻線位置との間に直流電流が供給され、自励発振動作により得られた交流出力を負荷に供給する共振型スイッチング電源において、第1のスイッチング素子と第2のスイッチング素子の制御端子はそれぞれ印加電圧を分圧する第1のコンデンサまたは第2のコンデンサを介して反対側のスイッチング素子の主電流路の1次巻線の巻線端側に接続し、第1のスイッチング素子と第2のスイッチング素子の各制御端子と2つのスイッチング素子の主電流路の共通接続点にそれぞれ印加電圧を分圧する第3のコンデンサまたは第4のコンデンサを接続したことを特徴とする。   In order to solve the above-described problem, a resonant switching power supply according to the present invention has a resonance capacitor connected in parallel to a primary winding of a transformer, and a first switching element and a second switching coil are respectively connected to winding ends of the primary winding. Switching elements are connected, a direct current is supplied between a common connection point of the main current paths of the two switching elements and a predetermined winding position of the primary winding, and an AC output obtained by a self-excited oscillation operation In the resonance type switching power supply that supplies the load to the load, the control terminals of the first switching element and the second switching element are respectively connected to the switching element on the opposite side via the first capacitor or the second capacitor that divides the applied voltage. Connected to the winding end side of the primary winding of the main current path, the common connection of the control terminals of the first switching element and the second switching element and the main current path of the two switching elements Characterized in that connecting the third capacitor or fourth capacitor for dividing each voltage applied to the point.

本発明の共振型スイッチング電源は、発振のためのフィードバック信号を共振コンデンサの両端から得ることによって安定した自励発振動作を維持させると共に、複数のコンデンサによる分圧作用によってスイッチング素子の破壊を阻止することができる。また、複数のコンデンサによる分圧作用によって、スイッチング素子のゲー・トソース間電圧印加電圧を同端子間耐電圧VGS(Max)以下の任意の電圧を印可できるため、従来の欠点であったゲー・トソース間電圧印加電圧が同端子間耐電圧VGS(Max)によって制限されることがなくなり、入力電圧が高くても設計可能となる。また、同理由により、回路負荷(回路の作動Q)の設定可能範囲が広くなり、設計自由度が広くなると共に歪率を下げることができる。 The resonant switching power supply of the present invention maintains a stable self-excited oscillation operation by obtaining a feedback signal for oscillation from both ends of the resonance capacitor, and prevents the switching element from being destroyed by a voltage dividing action by a plurality of capacitors. be able to. In addition, since the voltage applied between the gate and the source of the switching element can be applied with an arbitrary voltage equal to or lower than the withstand voltage V GS (Max) between the terminals by the voltage dividing action by the plurality of capacitors, The source-to-source voltage application voltage is not limited by the inter-terminal withstand voltage V GS (Max), and design is possible even when the input voltage is high. For the same reason, the settable range of the circuit load (circuit operation Q) is widened, the degree of design freedom is widened, and the distortion rate can be lowered.

図1に本発明の共振型スイッチング電源の一実施例を示す。   FIG. 1 shows an embodiment of a resonant switching power supply according to the present invention.

本発明は図2の自励共振型電源回路における各スイッチング素子の制御端子にそれぞれ印加電圧を分圧するコンデンサを接続し、2次側巻線に中間タップを設け、全波整流回路を付加したもので、図2の従来例と対応する部分には同一符号を付し、重複する説明は省略する。   In the present invention, a capacitor for dividing the applied voltage is connected to the control terminal of each switching element in the self-excited resonant power supply circuit of FIG. 2, an intermediate tap is provided on the secondary winding, and a full-wave rectifier circuit is added. Thus, parts corresponding to those of the conventional example in FIG.

図1において、入力端子1はチョークコイルL1を介してトランスTの1次巻線N1の中間タップに接続されている。1次巻線N1の端子間には共振用容量として共振用コンデンサCoが接続され、さらに1次巻線N1の両端はそれぞれ、電界効果型スイッチング素子よりなる第1のスイッチング素子Q1と第2のスイッチング素子Q2の主電流路を介して抵抗R3からアースに接続されている。
ここで、チョークコイルL1は回路の突入電流の防止用であり、抵抗R3は回路の突入電流を防止するとともに、第1、第2のスイッチング素子Q1、Q2の作動点(自己バイアス法)を設定するためのものであり、仕様によっては省略してもよい。
In FIG. 1, an input terminal 1 is connected to an intermediate tap of a primary winding N1 of a transformer T via a choke coil L1. A resonance capacitor Co is connected as a resonance capacitor between the terminals of the primary winding N1, and both ends of the primary winding N1 are respectively connected to a first switching element Q1 and a second switching element made of a field effect switching element. The resistor R3 is connected to the ground via the main current path of the switching element Q2.
Here, the choke coil L1 is for preventing the inrush current of the circuit, and the resistor R3 prevents the inrush current of the circuit and sets the operating points (self-bias method) of the first and second switching elements Q1, Q2. This may be omitted depending on the specification.

第1、第2のスイッチング素子Q1、Q2のゲートは、それぞれたすきがけの形で、自らの主電流路が接続された1次巻線N1の巻線端とは反対側の巻線端に、抵抗R1、第1のコンデンサC1、ダイオードD3の並列回路、あるいは、抵抗R2、第2のコンデンサC2、ダイオードD4の並列回路を介して接続されている。また、第1、第2のスイッチング素子Q1、Q2の各ゲートソース間に第3、第4のコンデンサC3、C4が接続されている。
ここで、抵抗R1、R2は第1、第2のスイッチング素子Q1、Q2の起動用であり、第1、第3のコンデンサC1、C3あるいは第2、第4のコンデンサC2、C4はスイッチング素子保護用分圧コンデンサである。ダイオードD3D4はスイッチング素子Q1、Q2のスイッチングオンオフ移行時のスピードアップ用であり、これを用いることにより、電力変換効率が1〜3%程度改善することが確認されている。仕様によっては省略してもよい。
The gates of the first and second switching elements Q1, Q2 are in the form of brushes, respectively, at the winding end opposite to the winding end of the primary winding N1 to which the main current path is connected, The resistor R1, the first capacitor C1, and the diode D3 are connected in parallel, or the resistor R2, the second capacitor C2, and the diode D4 are connected in parallel. Also, third and fourth capacitors C3 and C4 are connected between the gate sources of the first and second switching elements Q1 and Q2.
Here, the resistors R1 and R2 are for starting the first and second switching elements Q1 and Q2, and the first and third capacitors C1 and C3 or the second and fourth capacitors C2 and C4 are switching element protections. This is a voltage divider capacitor. The diodes D3 and D4 are used for speeding up the switching on / off switching of the switching elements Q1 and Q2, and it has been confirmed that the power conversion efficiency is improved by about 1 to 3%. May be omitted depending on the specifications.

そして、トランスTの2次巻線N2の両端には全波整流用のダイオードD1、D2と平滑用コンデンサC5が接続され出力端子2に接続されている。そして、2次巻線N2の中間タップはアースに接続されている。   Then, full-wave rectifying diodes D1 and D2 and a smoothing capacitor C5 are connected to both ends of the secondary winding N2 of the transformer T and connected to the output terminal 2. The intermediate tap of the secondary winding N2 is connected to the ground.

上記のような構成とした回路において、入力端子1に外部より入力電圧Vinを供給すると、マルチバイブレータのごとく、第1、第2のスイッチング素子Q1、Q2のどちらか一方が導通する。例えば、第1のスイッチング素子Q1が先に導通したと仮定する。スイッチング素子Q1が導通したことにより1次巻線N1に電流が流れ、1次巻線N1には電圧が誘導される。この時に誘導された電圧は帰還電圧として第1、第2のスイッチング素子Q1、Q2のゲートに印加される。すると第1のスイッチング素子Q1には順方向バイアスが、第2のスイッチング素子Q2には逆バイアスがそれぞれ与えられ、第1のスイッチング素子Q1はオン状態、第2のスイッチング素子Q2はオフ状態となる。また、この時に誘導された電圧は、共振用コンデンサCoと1次巻線N1が形成する共振回路に共振現象を生じさせる。   In the circuit configured as described above, when the input voltage Vin is supplied to the input terminal 1 from the outside, one of the first and second switching elements Q1 and Q2 conducts like a multivibrator. For example, it is assumed that the first switching element Q1 is turned on first. When the switching element Q1 becomes conductive, a current flows through the primary winding N1, and a voltage is induced in the primary winding N1. The voltage induced at this time is applied as a feedback voltage to the gates of the first and second switching elements Q1 and Q2. Then, a forward bias is applied to the first switching element Q1, and a reverse bias is applied to the second switching element Q2, so that the first switching element Q1 is turned on and the second switching element Q2 is turned off. . The voltage induced at this time causes a resonance phenomenon in the resonance circuit formed by the resonance capacitor Co and the primary winding N1.

共振現象が生じることにより、1次巻線N1の端子間に現れる電圧(共振電圧)は正弦波状に変化する。この1次巻線N1の端子間に現れた共振電圧の変化に応じて、第1、第2のスイッチング素子Q1、Q2は交互にオン状態あるいはオフ状態となり、以後、継続して自励発振動作を行うことになる。そして、2次巻線N2に現れた交流電圧を整流平滑して出力端子2に直流電圧Voを出力するものである。   When the resonance phenomenon occurs, the voltage (resonance voltage) appearing between the terminals of the primary winding N1 changes in a sine wave shape. The first and second switching elements Q1 and Q2 are alternately turned on or off in accordance with the change in the resonance voltage appearing between the terminals of the primary winding N1, and thereafter, the self-oscillation operation continues. Will do. Then, the AC voltage appearing in the secondary winding N2 is rectified and smoothed, and the DC voltage Vo is output to the output terminal 2.

本発明は、共振コンデンサCoによって安定した自励発振動作を維持させると共に、第1、第2のスイッチング素子Q1、Q2のゲート・ソース間に加わる電圧を第1、第3のコンデンサC1、C3あるいは第2、第4のコンデンサC2、C4のインピーダンス(リアクタンス)に応じて分圧し、ゲート・ソース間電圧が第1、第2のスイッチング素子Q1、Q2の端子間耐電圧VGS(Max)以下の任意の電圧を印可することができるため、ゲート・ソース間電圧がVGS(Max)によって制限されることがなくなり、入力電圧Vinが高くても設計が可能となる。そして、その理由によって、回路負荷(回路の作動Q)の設定可能範囲が広くなり、歪率を下げることができ、高調波を低減するとともに設計自由度を増すことができる。 In the present invention, a stable self-oscillation operation is maintained by the resonant capacitor Co, and the voltage applied between the gate and source of the first and second switching elements Q1, Q2 is applied to the first, third capacitors C1, C3 or The voltage is divided according to the impedance (reactance) of the second and fourth capacitors C2 and C4, and the gate-source voltage is less than or equal to the withstand voltage V GS (Max) between the terminals of the first and second switching elements Q1 and Q2. Since an arbitrary voltage can be applied, the gate-source voltage is not limited by V GS (Max), and design is possible even when the input voltage Vin is high. For that reason, the settable range of the circuit load (circuit operation Q) is widened, the distortion can be lowered, the harmonics can be reduced, and the degree of freedom in design can be increased.

上記の実施例では、入出力を非絶縁としたが、絶縁型としてもよい。第3、第4のコンデンサC3、C4の一端は各々スイッチング素子Q1、Q2のソースに接続されているが、各々アースに接続してもよい。また、第3、第4のコンデンサC3、C4はスイッチング素子Q1、Q2に寄生するゲート入力容量で代用してもよい。   In the above embodiment, the input / output is not insulated, but may be an insulated type. One ends of the third and fourth capacitors C3 and C4 are connected to the sources of the switching elements Q1 and Q2, respectively, but may be connected to the ground. The third and fourth capacitors C3 and C4 may be replaced with gate input capacitances that are parasitic on the switching elements Q1 and Q2.

本発明による共振型スイッチング電源の実施例の回路図The circuit diagram of the Example of the resonant type switching power supply by this invention 従来のロイヤー回路Conventional Royer circuit 従来のロイヤー回路を改善した主要回路図(a,b)Main circuit diagram (a, b) with improved conventional Royer circuit

符号の説明Explanation of symbols

1 入力端子
2 出力端子
Q1、Q2 スイッチング素子
Co、C1、C2、C3、C4、C5 コンデンサ
D1、D2、D3、D4 ダイオード
R1、R2、R3 抵抗
L1 チョークコイル
T トランス
1 Input terminal 2 Output terminal Q1, Q2 Switching elements Co, C1, C2, C3, C4, C5 Capacitors D1, D2, D3, D4 Diodes R1, R2, R3 Resistor L1 Choke coil T Transformer

Claims (2)

トランスの1次巻線に共振コンデンサを並列に接続し、1次巻線の巻線端にそれぞれ第1のスイッチング素子と第2のスイッチング素子を接続し、2つのスイッチング素子の主電流路の共通接続点と1次巻線の所定の巻線位置との間に直流電流が供給され、自励発振動作により得られた交流出力を負荷に供給する共振型スイッチング電源において、
第1のスイッチング素子と第2のスイッチング素子の制御端子はそれぞれ印加電圧を分圧する第1のコンデンサまたは第2のコンデンサを介して反対側のスイッチング素子の主電流路の1次巻線の巻線端側に接続し、該第1のコンデンサまたは該第2のコンデンサと並列に抵抗とダイオードの並列回路を接続し、第1のスイッチング素子と第2のスイッチング素子の各制御端子と2つのスイッチング素子の主電流路の共通接続点にそれぞれ印加電圧を分圧する第3のコンデンサまたは第4のコンデンサを接続したことを特徴とする共振型スイッチング電源。
A resonance capacitor is connected in parallel to the primary winding of the transformer, and a first switching element and a second switching element are connected to the winding ends of the primary winding, respectively. In a resonant switching power supply in which a direct current is supplied between a connection point and a predetermined winding position of a primary winding and an alternating current output obtained by a self-excited oscillation operation is supplied to a load.
The control terminals of the first switching element and the second switching element are respectively wound with the primary winding of the main current path of the opposite switching element via the first capacitor or the second capacitor that divides the applied voltage. Connected to the end side, a parallel circuit of a resistor and a diode is connected in parallel with the first capacitor or the second capacitor , each control terminal of the first switching element and the second switching element, and two switching elements A resonance type switching power supply characterized in that a third capacitor or a fourth capacitor for dividing an applied voltage is connected to a common connection point of the main current path.
前記スイッチング素子はMOSFETを用いたことを特徴とする請求項1記載の共振型ス
イッチング電源。
The resonant switching power supply according to claim 1, wherein the switching element is a MOSFET.
JP2006235123A 2006-08-31 2006-08-31 Resonant switching power supply Expired - Fee Related JP4579882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235123A JP4579882B2 (en) 2006-08-31 2006-08-31 Resonant switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235123A JP4579882B2 (en) 2006-08-31 2006-08-31 Resonant switching power supply

Publications (2)

Publication Number Publication Date
JP2008061369A JP2008061369A (en) 2008-03-13
JP4579882B2 true JP4579882B2 (en) 2010-11-10

Family

ID=39243503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235123A Expired - Fee Related JP4579882B2 (en) 2006-08-31 2006-08-31 Resonant switching power supply

Country Status (1)

Country Link
JP (1) JP4579882B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070973A (en) * 1983-09-26 1985-04-22 Oki Electric Ind Co Ltd Dc/dc converter
JPH03207275A (en) * 1990-01-09 1991-09-10 Kijima:Kk Push-pull inverter
JPH11164563A (en) * 1997-11-29 1999-06-18 Toko Inc Self-excited resonance type power supply
JPH11252940A (en) * 1998-02-27 1999-09-17 Toko Inc Self-excited resonance power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070973A (en) * 1983-09-26 1985-04-22 Oki Electric Ind Co Ltd Dc/dc converter
JPH03207275A (en) * 1990-01-09 1991-09-10 Kijima:Kk Push-pull inverter
JPH11164563A (en) * 1997-11-29 1999-06-18 Toko Inc Self-excited resonance type power supply
JPH11252940A (en) * 1998-02-27 1999-09-17 Toko Inc Self-excited resonance power supply

Also Published As

Publication number Publication date
JP2008061369A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5699470B2 (en) Switching power supply
EP1609235B1 (en) Phase-shifted resonant converter having reduced output ripple
JP4320787B2 (en) Switching power supply
US7242595B2 (en) Switching power supply circuit
JP3337009B2 (en) Switching power supply
US10505462B2 (en) Power converter
JP6424982B2 (en) DC-DC converter
US6839245B2 (en) Switching power supply circuit
JPWO2005074113A1 (en) Switching power supply
US9989564B2 (en) Lossless over-current detection circuit for Royer oscillators and push-pull converters
WO2004015849A1 (en) Switching power supply circuit
JP6459599B2 (en) Switching power supply
JP4563359B2 (en) Self-excited resonant switching power supply
JP4579882B2 (en) Resonant switching power supply
JP2010074895A (en) Power supply device
KR100909008B1 (en) Self-supporting inverter drive circuit
JP2002262568A (en) Switching power circuit
JP4635584B2 (en) Switching power supply
JP2016167968A (en) Power conversion device
US20090116264A1 (en) Power supply circuit with voltage converting circuits and control method therefor
JP6706791B2 (en) Power supply circuit
JP4453900B2 (en) Switching power supply
JP6485366B2 (en) Phase shift type full bridge type power supply circuit
JP7386737B2 (en) Rectifier circuit and switching power supply using the same
US20240072674A1 (en) Isolated power converter having a voltage supply circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees