JP4577597B2 - Method for bending glass plate and heating furnace for bending - Google Patents

Method for bending glass plate and heating furnace for bending Download PDF

Info

Publication number
JP4577597B2
JP4577597B2 JP2000249773A JP2000249773A JP4577597B2 JP 4577597 B2 JP4577597 B2 JP 4577597B2 JP 2000249773 A JP2000249773 A JP 2000249773A JP 2000249773 A JP2000249773 A JP 2000249773A JP 4577597 B2 JP4577597 B2 JP 4577597B2
Authority
JP
Japan
Prior art keywords
glass plate
heating furnace
bending
heated
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000249773A
Other languages
Japanese (ja)
Other versions
JP2002060236A (en
Inventor
健治 前田
謙 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000249773A priority Critical patent/JP4577597B2/en
Publication of JP2002060236A publication Critical patent/JP2002060236A/en
Application granted granted Critical
Publication of JP4577597B2 publication Critical patent/JP4577597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way
    • C03B29/06Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way with horizontal displacement of the products
    • C03B29/08Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/163Drive means, clutches, gearing or drive speed control means
    • C03B35/164Drive means, clutches, gearing or drive speed control means electric or electronicsystems therefor, e.g. for automatic control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用窓ガラスに適用される薄板のガラス板を曲げ成形するための曲げ成形方法及び曲げ成形用加熱炉に関するものである。
【0002】
【従来の技術】
自動車のリヤガラスやサイドガラスに適用されるガラス板を曲げ成形する場合には、曲げ成形前に加熱炉で曲げ成形が可能な温度まで加熱する。加熱炉として知られているローラハース炉は、炉内に搬送ローラを備えており、この搬送ローラにガラス板を載置してガラス板をローラハース炉内に搬入すると、ガラス板は搬送ローラの上方に設けられた上部ヒータの輻射熱で加熱されるとともに、搬送ローラの下方に設けられた下部ヒータの輻射熱で加熱され、ローラハース炉の出口において曲げ成形可能な温度(例えば600〜650℃)まで加熱される。
【0003】
ところで、ガラス板の下面は、搬送ローラに接触しているので、搬送ローラの熱量がガラス板の下面に直接伝達される。このため、ガラス板の下面の温度が上面の温度より高くなり、ガラス板が上側に反るという問題点があった。
【0004】
この問題点を解消するための一例として、搬送ローラの外周に一定間隔をもって環状溝を形成し、搬送ローラからガラス板の下面側に直接伝達される熱量を抑制し、かつ、ガラス板の上方に圧縮空気を注入してガラス板の上方に対流を生じさせて上部ヒータの輻射熱を効率よくガラス板の上面に伝達させることにより、ガラス板の下面と上面に吸収される熱量を均一にする方法が提案されている。
【0005】
一方、自動車用に適用されるガラス板は、自動車の軽量化の目的から薄板(例えば厚み3mm以下)のものが要求されている。このような薄板のガラス板は、ローラハース炉の出口において曲げ成形可能な前記温度まで加熱しても、ローラハース炉から取り出されると、全体が直ぐに自然冷却されるため強化が入り難いという問題があった。そこで、薄板のガラス板の場合には、ローラハース炉の出口におけるガラス板の温度を、曲げ成形可能な前記温度よりも高め(例えば680〜695℃:以下「高温加熱」と称する)に設定していた。
【0006】
【発明が解決しようとする課題】
しかしながら、ローラハース炉においてガラス板を高温加熱すると、高温搬送時において、搬送ローラの表面に付着している塵等の異物の形状がガラス板の下面に転写するという、いわゆるローラインプリント(以下「RIP」と略称する)が発生し、ガラス板の品質を低下させるという欠点があった。
【0007】
また、従来のローラハース炉は、ガラス板の反りを防止するため、炉内全域にわたり対流加熱方式でガラス板を高温加熱していたので、即ち、ローラハース炉内に多数のファンを設けて対流を発生させていたので、イニシャルコスト及びランニングコストが膨大になるという欠点があった。
【0008】
本発明はこのような事情に鑑みてなされたもので、ガラス板を高温加熱してもRIPの発生を防止できるガラス板の曲げ成形方法及び曲げ成形用加熱炉を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、前記目的を達成するために、ガラス板を加熱炉内に配設された複数の搬送ローラで搬送させて曲げ成形温度まで加熱した後、所定の形状に曲げ成形するガラス板の曲げ成形方法において、前記ガラス板を加熱炉内の上流側で低速搬送して曲げ成形可能温度まで加熱し、下流側で高速搬送して前記曲げ成形可能温度よりも高めの温度に加熱することを特徴とする。
【0010】
本発明は、前記目的を達成するために、ガラス板の下面を支持しながらガラス板を搬送する複数の搬送ローラと、該搬送ローラで搬送中のガラス板を加熱する加熱手段とを備えたガラス板の曲げ成形用加熱炉において、前記加熱炉内の上流側に配置されている前記搬送ローラのガラス板の搬送速度が低速に設定され、前記ガラス板を曲げ成形可能温度まで加熱する対流加熱炉と、前記加熱炉内の下流側に配置されている前記搬送ローラのガラス板の搬送速度が、前記上流側の搬送ローラの速度よりも高速に設定され、前記ガラス板を前記曲げ成形可能温度よりも高めの温度に加熱する輻射加熱炉と、を備えたことを特徴とする。
【0011】
本発明によれば、ガラス板を搬送ローラに載置して、ガラス板を加熱炉に搬入し、ガラス板を加熱炉内の上流側で低速搬送することにより、充分にガラス板を曲げ成形可能温度まで加熱し、そして、このガラス板を加熱炉内の下流側で高速搬送して高温加熱した後、所定の形状に曲げ成形する。このように、RIPの発生するガラス板の高温加熱時において、ガラス板が炉内を通過する時間を最小限となるように高速搬送したので、RIPの発生を防止できる。
【0012】
また、本発明によれば、ガラス板が低速搬送される加熱炉内の上流側の加熱方式として対流方式を採用したので、ガラス板の加熱時に生じる反りを防止することができる。そして、ガラス板が高速搬送される加熱炉内の下流側の加熱方式として輻射方式を採用したので、対流方式よりもイニシャルコスト及びランニングコストを低減することができる。よって、対流加熱のみを採用した従来の加熱炉と比較してイニシャルコストとランニングコストを低減できる。
【0013】
【発明の実施の形態】
以下添付図面に従って本発明に係るガラス板の曲げ成形方法及び曲げ成形用加熱炉の好ましい実施の形態について詳説する。
【0014】
図1、図2に示す実施の形態の加熱炉10は、自動車のリヤガラス及びサイドガラスに適用される薄板ガラス板12を曲げ成形するために高温加熱する加熱炉である。この加熱炉10は、上流側加熱炉と下流側加熱炉とに分離されており、上流側加熱炉が対流加熱方式による対流加熱炉14、下流側加熱炉が輻射加熱方式による輻射加熱炉16として構成されている。また、これらの加熱炉14、16は、各々の雰囲気温度が隣接する加熱炉の雰囲気温度に悪影響を与えないように仕切板18によって仕切られている。
【0015】
更に、加熱炉14、16には、ガラス板12の搬送方向に沿って多数本の搬送ローラ20、20…が所定の間隔をもって配設される。対流加熱炉14の入口部15近傍の搬送ローラ20、20…に載置されたガラス板12は、搬送ローラ20、20…の回転によって対流加熱炉14の入口部15から対流加熱炉14に搬入される。ここでガラス板12は、曲げ成形可能温度まで充分に加熱された後、仕切板18の通過孔19を通過して輻射加熱炉16に搬入され、ここで高温加熱される。そして、高温加熱されたガラス板12は、輻射加熱炉16の出口17から炉外に搬出されて不図示の曲げ成形装置に搬送され、ここで、所定の形状に曲げ成形される。成形装置として、ガラス板の周面を支持するプレス用支持リングと、このプレス用支持リングに支持されたガラス板12に押し付けられる上型とを備えた曲げ成形装置を例示することができる。本願出願人は、かかる曲げ成形装置を特開平11−263634号により提案している。
【0016】
図2に示す対流加熱炉14の搬送ローラ20、20…の下方には、加熱用電気ヒータ(加熱手段に相当)22、22…が設けられ、また、搬送ローラ20、20…の上方には加熱用ガスバーナ(加熱手段に相当)24、24が設けられている。本実施の形態では、下部加熱手段として電気ヒータ22を用いたが、ガスバーナを用いてガラス板12を加熱してもよい。
【0017】
更に、搬送ローラ20、20…の上方には、対流加熱装置26が設けられている。対流加熱装置26はケーシング28、ファン30、及び吹出ノズル32、32…を備えている。ケーシング28は上面に不図示の開口孔が形成され、この開口孔に加熱用ガスバーナ24、24…の不図示の吹出口が連結されている。
【0018】
また、ケーシング28の下面中央には、不図示の吸込口が形成され、吸込口の上方のケーシング28内にファン30が回動自在に設けられている。ファン30がモータ34によって回転されると、前記吸込口を介して対流加熱炉14内から吸い込んだ吸気エアがケーシング28内に拡散される。これにより、吸込口から吸い込んだ吸気エアと加熱用ガスバーナ24の吹出口から吹き出された加熱エアとがケーシング28内で混合され、この混合エアが吹出ノズル32、32…からガラス板12に向けて吹き出される。したがって、ガラス板12の上面に対流が発生し、ガラス板12の上面が加熱される。なお、ガラス板12の下面は、電気ヒータ22の輻射熱によって加熱される。このような対流加熱炉14として、本願出願人は、特開平7−126026号公報にその一例を開示している。
【0019】
一方、輻射加熱炉16の搬送ローラ20、20…の下方には、加熱用電気ヒータ(加熱手段に相当)36、36…が設けられ、また、搬送ローラ20、20…の上方にも加熱用電気ヒータ(加熱手段に相当)38、38…が設けられている。本実施の形態では、加熱手段として電気ヒータ36、38を用いたが、ガスバーナを用いてガラス板12を加熱してもよい。しかし、ランニングコストを考慮すると、ガスバーナよりも電気ヒータが好ましい。
【0020】
ところで、本実施の形態の加熱炉10は、対流加熱炉14におけるガラス板12の搬送速度が低速に制御され、輻射加熱炉16におけるガラス板12の搬送速度が高速に制御されている。
【0021】
かかる制御を可能とする構成は、搬送ローラ20、20…が図3の如く対流加熱炉用搬送ローラ20A、20A…と、輻射加熱炉用搬送ローラ20B、20B…とに区別されており、搬送ローラ20A、20A…と搬送ローラ20B、20B…とを別個のモータ40、42で駆動させることにより達成できる。即ち、搬送ローラ20Aの両端部にはスプロケット44が固定され、このスプロケット44に無端状チェン46が噛合されるとともに、チェン46にモータ40の駆動スプロケット48(図1)が噛合されている。これにより、モータ40の駆動力が駆動スプロケット48を介してチェン46に伝達されると、チェン46が周回移動し、これに伴って搬送ローラ20A、20A…が所定の回転数で回転するので、ガラス板12が所定の低速で搬送される。なお、モータ40及びチェン46は、搬送ローラ20A、20A…の両サイドに配置されている。
【0022】
図3に示す搬送ローラ20Bの両端部にも、スプロケット50が固定され、スプロケット50に無端状チェン52が噛合されるとともに、チェン52にモータ42の駆動スプロケット54(図1)が噛合されている。これにより、モータ42の駆動力が駆動スプロケット54を介してチェン52に伝達されると、チェン52が周回移動し、これに伴って搬送ローラ20B、20B…が所定の回転数で回転するので、ガラス板12が所定の高速で搬送される。なお、モータ42及びチェン52は、図1の如く搬送ローラ20B、20B…の両サイドに配置されている。
【0023】
搬送ローラ20Aと搬送ローラ20Bとの間には、加速用搬送ローラ20C、20C…が配置される。この搬送ローラ20Cは、搬送ローラ20Aで低速搬送されてきたガラス板12を高速搬送の搬送ローラ20Bにスムーズに移送するために、搬送ローラ20Aによる低速度から搬送ローラ20Bによる高速度にガラス板12の搬送速度を加速させるための搬送ローラである。これらの搬送ローラ20C、20C…は、図2に示す仕切板18の下部及びその近傍に配置されている。
【0024】
また、搬送ローラ20Cの両端部にも、図1に示すスプロケット56が固定され、スプロケット56に無端状チェン58が噛合されるとともに、チェン58にモータ60の駆動スプロケット62が噛合されている。したがって、モータ60による駆動スプロケット62の回転速度を増速していくと、チェン58の周回移動速度が増速し、これに伴って搬送ローラ20C、20C…の回転速度も増速するので、ガラス板12が搬送ローラ20Aによる低速度から搬送ローラ20Bによる高速度に増速されて搬送される。なお、モータ60及びチェン58は、図1の如く搬送ローラ20C、20C…の両サイドに配置されている。
【0025】
次に、前記の如く構成された加熱炉10の作用について説明する。
【0026】
例えば、対流加熱炉14と輻射加熱炉16の搬送経路長比を1:1とし、対流加熱炉14と輻射加熱炉16の搬送速度比を1:2に設定する。
【0027】
そして、全ての搬送ローラ20A、20C、20Bを駆動するとともに、加熱前のガラス板12を、対流加熱炉14の入口部15の近傍に配設された搬送ローラ20A、20A…に載置する。これにより、このガラス板12は、対流加熱炉14内に搬入され、ここでの低速搬送によって、対流加熱装置26及び電気ヒータ22により充分に成形可能温度まで加熱される。
【0028】
次に、充分に加熱されたガラス板12は、搬送ローラ20Aから20Cに受け渡され、搬送ローラ20Cによって搬送ローラ20Bの速度に増速された後、輻射加熱炉16の搬送ローラ20Bにスムーズに受け渡される。そして、ガラス板12は、輻射加熱炉16において、対流加熱炉14の2倍の速度で搬送されながら電気ヒータ36、38によって高温加熱された後、輻射加熱炉16の出口17から炉外部に搬送され、不図示の曲げ成形装置で所定の形状に曲げ成形される。
【0029】
このように、本実施の形態の加熱炉10によれば、ガラス板12の高温加熱時において、ガラス板12を対流加熱炉14の2倍の速度で高速搬送したので、低速で高温加熱する従来の加熱炉と比較して、RIPの発生を充分に抑えることができる。
【0030】
また、本実施の形態の加熱炉10によれば、ガラス板12が低速搬送される加熱炉10の上流側の加熱方式として対流方式を採用したので、ガラス板12の加熱時に生じる反りを防止できる。そして、ガラス板12が高速搬送される加熱炉の下流側の加熱方式として輻射方式を採用したので、対流方式よりもイニシャルコスト及びランニングコストを低減することができる。よって、対流加熱のみを採用した従来の加熱炉と比較して、加熱炉10のイニシャルコストとランニングコストを低減できる。
【0031】
【発明の効果】
以上説明したように本発明に係るガラス板の曲げ成形方法及び曲げ成形用加熱炉によれば、ガラス板を加熱炉内の上流側で低速搬送して曲げ成形可能温度まで加熱した後、加熱炉内の下流側で高速搬送して高温加熱し、その後に所定の形状に曲げ成形するので、RIPの発生を防止できる。
【0032】
また、本発明によれば、加熱炉内の上流側の加熱方式として対流方式を採用したので、ガラス板の加熱時に生じる反りを防止でき、そして、ガラス板が高速搬送される加熱炉内の下流側の加熱方式として輻射方式を採用したので、対流方式よりもイニシャルコスト及びランニングコストを低減することができるとともに、加熱炉の全長寸法を小さくできる。よって、対流加熱のみを採用した従来の加熱炉と比較して加熱炉のイニシャルコストとランニングコストを低減できるとともに、加熱炉を小型化できる。
【図面の簡単な説明】
【図1】本実施の形態のガラス板の曲げ成形用加熱炉を透視した全体斜視図
【図2】本実施の形態のガラス板の曲げ成形用加熱炉の断面図
【図3】本実施の形態のガラス板の曲げ成形用加熱炉の搬送ローラの構造を示す平面図
【符号の説明】
10…加熱炉、12…ガラス板、14…対流加熱炉、16…輻射加熱炉、18…仕切板、20、20A、20B、20C…搬送ローラ、22、36、38…加熱用電気ヒータ、24…加熱用ガスバーナ、26…対流加熱装置、28…ケーシング、30…ファン、32…吹出ノズル、34…モータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bending method and a bending furnace for bending a thin glass plate applied to a vehicle window glass.
[0002]
[Prior art]
When bending a glass plate applied to a rear glass or side glass of an automobile, the glass plate is heated to a temperature at which bending can be performed in a heating furnace before the bending. A roller hearth furnace known as a heating furnace has a conveyance roller in the furnace, and when the glass plate is placed on the conveyance roller and the glass plate is carried into the roller hearth furnace, the glass plate is located above the conveyance roller. Heated by the radiant heat of the upper heater provided, and heated by the radiant heat of the lower heater provided below the transport roller, and heated to a temperature at which bending can be performed at the outlet of the roller hearth furnace (for example, 600 to 650 ° C.). .
[0003]
By the way, since the lower surface of the glass plate is in contact with the conveying roller, the heat amount of the conveying roller is directly transmitted to the lower surface of the glass plate. For this reason, the temperature of the lower surface of a glass plate became higher than the temperature of an upper surface, and there existed a problem that a glass plate curved upwards.
[0004]
As an example for solving this problem, an annular groove is formed at a constant interval on the outer periphery of the transport roller to suppress the amount of heat directly transmitted from the transport roller to the lower surface side of the glass plate, and above the glass plate. A method of making the amount of heat absorbed by the lower surface and the upper surface of the glass plate uniform by injecting compressed air to cause convection above the glass plate and efficiently transmitting the radiant heat of the upper heater to the upper surface of the glass plate. Proposed.
[0005]
On the other hand, a glass plate applied to an automobile is required to be a thin plate (for example, a thickness of 3 mm or less) for the purpose of reducing the weight of the automobile. Even if such a thin glass plate is heated to the temperature at which it can be bent at the outlet of the roller hearth furnace, if it is taken out from the roller hearth furnace, the whole is immediately cooled naturally and it is difficult to strengthen. . Therefore, in the case of a thin glass plate, the temperature of the glass plate at the outlet of the roller hearth furnace is set higher than the temperature at which bending can be performed (for example, 680 to 695 ° C .: hereinafter referred to as “high temperature heating”). It was.
[0006]
[Problems to be solved by the invention]
However, when a glass plate is heated at a high temperature in a roller hearth furnace, the shape of foreign matter such as dust adhering to the surface of the transfer roller is transferred to the lower surface of the glass plate during high-temperature transfer. "Is abbreviated as") and the quality of the glass plate is lowered.
[0007]
In addition, in the conventional roller hearth furnace, the glass plate is heated at a high temperature by the convection heating method throughout the furnace in order to prevent the glass plate from warping. That is, a convection is generated by providing a large number of fans in the roller hearth furnace. As a result, the initial cost and running cost are enormous.
[0008]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a glass plate bending method and a bending furnace that can prevent the occurrence of RIP even when the glass plate is heated at a high temperature.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention bends a glass plate that is heated to a bending temperature by being conveyed by a plurality of conveying rollers disposed in a heating furnace and then bent into a predetermined shape. In the forming method, the glass plate is conveyed at a low speed on the upstream side in a heating furnace to be heated to a temperature at which bending can be performed , and is conveyed at a high speed on the downstream side to be heated to a temperature higher than the bendable temperature. And
[0010]
In order to achieve the above object, the present invention provides a glass comprising a plurality of conveying rollers for conveying a glass plate while supporting the lower surface of the glass plate, and a heating means for heating the glass plate being conveyed by the conveying roller. In a heating furnace for bending a plate, a convection heating furnace in which the conveying speed of the glass plate of the conveying roller arranged on the upstream side in the heating furnace is set to a low speed and the glass plate is heated to a bendable temperature. When the conveying speed of the glass plate of the conveyance roller disposed on the downstream side of the heating furnace, than the speed of the conveying rollers of the upstream is set faster than the bend moldable temperature the glass plate And a radiant heating furnace for heating to a higher temperature .
[0011]
According to the present invention, it is possible to sufficiently bend a glass plate by placing the glass plate on a conveying roller, carrying the glass plate into a heating furnace, and conveying the glass plate at a low speed upstream in the heating furnace. The glass plate is heated to a temperature, and the glass plate is conveyed at a high speed on the downstream side in the heating furnace and heated at a high temperature, and then bent into a predetermined shape. As described above, when the glass plate in which RIP is generated is heated at a high temperature, the glass plate is transported at high speed so as to minimize the time for the glass plate to pass through the furnace, so that the generation of RIP can be prevented.
[0012]
In addition, according to the present invention, since the convection method is adopted as the heating method on the upstream side in the heating furnace in which the glass plate is conveyed at a low speed, it is possible to prevent the warp that occurs when the glass plate is heated. And since the radiation system was employ | adopted as a heating system of the downstream in the heating furnace in which a glass plate is conveyed at high speed, initial cost and running cost can be reduced rather than a convection system. Therefore, the initial cost and the running cost can be reduced as compared with the conventional heating furnace adopting only the convection heating.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a glass sheet bending method and a bending furnace according to the present invention will be described below in detail with reference to the accompanying drawings.
[0014]
A heating furnace 10 according to the embodiment shown in FIGS. 1 and 2 is a heating furnace that is heated at a high temperature in order to bend a thin glass plate 12 that is applied to a rear glass and a side glass of an automobile. The heating furnace 10 is separated into an upstream heating furnace and a downstream heating furnace. The upstream heating furnace is a convection heating furnace 14 using a convection heating method, and the downstream heating furnace is a radiation heating furnace 16 using a radiant heating method. It is configured. Moreover, these heating furnaces 14 and 16 are partitioned by a partition plate 18 so that each atmosphere temperature does not adversely affect the atmosphere temperature of the adjacent heating furnace.
[0015]
Further, in the heating furnaces 14 and 16, a large number of conveying rollers 20, 20... Are arranged at a predetermined interval along the conveying direction of the glass plate 12. The glass plate 12 placed on the conveyance rollers 20, 20... Near the inlet 15 of the convection heating furnace 14 is carried into the convection heating furnace 14 from the inlet 15 of the convection heating furnace 14 by the rotation of the conveyance rollers 20, 20. Is done. Here, the glass plate 12 is sufficiently heated to the temperature at which bending can be performed, then passes through the passage hole 19 of the partition plate 18 and is carried into the radiation heating furnace 16 where it is heated at high temperature. And the glass plate 12 heated at high temperature is carried out of the furnace 17 from the exit 17 of the radiation heating furnace 16 and conveyed to a bending apparatus (not shown) where it is bent into a predetermined shape. An example of the forming apparatus is a bending apparatus provided with a pressing support ring that supports the peripheral surface of the glass plate and an upper mold that is pressed against the glass plate 12 supported by the pressing support ring. The present applicant has proposed such a bending apparatus according to Japanese Patent Laid-Open No. 11-263634.
[0016]
2 are provided with heating heaters (corresponding to heating means) 22, 22... Below the conveying rollers 20, 20... Of the convection heating furnace 14 shown in FIG. Gas burners for heating (corresponding to heating means) 24 and 24 are provided. In the present embodiment, the electric heater 22 is used as the lower heating means, but the glass plate 12 may be heated using a gas burner.
[0017]
Further, a convection heating device 26 is provided above the transport rollers 20, 20. The convection heating device 26 includes a casing 28, a fan 30, and blowing nozzles 32, 32. The casing 28 has an opening hole (not shown) formed on the upper surface, and the air outlets (not shown) of the heating gas burners 24, 24.
[0018]
A suction port (not shown) is formed in the center of the lower surface of the casing 28, and a fan 30 is rotatably provided in the casing 28 above the suction port. When the fan 30 is rotated by the motor 34, the intake air sucked from the convection heating furnace 14 through the suction port is diffused into the casing 28. As a result, the intake air sucked from the suction port and the heated air blown from the outlet of the heating gas burner 24 are mixed in the casing 28, and this mixed air is directed from the blow nozzles 32, 32. Blown out. Therefore, convection is generated on the upper surface of the glass plate 12, and the upper surface of the glass plate 12 is heated. The lower surface of the glass plate 12 is heated by the radiant heat of the electric heater 22. As such a convection heating furnace 14, the applicant of the present application discloses an example in Japanese Patent Application Laid-Open No. 7-126026.
[0019]
On the other hand, heating heaters (corresponding to heating means) 36, 36,... Are provided below the conveying rollers 20, 20,. Electric heaters (corresponding to heating means) 38, 38... Are provided. In the present embodiment, the electric heaters 36 and 38 are used as heating means, but the glass plate 12 may be heated using a gas burner. However, in consideration of running costs, an electric heater is preferable to a gas burner.
[0020]
By the way, in the heating furnace 10 of this Embodiment, the conveyance speed of the glass plate 12 in the convection heating furnace 14 is controlled to low speed, and the conveyance speed of the glass plate 12 in the radiation heating furnace 16 is controlled to high speed.
[0021]
In the configuration enabling such control, the conveying rollers 20, 20... Are distinguished into convection heating furnace conveying rollers 20A, 20A... And radiant heating furnace conveying rollers 20B, 20B. This can be achieved by driving the rollers 20A, 20A... And the conveying rollers 20B, 20B. That is, the sprocket 44 is fixed to both ends of the conveying roller 20A, and the endless chain 46 is engaged with the sprocket 44, and the drive sprocket 48 (FIG. 1) of the motor 40 is engaged with the chain 46. As a result, when the driving force of the motor 40 is transmitted to the chain 46 via the drive sprocket 48, the chain 46 moves around and the transport rollers 20A, 20A,... Rotate at a predetermined rotational speed. The glass plate 12 is conveyed at a predetermined low speed. The motor 40 and the chain 46 are disposed on both sides of the transport rollers 20A, 20A.
[0022]
A sprocket 50 is also fixed to both ends of the conveying roller 20B shown in FIG. 3, and an endless chain 52 is meshed with the sprocket 50, and a drive sprocket 54 (FIG. 1) of the motor 42 is meshed with the chain 52. . As a result, when the driving force of the motor 42 is transmitted to the chain 52 via the drive sprocket 54, the chain 52 moves around, and accordingly, the transport rollers 20B, 20B... Rotate at a predetermined rotational speed. The glass plate 12 is conveyed at a predetermined high speed. The motor 42 and the chain 52 are arranged on both sides of the transport rollers 20B, 20B... As shown in FIG.
[0023]
Acceleration conveyance rollers 20C, 20C,... Are arranged between the conveyance roller 20A and the conveyance roller 20B. In order to smoothly transfer the glass plate 12 conveyed at a low speed by the conveyance roller 20A to the conveyance roller 20B for high-speed conveyance, the conveyance roller 20C changes the glass plate 12 from a low speed by the conveyance roller 20A to a high speed by the conveyance roller 20B. It is a conveyance roller for accelerating the conveyance speed. These conveying rollers 20C, 20C,... Are arranged at the lower part of the partition plate 18 shown in FIG.
[0024]
Also, the sprocket 56 shown in FIG. 1 is fixed to both ends of the conveying roller 20 </ b> C, and an endless chain 58 is engaged with the sprocket 56, and a drive sprocket 62 of the motor 60 is engaged with the chain 58. Therefore, as the rotational speed of the drive sprocket 62 is increased by the motor 60, the rotational speed of the chain 58 increases, and the rotational speed of the transport rollers 20C, 20C,. The plate 12 is transported at a speed increased from a low speed by the transport roller 20A to a high speed by the transport roller 20B. The motor 60 and the chain 58 are arranged on both sides of the transport rollers 20C, 20C... As shown in FIG.
[0025]
Next, the operation of the heating furnace 10 configured as described above will be described.
[0026]
For example, the conveyance path length ratio between the convection heating furnace 14 and the radiation heating furnace 16 is set to 1: 1, and the conveyance speed ratio between the convection heating furnace 14 and the radiation heating furnace 16 is set to 1: 2.
[0027]
And while driving all the conveyance rollers 20A, 20C, and 20B, the glass plate 12 before a heating is mounted in the conveyance rollers 20A, 20A ... arrange | positioned in the vicinity of the inlet part 15 of the convection heating furnace 14. FIG. As a result, the glass plate 12 is carried into the convection heating furnace 14 and is sufficiently heated to a formable temperature by the convection heating device 26 and the electric heater 22 by the low-speed conveyance here.
[0028]
Next, the sufficiently heated glass plate 12 is transferred from the conveying rollers 20A to 20C, and is increased to the speed of the conveying roller 20B by the conveying rollers 20C, and then smoothly transferred to the conveying roller 20B of the radiation heating furnace 16. Delivered. The glass plate 12 is heated at a high temperature by the electric heaters 36 and 38 in the radiation heating furnace 16 while being transported at a speed twice that of the convection heating furnace 14, and then transported to the outside of the furnace from the outlet 17 of the radiation heating furnace 16. Then, it is bent into a predetermined shape by a bending apparatus (not shown).
[0029]
As described above, according to the heating furnace 10 of the present embodiment, when the glass plate 12 is heated at a high temperature, the glass plate 12 is transported at a high speed at twice the speed of the convection heating furnace 14, so that the conventional high temperature heating is performed at a low speed. The generation of RIP can be sufficiently suppressed as compared with the above heating furnace.
[0030]
In addition, according to the heating furnace 10 of the present embodiment, since the convection method is adopted as the heating method on the upstream side of the heating furnace 10 in which the glass plate 12 is conveyed at a low speed, it is possible to prevent warping that occurs when the glass plate 12 is heated. . And since the radiation system was employ | adopted as a heating system of the downstream of the heating furnace in which the glass plate 12 is conveyed at high speed, initial cost and running cost can be reduced rather than a convection system. Therefore, the initial cost and running cost of the heating furnace 10 can be reduced as compared with a conventional heating furnace that employs only convection heating.
[0031]
【The invention's effect】
As described above, according to the method for bending a glass plate and the heating furnace for bending according to the present invention, the glass plate is conveyed at a low speed on the upstream side in the heating furnace and heated to a bendable temperature. Since it is conveyed at a high speed on the downstream side of the inside and heated at a high temperature and then bent into a predetermined shape, the occurrence of RIP can be prevented.
[0032]
In addition, according to the present invention, since the convection method is adopted as the heating method on the upstream side in the heating furnace, it is possible to prevent the warp that occurs when the glass plate is heated, and the downstream side in the heating furnace in which the glass plate is conveyed at high speed. Since the radiation method is adopted as the side heating method, the initial cost and running cost can be reduced as compared with the convection method, and the overall length of the heating furnace can be reduced. Therefore, the initial cost and running cost of the heating furnace can be reduced and the heating furnace can be downsized as compared with a conventional heating furnace that employs only convection heating.
[Brief description of the drawings]
FIG. 1 is an overall perspective view of a glass sheet bending furnace according to the present embodiment seen through. FIG. 2 is a cross-sectional view of the glass sheet bending furnace according to the present embodiment. Plan view showing the structure of the transport roller of the heating furnace for bend forming glass plates
DESCRIPTION OF SYMBOLS 10 ... Heating furnace, 12 ... Glass plate, 14 ... Convection heating furnace, 16 ... Radiation heating furnace, 18 ... Partition plate, 20, 20A, 20B, 20C ... Conveyance roller, 22, 36, 38 ... Electric heater for heating, 24 ... Gas burner for heating, 26 ... Convection heating device, 28 ... Casing, 30 ... Fan, 32 ... Blowing nozzle, 34 ... Motor

Claims (4)

ガラス板を加熱炉内に配設された複数の搬送ローラで搬送させて曲げ成形温度まで加熱した後、所定の形状に曲げ成形するガラス板の曲げ成形方法において、
前記ガラス板を加熱炉内の上流側で低速搬送して曲げ成形可能温度まで加熱し、下流側で高速搬送して前記曲げ成形可能温度よりも高めの温度に加熱することを特徴とするガラス板の曲げ成形方法。
In the method of bending a glass plate, the glass plate is heated by a plurality of transfer rollers disposed in a heating furnace and heated to a bending temperature, and then bent into a predetermined shape.
The glass plate is heated at a low speed on the upstream side in a heating furnace to be heated to a bendable temperature, and is conveyed at a high speed on the downstream side to be heated to a temperature higher than the bendable temperature. Bending method.
前記加熱炉内の上流側で低速搬送されるガラス板は、対流によって加熱されるとともに、前記加熱炉内の下流側で高速搬送されるガラス板は、輻射によって加熱されることを特徴とする請求項1に記載のガラス板の曲げ成形方法。  The glass plate conveyed at low speed on the upstream side in the heating furnace is heated by convection, and the glass plate conveyed at high speed on the downstream side in the heating furnace is heated by radiation. Item 2. A method for bending a glass sheet according to Item 1. 前記ガラス板の板厚が3mm以下である請求項1又は2に記載のガラス板の曲げ成形方法。  The glass plate bending method according to claim 1 or 2, wherein the glass plate has a thickness of 3 mm or less. ガラス板の下面を支持しながらガラス板を搬送する複数の搬送ローラと、該搬送ローラで搬送中のガラス板を加熱する加熱手段とを備えたガラス板の曲げ成形用加熱炉において、In a glass plate bending furnace comprising a plurality of transport rollers for transporting a glass plate while supporting the lower surface of the glass plate, and heating means for heating the glass plate being transported by the transport roller,
前記加熱炉内の上流側に配置されている前記搬送ローラのガラス板の搬送速度が低速に設定され、前記ガラス板を曲げ成形可能温度まで加熱する対流加熱炉と、A convection heating furnace in which the conveyance speed of the glass plate of the conveyance roller disposed on the upstream side in the heating furnace is set at a low speed, and the glass plate is heated to a bendable temperature;
前記加熱炉内の下流側に配置されている前記搬送ローラのガラス板の搬送速度が、前記上流側の搬送ローラの速度よりも高速に設定され、前記ガラス板を前記曲げ成形可能温度よりも高めの温度に加熱する輻射加熱炉と、を備えたことを特徴とするガラス板の曲げ成形用加熱炉。The conveyance speed of the glass plate of the conveyance roller arranged on the downstream side in the heating furnace is set to be higher than the velocity of the conveyance roller on the upstream side, and the glass plate is made higher than the bend forming temperature. A heating furnace for bending a glass sheet, comprising: a radiation heating furnace for heating to a temperature of
JP2000249773A 2000-08-21 2000-08-21 Method for bending glass plate and heating furnace for bending Expired - Fee Related JP4577597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249773A JP4577597B2 (en) 2000-08-21 2000-08-21 Method for bending glass plate and heating furnace for bending

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249773A JP4577597B2 (en) 2000-08-21 2000-08-21 Method for bending glass plate and heating furnace for bending

Publications (2)

Publication Number Publication Date
JP2002060236A JP2002060236A (en) 2002-02-26
JP4577597B2 true JP4577597B2 (en) 2010-11-10

Family

ID=18739461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249773A Expired - Fee Related JP4577597B2 (en) 2000-08-21 2000-08-21 Method for bending glass plate and heating furnace for bending

Country Status (1)

Country Link
JP (1) JP4577597B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115934A1 (en) * 2004-05-27 2005-12-08 Yan Zhao A glass heating furnace with opposing gas streams
JP2007315699A (en) * 2006-05-26 2007-12-06 Asahi Glass Co Ltd Furnace interior heating method and furnace interior heating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164646A (en) * 1984-09-04 1986-04-03 Nippon Sheet Glass Co Ltd Conveying method of tabular body and conveyor unit
JPH01106533U (en) * 1987-12-28 1989-07-18
JPH07126026A (en) * 1993-10-28 1995-05-16 Asahi Glass Co Ltd Method for regulating heat quantity of heating furnace and apparatus therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317227A (en) * 1986-07-07 1988-01-25 Nippon Sheet Glass Co Ltd Transfer speed controlling device in glass annealing equipment
JPH09113144A (en) * 1995-10-11 1997-05-02 Asahi Glass Co Ltd Heating furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164646A (en) * 1984-09-04 1986-04-03 Nippon Sheet Glass Co Ltd Conveying method of tabular body and conveyor unit
JPH01106533U (en) * 1987-12-28 1989-07-18
JPH07126026A (en) * 1993-10-28 1995-05-16 Asahi Glass Co Ltd Method for regulating heat quantity of heating furnace and apparatus therefor

Also Published As

Publication number Publication date
JP2002060236A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
JP4869541B2 (en) Glass sheet forming apparatus and method
JP2004508264A5 (en)
JP5401015B2 (en) Continuous firing furnace
JP4577597B2 (en) Method for bending glass plate and heating furnace for bending
JP2008053454A (en) Baking apparatus and baking method
JP2000327355A (en) Ring for supporting glass plate
JPH11292264A (en) Surface treatment apparatus
KR20110031112A (en) Heat treatment apparatus
JPH05296663A (en) Heating device
JP3587212B2 (en) Heating calorie adjusting device
JP3987064B2 (en) Heat treatment equipment
FI100397B (en) Heat transfer method in glass sheet bending furnace and bending furnace
JP3412043B2 (en) Conveyor furnace for drying sheet materials
JP2004292094A (en) Heat treatment unit
JP5695893B2 (en) Electric continuous baking machine
JP4293994B2 (en) Continuous heat treatment furnace
CN114605060A (en) A tempering apparatus for producing for glass
JPS6138985B2 (en)
JP2001071474A (en) Image forming method and device
JP2004059401A (en) Air-quench tempering device for glass sheet
JPH0421803Y2 (en)
JP3938554B2 (en) Heat treatment furnace
JP2992671B2 (en) Baking furnace
CN220670090U (en) Printed circuit board processing oven
WO1998057899A1 (en) Glass sheet heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees