JP4578324B2 - Method for producing porous ceramic molded body - Google Patents

Method for producing porous ceramic molded body Download PDF

Info

Publication number
JP4578324B2
JP4578324B2 JP2005157158A JP2005157158A JP4578324B2 JP 4578324 B2 JP4578324 B2 JP 4578324B2 JP 2005157158 A JP2005157158 A JP 2005157158A JP 2005157158 A JP2005157158 A JP 2005157158A JP 4578324 B2 JP4578324 B2 JP 4578324B2
Authority
JP
Japan
Prior art keywords
molded body
rod
fibers
ceramic
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005157158A
Other languages
Japanese (ja)
Other versions
JP2006327913A (en
Inventor
正 大塚
秀尚 鈴木
弘輝 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP2005157158A priority Critical patent/JP4578324B2/en
Publication of JP2006327913A publication Critical patent/JP2006327913A/en
Application granted granted Critical
Publication of JP4578324B2 publication Critical patent/JP4578324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、多孔質セラミック成形体に関するものであり、特に一方向に且つ直線的に配列した細孔を有する多孔質セラミック成形体及びその製造方法に関するものである。   The present invention relates to a porous ceramic molded body, and more particularly to a porous ceramic molded body having pores arranged in one direction and linearly, and a method for manufacturing the same.

セラミックは耐熱性や耐薬品性などに優れているため、近年では、各種のフィルター材料や触媒担体材料などとして、セラミック基体中に多数の細孔を有する多孔質セラミック成形体が広く利用されている。   Since ceramics are excellent in heat resistance and chemical resistance, in recent years, porous ceramic molded bodies having a large number of pores in a ceramic substrate are widely used as various filter materials and catalyst support materials. .

例えば、特開2002−45627号公報には、アルミナ繊維を無機バインダーで結合した集塵フィルターが記載されている。また、特開2004−299993号公報には、炭素繊維とバインダーを含むプリフォームにSiを含浸させ、大気中で加熱して炭素繊維を消失させることにより細孔を形成した、多孔質の金属セラミック複合材料が開示されている。この種の従来の多孔質セラミック成形体では、セラミック基体中に3次元構造の細孔が形成されている。   For example, Japanese Patent Application Laid-Open No. 2002-45627 describes a dust collection filter in which alumina fibers are bonded with an inorganic binder. Japanese Patent Application Laid-Open No. 2004-299993 discloses a porous metal ceramic in which pores are formed by impregnating Si into a preform containing carbon fibers and a binder and heating the air in the air to eliminate the carbon fibers. A composite material is disclosed. In this type of conventional porous ceramic molded body, pores having a three-dimensional structure are formed in the ceramic substrate.

一方、最近では環境保護の高まりから、自動車排ガスの処理や水浄化処理に多孔質セラミックのフィルターが使用され、特にディーゼルエンジンからの排ガスの浄化装置として期待されている。これらの用途においては、従来のフィルターのような細孔の数の多さよりも、細孔が一方向に貫通していること、及び細孔の孔径が10μm以下で且つ一定していることが重要とされている。   On the other hand, recently, due to the increase in environmental protection, porous ceramic filters are used for automobile exhaust gas treatment and water purification treatment, and are expected especially as exhaust gas purification devices from diesel engines. In these applications, it is important that the pores penetrate in one direction and that the pore diameter is 10 μm or less and constant, rather than the large number of pores as in conventional filters. It is said that.

このような用途に適した多孔質セラミックとして、特開平11−139887号公報には、棒状の複数のセラミック成形体を一方向に集積した後、圧縮成形することにより、セラミック成形体相互間の間隙に由来する一方向の貫通孔を有する前駆体を形成し、これを焼結する方法が開示されている。しかしながら、この方法で形成される細孔は、一方向に貫通しているものの、孔径の制御が難しく、実際に製造可能な細孔の孔径は数10μmまでであった。   As a porous ceramic suitable for such an application, Japanese Patent Application Laid-Open No. 11-13987 discloses a method of accumulating a plurality of rod-shaped ceramic molded bodies in one direction and then compressing them to form a gap between the ceramic molded bodies. A method is disclosed in which a precursor having a unidirectional through hole derived from is formed and sintered. However, although the pores formed by this method penetrate in one direction, it is difficult to control the pore diameter, and the pore diameter of the pores that can actually be manufactured is up to several tens of μm.

特開2002−45627号公報JP 2002-45627 A 特開2004−299993号公報JP 2004-299993 A 特開平11−139887号公報Japanese Patent Application Laid-Open No. 11-13987

本発明は、孔径が10μm以下で且つ一定していて、一方向に貫通した多数の細孔を有し、フィルターなどとして好適な多孔質セラミック成形体、及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a porous ceramic molded body having a pore diameter of 10 μm or less and constant, having a large number of pores penetrating in one direction, and suitable as a filter, and a method for producing the same. To do.

上記目的を達成するため、本発明が提供する多孔質セラミック成形体は、セラミック基体中を一端から他端まで一方向に且つ直線的に貫通した複数のストロー状細孔を有し、それらのストロー状細孔の孔径がほぼ同一で且つ10μm以下であることを特徴とするものである。この本発明の多孔質セラミック成形体においては、気孔率が20〜90%であることが好ましい。   In order to achieve the above object, a porous ceramic molded body provided by the present invention has a plurality of straw-shaped pores that penetrate linearly in one direction from one end to the other end in a ceramic substrate. The pore diameters of the fine pores are substantially the same and 10 μm or less. In the porous ceramic molded body of the present invention, the porosity is preferably 20 to 90%.

本発明が提供する多孔質セラミック成形体の第1の製造方法は、セラミック粉末、所定の長さと直径を有する有機繊維又は炭素繊維、及び有機バインダーを混練する工程A1と、混練物を引伸ばして繊維を一方向に配向させる工程B1と、得られた細棒状体を軸方向を揃え複数集積して成形する工程C1と、得られた棒状成形体を仮焼して有機バインダーを除去すると同時に繊維を燃焼消失させる工程D1と、繊維を消失させた棒状成形体を焼成してセラミックを焼結する工程E1と、得られた棒状焼結体を使用した繊維の長さ以下に切断する工程F1とを含むことを特徴とする。   The first method for producing a porous ceramic molded body provided by the present invention includes a step A1 of kneading ceramic powder, organic fibers or carbon fibers having a predetermined length and diameter, and an organic binder, and stretching the kneaded product. A process B1 for orienting the fibers in one direction, a process C1 for aligning and forming a plurality of the obtained thin rod-shaped bodies aligned in the axial direction, and simultaneously removing the organic binder by calcining the obtained rod-shaped molded bodies and the fibers A step D1 for burning and disappearing, a step E1 for firing the rod-shaped compact from which the fibers have been disappeared and sintering the ceramic, and a step F1 for cutting the resulting rod-shaped sintered body to the length of the fiber or less. It is characterized by including.

また、本発明による多孔質セラミック成形体の第2の製造方法は、セラミック粉末、所定の長さと直径を有し且つ酸で溶解するガラス繊維又は有機繊維、及び有機バインダーを混練する工程A2と、混練物を引伸ばして繊維を一方向に配向させる工程B2と、得られた細棒状体を軸方向を揃え複数集積して成形する工程C2と、得られた棒状成形体を仮焼して有機バインダーを除去する工程D2と、仮焼した棒状成形体を使用した繊維の長さ以下に切断する工程F2と、切断した棒状成形体中の繊維を酸で溶解除去する工程G2と、繊維を消失させた棒状成形体を焼成してセラミックを焼結する工程E2とを含むことを特徴とする。   Further, the second production method of the porous ceramic molded body according to the present invention includes a step A2 of kneading ceramic powder, glass fiber or organic fiber having a predetermined length and diameter and dissolved with an acid, and an organic binder, Step B2 for stretching the kneaded material and orienting the fibers in one direction; Step C2 for aligning and forming a plurality of the obtained thin rod-like bodies in the axial direction; and calcining the obtained rod-like shaped body by organic firing Step D2 for removing the binder, Step F2 for cutting to less than the length of the fiber using the calcined rod-shaped body, Step G2 for dissolving and removing the fiber in the cut rod-shaped body with acid, and disappearance of the fiber And a step E2 of firing the rod-shaped formed body and sintering the ceramic.

また、本発明による多孔質セラミック成形体の第3の製造方法は、セラミック粉末、所定の長さと直径を有するガラス繊維、及び有機バインダーを混練する工程A3と、混練物を引伸ばして繊維を一方向に配向させる工程B3と、得られた細棒状体を軸方向を揃え複数集積して成形する工程C3と、得られた棒状成形体を焼成して繊維を該成形体のセラミック粉末粒子間に溶融含浸させると同時にセラミックを焼結する工程E3と、得られた棒状焼結体を使用した繊維の長さ以下に切断する工程F3とを含むことを特徴とする。   A third method for producing a porous ceramic molded body according to the present invention includes a step A3 of kneading ceramic powder, glass fibers having a predetermined length and diameter, and an organic binder, and stretching the kneaded product to combine the fibers. Step B3 for orienting in a direction, Step C3 for aligning and forming a plurality of the obtained thin rod-like bodies in the axial direction, and firing the obtained rod-like shaped body to make fibers between the ceramic powder particles of the shaped body It includes a step E3 of sintering the ceramic simultaneously with the melt impregnation, and a step F3 of cutting the obtained rod-shaped sintered body to a length of fiber or less.

上記本発明による多孔質セラミック成形体の第1、第2、及び第3の製造方法では、前記各工程B1、B2、又はB3において、引伸ばした混練物を切断し、切断物を軸方向を揃えて複数集積した後、これを引伸ばす操作を複数回繰り返すことが好ましい。   In the first, second, and third manufacturing methods of the porous ceramic molded body according to the present invention, the stretched kneaded product is cut in each of the steps B1, B2, or B3, and the cut product is axially cut. It is preferable to repeat the operation of stretching a plurality of times after aligning and accumulating a plurality of times.

本発明によれば、一方向に配向させた所定の直径を有する繊維を消失させて細孔を形成するため、一方向に貫通したストロー状の細孔であって、孔径が10μm以下で且つ一定している多数の細孔を備えた多孔質セラミック成形体を提供することができる。   According to the present invention, since the fibers having a predetermined diameter oriented in one direction disappear and the pores are formed, the pores are straw-like pores penetrating in one direction, and the pore diameter is 10 μm or less and constant. A porous ceramic molded body having a large number of pores can be provided.

従って、本発明の多孔質セラミック成形体は、排気ガス浄化用及び水処理用のフィルター、触媒担持体、高通気性成形体などに利用でき、特にフィルターとしたときの圧力損失が小さく且つ処理速度が速いなどの利点を有するため、ディーゼルエンジンからの排ガスの浄化装置用フィルターなどとして好適である。   Therefore, the porous ceramic molded body of the present invention can be used for exhaust gas purification and water treatment filters, catalyst carriers, highly air-permeable molded bodies, etc., and particularly when used as a filter, the pressure loss is small and the processing speed is low. Therefore, it is suitable as a filter for purifying an exhaust gas from a diesel engine.

本発明の多孔質セラミック成形体の製造方法を、有機繊維又は炭素繊維を用いる第1の方法に従って説明する。第1の方法は、セラミック粉末、繊維、有機バインダーを混練する工程A1と、混練物を引伸ばして繊維を一方向に配向させる工程B1と、得られた細棒状体を軸方向を揃え複数集積して成形する工程C1と、その棒状成形体を仮焼して脱バインダーと共に繊維を燃焼消失させる工程D1と、棒状成形体を焼成してセラミックを焼結する工程E1と、得られた棒状焼結体を使用した繊維の長さ以下に切断する工程F1とからなる。   The method for producing the porous ceramic molded body of the present invention will be described according to a first method using organic fibers or carbon fibers. The first method is a process A1 for kneading ceramic powder, fibers, and an organic binder, a process B1 for stretching the kneaded material and orienting the fibers in one direction, and a plurality of the obtained thin rods aligned in the axial direction. Forming step C1, preliminarily firing the rod-shaped compact to decombust the fibers together with the binder, step E1 firing the rod-shaped compact to sinter the ceramic, and the resulting rod-shaped firing And a step F1 of cutting to a length equal to or less than the length of the fiber using the bonded body.

まず、上記工程A1において、セラミック粉末、繊維、有機バインダーを、十分に混練する。セラミック粉末は、本発明の多孔質セラミック成形体の基体を構成するものであり、アルミナ(Al)、シリカ(SiO)、ジルコニア(ZrO)、炭化ケイ素(SiC)、ムライト、コージェライトなどの粉末から、用途に応じて適宜選択して使用することができる。 First, in the step A1, the ceramic powder, fiber, and organic binder are sufficiently kneaded. The ceramic powder constitutes the base of the porous ceramic molded body of the present invention, and is alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ), silicon carbide (SiC), mullite, cordier. From powder such as light, it can be appropriately selected and used according to the application.

セラミック粉末と混練する繊維としては、後の脱バインダーの工程Eにおいて燃焼消失し得るものであれば、制限なく使用することができる。例えば、ビニロン、レーヨン、ポリノジック、キュプラ、アセテート、トリアセテート、プロミックス、ナイロン、アラミド、ビニロン、ビニリデン、ポリ塩化ビニル、ポリエステル、アクリル、ポリエチレン、ポリプロピレン、ポリウレタン、ポリクラールなどの有機合成繊維、絹や麻などの有機天然繊維、及び炭素繊維などを使用することができる。   As the fiber to be kneaded with the ceramic powder, any fiber can be used without limitation as long as it can be burned away in the subsequent step E of debinding. For example, organic synthetic fibers such as vinylon, rayon, polynosic, cupra, acetate, triacetate, promix, nylon, aramid, vinylon, vinylidene, polyvinyl chloride, polyester, acrylic, polyethylene, polypropylene, polyurethane, polyclar, silk and hemp Organic natural fibers, carbon fibers, and the like can be used.

また、有機バインダーは、セラミック粉末と繊維を一時的に結合して所定の形状を保持するためのものであり、セラミック粉末の成形に通常使用されているものでよい。例えば、メチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール(PVA)、澱粉などを用いることができる。尚、通常の場合、有機バインダーと共に水を添加して混練する。また、混練手段は特に限定されず、例えば、真空土練機、混練機などを用いることができる。   The organic binder is for temporarily bonding the ceramic powder and the fiber to maintain a predetermined shape, and may be one that is usually used for forming the ceramic powder. For example, methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol (PVA), starch and the like can be used. In the usual case, water is added together with the organic binder and kneaded. The kneading means is not particularly limited, and for example, a vacuum kneader or a kneader can be used.

上記工程A1で得られた混練物は、次に工程B1において、引伸ばすことにより、繊維を一方向に配向させる。即ち、セラミック粉末と、繊維と、有機バインダーの混練物を引伸ばすと、繊維は引き伸ばし方向に沿うように次第に配向される。この繊維の配向を容易にするためには、繊維の長さは20mm以下が好ましく、5〜10mmが更に好ましい。また、引伸ばす長さは長いほど好ましく、例えば元の長さの1000倍以上に引伸ばすことが望ましい。   In the next step B1, the kneaded product obtained in the step A1 is stretched to orient the fibers in one direction. That is, when the kneaded material of ceramic powder, fiber, and organic binder is stretched, the fiber is gradually oriented along the stretching direction. In order to facilitate the orientation of the fibers, the length of the fibers is preferably 20 mm or less, more preferably 5 to 10 mm. Further, it is preferable that the length to be extended is as long as possible. For example, it is desirable to extend the length to 1000 times or more of the original length.

この工程B1において、混練物を簡単に且つ効率よく望ましい長さに引伸ばすためには、一旦引伸ばした混練物を切断し、その切断物を軸方向を揃えて複数集積するか、あるいは引伸ばした混練物を折り重ねて、更に引伸ばす操作を複数回繰り返すことが好ましい。この操作を複数回繰り返すことによって、混練物中のほぼ全ての繊維を規則的に一方向に確実に配向させることができる。   In this step B1, in order to easily and efficiently stretch the kneaded product to a desired length, the kneaded product once stretched is cut and a plurality of the cut products are accumulated in the axial direction or stretched. It is preferable to repeat the operation of folding and further stretching the kneaded material a plurality of times. By repeating this operation a plurality of times, almost all the fibers in the kneaded product can be regularly orientated reliably in one direction.

次の工程C1では、上記工程B1で得られた細棒状体を軸方向を揃えて複数集積し、棒状に成形する。成形の方法としては、例えば、プレス成形や、ピストン式の押出成形などを用いることができる。この工程C1によって、分散している多数の繊維が一方向に配向した棒状成形体が得られる。   In the next step C1, a plurality of the thin rod-like bodies obtained in the step B1 are accumulated in the axial direction and formed into a rod shape. As a molding method, for example, press molding, piston-type extrusion molding, or the like can be used. By this step C1, a rod-shaped molded body in which a large number of dispersed fibers are oriented in one direction is obtained.

上記工程C1で得られた棒状成形体は、次の工程D1において、通常のごとく乾燥して水分を除去した後、仮焼して有機バインダーを除去する。乾燥は急激に行うと亀裂が発生しやすいので、最初に室温で乾燥した後、更に110℃程度の温度で加熱乾燥することが好ましい。また、通常の有機バインダーを除去するための仮焼温度は1000℃程度であり、この温度は使用する有機繊維や炭素繊維の燃焼温度よりも高いので、この工程D1において、有機繊維や炭素繊維は燃焼してCOとなり、成形体の隙間から放出されて完全に消失する。その結果、繊維の消失した箇所に、ストロー状の細孔が形成される。 In the next step D1, the rod-shaped molded body obtained in the step C1 is dried as usual to remove moisture, and then calcined to remove the organic binder. Since cracking tends to occur when drying is carried out rapidly, it is preferable to dry at room temperature first and then heat-dry at a temperature of about 110 ° C. In addition, since the calcining temperature for removing the normal organic binder is about 1000 ° C., and this temperature is higher than the combustion temperature of the organic fiber or carbon fiber to be used, in this step D1, the organic fiber or carbon fiber is It burns and becomes CO 2 , which is released from the gap between the molded bodies and completely disappears. As a result, straw-like pores are formed at the locations where the fibers have disappeared.

その後、仮焼して繊維を燃焼消失させた成形体を、工程E1において、セラミックの焼結温度以上で焼成することにより焼結体とする。焼結条件は使用するセラミック粉末によって異なるが、通常は1500〜1600℃で2時間程度焼成することにより、焼結体とすることができる。   Thereafter, the molded body that has been calcined to burn and extinguish the fibers is fired at a temperature equal to or higher than the sintering temperature of the ceramic in step E1 to obtain a sintered body. Sintering conditions vary depending on the ceramic powder to be used, but usually a sintered body can be obtained by firing at 1500 to 1600 ° C. for about 2 hours.

上記工程E1で得られた棒状焼結体は、次の工程F1において、目的の製品に合わせて切断加工する。切断長さ(製品の長さ)は、セラミック基体の一端から他端まで一方向に且つ直線的に貫通した細孔を得るために、使用した繊維の長さより短いことが必要であり、更には、使用した繊維の長さの1/2以下に切断すれば貫通した細孔の確率が高くなるので好ましい。このようにして、本発明による多孔質セラミック成形体を得ることができる。   In the next step F1, the rod-like sintered body obtained in the step E1 is cut according to the target product. The cutting length (product length) needs to be shorter than the length of the fibers used in order to obtain pores that penetrate linearly in one direction from one end to the other end of the ceramic substrate, and It is preferable to cut it to ½ or less of the length of the used fiber because the probability of penetrating pores increases. In this way, the porous ceramic molded body according to the present invention can be obtained.

また、本発明の多孔質セラミック成形体の製造方法においては、上記した有機繊維や炭素繊維の外に、ガラス繊維を用いることもできる。即ち、ガラス繊維を使用して多孔質セラミック成形体を製造する方法として、本発明の第2の方法では、酸で溶解するガラス繊維又は有機繊維を使用し、これを仮焼後に酸で溶解除去して細孔を形成する。また、第3の方法では、ガラス繊維を使用し、焼成時にガラス繊維を成形体のセラミック粉末粒子間に溶融含浸させることにより細孔を形成する。   Moreover, in the manufacturing method of the porous ceramic molded body of this invention, glass fiber can also be used in addition to the above-mentioned organic fiber or carbon fiber. That is, as a method for producing a porous ceramic molded body using glass fibers, in the second method of the present invention, glass fibers or organic fibers that dissolve with acid are used, and this is dissolved and removed with acid after calcination. To form pores. In the third method, glass fibers are used, and pores are formed by melting and impregnating the glass fibers between the ceramic powder particles of the molded body during firing.

具体的に説明すると、第2及び第3の方法で棒状成形体を得るまでの工程、即ち、第2の方法の工程A2、B2及びC2、並びに第3の方法の工程A3、B3及びC3は、上記第1の方法の工程A1、B1及びC1と同じである。尚、第2の方法で用いる酸で溶解するガラス繊維としては、例えば、ホウ珪酸塩ガラスなどがある。また、酸に溶解する有機繊維としては、例えば、ナイロン、レーヨン、アセテートがあり、硫酸で溶解することができる。   Specifically, the steps until the rod-shaped molded body is obtained by the second and third methods, that is, the steps A2, B2 and C2 of the second method and the steps A3, B3 and C3 of the third method are as follows. The same as steps A1, B1 and C1 of the first method. In addition, as a glass fiber which melt | dissolves with the acid used with a 2nd method, there exist borosilicate glass etc., for example. Moreover, as an organic fiber which melt | dissolves in an acid, there exist nylon, rayon, and an acetate, for example, and it can melt | dissolve with a sulfuric acid.

上記工程A2、B2及びC2あるいは工程A3、B3及びC3を経て得られた棒状成形体は、第2の方法では、次の工程D2において、第1の方法の工程D1と同様に、乾燥して水分を除去した後、仮焼して有機バインダーを除去する。次に、工程F2において、第1の方法の工程F1と同様に、棒状成形体を繊維の長さ以下に切断する。その後、上記工程D2で消失しなかったガラス繊維を(残っていれば有機繊維も)酸で溶解除去することにより、その箇所にストロー状細孔を形成することができる。最後に、工程E2において、第1の方法の工程E1と同様に、焼成して焼結体とする。   In the second method, the rod-shaped molded body obtained through the steps A2, B2 and C2 or the steps A3, B3 and C3 is dried in the next step D2, as in the step D1 of the first method. After removing the water, the organic binder is removed by calcination. Next, in step F2, as in step F1 of the first method, the rod-shaped molded body is cut to the length of the fiber or less. Thereafter, the glass fibers that have not disappeared in the step D2 (and the organic fibers if they remain) are dissolved and removed with an acid, whereby straw-like pores can be formed at the locations. Finally, in step E2, as in step E1 of the first method, firing is performed to obtain a sintered body.

また、第3の方法では、得られた棒状成形体を、次に、第1の方法の工程E1と同様に、工程E3において焼成して焼結体とする。このとき同時に、成形体中のガラス繊維が融解して、成形体のセラミック粉末粒子の間に含浸するため、ガラス繊維が消失した箇所にストロー状細孔が形成される。その後、工程F3において、第1の方法の工程F1と同様に、棒状焼結体を繊維の長さ以下に切断することにより、多孔質セラミック成形体が得られる。   In the third method, the obtained rod-shaped molded body is then fired in step E3 to obtain a sintered body in the same manner as in step E1 of the first method. At the same time, since the glass fibers in the molded body are melted and impregnated between the ceramic powder particles of the molded body, straw-like pores are formed at the locations where the glass fibers have disappeared. Thereafter, in step F3, a porous ceramic molded body is obtained by cutting the rod-shaped sintered body to a length equal to or less than the length of the fiber in the same manner as in step F1 of the first method.

尚、セラミックの焼結温度はガラス繊維の溶融温度よりも充分に高いので、工程E3での焼成により、ガラス繊維を残らず溶融させ含浸させることが可能である。また、上記工程E3に先立って、第1の方法の工程D1と同様に、予め有機バインダーを除去するために仮焼する工程D3を設けてもよい。その場合、仮焼によりガラス繊維の一部は融解して成形体中に含浸する場合もあるが、ガラス繊維を完全に融解含浸させるためには、上記工程E3の焼成が必要である。   Since the sintering temperature of the ceramic is sufficiently higher than the melting temperature of the glass fibers, it is possible to melt and impregnate all the glass fibers by firing in the step E3. Further, prior to the step E3, a step D3 of calcination to remove the organic binder in advance may be provided in the same manner as the step D1 of the first method. In that case, a part of the glass fiber may be melted and impregnated in the molded body by calcination, but in order to completely melt and impregnate the glass fiber, the firing in the step E3 is necessary.

このようにして得られた本発明の多孔質セラミック成形体では、繊維が燃焼、溶解、溶融含浸により消失した箇所が細孔として残る。従って、セラミック基体中に形成される細孔は、セラミック基体の一端から他端まで一方向に且つ直線的に貫通したストロー状の細孔となる。また、このストロー状細孔の孔径は消失した繊維の直径にほぼ相当する(焼成時の収縮もある)から、全ての細孔が実質的に同一の孔径となる。しかも、使用する繊維の直径を変えることによりストロー状細孔の孔径を簡単に制御することができ、従来は不可能であった10μm以下の孔径のストロー状細孔を簡単に得ることができる。   In the porous ceramic molded body of the present invention thus obtained, the portions where the fibers disappeared by combustion, dissolution, and melt impregnation remain as pores. Accordingly, the pores formed in the ceramic substrate are straw-shaped pores that penetrate linearly from one end to the other end of the ceramic substrate in one direction. Further, since the pore diameter of the straw-shaped pores substantially corresponds to the diameter of the lost fiber (there is shrinkage during firing), all the pores have substantially the same pore diameter. In addition, the pore diameter of the straw-shaped pores can be easily controlled by changing the diameter of the fiber used, and the straw-shaped pores having a pore diameter of 10 μm or less, which has been impossible in the past, can be easily obtained.

また、多孔質セラミック成形体の気孔率は、特に限定されるものではないが、フィルターなどの用途においては、20〜90%であることが好ましい。   The porosity of the porous ceramic molded body is not particularly limited, but is preferably 20 to 90% in applications such as filters.

[実施例1]
平均粒径0.5μmのアルミナ粉末500gと、直径8μm×長さ3mmのビニロン繊維66.5gと、メチルセルロース2.5gを、水127.5gと混合し、三本ローラーを使用してよく混練した。得られた混練物を5等分し、それぞれ長さ40cmの棒状に引伸ばした。引伸ばした混練物を4つに切断し、4つの切断物を軸方向を揃えて複数積層し、更に40cmまで引伸ばした。この操作を5回繰り返して、細棒状体を作製した。
[Example 1]
500 g of alumina powder having an average particle size of 0.5 μm, 66.5 g of vinylon fiber having a diameter of 8 μm and a length of 3 mm, and 2.5 g of methylcellulose were mixed with 127.5 g of water and kneaded well using a three-roller. . The obtained kneaded material was divided into five equal parts and each was stretched into a rod shape having a length of 40 cm. The stretched kneaded product was cut into four pieces, and a plurality of the four cut products were aligned in the axial direction and further stretched to 40 cm. This operation was repeated 5 times to produce a thin rod-like body.

このように作製した細棒状体を軸方向を揃えて型内に複数集積し、100MPaの圧力でプレス成形した。この成形体を室温で24時間乾燥した後、110℃で更に24時間加熱乾燥した。次に、1000℃で1時間仮焼した後、1500で2時間焼成して焼結体を得た。得られた棒状の焼結体を切断加工して、両端面が1cm角で長さ1mmの多孔質アルミナ成形体を得た。   A plurality of the thin rod-like bodies thus produced were accumulated in the mold with the axial direction aligned, and press-molded at a pressure of 100 MPa. The molded body was dried at room temperature for 24 hours, and then further heated and dried at 110 ° C. for 24 hours. Next, after calcining at 1000 ° C. for 1 hour, it was fired at 1500 for 2 hours to obtain a sintered body. The obtained rod-shaped sintered body was cut and processed to obtain a porous alumina molded body having both end faces of 1 cm square and a length of 1 mm.

この多孔質アルミナ成形体は、そのアルミナ基体中の一端から他端まで一方向に且つ直線的に貫通した複数のストロー状細孔が形成されていて、そのストロー状細孔の孔径は全てがほぼ8μmであった。また、この多孔質アルミナ成形体の気孔率は、アルミナの真比重を3.9として計算したところ、30%であった。   This porous alumina molded body has a plurality of straw-shaped pores that are linearly penetrated in one direction from one end to the other end in the alumina substrate, and the diameter of the straw-shaped pores is almost all. It was 8 μm. Further, the porosity of the porous alumina molded body was 30% when calculated with the true specific gravity of alumina being 3.9.

[実施例2]
平均粒径0.5μmのアルミナ粉末500gと、直径6μm×長さ6mmのホウ珪酸塩ガラス繊維143gと、メチルセルロース2.5gを、水127.5gと混合し、三本ローラーを使用してよく混練した。得られた混練物を5等分し、それぞれ長さ40cmの棒状に引伸ばした。引伸ばした混練物を4つに切断し、4つの切断物を揃えて複数積層し、更に40cmまで引伸ばした。この操作を5回繰り返して、細棒状体を作製した。
[Example 2]
500 g of alumina powder having an average particle diameter of 0.5 μm, 143 g of borosilicate glass fiber having a diameter of 6 μm and a length of 6 mm, and 2.5 g of methylcellulose are mixed with 127.5 g of water and mixed well using a three-roller. did. The obtained kneaded material was divided into five equal parts and each was stretched into a rod shape having a length of 40 cm. The stretched kneaded product was cut into four pieces, and the four cut products were aligned and laminated, and further stretched to 40 cm. This operation was repeated 5 times to produce a thin rod-like body.

このように作製した細棒状体の軸方向を揃えて金型内に複数集積し、100MPaの圧力でプレス成形した。この成形体を室温で24時間乾燥し、更に110℃で24時間乾燥した後、750℃で2時間仮焼した。仮焼後の成形体を切断し、両端面が1cm角で長さ1mmに加工した。この切断した成形体を酸に浸漬して酸溶解ガラス繊維を溶解除去し、その後1500℃で2時間焼成することにより焼結して多孔質アルミナ成形体を得た。   A plurality of thin rod-like bodies produced in this way were aligned in the axial direction, and press-molded at a pressure of 100 MPa. The molded body was dried at room temperature for 24 hours, further dried at 110 ° C. for 24 hours, and calcined at 750 ° C. for 2 hours. The molded body after calcination was cut, and both end faces were processed into 1 cm square and 1 mm length. The cut molded body was immersed in an acid to dissolve and remove the acid-dissolved glass fiber, and then sintered by firing at 1500 ° C. for 2 hours to obtain a porous alumina molded body.

この多孔質アルミナ成形体は、そのアルミナ基体中の一端から他端まで一方向に且つ直線的に貫通した複数のストロー状細孔が形成されていて、そのストロー状細孔の孔径は全てがほぼ6μmであった。また、この多孔質アルミナ成形体の気孔率は、アルミナの真比重を3.9として計算したところ30%であった。   This porous alumina molded body has a plurality of straw-shaped pores that are linearly penetrated in one direction from one end to the other end in the alumina substrate, and the diameter of the straw-shaped pores is almost all. It was 6 μm. Further, the porosity of the porous alumina molded body was 30% when calculated with the true specific gravity of alumina being 3.9.

[実施例3]
平均粒径0.5μmのアルミナ粉末500gと、直径6μm×長さ6mmのEガラス繊維143gと、メチルセルロース2.5gを、水127.5gと混合し、三本ローラーを使用してよく混練した。得られた混練物を5等分し、それぞれ長さ40cmの棒状に引伸ばした。引伸ばした混練物を4つに切断し、4つの切断物を揃えて複数積層し、更に40cmまで引伸ばした。この操作を5回繰り返して、細棒状体を作製した。
[Example 3]
500 g of alumina powder having an average particle size of 0.5 μm, 143 g of E glass fiber having a diameter of 6 μm and a length of 6 mm, and 2.5 g of methylcellulose were mixed with 127.5 g of water, and kneaded well using a three-roller. The obtained kneaded material was divided into five equal parts and each was stretched into a rod shape having a length of 40 cm. The stretched kneaded product was cut into four pieces, and the four cut products were aligned and laminated, and further stretched to 40 cm. This operation was repeated 5 times to produce a thin rod-like body.

このように作製した細棒状体の軸方向を揃えて金型内に複数集積し、100MPaの圧力でプレス成形した。この成形体を室温で24時間乾燥し、更に110℃で24時間乾燥した後、1000℃で2時間焼成して焼結体を得た。得られた焼結体を切断加工して、両端面が1cm角で長さ1mmの多孔質アルミナ成形体を得た。   A plurality of thin rod-like bodies produced in this way were aligned in the axial direction, and press-molded at a pressure of 100 MPa. The molded body was dried at room temperature for 24 hours, further dried at 110 ° C. for 24 hours, and then fired at 1000 ° C. for 2 hours to obtain a sintered body. The obtained sintered body was cut and processed to obtain a porous alumina molded body having both end faces of 1 cm square and a length of 1 mm.

この多孔質アルミナ成形体は、そのアルミナ基体中の一端から他端まで一方向に且つ直線的に貫通した複数のストロー状細孔が形成されていて、そのストロー状細孔の孔径は全てがほぼ6μmであった。また、この多孔質アルミナ成形体の気孔率はアルミナの真比重を3.9として計算したところ30%であった。


This porous alumina molded body has a plurality of straw-shaped pores that are linearly penetrated in one direction from one end to the other end in the alumina substrate, and the diameter of the straw-shaped pores is almost all. It was 6 μm. Further, the porosity of the porous alumina molded body was 30% when calculated with the true specific gravity of alumina being 3.9.


Claims (4)

セラミック粉末、所定の長さと直径を有する有機繊維又は炭素繊維、及び有機バインダーを混練する工程A1と、混練物を引伸ばして繊維を一方向に配向させる工程B1と、得られた細棒状体を軸方向を揃え複数集積して成形する工程C1と、得られた棒状成形体を仮焼して有機バインダーを除去すると同時に繊維を燃焼消失させる工程D1と、繊維を消失させた棒状成形体を焼成してセラミックを焼結する工程E1と、得られた棒状焼結体を使用した繊維の長さ以下に切断する工程F1とを含むことを特徴とする、セラミック基体中を一端から他端まで一方向に且つ直線的に貫通したストロー状細孔を有する多孔質セラミック成形体の製造方法。A step A1 of kneading ceramic powder, organic fiber or carbon fiber having a predetermined length and diameter, and an organic binder, a step B1 of stretching the kneaded material to orient the fibers in one direction, and the obtained thin rod-like body A process C1 in which a plurality of axial directions are aligned and formed, a process D1 in which the obtained rod-shaped molded body is calcined to remove the organic binder and at the same time the fibers are burnt and disappeared, and the rod-shaped molded body in which the fibers are disappeared are fired. The ceramic base is characterized in that it includes a step E1 of sintering the ceramic and a step F1 of cutting the fiber-like sintered body below the length of the fiber using the obtained rod-shaped sintered body. A method for producing a porous ceramic molded body having straw-like pores penetrating linearly in a direction. セラミック粉末、所定の長さと直径を有し且つ酸で溶解するガラス繊維又は有機繊維、及び有機バインダーを混練する工程A2と、混練物を引伸ばして繊維を一方向に配向させる工程B2と、得られた細棒状体を軸方向を揃え複数集積して成形する工程C2と、得られた棒状成形体を仮焼して有機バインダーを除去する工程D2と、仮焼した棒状成形体を使用した繊維の長さ以下に切断する工程F2と、切断した棒状成形体中の繊維を酸で溶解除去する工程G2と、繊維を消失させた棒状成形体を焼成してセラミックを焼結する工程E2とを含むことを特徴とする、セラミック基体中を一端から他端まで一方向に且つ直線的に貫通したストロー状細孔を有する多孔質セラミック成形体の製造方法。Step A2 of kneading ceramic powder, glass fiber or organic fiber having a predetermined length and diameter and dissolving with acid, and organic binder, Step B2 of stretching the kneaded material and orienting the fiber in one direction, and obtaining A process C2 in which a plurality of the thin rod-like bodies are aligned and accumulated and formed, a step D2 in which the obtained rod-like shaped body is calcined to remove the organic binder, and a fiber using the calcined rod-shaped body A step F2 for cutting to less than the length of the step, a step G2 for dissolving and removing the fibers in the cut rod-shaped molded body with an acid, and a step E2 for sintering the ceramic by firing the rod-shaped molded body from which the fibers have disappeared. A method for producing a porous ceramic molded body having straw-like pores that linearly penetrate the ceramic substrate from one end to the other in one direction. セラミック粉末、所定の長さと直径を有するガラス繊維、及び有機バインダーを混練する工程A3と、混練物を引伸ばして繊維を一方向に配向させる工程B3と、得られた細棒状体を軸方向を揃え複数集積して成形する工程C3と、得られた棒状成形体を焼成して繊維を該成形体のセラミック粉末粒子間に溶融含浸させると同時にセラミックを焼結する工程E3と、得られた棒状焼結体を使用した繊維の長さ以下に切断する工程F3とを含むことを特徴とする、セラミック基体中を一端から他端まで一方向に且つ直線的に貫通したストロー状細孔を有する多孔質セラミック成形体の製造方法。Step A3 of kneading the ceramic powder, glass fibers having a predetermined length and diameter, and organic binder, Step B3 of stretching the kneaded material and orienting the fibers in one direction, and the obtained rod-like body in the axial direction Step C3 in which a plurality of pieces are integrated and formed, Step E3 in which the obtained rod-shaped molded body is fired to melt and impregnate the fibers between the ceramic powder particles of the molded body, and at the same time, the ceramic is sintered; Including a step F3 of cutting a sintered body to a length equal to or less than the length of the fiber, and having a straw-like pore penetrating through the ceramic substrate from one end to the other in one direction and linearly Method for producing a ceramic product. 前記工程B1、B2、又はB3において、引伸ばした混練物を切断し、切断物を軸方向を揃えて複数集積した後、これを引伸ばす操作を複数回繰り返すことを特徴とする、請求項1〜3のいずれかに記載の多孔質セラミック成形体の製造方法。2. The process of cutting the stretched kneaded product in the step B1, B2, or B3, accumulating a plurality of the cut products with the axial direction aligned, and then stretching the stretched product a plurality of times. The manufacturing method of the porous ceramic molded object in any one of -3.
JP2005157158A 2005-05-30 2005-05-30 Method for producing porous ceramic molded body Expired - Fee Related JP4578324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157158A JP4578324B2 (en) 2005-05-30 2005-05-30 Method for producing porous ceramic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157158A JP4578324B2 (en) 2005-05-30 2005-05-30 Method for producing porous ceramic molded body

Publications (2)

Publication Number Publication Date
JP2006327913A JP2006327913A (en) 2006-12-07
JP4578324B2 true JP4578324B2 (en) 2010-11-10

Family

ID=37549996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157158A Expired - Fee Related JP4578324B2 (en) 2005-05-30 2005-05-30 Method for producing porous ceramic molded body

Country Status (1)

Country Link
JP (1) JP4578324B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787873B1 (en) * 2016-02-25 2017-10-19 한밭대학교 산학협력단 Manufacturing method of discharge tip made by stick-fiber for organic materials patterning apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080430A (en) * 2014-10-14 2016-05-16 住友電気工業株式会社 Photoprobe and measuring apparatus
CN110979876B (en) * 2019-12-25 2021-07-13 界首市宏利塑料股份有限公司 A equipment for binding rope unbinding of bale
CN113119391B (en) * 2019-12-30 2023-03-17 荣耀终端有限公司 Ceramic resin composite shell and preparation method and terminal thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289215A (en) * 1986-06-09 1987-12-16 Syst Kogyo Kk Ceramic filter for separating fine particle and its production
JP2000344585A (en) * 1999-06-02 2000-12-12 Asahi Glass Co Ltd Production of ceramic porous body
JP2001504077A (en) * 1996-11-06 2001-03-27 マテリアルズ アンド エレクトロケミカル リサーチ(エムイーアール)コーポレイション Multi-channel structure and manufacturing method thereof
JP2003020289A (en) * 2001-07-06 2003-01-24 National Institute Of Advanced Industrial & Technology Method for manufacturing ceramics having unidirectional through-hole
JP2005001239A (en) * 2003-06-12 2005-01-06 Towa Corp Material for resin molding mold and resin molding mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289215A (en) * 1986-06-09 1987-12-16 Syst Kogyo Kk Ceramic filter for separating fine particle and its production
JP2001504077A (en) * 1996-11-06 2001-03-27 マテリアルズ アンド エレクトロケミカル リサーチ(エムイーアール)コーポレイション Multi-channel structure and manufacturing method thereof
JP2000344585A (en) * 1999-06-02 2000-12-12 Asahi Glass Co Ltd Production of ceramic porous body
JP2003020289A (en) * 2001-07-06 2003-01-24 National Institute Of Advanced Industrial & Technology Method for manufacturing ceramics having unidirectional through-hole
JP2005001239A (en) * 2003-06-12 2005-01-06 Towa Corp Material for resin molding mold and resin molding mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787873B1 (en) * 2016-02-25 2017-10-19 한밭대학교 산학협력단 Manufacturing method of discharge tip made by stick-fiber for organic materials patterning apparatus

Also Published As

Publication number Publication date
JP2006327913A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
RU2401821C2 (en) Method of reinforcing porous ceramic articles and articles made using said method
US7959704B2 (en) Fibrous aluminum titanate substrates and methods of forming the same
Zhang et al. Fabrication of porous ceramics with unidirectionally aligned continuous pores
KR100953292B1 (en) Honeycomb structural body and exhaust gas treating apparatus
US20110151181A1 (en) Fiber Enhanced Porous Substrate
US8187525B2 (en) Method of firing green bodies into porous ceramic articles
EP2105183B1 (en) Honeycomb filter
WO2008032391A1 (en) Process for producing honeycomb structure and raw-material composition for burnt honeycomb
JP4669925B2 (en) Method for producing ceramic porous body having through hole
JP4578324B2 (en) Method for producing porous ceramic molded body
WO2009122538A1 (en) Honeycomb structure
JP2012504092A (en) Method for producing porous SiC material
JP2010516621A (en) Extruded fibrous silicon carbide substrate and method for producing the same
JP2006096634A (en) Porous ceramic body
KR100842058B1 (en) The producing method for porous ceramics
JP2002326881A (en) Manufacturing method of porous ceramic
KR20090106483A (en) Method for obtaining a porous structure based on silicon carbide
WO2018008623A1 (en) Honeycomb structure and method for producing honeycomb structure
KR101807833B1 (en) A process for the preparation of ceramic honeycomb catalyst supporter having a low coefficient of expansion and the ceramic honeycomb catalyst supporter prepared therefrom
WO2009118808A1 (en) Honeycomb structure
JP4336772B2 (en) Method for producing silicon nitride ceramic porous body, silicon nitride porous body and structural member thereof
KR100891956B1 (en) Silicon Carbide-Sintering Paste Composition Containing Mulite-based Hollow Sphere and Process for Preparation of Porous Silicon Carbide Filter Using the Same
JPH03271151A (en) Production of sintered ceramic
KR101379476B1 (en) METHOD FOR MANUFACTURING SiC HONEYCOMB STRUCTURE
KR101356382B1 (en) Method for fabrication cordierite/zirconia ceramic honeycomb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees