JP4576156B2 - Waste treatment equipment that recovers thermal energy and valuable metals - Google Patents

Waste treatment equipment that recovers thermal energy and valuable metals Download PDF

Info

Publication number
JP4576156B2
JP4576156B2 JP2004150053A JP2004150053A JP4576156B2 JP 4576156 B2 JP4576156 B2 JP 4576156B2 JP 2004150053 A JP2004150053 A JP 2004150053A JP 2004150053 A JP2004150053 A JP 2004150053A JP 4576156 B2 JP4576156 B2 JP 4576156B2
Authority
JP
Japan
Prior art keywords
heat exchanger
dust collector
temperature
combustion furnace
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004150053A
Other languages
Japanese (ja)
Other versions
JP2005331172A (en
Inventor
亨 高
裕和 永富
哲一 鶴見
匠 瀬尾
熊夫 星野
正 大塚
秀尚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Amano Corp
Oshima Shipbuilding Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Amano Corp
Oshima Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd, Amano Corp, Oshima Shipbuilding Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP2004150053A priority Critical patent/JP4576156B2/en
Publication of JP2005331172A publication Critical patent/JP2005331172A/en
Application granted granted Critical
Publication of JP4576156B2 publication Critical patent/JP4576156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Filtering Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、廃棄自動車などから排出されるシュレッダーダストや船底塗料などをダイオキシンの発生のない状態で処理し、かつ、有用資材のリサイクル、エネルギーの回収を目的とした廃棄物処理技術に関する。   The present invention relates to a waste treatment technique for treating shredder dust, ship bottom paint, and the like discharged from an abandoned automobile and the like without generating dioxin, and for recycling useful materials and recovering energy.

船底塗料やシュレッダーダスト等の廃棄物を焼却する際、低温では該廃棄物中に含まれる金属(特に銅)の触媒反応により、ダイオキシン類(以降DXN類と表記)が再合成されることが判っており、これら、金属酸化物や塩類を含むダストを高温で集塵することが有効であるとされている。しかし現状では高効率な高温集塵装置は高コストであり、実用化に至っていないのが現状である。 When incinerating waste such as ship bottom paint and shredder dust, it has been found that dioxins (hereinafter referred to as DXNs) are re-synthesized at low temperatures due to the catalytic reaction of metals (especially copper) contained in the waste. It is said that it is effective to collect dust containing metal oxides and salts at a high temperature. However, at present, a high-efficiency high-temperature dust collector is expensive and has not yet been put into practical use.

高効率な高温集塵装置の開発をして、下流側にある廃ガス利用のボイラ等にダストのないクリーンな排ガスを送れば伝熱効率が向上し、高い熱回収率を得られることも判っている。さらには、廃ガスボイラ等を構成する金属材料の高温腐食に対する負担を軽減できることも判っている。
特開2004−33855公報 特開平10−165742公報 特開2002−102647公報 石橋憲明著 「廃棄物焼却処理におけるダイオキシン類の生成に関する研究」立命館大学 学位論文2002年度
It has been found that by developing a high-efficiency high-temperature dust collector and sending clean exhaust gas without dust to a waste gas boiler on the downstream side, heat transfer efficiency can be improved and a high heat recovery rate can be obtained. Yes. Furthermore, it has been found that the burden on the high temperature corrosion of the metal material constituting the waste gas boiler can be reduced.
JP 2004-33855 A JP-A-10-165742 JP 2002-102647 A Noriaki Ishibashi "Study on the production of dioxins in waste incineration" Ritsumeikan University

一般に焼却炉や熱分解炉内では高温にて熱分解が行われているためにDXN類の合成は極めて少ないのであるが、このような燃焼排ガスが冷却される工程において煤塵中の金属類(特に銅)と接触し、その触媒作用によりDXN類が再合成されることになっている。こうした現状において、排ガス中のDXN類の除去は次のような方法で実施されている。
(1)活性炭などの添加剤を噴霧して該DXN類を吸着し、集塵機により捕集する方法
(2)活性炭等の充填層にガス通過させ、DXN類を吸着除去する方法
(3)触媒により、DXN類を分解除去する方法
などがあり、いずれも生成したDXN類を除去するもので次のような欠点がある。
(イ)機器類が多く、運用が煩雑である
(ロ)建設コスト、ランニングコストともに高い
(ハ)エネルギー回収効率が悪い
(ニ)DXN類の除去率が悪く吸着量には限界がある
(ホ)排出廃棄物量の増量をもたらす
(へ)DXN類の排出状況をリアルタイムに検出する方法がないので処理効果の現場確認ができない。
In general, the synthesis of DXNs is extremely small because pyrolysis is performed at high temperatures in incinerators and pyrolysis furnaces. However, in such a process in which combustion exhaust gas is cooled, metals in dust (especially DXNs are supposed to be re-synthesized by the catalytic action. Under such circumstances, the removal of DXNs in the exhaust gas is carried out by the following method.
(1) A method of spraying an additive such as activated carbon to adsorb the DXNs and collecting them with a dust collector (2) A method of passing gas through a packed bed of activated carbon or the like and adsorbing and removing DXNs (3) Using a catalyst There are methods of decomposing and removing DXNs, all of which remove the produced DXNs and have the following drawbacks.
(B) Many equipments and complicated operations (b) High construction and running costs (c) Low energy recovery efficiency (d) Low removal rate of DXNs and limited adsorption ) Increases the amount of waste discharged (f) There is no method to detect the discharge status of DXNs in real time, so the on-site confirmation of the treatment effect cannot be performed.

このようにしたことより、高温(600℃程度)で集塵することはDXN類を生成させない、再合成させない方法として有効であり、捕集ばいじん中にもDXN類を残さないので合理的である。しかるに、300℃を超える温度で使用可能な高効率フィルターにはセラミックファイバー系とコーディエライト系あるいは炭化珪素系があり、前者は単位面積あたりのろ過面積が少なく熱処理されていないため600℃附近での強度が低いことから400℃以上の使用は難しく、後者は高価で通常の工業用途には向かない。 Than that in this way, be dust collection at Atsushi Ko (6 00 ° C. C.) is not generating the DXN compound is effective as a method that does not re-synthesized, reasonable does not leave DXN of any kind in collecting dust It is. However, high-efficiency filters that can be used at temperatures exceeding 300 ° C. include ceramic fiber type and cordierite type or silicon carbide type, and the former has a low filtration area per unit area and is not heat-treated. Since its strength is low, it is difficult to use at 400 ° C. or higher, and the latter is expensive and unsuitable for normal industrial use.

また、廃棄物処理に用いられる金属製熱交換器はダストの溶着やアルカリ金属と塩素に起因する高温腐食により700℃以上の高温域での使用は困難で、一般に水の噴霧や冷却空気の導入により排ガス温度を700℃程度に下げて熱回収が行われており、熱効率が悪い。 In addition, metal heat exchangers used for waste treatment are difficult to use in the high temperature range of 700 ° C or higher due to dust welding and high temperature corrosion caused by alkali metals and chlorine. Generally, spraying water or introducing cooling air As a result, the heat recovery is performed by reducing the exhaust gas temperature to about 700 ° C., and the heat efficiency is poor.

こうしたことより、塩素や重金属類が含まれる廃棄物(ASRや廃塗料)の熱分解処理はDXN類の生成や再合成に問題があり、現状では、ガス化溶融処理が主流を占めており、建設費やランニングコストの高騰により処理の普及を困難にしている。 As a result, thermal decomposition of waste (ASR and waste paint) containing chlorine and heavy metals has a problem in the production and resynthesis of DXNs. At present, gasification and melting are the mainstream. Dissemination of treatment is difficult due to soaring construction costs and running costs.

一方、鉄のリサイクルシステムは確立されているが、製鋼時に発生するダストは有償で亜鉛回収メーカに引き取られ、そこで亜鉛が回収されて後の還元鉄を含む処理残渣が埋立て処分にされている。また無害化・安定化処理を行い、それらの全量を埋立て処分としているケースもあり、埋立て処分場の確保が困難な中、資源の有効利用の観点からもコストパフォーマンスの良い有効な再資源化方法の確立が急がれている。 On the other hand, although an iron recycling system has been established, dust generated during steelmaking is collected for a fee by a zinc recovery manufacturer, where zinc is recovered, and the processing residue containing reduced iron is disposed of in landfills. . In addition, there are cases where detoxification / stabilization treatment is performed and all of them are landfilled. While it is difficult to secure a landfill site, effective recycling with good cost performance is also possible from the viewpoint of effective use of resources. There is an urgent need to establish a new method.

本出願に係る請求項1の発明は、内部にサイクロン構造をもたせた旋回燃焼炉の排煙部に、炭化珪素製熱交換器と、セラミックファイバー製フィルターからなる高温集塵機と、熱交換器(以後、ボイラと称することがある。)を順次接続し、さらに、この熱交換器に排風機を、または、集塵機を介して排風機を接続することを手段として高温焼却を可能とした。 The invention of claim 1 according to the present application includes a silicon carbide heat exchanger, a high-temperature dust collector composed of a ceramic fiber filter, and a heat exchanger (hereinafter referred to as a heat exchanger) in a smoke exhaust section of a swirl combustion furnace having a cyclone structure inside. In some cases, high-temperature incineration can be performed by connecting the heat exchanger to the heat exchanger or connecting the exhaust fan via a dust collector .

本出願に係る請求項2の発明は、1800℃以上の温度で焼成した炭化珪素製の熱交換用パイプを熱交換器に装着して、高温に耐える熱交換器とし、新鮮空気をこれにより高温に加熱して上流の旋回燃焼炉に還流させる構成とし、炉温の低下を防ぎ、よってダイオキシンの発生を抑止した。 In the invention of claim 2 according to the present application, a heat exchange pipe made of silicon carbide baked at a temperature of 1800 ° C. or higher is attached to the heat exchanger to make a heat exchanger that can withstand high temperatures, whereby fresh air is heated to high temperature And heated to the upstream swirl combustion furnace to prevent a decrease in the furnace temperature, thereby suppressing the generation of dioxins.

セラミック熱交換器を通過した高温空気を前記旋回燃焼炉に燃焼用空気として送風することにより、廃棄物燃焼炉中の温度が常に高温に保たれる。したがって、DXN類の発生が抑止せられる。 By blowing the high-temperature air that has passed through the ceramic heat exchanger as combustion air to the swirl combustion furnace, the temperature in the waste combustion furnace is always kept high. Therefore, the occurrence of DXNs is suppressed.

セラミックファイバーからなるフィルターを1000℃以上で焼成することによって耐熱性を向上させたことにより、前記旋回燃焼炉からの排ガスを600℃以上の高温に保った状態で通過させることが可能になった。したがって、集塵、或いは熱交換時においてもDXN類の発生が抑止される。 By improving the heat resistance by firing a filter made of ceramic fiber at 1000 ° C. or higher, it became possible to pass the exhaust gas from the swirl combustion furnace while maintaining a high temperature of 600 ° C. or higher. Therefore, the occurrence of DXNs is suppressed even during dust collection or heat exchange.

廃棄物と還元剤を混焼させ、これによって生じるテルミット反応により還元雰囲気を形成することによって、旋回燃焼炉内におけるDXN類の発生が抑止せられる。また、高温集塵機、エネルギー回収機およびその後に設けられる集塵機において沸点の相違する金属類を回収することが可能となる。 Generation of DXNs in the swirl combustion furnace is suppressed by co-firing waste and a reducing agent and forming a reducing atmosphere by a thermite reaction generated thereby. Moreover, it becomes possible to collect | recover metals with a different boiling point in a high temperature dust collector, an energy recovery machine, and the dust collector provided after that.

酸化鉄を主成分とする粗粒と、酸化亜鉛を主成分とする細粒とに分級し、前記粗粒をもとの溶解炉に還流し、細粒をエネルギー等回収システムにより酸化亜鉛の濃縮を行うことを手段として製鋼ダストのリサイクルを容易にした。 And coarse particles mainly composed of iron oxide, and fine and binary grade zinc oxide as a main component, the coarse refluxed under melting furnace, fine and zinc oxide by the energy, etc. recovery system Recycling of steelmaking dust was facilitated by means of concentration.

船底塗料やシュレッダーダスト等或いは製鋼ダストを減量化する方法としては焼却が最も効率的である。これら廃棄物の焼却時にDXN類を発生させることなく、かつ、エネルギーや有効成分を回収するための本発明のエネルギーおよび有価金属回収システム1(以後、本システム1と称すことがある。)は、炉中に旋回流を発生させる構成になる旋回燃焼炉2と、これにセラミック熱交換器3、セラミック高温集塵機4と、熱交換器5とを順次接続し、さらに前記の熱交換機5に誘引排風機7を、または、集塵機6を介して誘引排風機7を接続した構成である。しかも、前記熱交換器3および集塵機4に600℃以上の耐熱性を持たすために1800℃以上で焼成したセラミック製の熱交換パイプおよび集塵用フィルターを装着したもので、これにより、該熱交換器3に高熱の燃焼排ガスを通過させてその熱を送風機9から送られる新鮮なエアに回収し、このエアを前記燃焼炉2における旋回流の一部として吹き込ませ、また、熱交換器3で温度降下した燃焼排ガスは下流の集塵機4によって煤塵Sが回収され、次いで汎用の熱交換器で熱エネルギーが回収される構成になる。 Incineration is the most efficient method for reducing ship bottom paint, shredder dust, etc. or steelmaking dust. The energy and valuable metal recovery system 1 (hereinafter sometimes referred to as the present system 1) of the present invention for recovering energy and active components without generating DXNs when these wastes are incinerated. A swirl combustion furnace 2 configured to generate a swirl flow in the furnace, a ceramic heat exchanger 3, a ceramic high-temperature dust collector 4, and a heat exchanger 5 are sequentially connected to the furnace, and further induced to the heat exchanger 5 In this configuration, the air blower 7 is connected to the induction fan 7 via the dust collector 6. Moreover, the heat exchanger 3 and the dust collector 4 are equipped with a heat exchange pipe made of ceramic and a dust collection filter fired at 1800 ° C. or higher in order to have heat resistance of 600 ° C. or higher. The high-temperature combustion exhaust gas is passed through the furnace 3 and the heat is recovered into fresh air sent from the blower 9 , and this air is blown in as a part of the swirling flow in the combustion furnace 2. The combustion exhaust gas whose temperature has fallen is configured such that the dust S is collected by the downstream dust collector 4 and then the heat energy is collected by a general-purpose heat exchanger.

前記の旋回燃焼炉2は、炉壁2aのほぼ中心位置に、炉底を貫通する内筒2bを該炉の天井近くにまで立設すると共に、該内筒2bの上端に、それより小径の排煙2cをその基端が前記の内筒2bの上端と若干オーバラップした状態で挿通し、他端は該燃焼炉2の天井を貫通させ熱交換器3に連接している。また、該燃焼炉2の側壁には被燃焼資材投入口2d、図示していない助燃バーナー、炉内に旋回気流を形成するための送風装置8が装着されている。 Turning combustion furnace 2 of the can substantially at the center position, the upright cylinder 2b inner through the furnace bottom to near the ceiling of the furnace, the upper end of the inner cylinder 2b, the small diameter than that of the furnace wall 2a its base end a flue gas tube 2c is inserted in a state the upper end and slightly to overlap the inner cylinder 2b, the other end is connected to the heat exchanger 3 is passed through the ceiling of the combustion furnace 2. A combustion material input port 2d, an auxiliary combustion burner (not shown), and a blower 8 for forming a swirling airflow in the furnace are mounted on the side wall of the combustion furnace 2.

高温熱交換器3はそのハウジング3b内に、1800℃以上で焼成した炭化珪素製熱交換用パイプ3cが多数装着された構成であって、ハウジング3b内を通過する燃焼排ガスはその熱交換用パイプ3cの外周面に接触して、該パイプ3c内に送風機9によって送られる新鮮な空気(外気)Aと熱交換をする構造になっている。これによって冷却された燃焼排ガスが下流側に接続された高温集塵機4に導入され、一方のパイプ3c内で加熱された新鮮な空気Aは送風パイプ3aを介して前記の送風機8からの送風路に合流させて燃焼炉2内に、または該炉壁に設けた独立の旋回気流形成用エア吹込口(図示していない)に接続されている。 Into the hot heat exchanger 3 is that the housing 3b, a sintered silicon carbide-made heat exchange pipe 3c is attached a number composed of 1800 ° C. or higher, the combustion exhaust gas pipe for the heat exchanger passing through the housing 3b The heat exchanger exchanges heat with fresh air (outside air) A sent by the blower 9 into the pipe 3c in contact with the outer peripheral surface of 3c. The combustion exhaust gas cooled by this is introduced into the high-temperature dust collector 4 connected to the downstream side, and the fresh air A heated in one pipe 3c is sent to the blower path from the blower 8 through the blower pipe 3a. They are joined and connected to the combustion furnace 2 or to an independent swirling air forming air inlet (not shown) provided on the furnace wall.

前記熱交換器3の下流に接続されるセラミック高温集塵機4には、その内部に一方が開口するほぼ試験管形状(または中空のキャンドル状)に造形され、1000℃以上の温度で焼成されたアルミナ・シリカ系のセラミックフィルター4aが装着されている。そのフィルター4aの開口部は熱交換器5を介して最下流に接続された吸引排風機7により吸気されるよう気密に接続されている。また、このセラミックフィルター4aにはその内径内に、ある時間間隔をおいてパルスエア4pを送るための送風機10が付設されており、このパルスエア4pによりセラミックフィルター4cの外周に付着した煤塵Sを吐出口4eより払い落とす構成としている。
The ceramic high-temperature dust collector 4 connected downstream of the heat exchanger 3 is shaped into a substantially test tube shape (or a hollow candle shape) with one opening therein, and is baked at a temperature of 1000 ° C. or higher. A silica-based ceramic filter 4a is attached. The opening of the filter 4a is airtightly connected so as to be sucked in by a suction exhaust fan 7 connected to the most downstream side via the heat exchanger 5. In addition, the ceramic filter 4a is provided with a blower 10 for sending the pulse air 4p at a certain time interval within the inner diameter, and the dust S adhering to the outer periphery of the ceramic filter 4c by the pulse air 4p is discharged to the discharge port. It is set as the structure which pays off from 4e.

前記セラミック高温集塵機4の下流には、さらに熱交換器5が接続される。この熱交換器5に通過する燃焼排ガスGは前段階で既に熱交換が行われているので高温ではなく、したがって、通常の耐熱性を備えた熱交換器が使用される。 A heat exchanger 5 is further connected downstream of the ceramic high-temperature dust collector 4. The combustion exhaust gas G passing through the heat exchanger 5 is not at a high temperature because the heat exchange has already been performed in the previous stage. Therefore, a heat exchanger having normal heat resistance is used.

図1において、熱交換器5の下流には集塵機6を記載している。この集塵機6は燃焼排ガスが強い酸性である場合に使用されるもので、例えば、バグフィルター付の集塵機6の中に酸性ガス処理剤を投入しておき、そこに排ガスを通過させることにより中性化にして大気中に放出しようとするものである。したがって、必須のものではない。 In FIG. 1, a dust collector 6 is shown downstream of the heat exchanger 5. The dust collector 6 is used when the combustion exhaust gas is strongly acidic. For example, an acid gas treating agent is put into the dust collector 6 with a bag filter, and the exhaust gas is allowed to pass through the dust collector 6. It is going to be released into the atmosphere. Therefore, it is not essential.

前記の連接された各設備の最下流に誘引排風機7が組み込まれており、旋回燃焼炉2から出る排ガスを吸引し大気中に放出する。この誘引排風機7も特別の仕様を必要としない。 An induction exhaust fan 7 is incorporated in the most downstream of each of the connected equipments, and exhaust gas discharged from the swirl combustion furnace 2 is sucked and released into the atmosphere. This induction fan 7 does not require any special specifications.

前記のシステムにより、廃船底塗料(中国塗料株式会社製 シーグランプリ1000)の焼却による金属の還元抽出を行った。この船底塗料には銅(Cu)が45%〜50%含有されている。この廃棄物の焼却には前記の旋回燃焼炉2を用い炉頂温度1000℃ 、排煙の出口温度950℃とし、セラミック熱交換器3に導入して新鮮空気と熱交換し、加熱された新鮮空気を上流の旋回燃焼炉2に送風させ、排気ガスは600℃前後の温度に低下してセラミック高温集塵機4に入り、さらに400℃前後に低下した後、熱交換器6を介して誘引排風機7により大気に放出される。 By the above-mentioned system, reduction extraction of metal was performed by incineration of waste ship bottom paint (Chinese Paint Co., Ltd. Sea Grand Prix 1000). This ship bottom paint contains 45% to 50% of copper (Cu). The incineration of this waste is carried out using the above-described swirl combustion furnace 2 with a furnace top temperature of 1000 ° C. and a flue gas outlet temperature of 950 ° C., introduced into the ceramic heat exchanger 3 to exchange heat with fresh air, and heated fresh Air is blown to the upstream swirl combustion furnace 2, and the exhaust gas is reduced to a temperature of about 600 ° C., enters the ceramic high-temperature dust collector 4, further decreases to about 400 ° C., and then the induced exhaust fan through the heat exchanger 6. 7 to the atmosphere.

この廃船底塗料はシーグランプリ1000を6.05%、ラバックス(塩化ゴム系塗料)を5.075、シンナー60.53%、水20.99%、界面活性剤2.97%、石灰硫黄4.37%(構成比)に配合設計して使用したもので、本発明のシステムにおいては144kgを、比較のために旋回燃焼炉と通常の熱交換器、集塵機を組合せた燃焼システムには60.8kgを投入焼却した。その結果を表1に示す。 This waste ship bottom paint is 6.05% Sea Grand Prix 1000, 5.075 Rabax (chlorinated rubber paint), 60.53% thinner, 20.99% water, 2.97% surfactant, 4. 37% (composition ratio) was designed and used. In the system of the present invention, 144 kg is used, and for comparison, a combustion system combining a swirl combustion furnace, a normal heat exchanger, and a dust collector is 60.8 kg. Incinerated. The results are shown in Table 1.

Figure 0004576156
Figure 0004576156

さらに、通常燃焼炉における集塵機および本発明に係る高温集塵機で捕捉できた飛灰中の銅と塩素は前者がCu:12.6%,Cl:5.8%に対して後者はCu:21.3%,Cl:0.066%であった。このように、本発明に係るシステム1の金属類回収効率は高く、かつ、Cl発生の抑止力に優れた効果を得た。   Further, the copper and chlorine in the fly ash captured by the dust collector in the normal combustion furnace and the high temperature dust collector according to the present invention are Cu: 12.6%, Cl: 5.8%, and the latter is Cu: 21. 3%, Cl: 0.066%. As described above, the system 1 according to the present invention has a high metal recovery efficiency and an excellent effect of suppressing the generation of Cl.

製鋼中の溶融電気炉から発生するダストには、およそ、鉄(Fe)が50%、亜鉛(Zn)が20%含有されている。この鉄と亜鉛を分離するために本発明システム1を使用するものである。そのために、先ず、製鋼ダストを乾式により微粉砕して乾式により10μm分級を行い、粗いものはZn含有率がほぼ6〜7%以下であるものとして、これを造粒して製鋼工程に戻す。残余の10μm以下のものにはZnが30%以上含まれている(表2)ので、これを本システムの旋回燃焼炉1で燃焼させる。先ず、助燃バーナーで炉中を燃焼状態とし、前記製綱ダストを燃焼させる。このダストのうち、融点の高いものは旋回中炉底に沈降し、融点の低いものは細粒となって誘引排風機7に吸引され、セラミック熱交換器3およびセラミック集塵機4において煤塵として捕捉される。この煤塵中にある融点の低い金属はZnであり、これを加熱溶融することにより容易に回収できる。また、前記の旋回燃焼炉1の炉底に沈降した金属は鉄類で例えば磁石などにより回収される。回収された粗粒および細粒の成分を表2〜4に示す。 The dust generated from the melting electric furnace during steelmaking contains approximately 50% iron (Fe) and 20% zinc (Zn). The system 1 of the present invention is used to separate iron and zinc. For this purpose, first, the steelmaking dust is finely pulverized by a dry method and classified by 10 μm by a dry method, and the coarse one is granulated and returned to the steelmaking step, assuming that the Zn content is about 6 to 7% or less. The remaining 10 μm or less contains 30% or more of Zn (Table 2), and this is burned in the swirl combustion furnace 1 of the present system. First, the inside of a furnace is made into a combustion state with an auxiliary burner, and the steelmaking dust is burned. Among these dusts, those having a high melting point settle to the furnace bottom during turning, and those having a low melting point become fine particles and are sucked into the induction fan 7 and captured as soot dust in the ceramic heat exchanger 3 and the ceramic dust collector 4. The The metal having a low melting point in the dust is Zn and can be easily recovered by heating and melting it. Further, the metal settled on the bottom of the swirl combustion furnace 1 is iron and collected by, for example, a magnet. The recovered coarse and fine components are shown in Tables 2-4.

この製鋼ダストの燃焼において、アルミニウムを燃焼助剤として炉中に投入することによってテルミット反応を生じさせ、助燃バーナーでの燃料を節約することできることは勿論である。 In the combustion of this steelmaking dust, it is a matter of course that the thermite reaction is caused by introducing aluminum into the furnace as a combustion aid, and the fuel in the auxiliary burner can be saved.

Figure 0004576156
Figure 0004576156

Figure 0004576156
Figure 0004576156

Figure 0004576156
Figure 0004576156

実施例3は廃自動車をシュレッダーにより破砕し、金属類を取り除いた、いわゆるシュレッダーダストを焼却することによりエネルギーおよび残余の金属類を回収するものである。通常のシュレッダーダストには塩化ビニルを含むプラスチック類と銅線などを含むワイヤーハーネスおよびその他のものが混在しているので、これを焼却するとダイオキシンが発生する。 In the third embodiment, energy and remaining metals are recovered by incinerating a so-called shredder dust obtained by crushing a scrap car with a shredder and removing metals. Ordinary shredder dust contains plastics including vinyl chloride, wire harnesses including copper wire, and others, and when incinerated, dioxins are generated.

上記シュレッダーダストは、各種プラスッチック類、合成ゴム類、金属類、繊維類、土砂類などは互いに絡み合っており、乾式による比重差選別が不可能であることから、本発明においては、該ダストを湿式破砕機(例えば、「ディスインテグレータ」コマツゼノア製)で1辺が5mmないしそれ以下に粉砕して、これを水中に導入し、サイクロン浮遊選別を行った。このような湿式破砕機を使用することにより破砕されたシュレッダーダストは液体中に固形物が分散した均一な固液混合体となり、したがって次工程への安定した輸送が可能となり、さらに絡み合ったダストは殆ど分離されてその後の比重差分離を容易に行えることになった。このようにして水中で浮遊する塩素含有量の少ないプラスッチク類(非塩ビ系)や繊維類に代表される可燃物を他の比重の大きいものと比重差により選別回収が容易にできた。 Since the above shredder dust is intertwined with various plastics, synthetic rubbers, metals, fibers, earth and sand, etc., and specific gravity difference selection by dry method is impossible, in the present invention, the dust is wet. One side was pulverized to 5 mm or less by a crusher (for example, “Disintegrator” manufactured by Komatsu Zenoah), introduced into water, and subjected to cyclone floating sorting. The shredder dust crushed by using such a wet crusher becomes a uniform solid-liquid mixture in which solid matter is dispersed in the liquid, so that stable transportation to the next process is possible, and further entangled dust is Almost separated, it was possible to easily separate the specific gravity difference thereafter. In this way, plastics (non-vinyl chloride type) with low chlorine content floating in water and combustibles typified by fibers could be easily selected and collected due to the difference in specific gravity from those having a higher specific gravity.

これによって、沈降した比重の大きい銅などの金属類や塩化ビニル等はさらに分別されて銅などの金属類は資源としてリサイクルされ、塩化ビニル等は地下に埋設される。この浮遊選別(表5)で浮上したポリエチレン、ポリプロピレンなどの樹脂には若干の塩化ビニルやハーネス中の銅が混在している。この実施例3においては、この浮上した物(表5における低塩素含有可燃物)を乾燥して押し出し成形機などにより溶融固化して固形燃料化し、前記のシステム1により熱エネルギーと銅等を回収したものである。 As a result, the sedimented metals such as copper and vinyl chloride are further separated, and the metals such as copper are recycled as resources, and the vinyl chloride and the like are buried underground. Resin such as polyethylene and polypropylene that floated by this floating sorting (Table 5) contains some vinyl chloride and copper in the harness. In Example 3, the floated material (low chlorine-containing combustible material in Table 5) is dried and melted and solidified by an extrusion molding machine or the like to form a solid fuel, and the system 1 collects thermal energy, copper, and the like. It is what.

Figure 0004576156
Figure 0004576156

すなわち、上記により固形化した燃料30kg/hrを旋回燃焼炉2に投入して燃焼させた。燃焼炉2中で旋回する燃焼飛灰の中の比重が大きく融点の高いものは内筒内の底に落下する。内筒内に落下した燃焼飛灰は該取り出し口2eから取り出され、例えば鉄粉は磁石で選択回収する。また、融点の低い銅などの金属類は飛灰と共に排煙2cを経て高温熱交換器3に至り、さらに高温集塵機4において気体と分離して集塵される。その気体はすでに温度低下をしているので、集塵機6を適用して更に清浄化され、大気中に放出される。なお、前記の高温熱交換器3の熱交換用パイプ3cおよび高温集塵機4のセラミックフィルター4cによって捕捉された煤煙は排出口4e等から取り出し、その中の銅などの金属類を回収した。 That is, 30 kg / hr of the solidified fuel was charged into the swirl combustion furnace 2 and burned. The combustion fly ash swirling in the combustion furnace 2 having a high specific gravity and a high melting point falls to the bottom in the inner cylinder. Combustion fly ash that has fallen into the inner cylinder is taken out from the take-out port 2e. For example, iron powder is selectively collected with a magnet. Also, metals such as low copper melting point is led through a flue gas tube 2c to the high-temperature heat exchanger 3 with fly ash, are dust collection and further separated from the gas at a high temperature dust collector 4. Since the temperature of the gas has already dropped, it is further cleaned by applying the dust collector 6 and released into the atmosphere. The soot trapped by the heat exchange pipe 3c of the high temperature heat exchanger 3 and the ceramic filter 4c of the high temperature dust collector 4 was taken out from the discharge port 4e and the like, and metals such as copper were collected.

本システム1において、旋回燃焼炉2内の旋回流が前記高温熱交換器3から送風する高温空気であるために炉2内の温度は高温が保たれおり、たとえ、塩化ビニルが焼却されたとしてもダイオキシンを生成することが殆どない。また、高温熱交換器3においても燃焼排気ガスは400〜600℃に保たれているので、同様にダイオキシンの発生は抑止される。この実施例において、飛灰中のダイオキシンは0.005mg/g、排ガス中のダイオキシンは0.30ng/mNであり、また、回収熱量は85,000kcal/hrであった。 In this system 1, since the swirl flow in the swirl combustion furnace 2 is high-temperature air blown from the high-temperature heat exchanger 3, the temperature in the furnace 2 is kept high, even if vinyl chloride is incinerated. Hardly produces dioxins. Further, in the high-temperature heat exchanger 3, the combustion exhaust gas is kept at 400 to 600 ° C., so that the generation of dioxins is similarly suppressed. In this example, the dioxin in the fly ash was 0.005 mg / g, the dioxin in the exhaust gas was 0.30 ng / m 3 N, and the recovered heat amount was 85,000 kcal / hr.

廃棄物の地下への埋め立てに限界があるといわれて既に久しく、さらに廃棄自動車の数が毎年増加の傾向にある今日、リサイクルを目的とした処理が必要になる。本発明係るエネルギーおよび有価金属回収システムは、高温中での焼却と金属類の回収を行うもので、ダイオキシンの発生が抑制せられることから自動車産業の更なる進展をバックアップすることになる。   It has long been said that there is a limit to the landfill of waste, and today, the number of discarded vehicles is increasing every year. The energy and valuable metal recovery system according to the present invention performs incineration at high temperature and recovery of metals, and since the generation of dioxins is suppressed, further progress of the automobile industry is backed up.

本発明に係る燃焼システムの概要図である。1 is a schematic diagram of a combustion system according to the present invention. 高温熱交換器の要部を示した一部断面図である。It is the partial cross section figure which showed the principal part of the high temperature heat exchanger. 高温集塵機の概要を示した中央断面図である。It is the center sectional view showing the outline of the high temperature dust collector.

符号の説明Explanation of symbols

1 エネルギーおよび有価金属回収システム
2 旋回燃焼炉
3 高温熱交換器
3c 高温熱交換用パイプ
4 高温集塵機
4c 高温集塵機用セラミックフィルター
熱交換器
集塵機
7 誘引排風機
8、9 送風機
DESCRIPTION OF SYMBOLS 1 Energy and valuable metal recovery system 2 Swirling combustion furnace 3 High temperature heat exchanger 3c High temperature heat exchange pipe 4 High temperature dust collector 4c Ceramic filter for high temperature dust collector 5 Heat exchanger 6 Dust collector 7 Attracting exhaust fan 8, 9 Blower

Claims (1)

旋回燃焼炉(2)と、高温熱交換器(3)と、セラミックファイバー製フィルターを使用した高温集塵機(4)と、熱交換機(5)と、該熱交換器(5)に集塵機(6)を介しまたは介さずに誘引排風機(7)とを順次接続し、
前記高温熱交換器(3)には外気をこの高温熱交換器(3)のセラミック製パイプに通して高温に加熱し前記旋回燃焼炉(2)の下端側壁から内部に吹き込む送風機(9)を付設し、
前記旋回燃焼炉(2)には、異物取り出し口(2e)をその底部に形成した内筒(2b)が旋回燃焼炉(2)の底中心部に挿通立設され、その内筒(2b)の上端に、それより小径または大径の排煙筒(2c)がオーバラップ状に挿通され、他端を高温熱交換器(3)に接続した構成において、
前記高温熱交換器(3)には、1800℃以上の温度で焼成した耐熱温度600℃以上の炭化珪素製の熱交換用パイプが装着され、
前記高温集塵機(4)に装着されたセラミックファイバー製フィルターは、1000℃以上の温度で焼成した耐熱温度600℃以上のアルミナ・シリカ系のセラミックであることを特徴とする熱エネルギーと有価金属を回収する廃棄物処理装置。
Turning combustion furnace (2), a high temperature heat exchanger (3), Se la Mick fiber filter hot dust collector using the (4), heat exchanger (5), a dust collector to the heat exchanger (5) (6 ) With or without induction fan (7) in order ,
The hot heat exchanger (3) to the high temperature heat exchanger (3) the swivel combustion furnace and heated to a high temperature through a ceramic pipe (2) blower blown therein from the lower end side wall of the outside air (9) Attached,
In the swirl combustion furnace (2), an inner cylinder (2b) having a foreign matter outlet (2e) formed at the bottom thereof is inserted and erected in the center of the bottom of the swirl combustion furnace (2), and the inner cylinder (2b) the upper end of it from being inserted into the small diameter or large diameter discharge Ento (2c) Gao-overlap-shaped, in the configuration of connecting the other end to the high temperature heat exchanger (3),
Wherein the high-temperature heat exchanger (3) is fired heat resistance temperature 600 ° C. or more heat exchange pipe made of silicon carbide are mounted at 1800 ° C. or higher,
The hot dust collector (4) ceramic fiber filter attached to the recovery of thermal energy and valuable metal, which is a fired heat resistance temperature 600 ° C. or more ceramic alumina silica at 1000 ° C. or higher temperature Waste disposal equipment.
JP2004150053A 2004-05-20 2004-05-20 Waste treatment equipment that recovers thermal energy and valuable metals Expired - Fee Related JP4576156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150053A JP4576156B2 (en) 2004-05-20 2004-05-20 Waste treatment equipment that recovers thermal energy and valuable metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150053A JP4576156B2 (en) 2004-05-20 2004-05-20 Waste treatment equipment that recovers thermal energy and valuable metals

Publications (2)

Publication Number Publication Date
JP2005331172A JP2005331172A (en) 2005-12-02
JP4576156B2 true JP4576156B2 (en) 2010-11-04

Family

ID=35485958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150053A Expired - Fee Related JP4576156B2 (en) 2004-05-20 2004-05-20 Waste treatment equipment that recovers thermal energy and valuable metals

Country Status (1)

Country Link
JP (1) JP4576156B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288328A (en) * 2013-06-27 2013-09-11 江苏科宝机械制造有限公司 Method and equipment for drying and incinerating PTA (purified terephthalic acid) activated sludge
CN103512033A (en) * 2013-08-23 2014-01-15 张璟 Anti-burning type medical waste disposer

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881820B1 (en) * 2005-02-10 2008-05-30 Saint Gobain Vetrotex DEVICE FOR THE EXTRACTION OF HEAT FROM GAS AND FOR THE RECOVERY OF CONDENSATES
JP4907284B2 (en) * 2006-09-28 2012-03-28 住友大阪セメント株式会社 Method for processing ferrous waste materials
JP5409269B2 (en) * 2009-10-30 2014-02-05 Jfeスチール株式会社 Dust recovery method in scrap shredder equipment
EP2539041B1 (en) * 2010-02-26 2016-10-05 ArcelorMittal Apparatus and method for treating exhaust gas containing zinc vapors
US8377175B2 (en) 2010-02-26 2013-02-19 Arcelormittal Investigacion Y Desarrollo, S.L. Apparatus and method for treating exhaust gas
JP2013204971A (en) * 2012-03-29 2013-10-07 Hitachi Zosen Corp Method for pre-treatment of waste
JP2015013764A (en) * 2013-07-03 2015-01-22 住友電気工業株式会社 Production method of glass preform
CN103411438B (en) * 2013-08-20 2014-11-26 赫章县金川锌业有限公司 Method for reducing coal consumption by comprehensively and circularly utilizing waste heat of Webster furnace
CN105651068B (en) * 2015-12-31 2019-02-01 广东工业大学 A kind of silicon ore melting electricity generation system
CN106524775A (en) * 2016-12-27 2017-03-22 江苏宜达新材料科技股份有限公司 Heat recovery unit for glass melting furnace
CN110102151B (en) * 2019-03-29 2022-04-08 中冶南方工程技术有限公司 Energy-saving and environment-friendly oxide powder conveying system in spray roasting and operation method thereof
CN111237774A (en) * 2020-02-21 2020-06-05 江苏山锟环保科技有限公司 Incinerator flue gas cooling and purifying system
CN115253591B (en) * 2022-07-22 2023-09-08 嘉兴学院 Catering oil smoke processing system
CN117427450B (en) * 2023-12-15 2024-04-12 云南乘风有色金属股份有限公司 Dust metal recovery device of tin-smelting electric furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320817A (en) * 1999-05-13 2000-11-24 Ebara Corp Waste combustion based power generation method and system
JP2001248827A (en) * 2000-03-08 2001-09-14 Hitachi Zosen Corp Equipment for treatment of incineration waste gas for obtaining clean incineration fly ash
JP2001349526A (en) * 2000-06-09 2001-12-21 Kawasaki Heavy Ind Ltd Coal fired boiler with rotary melting furnace for melting coal ashes
JP2003019412A (en) * 2001-07-10 2003-01-21 Mitsui Eng & Shipbuild Co Ltd Dust collector
JP2003106506A (en) * 2001-09-28 2003-04-09 Chikao Kaneoka Method for recycling organic waste, and melting and fractionating device
JP2003191238A (en) * 2001-12-28 2003-07-08 Jfe Engineering Kk Pretreatment method and apparatus of material- recycling waste plastic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320817A (en) * 1999-05-13 2000-11-24 Ebara Corp Waste combustion based power generation method and system
JP2001248827A (en) * 2000-03-08 2001-09-14 Hitachi Zosen Corp Equipment for treatment of incineration waste gas for obtaining clean incineration fly ash
JP2001349526A (en) * 2000-06-09 2001-12-21 Kawasaki Heavy Ind Ltd Coal fired boiler with rotary melting furnace for melting coal ashes
JP2003019412A (en) * 2001-07-10 2003-01-21 Mitsui Eng & Shipbuild Co Ltd Dust collector
JP2003106506A (en) * 2001-09-28 2003-04-09 Chikao Kaneoka Method for recycling organic waste, and melting and fractionating device
JP2003191238A (en) * 2001-12-28 2003-07-08 Jfe Engineering Kk Pretreatment method and apparatus of material- recycling waste plastic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288328A (en) * 2013-06-27 2013-09-11 江苏科宝机械制造有限公司 Method and equipment for drying and incinerating PTA (purified terephthalic acid) activated sludge
CN103512033A (en) * 2013-08-23 2014-01-15 张璟 Anti-burning type medical waste disposer
CN103512033B (en) * 2013-08-23 2015-07-15 张璟 Anti-burning type medical waste disposer

Also Published As

Publication number Publication date
JP2005331172A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP4576156B2 (en) Waste treatment equipment that recovers thermal energy and valuable metals
KR100770797B1 (en) Method and process for co-combustion in a waste-to-energy facility
JP2003004211A (en) Equipment and method for treating waste
JPH10238725A (en) Waste treatment method and device
JP2004154677A (en) Ash treatment system
JP2007117890A (en) Exhaust gas treating method and system
JP4243661B2 (en) Dust disposal method
JP3784581B2 (en) Valuables recovery device and method for recovering valuables in dry distillation pyrolysis melting combustion equipment of waste
JP3361517B2 (en) Waste treatment method by oxygen combustion
CN213671076U (en) Incineration fly ash grading heat purification device based on carbon thermal reduction
JP4918833B2 (en) Waste melting furnace and waste melting furnace operating method
JP2005195228A (en) Waste material melting treatment system
CN208541962U (en) A kind of online dust pelletizing system of converter
JP2017087099A (en) Exhaust gas treatment equipment and exhaust gas treatment method in waste incineration
JP3077756B2 (en) Waste treatment equipment
JP2001311589A (en) Method for reducing or removing hazardous substance in exhaust gas
JP2004188414A (en) Heavy metal recovering apparatus, heavy metal recovering method and waste treating apparatus
CN109579014A (en) Urban garbage treatment system and method
CN218811433U (en) Device for firing ceramsite by fly ash incineration flotation coupling rotary kiln
JP3374020B2 (en) Waste pyrolysis melting system
JP3757032B2 (en) Waste pyrolysis melting combustion equipment
CN108671641A (en) A kind of flue gas of refuse burning processing system based on multi-tube dust cleaner
CN112207121B (en) Graded thermal purification method and device for incineration fly ash based on carbothermic reduction
JP2004263952A (en) Heat recovering method and device from exhaust gas
JP2003117520A (en) Method for treating incineration ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4576156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees