JPH05296663A - Heating device - Google Patents

Heating device

Info

Publication number
JPH05296663A
JPH05296663A JP7645992A JP7645992A JPH05296663A JP H05296663 A JPH05296663 A JP H05296663A JP 7645992 A JP7645992 A JP 7645992A JP 7645992 A JP7645992 A JP 7645992A JP H05296663 A JPH05296663 A JP H05296663A
Authority
JP
Japan
Prior art keywords
heating
heated
gas
flow
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7645992A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishio
博明 石尾
Hiroyuki Naka
裕之 中
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP7645992A priority Critical patent/JPH05296663A/en
Publication of JPH05296663A publication Critical patent/JPH05296663A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrict thermal loss in a heating furnace, enable heat gas to be precisely heated in a stepwise manner in a desired temperature range, enable an easy and uniform heating to be attained for both front and rear surfaces of a heated item having a certain thickness and a large size in a thickness direction and to restrict occurrence of poor product caused by a thermal shock. CONSTITUTION:A heating device 1 is comprised of a first preheating chamber 2a, a second preheating chamber 2b, a main heating chamber 3 and a cooling chamber 4. These chambers 2a, 2b and 3 have a blower 5 for feeding out heat gas acting as thermal medium, heaters 12 to 14, flow regulating plates 15 to 17 having a heating means 18a buried at their circumferential walls, inner flow passages 20 to 23 having the heating means 18a buried at their circumferential walls, outer flow passages 27 to 29 having a heating means 19a buried at their circumferential walls and flow regulating plates 24 and 25 having many air cutting plates 23 with shovel-like discharging ports therein and having the heating means 18a buried therein which are independently installed. Thus, the thermal loss can be reduced and a high precision heat treatment can be carried out at the stepwise temperature region. The heating device has a forced discharging blower 30 arranged to prevent the heat gas from being discharged out of the heating device 1.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、半田を塗布した電子部
品装着基板,工業用加工部品などの被加熱物を搬送しな
がら加熱したときに、同一温度条件のもとで被加熱物の
温度分布が一様に得られ、かつ、効率的な熱処理が可能
な加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the temperature of an object to be heated under the same temperature condition when the object to be heated such as an electronic component mounting substrate coated with solder and industrial processed parts is heated while being conveyed. The present invention relates to a heating device that can obtain a uniform distribution and can perform efficient heat treatment.
【0002】[0002]
【従来の技術】従来、電子部品を回路基板に半田づけす
る、または加工により内部歪をもった工業用加工部品な
どを加熱し熱処理を行う、塗装部品の乾燥・焼付け処理
を行うなどの場合に、加熱手段としての熱板を接触させ
て、熱伝導により局部的に昇温を行う方法、溶融した半
田液体に浸積したり、金属蒸気雰囲気中に被加熱物を通
過させたりする方法、また、加熱媒体である熱ガスを噴
流のようにして接触させたりする方法が知られている。
このような工業用加熱炉においては、被加熱物を加熱す
るための加熱手段と、被加熱物の加熱時間を調整するた
めの搬送手段から構成されており、加熱手段を構成して
いる加熱炉内に、通常、一ないし、複数槽からなる予熱
部と、所要の熱処理温度にて高温温度を保持するための
本加熱部を備えるとともに、最後の工程に冷却部を備え
ている。前記本加熱部も、一ないし、複数槽からなって
おり、被加熱物を相対温度差のある各槽を通過させ、段
階的に温度を変化させて所要の温度プロファイルに沿っ
た熱処理を行う。
2. Description of the Related Art Conventionally, when electronic parts are soldered to a circuit board, or industrial processed parts having internal distortion due to processing are heated and heat-treated, and coated parts are dried / baked. , A method of contacting a hot plate as a heating means to locally raise the temperature by heat conduction, a method of immersing in a molten solder liquid, or a method of passing an object to be heated in a metal vapor atmosphere, A method is known in which hot gas, which is a heating medium, is brought into contact like a jet stream.
Such an industrial heating furnace comprises a heating means for heating the object to be heated and a conveying means for adjusting the heating time of the object to be heated, which constitutes the heating means. In addition, a preheating unit usually consisting of one or a plurality of tanks, a main heating unit for maintaining a high temperature at a required heat treatment temperature, and a cooling unit in the last step are provided therein. The main heating unit also includes one or a plurality of baths, and the object to be heated is passed through the baths having a relative temperature difference, and the temperature is changed stepwise to perform heat treatment according to a required temperature profile.
【0003】例えば、図9は従来の加熱装置の側断面図
であって、プロペラファンを備えた加熱手段系を用いた
例を示す。図9に示すがごとく、この加熱装置は、2
a,2bの予熱部、3の本加熱部、4の冷却部より構成
されており、空気を送出するためのプロペラファン5、
によって熱風に強制流動を発生させる。9aは棒状ヒー
タで被加熱物6の上方に配置されており、9bは平面ヒ
ータで、コンベア7の下方に配置されている。10は該
熱ガスを分流するための側板、1aは熱ガスを流出する
ための吹き出し口、1bは搬送方向に対し左右に位置し
て熱ガスを排出するための吸い込み口である。
For example, FIG. 9 is a side sectional view of a conventional heating device, showing an example using a heating means system having a propeller fan. As shown in FIG. 9, this heating device is
a propeller fan 5 for sending out air, which is composed of a preheating part a, 2b, a main heating part 3 and a cooling part 4
Generates forced flow in hot air. Reference numeral 9a denotes a rod-shaped heater which is arranged above the object 6 to be heated, and 9b denotes a plane heater which is arranged below the conveyor 7. Reference numeral 10 is a side plate for diverting the hot gas, 1a is an outlet for discharging the hot gas, and 1b is a suction port located on the left and right with respect to the transport direction for discharging the hot gas.
【0004】以上のように構成されている加熱装置で
は、被加熱物6はコンベア7に置かれ、2a,2b,
3,4の各槽を経て加熱される。このとき熱ガスは、コ
ンベア7下部において搬送方向に対し左右2ヶ所に配置
された吹き出し口1aより左右に分流し、側板10の裏
側を通って上昇流れとなり、吸い込み口1bより流出す
るが、プロペラファン5により一旦強制的に下向き流れ
として作用し、整流板11を経て整流され、9aの棒状
ヒータに接触して昇温され、被加熱物6に接触すること
によって熱伝達を行う。しかし、この方法によると、一
旦整流された熱ガスの流れは、棒状ヒータ9aの間を通
過する間に乱され、そのまま被加熱物6に接触するた
め、完全に一様な加熱を得るのは困難であった。
In the heating device having the above-mentioned structure, the article 6 to be heated is placed on the conveyor 7 and the objects 2a, 2b,
It is heated through the tanks 3 and 4. At this time, the hot gas is shunted to the left and right from the outlets 1a arranged at two places on the lower side of the conveyor 7 with respect to the conveying direction, passes through the back side of the side plate 10 to rise, and flows out from the inlet 1b. The fan 5 once forcibly acts as a downward flow, is rectified through the rectifying plate 11, contacts the rod-shaped heater 9a to be heated, and contacts the object 6 to be heated to transfer heat. However, according to this method, the flow of the hot gas that has been once rectified is disturbed while passing between the rod-shaped heaters 9a and contacts the object 6 to be heated as it is, so that a completely uniform heating is not obtained. It was difficult.
【0005】その他の方法として、被加熱物を昇温させ
る際、搬送ベルト上方から、プロペラファンなどにより
熱ガスを強制的に下向き流れとして流動させる方法、円
筒状のパイプを被加熱物上方に配置し、パイプ内で熱風
を送風機により強制流動させ、パイプに開孔された複数
個の小穴から熱風の噴流により該被加熱物に接触させ一
様加熱する方法が知られている。
As another method, when the temperature of the object to be heated is raised, a hot gas is forced to flow downward from above the conveyor belt by a propeller fan or the like, and a cylindrical pipe is arranged above the object to be heated. Then, there is known a method in which hot air is forcedly flowed in a pipe by a blower, and the heated object is brought into contact with the object to be heated by a jet of hot air through a plurality of small holes formed in the pipe to uniformly heat the object.
【0006】[0006]
【発明が解決しようとする課題】上記従来技術では、次
のような問題があった。
The above-mentioned prior art has the following problems.
【0007】(1)加熱媒体である熱ガスをガス送出手
段によって強制的に流動させ、下向き流れとして流動さ
せ被加熱物全体に一様な加熱を行っているが、下部に支
持体をもつ部品などのごとく、混み入った構造の部品に
なればなるほど、上方向からの熱ガスの流動だけでは、
部品の側面,下部に熱媒体が回り込むことがなく、その
部分で、熱伝達が不十分になり、低温度となる。よっ
て、熱処理が不十分となり不良品が増加している。
(1) A hot gas as a heating medium is forcibly flowed by a gas delivery means to flow as a downward flow to uniformly heat the whole object to be heated, but a part having a support at the lower part. As it becomes a part with a crowded structure like, etc., only by the flow of hot gas from above,
The heat medium does not go around the side and bottom of the component, and heat transfer becomes insufficient at that portion, resulting in a low temperature. Therefore, the heat treatment is insufficient and the number of defective products is increasing.
【0008】(2)熱ガスは強制的流動により一方向の
循環流れをなしているが、炉体容器が大きいために、各
槽間での流れの干渉が発生し流れの停滞箇所が存在し、
一様な循環流れが得にくい。このように被加熱物表面で
の熱ガスの流動速度が変動することにより、被加熱物を
均一に加熱することが困難であった。
(2) The hot gas forms a circulating flow in one direction due to the forced flow, but since the furnace container is large, the flow interference occurs between the tanks, and there is a stagnant portion of the flow. ,
It is difficult to obtain a uniform circulating flow. Since the flow rate of the hot gas on the surface of the object to be heated fluctuates in this way, it is difficult to uniformly heat the object to be heated.
【0009】(3)一辺が60cm以上もの大型の被加熱
物を熱処理する際、加熱手段を被加熱物の直上、近傍に
設置した場合、加熱手段の温度バラツキが下方に位置す
る被加熱物表面の温度分布に直接影響して一様な加熱は
困難であった。
(3) When heat-treating a large object having one side of 60 cm or more, when the heating means is installed immediately above or in the vicinity of the object to be heated, the temperature variation of the heating means is located below the surface of the object to be heated. It was difficult to apply uniform heating because it had a direct effect on the temperature distribution.
【0010】(4)熱ガスは、強制的流動により被加熱
物に上方から垂直に近い角度で接触すると、接触点付近
で流れがよどんで排気されにくく、そのため反応により
蒸発した不純物を含むガスが、各槽内で渦を巻くように
流動して停留し、不純物の回収が困難となり、炉内の清
掃・保守回数が増える。
(4) When the hot gas comes into contact with the object to be heated at an angle close to vertical from above due to forced flow, the flow stagnates near the contact point and is difficult to be exhausted. Therefore, gas containing impurities evaporated by the reaction is generated. , It flows in a swirling manner in each tank and stays there, making it difficult to collect impurities and increasing the frequency of cleaning and maintenance inside the furnace.
【0011】(5)上記(4)の理由で、被加熱物表面
に流れの停留する箇所が存在すると、流れが一様になら
ないため、被加熱物表面では、一様な温度分布が得られ
ない。
(5) Due to the reason (4) above, if there is a portion where the flow is stopped on the surface of the object to be heated, the flow is not uniform, so that a uniform temperature distribution is obtained on the surface of the object to be heated. Absent.
【0012】(6)搬送手段によって搬送される被加熱
物の上下方向,両面での加熱を行う際には、一度片面の
み加熱処理を行い、再度残りの面での加熱を行う必要が
あるため、耐熱性に欠ける材料,熱的劣化の激しい材料
を処理する場合、被加熱物は、二度以上も熱的大きな変
化を受けて、被加熱物の熱的損傷,機能劣化が生じ、生
産性の低下を引き起こす。
(6) When heating the object to be heated conveyed by the conveying means in the up-down direction and on both sides, it is necessary to perform heat treatment only on one side and then on the other side. When processing a material that lacks heat resistance or a material that undergoes severe thermal degradation, the object to be heated undergoes a large thermal change more than once, resulting in thermal damage to the object to be heated and functional deterioration, resulting in high productivity. Cause a drop in.
【0013】本発明は、上記従来の問題点を解消するた
めになされたものであって、熱ガスによる全体加熱によ
って被加熱物を加熱する場合、一様で均一な加熱が可能
であり、輻射熱併用により効率的な加熱が可能な加熱装
置を提供することを課題としている。
The present invention has been made in order to solve the above-mentioned conventional problems. When the object to be heated is heated by the heating gas as a whole, uniform and uniform heating is possible and radiant heat is applied. An object of the present invention is to provide a heating device capable of efficient heating when used together.
【0014】[0014]
【課題を解決するための手段】上記課題の解決のため、
この発明は、温度の異なったガスを充填した複数個の容
器を備え、個々の容器において、不活性ガス,還元ガ
ス,加熱空気,加熱金属蒸気ガスなどの熱ガスを送出し
て被加熱物を加熱する加熱手段と、該熱ガスを均一な温
度に調整し、一定風速の均一流れにしながら被加熱物に
接触せしめることが可能な加熱整流手段を設けたことを
特徴とする。
[Means for Solving the Problems] In order to solve the above problems,
The present invention includes a plurality of containers filled with gases having different temperatures, and in each container, a hot gas such as an inert gas, a reducing gas, heated air, or a heated metal vapor gas is delivered to heat an object to be heated. It is characterized in that heating means for heating and heating rectifying means capable of adjusting the temperature of the hot gas to a uniform temperature and bringing the heated gas into contact with an object to be heated while maintaining a uniform flow of a constant wind speed are provided.
【0015】加熱整流手段は、内壁に良熱伝導性耐熱材
料からなる流路と外壁に断熱効果を保持するための断熱
材料からなる流路より構成されており、流れの上流側に
加熱手段を有し、熱ガスは、上流側で加熱され、その
後、加熱手段を埋設した整流板により均一な温度で一定
風速になるよう整流され送出され、被加熱物近傍での整
流板に付設されている風切り板により該熱ガスは風向を
変え、被加熱物に接触する。
The heating rectifying means is composed of a flow path made of a heat-resistant material having good thermal conductivity on the inner wall and a flow path made of a heat insulating material for holding a heat insulating effect on the outer wall, and the heating means is provided on the upstream side of the flow. The hot gas is heated on the upstream side, then rectified by a rectifying plate in which a heating means is embedded so as to have a constant wind speed and delivered, and attached to the rectifying plate near the object to be heated. The air flow direction of the hot gas is changed by the wind plate, and the hot gas comes into contact with the object to be heated.
【0016】熱ガスは、流路の最下流側から被加熱物に
吹き出される際、整流板に付設されている風切り板の傾
きによって、搬送される被加熱物の中心方向から外周方
向に渦を描くように吹き出される。風切り板の配置角度
は可変式であり、吹き出す熱ガス流れの方向,吹き出し
流量の調整を可能とした構成からなる。
When the hot gas is blown from the most downstream side of the flow path to the object to be heated, the hot gas is swirled from the central direction of the object to be heated to the outer peripheral direction due to the inclination of the wind plate attached to the rectifying plate. Is blown out to draw. The arrangement angle of the wind-blading plate is variable, and the configuration is such that the direction of the hot gas flow to be blown out and the blowout flow rate can be adjusted.
【0017】流路の最下流側に配置されている整流板
は、良熱伝導性耐熱材料からなり、加熱手段を埋設して
いるため、直接、熱輻射により被加熱物を加熱すること
が可能なこととしたものである。
Since the current plate disposed on the most downstream side of the flow path is made of a heat-resistant material having good thermal conductivity and the heating means is embedded, it is possible to directly heat the object to be heated by heat radiation. It was decided.
【0018】被加熱物下面からの加熱を補充するため
に、加熱手段を埋設した加熱整流手段は、予熱室と本加
熱室の少なくとも二方向以上に配置するとよい。
In order to supplement the heating from the lower surface of the object to be heated, the heating rectifying means in which the heating means is embedded is preferably arranged in at least two directions of the preheating chamber and the main heating chamber.
【0019】被加熱物を加熱することによって発生する
不純物を回収するために温度の異なったガスを充填した
複数個の容器の一槽内において熱ガスが被加熱物に接触
する前後(上流,下流側)において、独立に送出装置を
設けるとよい。
Before and after the hot gas comes into contact with the object to be heated in one tank of a plurality of containers filled with gases having different temperatures in order to recover impurities generated by heating the object to be heated (upstream, downstream On the side), it is advisable to provide a delivery device independently.
【0020】[0020]
【作用】不活性ガス,還元ガス,加熱空気,加熱金属蒸
気ガスなどの熱ガスは最初、加熱手段を埋設した流路内
に配置されているガス送出手段により、被加熱物に向け
送出され、送出手段の下流に配置された加熱手段により
昇温される。加熱された上記熱ガスは、加熱手段が埋設
された流路内を保温作用を受けながら強制的に被加熱物
に向け流動させられる。その時、熱ガスは流路内を通過
中に、途中の整流板を経ることにより、種々の方向を向
いていた乱れたガス流れが一方向に一様な流れとなり、
また、加熱された流路からの熱対流により均一に一定温
度を保持しながら最下流の整流板を経て、被加熱物に接
触する。
The hot gas such as the inert gas, the reducing gas, the heated air and the heated metal vapor gas is first sent to the object to be heated by the gas sending means arranged in the flow path in which the heating means is embedded, The temperature is raised by the heating means arranged downstream of the delivery means. The heated hot gas is forced to flow toward the object to be heated while receiving a heat retaining action in the flow path in which the heating means is embedded. At that time, while the hot gas is passing through the flow path, the turbulent gas flow that has been facing various directions becomes a uniform flow in one direction by passing through the straightening plate in the middle.
Further, while maintaining a constant temperature evenly by the heat convection from the heated flow path, it contacts the object to be heated through the most downstream rectifying plate.
【0021】熱ガスは、被加熱物に向けて吹き出される
際、回転不能なスコップ形状吐出口をもつ風切り板の傾
きによって、搬送される被加熱物の中心方向から外周方
向に渦を描くように送出される。風切り板の配置角度を
可変構造としたので、吹き出す熱ガスの渦流れを中心か
ら正逆回転方向に自由に調節でき、同時に風切り板の角
度を変え、吹き出し口の断面積を小さくすることにより
吹き出す熱ガス流量を減少させることが可能である。
When the hot gas is blown toward the object to be heated, the hot gas is swirled from the center direction of the object to be heated to the outer peripheral direction by the inclination of the wind plate having the non-rotatable scoop-shaped discharge port. Sent to. Since the arrangement angle of the wind plate is variable, the vortex flow of the hot gas blown out can be freely adjusted in the forward and reverse rotation directions from the center, and at the same time, the angle of the wind plate is changed and the cross-sectional area of the blowout port is made smaller to blow out. It is possible to reduce the hot gas flow rate.
【0022】以上のような、熱ガスを整流し送出するた
めの流路を搬送手段の上下左右の二方向以上に設け、被
加熱物を二方向以上から加熱することにより、厚み方向
の表裏で温度差が生じやすい大型で厚さの大きい被加熱
物に対しても、全面から均一に加熱でき、厚み方向に対
しても温度差を小さくできる。また、少なくとも一方向
に位置する流路内に冷却手段を設けることにより、例え
ば、表面からの加熱が大きく熱的損傷を受けやすい薄板
状被加熱物に対しても、裏面からの冷却用のガスにより
被加熱物表面に配置されている部品の加熱を防止でき熱
的損傷を避けることができる。
As described above, the flow paths for rectifying and sending out the hot gas are provided in two or more directions of up, down, left and right of the conveying means, and the object to be heated is heated from two or more directions, so that the front and back sides in the thickness direction are Even a large-sized object having a large thickness, which is likely to have a temperature difference, can be uniformly heated from the entire surface, and the temperature difference can be reduced in the thickness direction. Further, by providing a cooling means in the flow path located in at least one direction, for example, even for a thin plate-shaped object to be heated that is easily heated from the front surface and is easily damaged by heat, a gas for cooling from the back surface is used. As a result, it is possible to prevent heating of the parts arranged on the surface of the object to be heated and avoid thermal damage.
【0023】また、搬送手段の近傍上下左右の二方向以
上に配置された流路内での熱ガスの送出方法は、一方向
からは、被加熱物に対して吹き出し方向とし、少なくと
も残り一方向では、逆に吸い込み方向とする。その際の
吹き出し方向と吸い込み方向での流量割合について、吸
い込み流量を多くすることにより被加熱物から発生した
不純物を含む残留ガスを効果的に回収でき、不純物が炉
内に停留して付着することがない。
Further, the method of delivering hot gas in the flow passages arranged in two or more directions in the upper, lower, left and right directions in the vicinity of the carrying means is such that from one direction, the hot gas is blown toward the object to be heated, and at least the remaining one direction. Then, reversely, the suction direction. Regarding the flow rate ratio in the blowing direction and the suction direction at that time, by increasing the suction flow rate, the residual gas containing impurities generated from the object to be heated can be effectively collected, and the impurities stay in the furnace and adhere. There is no.
【0024】さらに、不純物を含む残留ガスを効果的に
回収するために、加熱整流手段である一流路内にガス送
出手段を被加熱物に接触する前後に独立に2つ配置し、
吹き出し流量と吸い込み流量の割合について被加熱物の
接触後の吸い込み流量を多くすることで、残留ガスをよ
く回収し、搬送手段,炉内への付着物を低減できる。
Further, in order to effectively collect the residual gas containing impurities, two gas delivery means are independently arranged before and after contacting the object to be heated in one flow passage which is the heating and rectifying means,
Regarding the ratio of the flow rate of blow-out and the flow rate of suction, by increasing the suction flow rate after the contact of the object to be heated, the residual gas can be recovered well, and the deposits on the conveying means and the furnace can be reduced.
【0025】[0025]
【実施例】以下、本発明の一実施例について図1を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.
【0026】図1は、本発明に係る加熱装置1の側断面
を示し、炉体容器は、第一予熱室2a,第二予熱室2
b,本加熱室3,冷却室4から構成されている。上記第
一予熱室2a,第二予熱出2bおよび本加熱室3には、
不活性ガス,還元ガス,加熱空気,加熱金属蒸気ガスと
いった熱媒体となる熱ガスを送出するための送風機(プ
ロペラ)5、送風機を駆動するためのモータ36,加熱
ヒータ12〜14、加熱手段18aを埋設した整流板1
5〜17、周壁に加熱手段18aを埋設した内側流路2
0〜22、周壁に加熱手段19aを埋設した外側流路2
7〜29、スコップ状吐出口をもつ風切り板23を多数
配置し加熱手段18aを埋設した整流板24〜26が設
けられている。また、熱ガスが加熱装置1の外に出ない
ように強制排気送風器30が設けられている。冷却室4
は、冷却ガス供給系34と接続しており、吸気送風機3
5が設けられている。第一予熱室2a,第二予熱室2
b,本加熱室3,冷却室4の各室は無端のコンベア7上
近傍で連通している。コンベア7は、コンベア駆動装置
8により、駆動用スプロケット31を介して駆動され
る。32は張力調整用ローラ、33は従動ローラであ
る。
FIG. 1 shows a side cross-section of a heating apparatus 1 according to the present invention. The furnace body container includes a first preheating chamber 2a and a second preheating chamber 2
b, a main heating chamber 3 and a cooling chamber 4. In the first preheating chamber 2a, the second preheating outlet 2b and the main heating chamber 3,
A blower (propeller) 5 for delivering a heat gas that serves as a heat medium such as an inert gas, a reducing gas, heated air, and a heated metal vapor gas, a motor 36 for driving the blower, heaters 12 to 14, heating means 18a. Rectifier plate 1 with embedded
5 to 17, the inner flow path 2 in which the heating means 18a is embedded in the peripheral wall 2
0 to 22, the outer flow path 2 in which the heating means 19a is embedded in the peripheral wall
7 to 29, baffle plates 24 to 26, in which a large number of wind plate 23 having scoop-shaped discharge ports are arranged and the heating means 18a is embedded, are provided. Further, a forced exhaust air blower 30 is provided so that the hot gas does not go out of the heating device 1. Cooling chamber 4
Is connected to the cooling gas supply system 34, and the intake blower 3
5 are provided. First preheating chamber 2a, second preheating chamber 2
b, the main heating chamber 3 and the cooling chamber 4 communicate with each other near the endless conveyor 7. The conveyor 7 is driven by the conveyor drive device 8 via the drive sprocket 31. Reference numeral 32 is a tension adjusting roller, and 33 is a driven roller.
【0027】以上のように構成された加熱装置1につい
てその動作を図1,図2を用いて以下に説明する。図1
の被加熱物6は、無端のコンベア7上に一定間隔ごとに
乗せられ、第一予熱室2a,第二予熱室2b,本加熱室
3を通過する間に段階的に設定温度に昇温され、コンベ
ア7で移動する間に所望の熱処理を受ける。すなわち、
室温であった被加熱物6は、第一予熱室2aに入り昇温
され、第二予熱室2b出口付近で例えば、温度150℃
と熱的に飽和となり、表面温度が一定になり、最後に本
加熱室3で一定時間の間、最高温度領域である250℃
近く昇温され、やがて冷却室4に入り室温近くまで冷却
される。
The operation of the heating device 1 configured as described above will be described below with reference to FIGS. 1 and 2. Figure 1
The article 6 to be heated is placed on the endless conveyor 7 at regular intervals, and is gradually heated to the set temperature while passing through the first preheating chamber 2a, the second preheating chamber 2b, and the main heating chamber 3. , Receives the desired heat treatment while moving on the conveyor 7. That is,
The object 6 to be heated, which was at room temperature, enters the first preheating chamber 2a and is heated, and the temperature is, for example, 150 ° C. near the outlet of the second preheating chamber 2b.
It becomes thermally saturated, the surface temperature becomes constant, and finally, in the main heating chamber 3 for a fixed time, the maximum temperature range is 250 ° C.
The temperature is raised close to the temperature, and then the cooling chamber 4 is entered and the temperature is cooled to near room temperature.
【0028】コンベア7は、加熱装置1の両端で掛け渡
されており、コンベア駆動装置8と連動している駆動用
スプロケット31を介して矢印Aの方向に一定速度で移
動している。張力調整用ローラ32でコンベア7に一定
張力を付与し、たわみを防止している。通常コンベア7
の移動速度は、0.1〜2.0m/secの範囲内で可
変できるが、例えば被加熱物6を第一予熱室2a,第二
予熱室2bで長時間処理し、本加熱室3で早く、冷却室
4でゆっくりと処理したい場合には、搬送手段7aを予
熱領域(第一予熱室2a,第二予熱室2b)と本加熱室
3,冷却室4の3個に独立(図示せず)させることによ
り、各室での搬送速度を変化させることによって熱処理
時間を自由に設定してもよいことは明らかである。
The conveyor 7 is stretched over both ends of the heating device 1 and is moved at a constant speed in the direction of arrow A via a driving sprocket 31 which is interlocked with the conveyor driving device 8. The tension adjusting roller 32 applies a constant tension to the conveyor 7 to prevent the deflection. Normal conveyor 7
Can be varied within a range of 0.1 to 2.0 m / sec. For example, the object 6 to be heated is treated in the first preheating chamber 2a and the second preheating chamber 2b for a long time, and then in the main heating chamber 3. When it is desired to process the cooling chamber 4 quickly and slowly, the transfer means 7a is independently provided in the preheating region (first preheating chamber 2a, second preheating chamber 2b), main heating chamber 3 and cooling chamber 4 (not shown). It is clear that the heat treatment time may be freely set by changing the carrying speed in each chamber by changing the above.
【0029】冷却室4では、被加熱物の酸化を抑制する
ために不活性ガスといった冷却ガスを冷却ガス供給系3
4から供給し、吸気送風機35により冷却室4内で循環
させる。ここで、冷却ガス供給系34を大気に解放さ
せ、単に加熱装置1の外の空気を取り入れることによ
り、簡潔に冷却できることは明らかである。
In the cooling chamber 4, a cooling gas such as an inert gas is supplied in order to suppress the oxidation of the object to be heated.
4, and is circulated in the cooling chamber 4 by the intake blower 35. Here, it is apparent that the cooling gas supply system 34 can be released to the atmosphere and simply take in the air outside the heating device 1 to achieve simple cooling.
【0030】なお、本加熱室3の加熱ヒータ14は、予
熱領域での加熱ヒータ12,13よりも熱容量が大き
く、同様に本加熱室3での送風機5は、予熱領域での他
の送風機5よりも、昇圧能力,送風流量が大きく設計さ
れている。また、熱ガス送風のための駆動モータ36は
断熱構造を備え、外側流路27〜29の天井壁の外側
(上側)に配置され、高温熱ガスから熱が直接伝わるこ
とを抑制している。
The heating heater 14 of the main heating chamber 3 has a larger heat capacity than the heating heaters 12 and 13 in the preheating region. Similarly, the blower 5 in the main heating chamber 3 has another heat blower 5 in the preheating region. It is designed to have a larger boosting capacity and a larger air flow rate. Further, the drive motor 36 for blowing hot gas has a heat insulating structure and is arranged outside (upper side) the ceiling walls of the outer flow paths 27 to 29 to suppress direct transfer of heat from the high temperature hot gas.
【0031】図2では、予熱室2a,2b,本加熱室3
とも構造的に同じであるため、第一予熱室2aのみをと
りあげ、熱ガスを熱媒体にして被加熱物6を加熱する動
作について説明する。
In FIG. 2, the preheating chambers 2a and 2b and the main heating chamber 3 are shown.
Since both are structurally the same, only the first preheating chamber 2a will be taken up, and an operation of heating the object 6 to be heated by using hot gas as a heat medium will be described.
【0032】図2は、第一予熱室2aの概略縦断面図を
示す。第一予熱室2aにおいて、封入されている不活性
ガス,還元ガス,加熱空気,加熱金属蒸気ガスといった
熱ガスは、被加熱物6を均一に加熱するため、送風機5
によって一定方向に強制的に循環され、被加熱物6に向
かって送出される。その際、送出されるガスは送風機5
として、例えば、多翼羽根ファンを採用した場合、39
2〜883Pa昇圧することにより被加熱物6に吹き出
される風速が適切となり、効果的な加熱がなされる。昇
圧されたガスは、途中、加熱ヒータ12によって所定の
温度に昇温され、一定風速に整流するために内側流路2
0の入口直径の0.2倍程度の距離で加熱ヒータ12の
下流側に設置されるとともに、加熱手段18aを埋設し
た整流板15で、さらに熱交換され整流される。このよ
うに、整流板15によって温度,風速が送出方向に対し
て一定に整えられた熱ガスは、さらに風切り板24に接
触し、その加熱手段18aによって温度を一定に保持さ
れながら、スコップ状吐出口を有する風切り板23から
被加熱物6の表面上を旋回流れを描くように吹き出され
る。熱ガスは、被加熱物6に接触後、被加熱物の中心方
向から外周方向に向かって流れ、周壁に加熱手段19a
を埋設した外側流路27によって流れがその外周壁27
iにせき止められ、負圧により外側流路27内に導かれ
る。熱ガスは途中の流路27内においても降温すること
がなく、ガス温度を昇温しつつ、再び送風機5に入るよ
うな循環を繰り返す。外側流路27の外側には断熱構造
材からなる容器37によって被覆され、内部での熱損失
を抑制している。
FIG. 2 is a schematic vertical sectional view of the first preheating chamber 2a. In the first preheating chamber 2a, the enclosed hot gas such as inert gas, reducing gas, heated air, and heated metal vapor gas uniformly heats the object 6 to be heated.
Is forcibly circulated in a certain direction by the above, and is delivered toward the object to be heated 6. At that time, the gas to be delivered is the blower 5
For example, if a multi-blade fan is adopted,
By increasing the pressure by 2 to 883 Pa, the wind speed blown to the object 6 to be heated becomes appropriate, and effective heating is performed. The pressure-increased gas is heated to a predetermined temperature by the heater 12 on the way, and the inner flow path 2 is rectified to rectify it to a constant wind velocity.
It is installed on the downstream side of the heater 12 at a distance of about 0.2 times the inlet diameter of 0, and is further heat-exchanged and rectified by the rectifying plate 15 in which the heating means 18a is embedded. In this way, the hot gas whose temperature and wind velocity are adjusted to be constant in the delivery direction by the straightening plate 15 further contacts the wind plate 24, and the heating means 18a keeps the temperature constant, while discharging the scoop-like gas. It is blown out from the wind plate 23 having an outlet so as to draw a swirling flow on the surface of the object 6 to be heated. After contacting the object 6 to be heated, the hot gas flows from the center direction of the object to be heated toward the outer peripheral direction, and the heating means 19a is provided on the peripheral wall.
The outer flow path 27 in which the
It is restrained by i and guided into the outer flow path 27 by negative pressure. The hot gas does not decrease in temperature even in the flow path 27 on the way, and the circulation of the blower 5 is repeated while increasing the temperature of the gas. The outside of the outer flow path 27 is covered with a container 37 made of a heat insulating structural material to suppress heat loss inside.
【0033】図3は第一予熱室2aの概略斜視図を示
し、例えば、図のように内側流路20が円筒型の場合、
熱ガスの流れのよどむ箇所が内側流路20を四角柱型に
した場合に比べ少なく、メンテナンスが容易である。加
熱ヒータ12は、フィンチューブ型のヒータを内側流路
20内の断面積一杯に充填するように取り付けることで
伝熱面積を多くとることができ、効率的な熱交換が可能
となる。整流板15は、良熱伝導性材料からなる薄板円
筒(同心円構造)からなり、内部には面状抵抗発熱体1
8aを埋設しサンドイッチ構造を有しており、熱ガス流
れを加熱・整流している。なお、整流板15の高さ決定
の目安として、内側流路20の入口直径の0.5倍以上
が望ましい。内側流路20と外側流路27は加熱手段を
別にして独立して温度設定が可能であり、内側流量20
と外側流量27との間には、例えば、空気で熱遮断する
などの断熱層37aを設けている。
FIG. 3 shows a schematic perspective view of the first preheating chamber 2a. For example, when the inner flow passage 20 is of a cylindrical type as shown in the drawing,
The number of stagnant places of the flow of hot gas is smaller than that in the case where the inner flow path 20 is formed in a rectangular prism shape, and the maintenance is easy. The heater 12 can have a large heat transfer area by mounting a fin-tube type heater so as to fill the inner flow path 20 with a large cross-sectional area, and efficient heat exchange is possible. The rectifying plate 15 is made of a thin plate cylinder (concentric circle structure) made of a material having good heat conductivity, and has the sheet resistance heating element 1 inside.
8a is buried and has a sandwich structure to heat and rectify the flow of hot gas. In addition, as a guide for determining the height of the straightening vane 15, it is desirable that the inlet diameter of the inner flow passage 20 be 0.5 times or more. The temperature of the inner flow passage 20 and the outer flow passage 27 can be set independently of each other by heating means, and the inner flow rate 20
Between the outer flow rate 27 and the outer flow rate 27, for example, a heat insulating layer 37a for blocking heat with air is provided.
【0034】図4は、スコップ状吐出口をもつ風切り板
23を多数配置し加熱手段18aを埋設した整流板24
の上部からの平面断面を示す。この整流板24は被加熱
物6の直上約70〜200mmに配置され、整流板15
は、例えば、耐熱性アルミ合金といった良熱伝導性材料
からなり、薄板からなるアルミ合金の中に面状抵抗発熱
体18aを埋設したようなサンドイッチ構造となってい
る。下面(被加熱物6側)には、良熱伝導性材料からな
るスコップ状吐出口をもつ風切り板23を渦巻状に配置
し、熱ガスを旋回流れを描くよう吹き出すことにより、
熱ガスのよどむ箇所がなく、効果的な加熱ができるよう
にしている。また、加熱手段18aを設けたことによ
り、熱ガスを所望の熱処理温度に精度よく調整ができ、
整流板24を保温することにより、熱ガスからの熱損失
を低減することができる。
In FIG. 4, a baffle plate 24 in which a large number of wind cutting plates 23 each having a scoop-shaped discharge port are arranged and a heating means 18a is embedded.
2 shows a plane cross-section from above. The straightening vane 24 is arranged approximately 70 to 200 mm directly above the object to be heated 6, and the straightening vane 15
Is made of a material having good thermal conductivity such as a heat-resistant aluminum alloy, and has a sandwich structure in which a sheet resistance heating element 18a is embedded in an aluminum alloy made of a thin plate. On the lower surface (on the side of the object 6 to be heated), a wind-blading plate 23 having a scoop-shaped discharge port made of a good heat conductive material is arranged in a spiral shape, and hot gas is blown out so as to draw a swirling flow,
There are no hot gas stagnation points and effective heating is possible. Further, since the heating means 18a is provided, the hot gas can be accurately adjusted to the desired heat treatment temperature,
By keeping the rectifying plate 24 warm, it is possible to reduce heat loss from hot gas.
【0035】図5は、整流板24の下面からの概略図を
示し、矢印Aは熱ガスの吹き出される方向を示し、スコ
ップ状吐出口をもつ風切り板23はその吹き出し方向を
矢印Bのように可変とすることにより、中心から外周部
へ半径方向に吹き出したり、吹き出し口を周方向(外周
と平行な方向)に固定することで旋回流れを発生、さら
に、コンベア7の搬送方向に対し平行な流れ,搬送方向
に垂直な流れ,旋回流れの正逆転の切り替えといったよ
うに、自由に流れを調整することができる。風切り板2
3は、さらに、その吹き出し角度を調整し、吹き出し断
面積を増減させることにより、吹き出し流量の調整が可
能である。風切り板23は、着脱可能なカセット方式と
することで、メンテナンスが容易となる。風切り板23
は吹き出し口の断面積を中心側で大きくし、外周部で小
さくなるように自由に配置することで、所望の熱ガスの
流れとなるように組み合わせることが可能である。
FIG. 5 shows a schematic view from the lower surface of the straightening vane 24, arrow A shows the direction in which hot gas is blown out, and a windbreak plate 23 having a scoop-shaped discharge port shows its blowing direction as shown by arrow B. By making it variable, the swirl flow is generated by blowing in the radial direction from the center to the outer peripheral portion, or by fixing the blowout opening in the circumferential direction (direction parallel to the outer periphery), and further in parallel with the conveying direction of the conveyor 7. It is possible to freely adjust the flow such as a normal flow, a flow perpendicular to the conveying direction, and switching between forward and reverse rotation of the swirling flow. Wind plate 2
In No. 3, the blowout flow rate can be adjusted by further adjusting the blowout angle and increasing or decreasing the blowout cross-sectional area. By adopting a detachable cassette system, the windbreak plate 23 can be easily maintained. Wind plate 23
Can be combined so that a desired flow of hot gas can be obtained by freely arranging so that the cross-sectional area of the blowout port is increased on the center side and decreased on the outer peripheral portion.
【0036】本発明に係る第2の実施例を図6を用いて
説明する。図6は、加熱装置1の側断面を示し、図中の
2aaは第一予熱室,2baは第二予熱室,3aは本加
熱室,4aは冷却室、7は搬送手段、12a,13a,
14aは加熱ヒータ、15a,16a,17aは加熱手
段18aを埋設した整流板、20a,21a,22aは
周壁に加熱手段18aを埋設した内側流路、24a,2
5a,26aは風切り板23を多数配置し加熱手段18
aを埋設した整流板、27a,28a,29aは周壁に
加熱手段19aを埋設した外周流路、30は強制排気送
風機、34は冷却ガス供給系、35は吸気送風機35、
36aは送風機5aを駆動するためのモータ、37aは
断熱構造からなる外壁であり、図1と同様の構成であ
る。
A second embodiment according to the present invention will be described with reference to FIG. FIG. 6 shows a side cross-section of the heating device 1. In the figure, 2aa is a first preheating chamber, 2ba is a second preheating chamber, 3a is a main heating chamber, 4a is a cooling chamber, 7 is a conveying means, 12a, 13a,
Reference numeral 14a is a heater, 15a, 16a and 17a are rectifying plates in which the heating means 18a is embedded, 20a, 21a and 22a are inner flow paths in which the heating means 18a is embedded in the peripheral wall, and 24a and 2a.
5a and 26a are provided with a large number of wind plate 23 and are provided with heating means 18
a is a rectifying plate, 27a, 28a, 29a are outer peripheral flow paths in which the heating means 19a is embedded in the peripheral wall, 30 is a forced exhaust blower, 34 is a cooling gas supply system, 35 is an intake blower 35,
Reference numeral 36a is a motor for driving the blower 5a, and 37a is an outer wall having a heat insulating structure, which has the same configuration as that in FIG.
【0037】例えば、コンベア7の少なくとも上下左右
の二方向以上の内、コンベア7の下面側にも、上部と同
様、第一予熱室2ab,第二予熱室2bb本加熱室3b
と熱ガスの送出,加熱手段を設けたものである。
For example, in at least the upper, lower, left, and right directions of the conveyor 7, on the lower surface side of the conveyor 7, as in the upper part, the first preheating chamber 2ab, the second preheating chamber 2bb, and the main heating chamber 3b.
And a means for delivering hot gas and heating means.
【0038】コンベア7の下部においても、熱ガスの加
熱・送出手段2c,3c,4cを独立に設けることによ
り被加熱物6は下部からの加熱により、厚み方向の温度
分布を一定にし、効率的な加熱が可能である。また、加
熱・送出手段2c,3c,4cを独立して設けたことに
より、熱ガスの温度設定が可能なため精度のよい細かな
熱処理が可能である。その際、コンベア7の下方の加熱
・送出手段2c,3c,4cにおける熱ガス循環流量
は、上方における第一予熱室2aa,第二予熱室2b
a,本加熱室3aにおける熱ガス循環流量よりも多く、
1.4〜2.5倍程度にとることが望ましい。下方での
送出流量を多くすることによって被加熱物6を加熱時に
発生した不純物を含む残留ガスを効果的に除外すること
ができ、上下面ともに一定温度領域が拡大し、均熱加熱
が容易になる。
Even in the lower part of the conveyor 7, by independently providing the heating / sending means 2c, 3c, 4c for the hot gas, the object 6 to be heated is heated from the lower part so that the temperature distribution in the thickness direction becomes constant and the efficiency is improved. Various heating is possible. Further, since the heating / delivering means 2c, 3c, 4c are independently provided, the temperature of the hot gas can be set, so that precise heat treatment can be performed with high precision. At this time, the hot gas circulation flow rates in the heating / delivery means 2c, 3c, 4c below the conveyor 7 are such that the first preheating chamber 2aa and the second preheating chamber 2b are located above.
a, more than the hot gas circulation flow rate in the main heating chamber 3a,
It is desirable to take about 1.4 to 2.5 times. By increasing the downward flow rate, the residual gas containing impurities generated during heating of the object to be heated 6 can be effectively excluded, and the constant temperature region on both the upper and lower surfaces can be expanded, and uniform heating can be facilitated. Become.
【0039】本発明に係る第3の実施例を図7に示す。
図7は、加熱装置1の側断面を示し、図6の第2の実施
例における強制排気送風機30をコンベア7の例えば、
上下二方向に設け、冷却ガス供給系34を冷却室4以外
に、下部での流路20a,21a,22aに対し、一系
統設けたものである。
FIG. 7 shows a third embodiment according to the present invention.
FIG. 7 shows a side cross-section of the heating device 1, and the forced exhaust blower 30 in the second embodiment of FIG.
The cooling gas supply system 34 is provided in two directions in the upper and lower directions, and one system is provided for the flow paths 20a, 21a, 22a in the lower part in addition to the cooling chamber 4.
【0040】なお、図7において下部における冷却ガス
供給系34bでのガスの流入流量を調整するためにバタ
フライバルブ38を設けている。第3の実施例の場合、
被加熱物6の下方からの冷却作用を強化するために冷却
ガス供給系34bを設け、強制排気送風機30bによっ
て炉内でのガス流量調整を行うことで、効果的に不純物
を含む残留ガスを除外することができ、高温度ガス吹き
付けによる被加熱物6の過熱を防止することができる。
また、冷却ガス供給系34bによる冷却ガスの代わりに
室温の大気を供給し、冷却効果を与えても良いことは、
明らかである。
In FIG. 7, a butterfly valve 38 is provided to adjust the flow rate of gas flowing into the cooling gas supply system 34b in the lower part. In the case of the third embodiment,
A cooling gas supply system 34b is provided in order to enhance the cooling action of the object to be heated 6 from below, and the forced exhaust blower 30b is used to adjust the gas flow rate in the furnace to effectively remove residual gas containing impurities. Therefore, it is possible to prevent the heated object 6 from being overheated due to the high temperature gas spraying.
Further, instead of the cooling gas by the cooling gas supply system 34b, it is possible to supply the room temperature atmosphere to give the cooling effect.
it is obvious.
【0041】本発明に係る第4の実施例を図8に示す。
図8は、加熱装置1の側断面を示し、図7の第3の実施
例における強制排気送風機30aを第一予熱室2a,第
二予熱出3a,本加熱室4aの各室ごとに独立して設け
たことにより異なった構成になっている。
A fourth embodiment according to the present invention is shown in FIG.
FIG. 8 shows a side cross-section of the heating device 1, and the forced exhaust blower 30a in the third embodiment of FIG. 7 is independently provided for each of the first preheating chamber 2a, the second preheating outlet 3a, and the main heating chamber 4a. It has a different structure because it is provided.
【0042】図8に示された加熱装置1は、第一予熱室
2aa,第二予熱室2ba,本加熱室3aも構成が同様
であることから、第一予熱室2aaに限ってその動作を
説明する。第一予熱室2aaにおいて熱ガスは、送風機
5aによって送出され、内側流路20a内に沿って流
れ、加熱ヒータ12aで所定の温度に昇温される。昇温
された熱ガスは、整流板15a,24aを通って風速を
一定、熱ガス温度を一定に調整された後、被加熱物6に
接触し熱伝達が行われる。その後、熱ガスは大部分が外
側流路27a内で再循環し、被加熱物6の加熱に使われ
る。ここで、強制排気送風機30cを第一予熱室2aa
に設けたことにより、熱ガスの排気が効果的に行われ、
不純物などを含む残留ガスが強制的に排気される。ま
た、強制排気送風機30cによる吸い込みと被加熱物6
に吹き付けるための送風機5aとの流量の調整が独立し
て行え、熱ガスの流れを細かく制御できる。
In the heating device 1 shown in FIG. 8, the first preheating chamber 2aa, the second preheating chamber 2ba, and the main heating chamber 3a have the same structure. Therefore, the operation is limited to the first preheating chamber 2aa. explain. In the first preheating chamber 2aa, the hot gas is blown out by the blower 5a, flows along the inside flow path 20a, and is heated to a predetermined temperature by the heater 12a. The heated hot gas passes through the straightening vanes 15a and 24a to have a constant wind speed and a constant hot gas temperature, and then contacts the object 6 to be heated for heat transfer. After that, most of the hot gas is recirculated in the outer flow path 27a and used for heating the object 6 to be heated. Here, the forced exhaust blower 30c is connected to the first preheating chamber 2aa.
Since it is provided in the, hot gas is effectively exhausted,
Residual gas containing impurities etc. is forcedly exhausted. In addition, the suction by the forced exhaust blower 30c and the heated object 6
The flow rate with the blower 5a for spraying on the air can be adjusted independently, and the flow of hot gas can be finely controlled.
【0043】例えば、流路20a内における上流側の送
風機5aによる吹き出し流量と下流側での強制排気送風
機30cによる吸い込み流量の割合を下流側の吸い込み
流量側を多くすることにより、被加熱物6上の熱ガスの
風速を増大させ、かつ一定風速領域を拡大することが可
能となり、被加熱物6を容易に均熱加熱でき、不純物な
どを含む残留ガスを効果的に排気することができる。上
流側の送風機5aによる吹き出し流量と下流側での強制
排気送風機30cによる吸い込み流量の比は1:1.2
〜1:1.6程度が望ましい。
For example, by increasing the ratio of the flow rate of air blown by the blower 5a on the upstream side and the flow rate of suction by the forced exhaust blower 30c on the downstream side in the flow path 20a on the suction flow rate side on the downstream side, the object to be heated 6 is heated. It is possible to increase the wind velocity of the hot gas and expand the constant wind velocity region, the object 6 to be heated can be easily heated by uniform heating, and the residual gas containing impurities and the like can be effectively exhausted. The ratio of the flow rate blown by the blower 5a on the upstream side to the suction flow rate by the forced exhaust blower 30c on the downstream side is 1: 1.2.
Approximately 1: 1.6 is desirable.
【0044】なお、第4の実施例である図8において、
炉体上部での第一予熱室2aa,第二予熱室2ba,本
加熱室3aにおける熱ガスの循環熱風流量に対して、コ
ンベア7下方での第一予熱室2ab,第二予熱室3b
b,本加熱室3bにおける循環熱風流量を1.4〜2.
5倍と上部での循環流量を多くし、かつ炉体上部におけ
る各室での送風機9a,10a,11aによる吹き出し
流量と、強制排気送風機30c,30d,30eによる
吸い込み流量との比を1:1.2〜1:1.6と吸い込
み流量を多くなるように設定しても良い。
Incidentally, in FIG. 8 showing the fourth embodiment,
The first preheating chamber 2ab, the second preheating chamber 3b below the conveyor 7 with respect to the circulating hot air flow rate of the hot gas in the first preheating chamber 2aa, the second preheating chamber 2ba, and the main heating chamber 3a above the furnace body.
b, the circulating hot air flow rate in the main heating chamber 3b is 1.4 to 2.
The circulation flow rate in the upper part is increased to 5 times, and the ratio of the blowout flow rate by the blowers 9a, 10a, 11a in each chamber in the upper part of the furnace body to the suction flow rate by the forced exhaust blowers 30c, 30d, 30e is 1: 1. .2 to 1: 1.6 may be set so that the suction flow rate is increased.
【0045】また、第2の実施例である図6において、
該ガスを加熱・整流し送出するための内側流路20a,
21a,22a、整流板24a,25a,26a、外側
流路27a,28a,29aから構成されている加熱・
送出手段は該搬送手段の近傍,上下の二方向に限ったこ
とはなく、上下左右の二ヶ所以上に併設することによ
り、該被加熱物の上下左右の二方向以上からの一様な加
熱が可能なことは言うまでもない。
Further, in FIG. 6 showing the second embodiment,
An inner flow path 20a for heating, rectifying and delivering the gas,
21a, 22a, straightening vanes 24a, 25a, 26a, outer flow paths 27a, 28a, 29a
The sending means is not limited to the vicinity of the conveying means and to the two directions of the upper and lower sides, but by providing the heating means in two or more places of the upper, lower, left and right sides, uniform heating of the object to be heated from two or more directions of the upper, lower, left and right. Not to mention possible.
【0046】[0046]
【発明の効果】以上本発明により以下に示すように優れ
た効果を実現するものである。
As described above, the present invention realizes the following excellent effects.
【0047】(1)加熱装置内に被加熱物を予熱する予
熱室と、高温度域での熱処理を行うための本加熱室を独
立して配置し、被加熱物を搬送する搬送手段と、不活性
ガス,還元ガス,加熱空気,加熱金属蒸気ガスなどを送
出する送出手段を有し、周壁に加熱手段を埋設した流路
内に対流加熱手段を設けることによって、昇温された熱
ガスを効果的に整流,温度分布を一定に整え、輻射加熱
効果を付与することによって小型精密部品から大型板状
被加熱物まで幅広く、2段以上の段階的な温度での熱処
理が、精度良くできる。
(1) A preheating chamber for preheating an object to be heated and a main heating chamber for performing heat treatment in a high temperature region are independently arranged in the heating device, and a conveying means for conveying the object to be heated, By providing a convection heating means in the flow path in which the heating means is embedded in the peripheral wall, there is provided a delivery means for delivering an inert gas, a reducing gas, heated air, a heated metal vapor gas, etc. By effectively adjusting the rectification and temperature distribution to a constant level and imparting a radiant heating effect, it is possible to accurately perform heat treatment in a wide range of sizes from small precision parts to large plate-shaped objects to be heated at two or more stages.
【0048】(2)加熱手段を埋設した良熱伝導性耐熱
材料からなる整流板に、回転可能なスコップ形状吐出口
をもつ整流板を被加熱物直上近くに設けることによって
熱対流加熱作用と輻射加熱作用を兼ね備え、被加熱物表
面における熱ガス流れを等速度に温度一定にでき、熱損
失が少なく、能率的な加熱が可能である。
(2) A heat-convection heating effect and radiation are provided by providing a straightening plate having a rotatable scoop-shaped discharge port on a straightening plate made of a heat-resistant material having good thermal conductivity and having a heating means embedded therein, near immediately above the object to be heated. It also has a heating effect, the temperature of the hot gas flow on the surface of the object to be heated can be kept constant at a constant speed, heat loss is small, and efficient heating is possible.
【0049】(3)スコップ形状吐出口をもつ風切り板
から被加熱物に向けて吹き出される熱ガスの風向は、被
加熱部の中心方向から外周方向に渦を描くようになって
おり、風切り板からの吐出口の吹き出し方向は回転可能
としたので、被加熱物表面上の熱ガス流れの正逆転の切
り替え、流れ方向を自由に調整することができ、かつ風
切り板の角度を可変にすることにより吹き出し流量の調
整が可能であり、熱ガスの吹き出す流れの細かな制御に
より、効率的な加熱が可能である。
(3) The wind direction of the hot gas blown toward the object to be heated from the wind plate having the scoop-shaped discharge port is such that a vortex is drawn from the central direction of the heated part to the outer peripheral direction. Since the discharge direction of the discharge port from the plate is rotatable, it is possible to switch forward and reverse of the hot gas flow on the surface of the object to be heated, freely adjust the flow direction, and make the angle of the wind plate variable. By doing so, it is possible to adjust the flow rate of blowout, and it is possible to perform efficient heating by finely controlling the flow of blown hot gas.
【0050】(4)熱ガスを整流し送出するための流路
を予熱室,本加熱室と独立して各々、搬送手段の上下左
右の二方向以上に配置することにより、被加熱物を二方
向以上から一様に加熱することができ、厚みのある厚も
のに対しても表裏,厚み方向に対して均一加熱が可能で
熱衝撃による不良の発生を防止することができる。
(4) By arranging the flow paths for rectifying and delivering the hot gas independently of the preheating chamber and the main heating chamber in two or more directions above and below and to the left and right of the conveying means, two objects to be heated can be provided. It is possible to uniformly heat from a direction or more, and even thick ones can be uniformly heated in the front and back and in the thickness direction, and the occurrence of defects due to thermal shock can be prevented.
【0051】(5)搬送手段の下方に配置された熱ガス
を加熱・整流するための流路において加熱するのを止
め、室温のガスを循環することにより、薄板状の被加熱
物に対して下方からの冷却ガスの冷却作用により被加熱
物の過熱を防止できる。さらに、被加熱物の下方からの
冷却効果を向上するために外部から冷却ガス供給系を付
設することにより、薄板状の被加熱物の過熱による不良
を防止しながら、高温ガスによる表面の熱処理が可能で
ある。
(5) The heating in the flow path for heating and rectifying the hot gas arranged below the conveying means is stopped and the gas at room temperature is circulated so that the thin plate-like object to be heated can be heated. The cooling action of the cooling gas from below can prevent the heated object from overheating. Furthermore, by providing a cooling gas supply system from the outside to improve the cooling effect from below the heated object, the heat treatment of the surface with high temperature gas can be performed while preventing defects due to overheating of the thin plate-shaped heated object. It is possible.
【0052】(6)熱ガスを被加熱物に向かって上流側
から吹き出し、被加熱物に接触した後、下流側で吸い込
むための送出手段を予熱室,本加熱室ごとに独立して設
け、加熱手段を埋設した流路内における上流側の吹き出
し流量と被加熱物に接触後の下流側での吸い込み流量の
割合を下流側の吸い込み流量を多くすることにより、不
純物を含む残留ガスを効果的に排気でき、各室単位で精
度良く一様に被加熱物表面からの加熱ができる。
(6) The preheating chamber and the main heating chamber are independently provided with a delivery means for blowing hot gas toward the object to be heated from the upstream side, contacting the object to be heated, and then sucking in the downstream side, The ratio of the upstream flow rate in the flow path in which the heating means is buried and the downstream flow rate after contacting the object to be heated is increased by increasing the downstream flow rate to effectively remove residual gas containing impurities. The air can be evacuated, and heating from the surface of the object to be heated can be performed accurately and uniformly in each room.
【0053】(7)熱ガスを加熱・整流し送出するため
の流路を搬送手段の上下左右の二方向以上に併設する
際、一方向での流路における熱ガスの吹き出し流量と残
り方向の流路における吹き出し流量の割合は搬送手段の
残り方向の流路における吹き出し流量を多くすることに
よって被加熱物から発生する不純物を含む残留ガスを効
果的に排気でき、一方向から吹き出す熱ガスの一定温
度,一定流速領域を拡大することができ、被加熱物の少
なくとも上下面からの一様な加熱が容易にできる。
(7) When the flow passages for heating / rectifying and sending out the hot gas are provided side by side in the upper, lower, left, and right directions of the conveying means, the flow rate of the hot gas in the flow passage in one direction and the remaining flow direction The ratio of the flow rate of air blown out in the flow path is such that the residual gas containing impurities generated from the object to be heated can be effectively exhausted by increasing the flow rate of flow out in the flow path in the remaining direction of the transfer means, and the hot gas blown out from one direction can be kept constant. The temperature and constant flow velocity region can be expanded, and uniform heating of at least the upper and lower surfaces of the object to be heated can be facilitated.
【0054】(8)搬送手段を予熱室,本加熱室,冷却
室の3室に独立して設け、各室での搬送速度を独自に制
御することにより搬送手段を長く大きくすることなく、
所要の熱処理時間を自由に設定でき、加熱装置を小さく
して経済的にできるばかりでなく、能率的に被加熱物を
加熱することができる。
(8) The transfer means is independently provided in the three chambers of the preheating chamber, the main heating chamber, and the cooling chamber, and the transfer speed in each chamber is independently controlled, without making the transfer means long and long.
Not only can the required heat treatment time be freely set, the heating device can be made small to be economical, and the object to be heated can be efficiently heated.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の第1の実施例における加熱装置の側断
面図
FIG. 1 is a side sectional view of a heating device according to a first embodiment of the present invention.
【図2】本発明の第1の実施例における第一予熱室での
動作説明のための概略縦断面図
FIG. 2 is a schematic vertical sectional view for explaining an operation in the first preheating chamber in the first embodiment of the present invention.
【図3】本発明の第1の実施例における第一予熱室の動
作説明のための概略斜視図
FIG. 3 is a schematic perspective view for explaining the operation of the first preheating chamber in the first embodiment of the present invention.
【図4】スコップ状吐出口をもつ風切り板を多数配置し
加熱手段を埋設した整流板の上部からの横断面図
FIG. 4 is a transverse cross-sectional view from the top of a straightening vane in which a large number of wind-blading plates having scoop-shaped discharge ports are arranged and heating means is embedded.
【図5】図4での整流板の下面からの概略図FIG. 5 is a schematic view from the bottom surface of the current plate in FIG.
【図6】本発明の第2の実施例における加熱装置の側断
面図
FIG. 6 is a side sectional view of a heating device according to a second embodiment of the present invention.
【図7】本発明の第3の実施例における加熱装置の側断
面図
FIG. 7 is a side sectional view of a heating device according to a third embodiment of the present invention.
【図8】本発明の第4の実施例における加熱装置の側断
面図
FIG. 8 is a side sectional view of a heating device according to a fourth embodiment of the present invention.
【図9】従来の加熱装置における側断面図FIG. 9 is a side sectional view of a conventional heating device.
【符号の説明】[Explanation of symbols]
1 加熱装置 2a 第一予熱室 2b 第二予熱室 3 本加熱室 4 冷却室 5 送風機 6 被加熱物 7 無端コンベア 8 コンベア駆動装置 12,13,14 加熱ヒータ 15,16,17 加熱手段を埋設した整流板 18,19 加熱手段の電器回路 20,21,22 加熱手段を埋設した内側流路 23 スコップ状吐出口をした風切り板 24,25,26 加熱手段を埋設した下部整流板 27,28,29 加熱手段を埋設した外側流路 30 強制排気送風機 31 駆動用スプロケット 32 張力調整用ローラ 33 従動ローラ 34 冷却ガス供給系 35 吸気送風機 36 駆動用モータ 37 断熱構造からなる流路 38 バタフライバルブ 1 heating device 2a first preheating chamber 2b second preheating chamber 3 main heating chamber 4 cooling chamber 5 blower 6 object to be heated 7 endless conveyor 8 conveyor drive device 12,13,14 heating heater 15,16,17 heating means embedded Rectifier plate 18,19 Electric circuit of heating means 20,21,22 Inner flow path with heating means embedded 23 Scoop-shaped discharge plate 24,25,26 Lower rectification plate with heating means embedded 27,28,29 Outside flow passage with embedded heating means 30 Forced exhaust blower 31 Drive sprocket 32 Tension adjusting roller 33 Driven roller 34 Cooling gas supply system 35 Intake blower 36 Drive motor 37 Flow path consisting of heat insulating structure 38 Butterfly valve
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B23K 101:42 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area // B23K 101: 42

Claims (9)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 被加熱物を加熱する炉体内に、被加熱物
    を搬送するための搬送手段と、熱ガスを送出するガス送
    出手段を有し、該送出ガスの熱対流による加熱手段と、
    該送出ガスの整流作用と輻射加熱作用を兼ね備えた加熱
    手段とを設けた加熱装置において、温度の異なった熱ガ
    スを充填した複数個によって前記炉体を構成し、各容器
    内に、該熱ガスを整流し送出するための流路を孤立して
    設け、該流路周壁内に保温用加熱手段を埋設することに
    より、該被加熱物を少なくとも二階段以上の必要とする
    温度領域に昇温可能としたことを特徴とする加熱装置。
    1. A furnace for heating an object to be heated, comprising a conveying means for conveying the object to be heated and a gas delivery means for delivering hot gas, and heating means by thermal convection of the delivered gas,
    In a heating device provided with a heating means having both a rectifying function of the delivered gas and a radiant heating function, the furnace body is constituted by a plurality of hot gases having different temperatures filled, and the hot gas is provided in each container. It is possible to raise the temperature of the object to be heated to at least two required temperature regions by providing an independent flow path for rectifying and sending out the heat and embedding a heat retaining heating means in the peripheral wall of the flow path. The heating device characterized in that
  2. 【請求項2】 請求項1において、該送出ガスの熱対流
    による加熱手段を、周壁に加熱ヒータを埋設した流路内
    に設けた加熱装置。
    2. The heating device according to claim 1, wherein the heating means by thermal convection of the delivery gas is provided in a flow path having a heater embedded in a peripheral wall.
  3. 【請求項3】 請求項1または2において、ガスを整流
    し送出するための流路の外側を断熱作用を有する材料で
    被覆した加熱装置。
    3. The heating device according to claim 1, wherein the outer side of the flow path for rectifying and delivering the gas is covered with a material having a heat insulating effect.
  4. 【請求項4】 請求項1,2または3において、流路の
    整流板にスコップ形状吐出口をもつ風切り板を設けるこ
    とにより、被加熱物に向けて吹き出される熱ガスが搬送
    される被加熱物の中心方向から外周方向に渦を描くよう
    に吹き出されるようになっているとともに、風切り板の
    配置角度が可変であり、風切り板の角度により吹き出し
    流れの正転逆転の切り替え,吹き出し流量の調整が可能
    である加熱装置。
    4. The heated object as claimed in claim 1, 2 or 3, wherein the flow regulating plate of the flow path is provided with a winder plate having a scoop-shaped discharge port to convey the hot gas blown toward the object to be heated. The air is blown out so as to draw a vortex from the center of the object to the outer circumference, and the arrangement angle of the windbreak plate can be changed. A heating device that can be adjusted.
  5. 【請求項5】 請求項1,2,3または4において、熱
    ガスを整流し送出するための流路を搬送手段の近傍、2
    ヶ所以上に併設することにより、少なくとも、一方の流
    路においては送出ガスを加熱手段として用い、残り一方
    の流路では加熱するのを止め、室温のガスを循環するこ
    とにより被加熱物の下方からの該ガスの冷却作用により
    該被加熱物の過熱を防止するようにする加熱装置。
    5. The flow passage for rectifying and sending out hot gas according to claim 1, 2, 3 or 4, in the vicinity of the conveying means, 2
    By arranging it in more than one place, at least one of the flow passages uses the delivery gas as a heating means, the other one of the flow passages stops heating, and the gas at room temperature is circulated so that it can be heated from below. A heating device for preventing overheating of the object to be heated by the cooling action of the gas.
  6. 【請求項6】 請求項5において、残り一方の流路内に
    は加熱手段の代わりに冷却手段を設ける加熱装置。
    6. The heating device according to claim 5, wherein cooling means is provided instead of the heating means in the other one of the flow paths.
  7. 【請求項7】 請求項5または6において、一方の流路
    におけるガスの吹き出し流量と残り一方の流路における
    吹き出し流量の割合を下流側における吹き出し流量が多
    くなるようにする加熱装置。
    7. The heating device according to claim 5, wherein the ratio of the flow rate of the gas blown out from one of the flow paths to the flow rate of the gas discharged from the other flow path is such that the flow rate of the blowout gas on the downstream side is increased.
  8. 【請求項8】 請求項1,2,3,4,5,6または7
    において、被加熱物に吹き出し接触する点の上流側に熱
    ガスを送出するための送出手段を設け、被加熱物に接触
    した点の下流側に熱ガスを吸い込むための送出手段を独
    立して設け、流路内における上流側の吹き出し流量と被
    加熱物に接触後の下流側での吸い込み流量の割合を、下
    流側の吸い込み流量が多くなるようにした加熱装置。
    8. The method according to claim 1, 2, 3, 4, 5, 6 or 7.
    In the above, a delivery means for delivering hot gas is provided on the upstream side of the point of blowing contact with the object to be heated, and a delivery means for sucking the hot gas is provided independently on the downstream side of the point of contact with the object to be heated. A heating device in which the ratio of the upstream flow rate in the flow path and the downstream suction flow rate after contacting the object to be heated is set so that the downstream suction flow rate is increased.
  9. 【請求項9】 請求項1,2,3,4,5,6,7また
    は8において、搬送手段を各容器で独立して設け、各容
    器での搬送速度を独自に制御することにより熱処理時間
    を自由に設定できるようにした加熱装置。
    9. The heat treatment time according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein each container is provided with a transfer means independently and the transfer speed in each container is independently controlled. A heating device that can be set freely.
JP7645992A 1992-03-31 1992-03-31 Heating device Pending JPH05296663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7645992A JPH05296663A (en) 1992-03-31 1992-03-31 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7645992A JPH05296663A (en) 1992-03-31 1992-03-31 Heating device

Publications (1)

Publication Number Publication Date
JPH05296663A true JPH05296663A (en) 1993-11-09

Family

ID=13605745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7645992A Pending JPH05296663A (en) 1992-03-31 1992-03-31 Heating device

Country Status (1)

Country Link
JP (1) JPH05296663A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315699A (en) * 2006-05-26 2007-12-06 Asahi Glass Co Ltd Furnace interior heating method and furnace interior heating device
JP2008164234A (en) * 2006-12-28 2008-07-17 Ngk Insulators Ltd Heat treatment furnace for flat plate-shaped member
JP2008235688A (en) * 2007-03-22 2008-10-02 Fujitsu Ltd Solder reflow device
CN100462657C (en) * 2006-09-25 2009-02-18 广东科达机电股份有限公司 Calcinated ceramic-trick roller-bed kiln
KR100910787B1 (en) * 2007-11-06 2009-08-04 항진철강(주) The keeping warm cover contrivance to by waste heat recovery
JP2009236402A (en) * 2008-03-27 2009-10-15 Koyo Thermo System Kk Continuous firing furnace
JP2009285718A (en) * 2008-05-30 2009-12-10 Nippon Dennetsu Co Ltd Soldering method and soldering equipment
JP2009285720A (en) * 2008-05-30 2009-12-10 Nippon Dennetsu Co Ltd Soldering method and soldering equipment
JP2010071554A (en) * 2008-09-18 2010-04-02 Daido Steel Co Ltd Continuous heat treatment furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315699A (en) * 2006-05-26 2007-12-06 Asahi Glass Co Ltd Furnace interior heating method and furnace interior heating device
CN100462657C (en) * 2006-09-25 2009-02-18 广东科达机电股份有限公司 Calcinated ceramic-trick roller-bed kiln
JP2008164234A (en) * 2006-12-28 2008-07-17 Ngk Insulators Ltd Heat treatment furnace for flat plate-shaped member
JP2008235688A (en) * 2007-03-22 2008-10-02 Fujitsu Ltd Solder reflow device
KR100910787B1 (en) * 2007-11-06 2009-08-04 항진철강(주) The keeping warm cover contrivance to by waste heat recovery
JP2009236402A (en) * 2008-03-27 2009-10-15 Koyo Thermo System Kk Continuous firing furnace
JP2009285718A (en) * 2008-05-30 2009-12-10 Nippon Dennetsu Co Ltd Soldering method and soldering equipment
JP2009285720A (en) * 2008-05-30 2009-12-10 Nippon Dennetsu Co Ltd Soldering method and soldering equipment
JP2010071554A (en) * 2008-09-18 2010-04-02 Daido Steel Co Ltd Continuous heat treatment furnace

Similar Documents

Publication Publication Date Title
US5113929A (en) Temperature control system for semiconductor wafer or substrate
US6470711B1 (en) Furnace for heat treatments of glass sheets
JP4480231B2 (en) Convection brazing method and apparatus for metal workpiece
FI90338B (en) A heat treatment chamber
JPH05296663A (en) Heating device
JP2003225761A (en) Convection type brazing apparatus for metal work piece
EP0825964B1 (en) Oven for glass article
JPH05305427A (en) Reflow soldering apparatus
JP3959141B2 (en) Heat treatment equipment with sublimation countermeasures
US8692161B2 (en) Furnace system with case integrated cooling system
JPH07115166B2 (en) Reflow soldering method and apparatus
KR100847758B1 (en) Device for blowing a fluid on at least a surface of a thin element and associated blowing unit
KR100816350B1 (en) Heat treatment device
JP5129249B2 (en) Hybrid heat treatment machine and method thereof
JP5446653B2 (en) Heat treatment equipment
JP2009094281A (en) Substrate cooling device
JP2004358542A (en) Reflow furnace and method for controlling temperature in reflow furnace
JP3961912B2 (en) Method and apparatus for forced cooling / heating of plate-like workpiece
JP2003332727A (en) Heat shielding member and reflow apparatus
JP3916073B2 (en) Heat treatment oven
JPH07252539A (en) Induction heating device of metal strip
US20030162466A1 (en) Oven for the heat treatment of glass articles or the like
JP3566780B2 (en) Reflow device and temperature control method thereof
JP3866929B2 (en) Continuous firing furnace
CN210151161U (en) Temperature control air guide system