JP4576015B2 - Radiation-insulated thermal protection structure - Google Patents

Radiation-insulated thermal protection structure Download PDF

Info

Publication number
JP4576015B2
JP4576015B2 JP2000004562A JP2000004562A JP4576015B2 JP 4576015 B2 JP4576015 B2 JP 4576015B2 JP 2000004562 A JP2000004562 A JP 2000004562A JP 2000004562 A JP2000004562 A JP 2000004562A JP 4576015 B2 JP4576015 B2 JP 4576015B2
Authority
JP
Japan
Prior art keywords
radiation
coating film
sic
outer plate
thermal protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000004562A
Other languages
Japanese (ja)
Other versions
JP2001192831A (en
Inventor
和幸 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000004562A priority Critical patent/JP4576015B2/en
Publication of JP2001192831A publication Critical patent/JP2001192831A/en
Application granted granted Critical
Publication of JP4576015B2 publication Critical patent/JP4576015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes

Description

【0001】
【発明の属する技術分野】
本発明は輻射断熱式熱防護構造体に関し、宇宙機等の外板内面に熱防護材として適用され、表面の熱が内部へ流入するのを効果的に防止するものである。
【0002】
【従来の技術】
近年、宇宙機等の開発が進み、宇宙機、等の大気との摩擦により外板に生ずる高熱が外板の内面へ伝達するのを防止する研究がなされているが、充分な対策が確立されていないのが現状である。図5は宇宙機や航空機の断熱対策を施した構造の一例を示す断面図であり、図において、30は機体の外板で、カーボン繊維やカーボンマトリックス(C/C)、又はカーボンやSiC(C/SiC)、等の耐熱材料から構成されている。31は輻射断熱材で、綿や織布等の耐熱材料の積層物からなり熱の内部への侵入を防止している。32は主構造フレームであり、機体の主構造部材となっている。33は耐熱用のファスナであり、耐熱金属からなり、外板30と輻射断熱材31との間に所定の空間34を保って外板30を主構造フレーム32へ固定している。このような断熱構造はスタンドオフTPS(輻射断熱式熱防護材)と呼ばれ、熱の外板内部への侵入を防止する対策として開発されている。
【0003】
【発明が解決しようとする課題】
前述のように、宇宙機の外板構造としては輻射断熱を利用したスタンドオフTPSの開発が進められており、この開発では外板内面の輻射率を低減することが重要となっている。
そこで本発明では外板の内面に低輻射率のコーティングを施すことにより、内部への熱流入を低減させ、スタンドオフTPSが1450℃程度の高温状態におかれても安定して機能を発揮できる輻射断熱式熱防護構造体を実現することを課題としてなされたものである。
【0004】
【課題を解決するための手段】
本発明は、前述の課題を解決するために、次の(1)〜(5)の手段を提供する。
【0005】
(1)機体の周囲を輻射断熱層で囲み、その周囲に所定の空間を保ってカーボン系の材料からなる外板を配設した輻射断熱式熱防護構造体であって、前記外板の内、外両表面に形成されたSiCコーティング膜と、同内側SiCコーティング膜の表面に形成され、Al2 3 又はY2 SiO5 、あるいはその両方からなる中間層コーティング膜と、同中間層コーティング膜表面に形成されたPt コーティング膜とを有することを特徴とする輻射断熱式熱防護構造体
【0006】
(2)前記外板がC及びSiCの材料からなる(1)記載の輻射断熱式熱防護構造体
【0007】
(3) 機体の周囲を輻射断熱層で囲み、その周囲に所定の空間を保ってカーボン系の材料からなる外板を配設した輻射断熱式熱防護構造体であって、前記外板の内表面に形成されたAl2 3 又はY2 SiO5 、あるいはその両方からなる中間層コーティング膜と、同中間層コーティング膜表面に形成されたPt コーティング膜とを有し、且つ、前記外板がSiC繊維及びSiCマトリックスからなることを特徴とする輻射断熱式熱防護構造体
【0008】
(4)前記中間層コーティング膜の厚さは50〜100μmの範囲にあることを特徴とする(1)から(3)のいずれかに記載の輻射断熱式熱防護構造体
【0009】
(5)前記Pt コーティング膜の厚さは1〜10μmの範囲にあることを特徴とする(1)から(3)記載の輻射断熱式熱防護構造体
【0010】
本発明の(1)においては、外板の内,外表面のSiCコーティング膜は、外板の耐酸化性を付与して外板の内,外両表面を保護し、内側のSiCコーティング膜に施された中間層コーティング膜はSiCコーティング膜とPt コーティング膜との層間の反応を抑える作用を行う。又、Pt コーティング層は低輻射率を有するもので、外板から中間層を伝わってくる熱の空間部への放射を小さくして、機体内部への熱の流入を減少させるものである。このような輻射断熱式熱防護構造体により機体の外板に生ずる高温、例えば1450℃程度の高温度に対しても熱防護構造が効果的に機能するようになる。
【0011】
又、本発明の(2),(3)のように外板の材料がC/SiC、SiC/SiC系のものであっても、Pt コーティングと材料との間には中間層が形成されているので、上記(1)の発明と同様の効果を奏するものであり、又、(4)の発明では、中間層コーティング膜が高温で加熱されても割れや、剥離が発生しにくい50〜100μmの厚さに選定されるものであり、(5)の発明では、Pt コーティング膜の厚さが1〜10μmの範囲であれば、高温で加熱されても割れや剥離が発生しにくく、熱の内部への流入の減少がより効果的となるものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面に基づいて具体的に説明する。図1は本発明の実施の第1形態に係る輻射断熱式熱防護構造体の構成図である。図において、1はC/C基材であり、カーボン繊維やカーボンマトリックスからなり、図5に示す機体の外板30に相当する基材である。2はSiCコーティングで外板表面にコーティングされる耐熱コーティングである。3は同じくSiCコーティングであり、C/C基材1の内側にコーティングされる。これらSiCコーティング2,3は基材1に対して耐酸化性を付与するためのものである。
【0013】
4は中間層コーティングで、アルミナ(Al2 3 )又はイットリュームシリケート(Y2 SiO5 )をCVD(Chemical Vapor Deposition )法あるいは溶射によりコーティングを行って形成する。5は白金(Pt )コーティングであり、Pt は常温では0.05程度の低い輻射率を示し、1000℃以上の高温でも0.2程度の低い輻射率を示す材料である。このPt コーティング5はPVD(Phisical Vapor Deposition)法により薄膜を形成している。Pt コーティング5の厚さは後述するように1〜10μmの範囲の厚さに形成するのが良好といえる。
【0014】
上記構成の中間層コーティング4はSiCコーティング3とPt コーティング5との層間反応防止用のもので、比較的厚めのコーティングが可能な溶射法か、緻密なコーティングが可能なCVD法により形成する。溶射法によるコーティングでは、,100μmの厚さにすると1000℃以上の高温下で剥離が発生せず、良好な被膜が形成され、又、CVD方法によれば、数μ〜数10μmの緻密な成膜が可能である。いずれの方法にしても、中間層コーティング4の膜厚は50〜100μmの範囲のものが1000℃程度の高温下において剥離が発生せず最適の範囲といえる。
【0015】
上記に説明の実施の第1形態の構成において、機体の外板30に相当するC/C基材1の内側にSiCコーティング3を施し、その表面に中間層コーティング4を形成し、その表面に低輻射率のPt コーティング5を施して輻射断熱式熱防護構造体を構成したので、基材1の表面が1450℃程度の高熱40にさらされたとしても、SiCコーティング3とPt コーティング5との間の層間の反応を防止すると共に、低輻射率のPt コーティング5により熱の内部への流入を減少させることができる。
【0016】
図2は本発明の実施の第2形態に係る輻射断熱式熱防護構造体の構成図である。図において、本実施の第2形態において図1に示す実施の第1形態と異なる部分は、機体の外板に相当する基材が、C/C基材1からC/SiC基材11に代わったものであり、その他の構成は図1に示す実施の第1形態と同じである。
【0017】
基材が、このような基材11となっても、実施の第1形態と同様に、基材11にはSiCコーティング3が介在しており、中間層コーティング4がSiCとPt の層間の反応を防止すると共に、同様に、内部への熱の流入を低輻射率のPt コーティング5により減少させることができる。
【0018】
図3は本発明の実施の第3形態に係る輻射断熱式熱防護構造体の構成図である。図において、本実施の第3形態において図1に示す実施の第1形態と異なる部分は、機体の外板に相当する基材が、C/C基材1からSiC/SiC基材21に代わったものである。この実施の第3形態においては、基材11の外側、内側の両面に施されるSiCコーティング2,3が不要となる。SiC/SiC基材21では材料自体がSiC繊維とSiC系マトリックスから構成されているので、基材の両面はいずれもSiC系の材料であり、SiCコーティング2,3は不要となる。その代わりの構成は図1に示す実施の第1形態と同じである。
【0019】
基材が、このような基材21となっても実施の第1形態と同様に中間層コーティング4によりPt コーティング5と基材21との間の反応を防止すると共に、低輻射率のPt コーティング5により熱の内部への流入を減少させることができる。
【0020】
図4は、本実施の第1〜第3形態において用いたPt コーティング5の表面粗さと室温での輻射率との関係の測定結果を示す図で、表面粗さが4μm以上では、輻射率が増加し、30〜50μmでは0.2程度まで増加している。この傾向は基材の種類によらず同様の傾向を示している。表面粗さの増加により輻射率が増加する理由は、表面の増加に伴い輻射面積が増加すると考えられ、実用材料で輻射率を設定する場合には、外板内側の輻射率の要求値に合わせてPt コーティングの表面粗さを調整する必要がある。SiCコーティング3を施した表面であれば、1〜10μm程度の表面粗さが適切と考えられる。
【0021】
以上説明の実施の第1〜第3形態によれば、機体外板の基材の内側にSiCコーティング3を介して中間層コーティング4を施し、その表面にPt コーティング5を施したので、中間層コーティング4によりSiCとPt との層間の反応を防止すると共に、低輻射率のPt コーティング5により熱の内部への流入を減少させ、スタンドオフTPS構造体の外板表面が1450℃の高温度にさらされたとしても、高温の熱の内部への流入を減少させ、安定した低輻射率コーティングが実現できるものである。
【0022】
【発明の効果】
本発明の輻射断熱式熱防護構造体は、(1)機体の周囲を輻射断熱層で囲み、その周囲に所定の空間を保ってカーボン系の材料からなる外板を配設した輻射断熱式熱防護構造体であって、前記外板の内、外両表面に形成されたSiCコーティング膜と、同内側SiCコーティング膜の表面に形成され、Al2 3 又はY2 SiO5 、あるいはその両方からなる中間層コーティング膜と、同中間層コーティング膜表面に形成されたPt コーティング膜とを有することを特徴としている。このような構成により、外板の内,外表面のSiCコーティング膜は、外板の耐酸化性を付与して外板の内,外両表面を保護し、内側のSiCコーティング膜に施された中間層コーティング膜はSiCコーティング膜とPt コーティング膜との層間の反応を抑える作用を行う。又、Pt コーティング層は低輻射率を有するもので、外板から中間層を伝わってくる熱の空間部への放射を小さくして、機体内部への熱の流入を減少させるものである。このような輻射断熱式熱防護構造体により機体の外板に生ずる高温、例えば1450℃程度の高温度に対しても熱防護構造が効果的に機能するようになる。
【0023】
又、本発明の(2),(3)のように外板の材料がC/SiC、SiC/SiC系のものであっても、Pt コーティングと材料との間には中間層が形成されているので、上記(1)の発明と同様の効果を奏するものであり、又、(4)の発明では、中間層コーティング膜が高温で加熱されても割れや、剥離が発生しにくい50〜100μmの厚さに選定されるものであり、(5)の発明では、Pt コーティング膜の厚さが1〜10μmの範囲であれば、高温で加熱されても割れや剥離が発生しにくく、熱の内部への流入の減少がより効果的となるものである。
【図面の簡単な説明】
【図1】 本発明の実施の第1形態に係る輻射断熱式熱防護構造体の断面図である。
【図2】 本発明の実施の第2形態に係る輻射断熱式熱防護構造体の断面図である。
【図3】 本発明の実施の第3形態に係る輻射断熱式熱防護構造体の断面図である。
【図4】 本発明の実施の第1〜第3形態に係る輻射断熱式熱防護構造体に適用されるPt コーティングの表面粗さと輻射率との関係を示す図である。
【図5】 スタンドオフTPSの一般的な模式図である。
【符号の説明】
1,11,21 C/C基材
2,3 SiC系コーティング
4 中間層コーティング
5 Pt コーティング
30 外板
34 空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation heat insulation type thermal protection structure, and is applied as a thermal protection material to the inner surface of an outer plate of a spacecraft or the like, and effectively prevents the heat on the surface from flowing into the interior.
[0002]
[Prior art]
In recent years, the development of spacecraft has progressed, and research has been conducted to prevent high heat generated in the outer plate due to friction with the atmosphere of the spacecraft, etc. from being transmitted to the inner surface of the outer plate, but sufficient countermeasures have been established. The current situation is not. FIG. 5 is a cross-sectional view showing an example of a structure in which measures for heat insulation of spacecraft and aircraft are taken. In the figure, reference numeral 30 denotes an outer plate of the fuselage, which is carbon fiber or carbon matrix (C / C), or carbon or SiC ( C / SiC) and the like. Reference numeral 31 denotes a radiant heat insulating material, which is made of a laminate of heat-resistant materials such as cotton and woven fabric, and prevents heat from entering the inside. Reference numeral 32 denotes a main structural frame, which is a main structural member of the airframe. Reference numeral 33 denotes a heat-resistant fastener, which is made of a heat-resistant metal, and fixes the outer plate 30 to the main structure frame 32 while maintaining a predetermined space 34 between the outer plate 30 and the radiation heat insulating material 31. Such a heat insulating structure is called a stand-off TPS (radiant heat insulating thermal protection material), and has been developed as a measure for preventing heat from entering the outer plate.
[0003]
[Problems to be solved by the invention]
As described above, the stand-off TPS using radiation insulation is being developed as the outer plate structure of the spacecraft. In this development, it is important to reduce the emissivity of the inner surface of the outer plate.
Therefore, in the present invention, by applying a low emissivity coating on the inner surface of the outer plate, the heat inflow to the inside is reduced, and the function can be stably exhibited even when the stand-off TPS is at a high temperature of about 1450 ° C. An object of the present invention is to realize a radiation insulation type thermal protection structure .
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides the following means (1) to (5).
[0005]
(1) A radiation heat insulation type thermal protection structure in which the outer periphery of the airframe is surrounded by a radiation heat insulation layer, and an outer plate made of a carbon-based material is disposed around the airframe. An SiC coating film formed on both outer surfaces, an intermediate coating film formed on the surface of the inner SiC coating film, and made of Al 2 O 3 or Y 2 SiO 5 , or both; and the intermediate coating film A radiation-insulated thermal protection structure comprising a Pt coating film formed on a surface.
[0006]
(2) The radiation heat insulating thermal protection structure according to (1), wherein the outer plate is made of a material of C and SiC.
[0007]
(3) A radiation heat insulation type thermal protection structure in which the outer periphery of the airframe is surrounded by a radiation heat insulation layer, and an outer plate made of a carbon-based material is disposed around the air heat insulation layer . An intermediate layer coating film made of Al 2 O 3 and / or Y 2 SiO 5 formed on the surface , or both, and a Pt coating film formed on the surface of the intermediate layer coating film, and the outer plate is A radiation-insulated thermal protection structure comprising a SiC fiber and a SiC matrix.
[0008]
(4) The radiation insulation type thermal protection structure according to any one of (1) to (3), wherein the thickness of the intermediate layer coating film is in the range of 50 to 100 μm.
[0009]
(5) The radiation adiabatic thermal protection structure according to any one of (1) to (3), wherein the Pt coating film has a thickness in the range of 1 to 10 μm.
[0010]
In (1) of the present invention, the SiC coating film on the inner and outer surfaces of the outer plate provides oxidation resistance of the outer plate to protect both the inner and outer surfaces of the outer plate, and the inner SiC coating film decorated with the intermediate layer coating film performs a function of suppressing the reaction between the layers of the SiC coating film and P t coating film. Further, the Pt coating layer has a low emissivity, and reduces the radiation of heat transmitted from the outer plate to the intermediate layer into the space to reduce the inflow of heat into the airframe. With such a radiation heat insulation type thermal protection structure, the thermal protection structure effectively functions even at a high temperature generated on the outer plate of the airframe, for example, a high temperature of about 1450 ° C.
[0011]
Even if the material of the outer plate is C / SiC or SiC / SiC based as in (2) and (3) of the present invention, an intermediate layer is formed between the Pt coating and the material. Therefore, the same effect as the invention of the above (1) is exhibited, and in the invention of (4), even if the intermediate layer coating film is heated at a high temperature, cracking and peeling are not likely to occur. is intended to be selected to a thickness of 100 [mu] m, (5) in the present invention, so long as the thickness of the P t coating film is 1 to 10 [mu] m, even cracking or peeling is heated at a high temperature hardly occurs, A reduction in the inflow of heat into the interior is more effective.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a configuration diagram of a radiation heat insulation type thermal protection structure according to a first embodiment of the present invention. In the figure, reference numeral 1 denotes a C / C base material, which is made of carbon fiber or carbon matrix, and corresponds to the outer plate 30 of the airframe shown in FIG. Reference numeral 2 denotes a heat resistant coating coated on the surface of the outer plate with a SiC coating. 3 is also a SiC coating, which is coated on the inside of the C / C substrate 1. These SiC coatings 2 and 3 are for imparting oxidation resistance to the substrate 1.
[0013]
An intermediate layer coating 4 is formed by coating alumina (Al 2 O 3 ) or yttrium silicate (Y 2 SiO 5 ) by a CVD (Chemical Vapor Deposition) method or thermal spraying. 5 is a platinum (P t ) coating, and P t is a material that exhibits a low emissivity of about 0.05 at room temperature and a low emissivity of about 0.2 even at a high temperature of 1000 ° C. or higher. The P t coating 5 forms a thin film by PVD (Phisical Vapor Deposition) method. The thickness of the P t coating 5 can be said good to a thickness in the range of 1~10μm as described below.
[0014]
The intermediate layer coating 4 having the above configuration is for preventing an interlayer reaction between the SiC coating 3 and the Pt coating 5, and is formed by a thermal spraying method capable of relatively thick coating or a CVD method capable of dense coating. In the coating by the thermal spraying method, when the thickness is 100 μm, peeling does not occur at a high temperature of 1000 ° C. or more, and a good film is formed, and according to the CVD method, a dense film of several μs to several tens μm is formed. A membrane is possible. Whichever method is used, the film thickness of the intermediate layer coating 4 in the range of 50 to 100 μm can be said to be an optimum range in which peeling does not occur at a high temperature of about 1000 ° C.
[0015]
In the configuration of the first embodiment described above, the SiC coating 3 is applied to the inside of the C / C substrate 1 corresponding to the outer plate 30 of the airframe, the intermediate layer coating 4 is formed on the surface, and the surface is formed on the surface. since it is configured radiation adiabatic heat protection structure is subjected to P t coating 5 of low emissivity, as the surface of the substrate 1 is exposed to high heat 40 of about 1450 ° C., SiC coating 3 and P t coating 5 thereby preventing the reaction of the interlayer between, the P t coating 5 of low emissivity can reduce the influx into the interior of the heat.
[0016]
FIG. 2 is a configuration diagram of a radiation heat insulation type thermal protection structure according to the second embodiment of the present invention. In the figure, the second embodiment differs from the first embodiment shown in FIG. 1 in that the substrate corresponding to the outer plate of the fuselage is changed from the C / C substrate 1 to the C / SiC substrate 11. Other configurations are the same as those of the first embodiment shown in FIG.
[0017]
Substrate, even when such a substrate 11, as in the first embodiment, the base material 11 is interposed is SiC coating 3, the intermediate layer coating 4 is between layers of SiC and P t reaction with preventing, likewise, can be reduced by P t coating 5 of low emissivity inflow of heat into the interior.
[0018]
FIG. 3 is a configuration diagram of a radiation heat insulation type thermal protection structure according to a third embodiment of the present invention. In the figure, the third embodiment differs from the first embodiment shown in FIG. 1 in that the substrate corresponding to the outer plate of the fuselage is changed from the C / C substrate 1 to the SiC / SiC substrate 21. It is a thing. In the third embodiment, the SiC coatings 2 and 3 applied to both the outer and inner surfaces of the substrate 11 are not required. Since the material itself of the SiC / SiC base material 21 is composed of SiC fibers and a SiC-based matrix, both surfaces of the base material are SiC-based materials, and the SiC coatings 2 and 3 are unnecessary. An alternative configuration is the same as that of the first embodiment shown in FIG.
[0019]
Substrate, thereby preventing the reaction between P t coating 5 and the substrate 21 by the first embodiment and the intermediate layer coating 4 similar embodiment even when such a substrate 21, a low emissivity P The coating 5 can reduce the inflow of heat into the interior.
[0020]
FIG. 4 is a diagram showing a measurement result of the relationship between the surface roughness of the Pt coating 5 used in the first to third embodiments and the radiation rate at room temperature. When the surface roughness is 4 μm or more, the radiation rate Increase to about 0.2 at 30 to 50 μm. This tendency shows the same tendency regardless of the type of substrate. The reason why the emissivity increases due to the increase in surface roughness is that the radiation area increases as the surface increases.When setting the emissivity with practical materials, it matches the required value of the emissivity inside the outer plate. It is necessary to adjust the surface roughness of the Pt coating. If it is the surface which gave the SiC coating 3, the surface roughness of about 1-10 micrometers is considered appropriate.
[0021]
According to the first to third embodiments described above, the intermediate layer coating 4 is applied to the inside of the base material of the fuselage outer plate via the SiC coating 3, and the Pt coating 5 is applied to the surface thereof. thereby preventing the reaction between layers of SiC and P t by layer coating 4, the P t coating 5 of low emissivity reduces the influx into the interior of the heat, the outer plate surface of the standoff TPS structure of 1450 ° C. Even when exposed to high temperatures, the inflow of high-temperature heat into the interior is reduced, and a stable low-emissivity coating can be realized.
[0022]
【The invention's effect】
Radiation adiabatic heat protection structure of the present invention, (1) surrounds the body in radiant heat insulating layer, radiation adiabatic heat disposed outer plate made of a material of the carbon-based with a predetermined space therearound A protective structure , which is formed on the outer and outer surfaces of the SiC coating film and the inner SiC coating film, and is formed of Al 2 O 3 or Y 2 SiO 5 or both. And an intermediate layer coating film and a Pt coating film formed on the surface of the intermediate layer coating film. With such a configuration , the SiC coating film on the inner and outer surfaces of the outer plate is applied to the inner SiC coating film by providing oxidation resistance of the outer plate to protect both the inner and outer surfaces of the outer plate. intermediate layer coating film performs a function of suppressing the reaction between the layers of the SiC coating film and P t coating film. Further, the Pt coating layer has a low emissivity, and reduces the radiation of heat transmitted from the outer plate to the intermediate layer into the space to reduce the inflow of heat into the airframe. With such a radiation heat insulation type thermal protection structure, the thermal protection structure effectively functions even at a high temperature generated on the outer plate of the airframe, for example, a high temperature of about 1450 ° C.
[0023]
Even if the material of the outer plate is C / SiC or SiC / SiC based as in (2) and (3) of the present invention, an intermediate layer is formed between the Pt coating and the material. Therefore, the same effect as the invention of the above (1) is exhibited, and in the invention of (4), even if the intermediate layer coating film is heated at a high temperature, cracking and peeling are not likely to occur. is intended to be selected to a thickness of 100 [mu] m, (5) in the present invention, so long as the thickness of the P t coating film is 1 to 10 [mu] m, even cracking or peeling is heated at a high temperature hardly occurs, A reduction in the inflow of heat into the interior is more effective.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a radiation adiabatic thermal protection structure according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a radiation adiabatic thermal protection structure according to a second embodiment of the present invention.
FIG. 3 is a cross-sectional view of a radiation adiabatic thermal protection structure according to a third embodiment of the present invention.
FIG. 4 is a diagram showing the relationship between the surface roughness of the Pt coating applied to the radiation heat insulation type thermal protection structure according to the first to third embodiments of the present invention and the radiation rate.
FIG. 5 is a general schematic diagram of a stand-off TPS.
[Explanation of symbols]
1, 11, 21 C / C substrate 2,3 SiC-based coating 4 intermediate layer coating 5 P t coating 30 outer plate 34 space

Claims (5)

機体の周囲を輻射断熱層で囲み、その周囲に所定の空間を保ってカーボン系の材料からなる外板を配設した輻射断熱式熱防護構造体であって、
前記外板の内、外両表面に形成されたSiCコーティング膜と、同内側SiCコーティング膜の表面に形成され、Al2 3 又はY2 SiO5 、あるいはその両方からなる中間層コーティング膜と、同中間層コーティング膜表面に形成されたPt コーティング膜とを有することを特徴とする輻射断熱式熱防護構造体
A radiation insulation type thermal protection structure that surrounds the airframe with a radiation insulation layer, and that has a predetermined space around it and an outer plate made of a carbon-based material is disposed,
An SiC coating film formed on both outer and outer surfaces of the outer plate, an intermediate coating film formed on the surface of the inner SiC coating film and made of Al 2 O 3 or Y 2 SiO 5 , or both, A radiation-insulated thermal protection structure having a Pt coating film formed on the surface of the intermediate coating film.
前記外板がC及びSiCの材料からなる請求項1記載の輻射断熱式熱防護構造体The radiation heat insulation type thermal protection structure according to claim 1, wherein the outer plate is made of a material of C and SiC. 機体の周囲を輻射断熱層で囲み、その周囲に所定の空間を保ってカーボン系の材料からなる外板を配設した輻射断熱式熱防護構造体であって、
前記外板の内表面に形成されたAl2 3 又はY2 SiO5 、あるいはその両方からなる中間層コーティング膜と、同中間層コーティング膜表面に形成されたPt コーティング膜とを有し、且つ、前記外板がSiC繊維及びSiCマトリックスからなることを特徴とする輻射断熱式熱防護構造体
A radiation insulation type thermal protection structure that surrounds the airframe with a radiation insulation layer, and that has a predetermined space around it and an outer plate made of a carbon-based material is disposed,
An intermediate coating film made of Al 2 O 3 and / or Y 2 SiO 5 formed on the inner surface of the outer plate, or both; and a Pt coating film formed on the surface of the intermediate coating film; and The heat insulating structure for radiation insulation , wherein the outer plate is made of SiC fiber and SiC matrix.
前記中間層コーティング膜の厚さは50〜100μmの範囲にあることを特徴とする請求項1から3のいずれかに記載の輻射断熱式熱防護構造体The thickness of the said intermediate | middle layer coating film exists in the range of 50-100 micrometers, The radiation heat insulation type thermal protection structure in any one of Claim 1 to 3 characterized by the above-mentioned. 前記Pt コーティング膜の厚さは1〜10μmの範囲にあることを特徴とする請求項1から3記載の輻射断熱式熱防護構造体4. The radiation heat insulating thermal protection structure according to claim 1, wherein the Pt coating film has a thickness in the range of 1 to 10 [mu] m.
JP2000004562A 2000-01-13 2000-01-13 Radiation-insulated thermal protection structure Expired - Fee Related JP4576015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004562A JP4576015B2 (en) 2000-01-13 2000-01-13 Radiation-insulated thermal protection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004562A JP4576015B2 (en) 2000-01-13 2000-01-13 Radiation-insulated thermal protection structure

Publications (2)

Publication Number Publication Date
JP2001192831A JP2001192831A (en) 2001-07-17
JP4576015B2 true JP4576015B2 (en) 2010-11-04

Family

ID=18533335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004562A Expired - Fee Related JP4576015B2 (en) 2000-01-13 2000-01-13 Radiation-insulated thermal protection structure

Country Status (1)

Country Link
JP (1) JP4576015B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2092286B1 (en) * 2006-12-19 2011-11-16 Rosemount Aerospace Inc. Integrated total air temperature probe and electronics
JP6188004B2 (en) * 2012-01-16 2017-08-30 島根県 Method for forming ceramic spray coating and functional ceramic spray coating
CN110885257B (en) * 2019-12-11 2022-02-15 中国人民解放军空军工程大学 Carbon/carbon composite material surface functional coating and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202600A (en) * 1987-12-09 1989-08-15 Messerschmitt Boelkow Blohm Gmbh <Mbb> Multilayer heat-insulating material
JPH03132500A (en) * 1989-10-18 1991-06-05 Natl Space Dev Agency Japan<Nasda> Machine body mounting device for metal tps for space shuttle
JPH06305498A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Heat protecting system
JPH07216531A (en) * 1994-02-02 1995-08-15 Nok Corp Formation of thin noble metal film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202600A (en) * 1987-12-09 1989-08-15 Messerschmitt Boelkow Blohm Gmbh <Mbb> Multilayer heat-insulating material
JPH03132500A (en) * 1989-10-18 1991-06-05 Natl Space Dev Agency Japan<Nasda> Machine body mounting device for metal tps for space shuttle
JPH06305498A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Heat protecting system
JPH07216531A (en) * 1994-02-02 1995-08-15 Nok Corp Formation of thin noble metal film

Also Published As

Publication number Publication date
JP2001192831A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
US5296288A (en) Protective coating for ceramic materials
US5430428A (en) High-temperature sensor made of metal of the platinum group
US6296909B1 (en) Method for thermally spraying crack-free mullite coatings on ceramic-based substrates
CN108048839B (en) A kind of Wolfram rhenium heat electric couple high-temperature oxidation resistant coating and its application
US6737120B1 (en) Oxidation-protective coatings for carbon-carbon components
US5283109A (en) High temperature resistant structure
US5545437A (en) Method for forming a non-degrading refective coating system for high temperature heat shields
JP5395574B2 (en) Steam equipment
US6444271B2 (en) Durable refractory ceramic coating
US20030215625A1 (en) Coatings and method for protecting carbon-containing components from oxidation
CN103587156A (en) Cavitation-resistant environmental barrier coating
Chen et al. Environmental barrier coatings using low pressure plasma spray process
JP4576015B2 (en) Radiation-insulated thermal protection structure
JPH07243018A (en) Surface modification method for heat insulating film
JPH05238859A (en) Coated member of ceramic
WO2019109718A1 (en) Oxygen barrier material in anti-oxidation coating structure for tungsten-rhenium thermocouple and application thereof
US6485791B1 (en) Method for improving the performance of oxidizable ceramic materials in oxidizing environments
US7314648B1 (en) Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite
Saruhan et al. Effect of interphase characteristics on long-term durability of oxide-based fibre-reinforced composites
JPH0589946A (en) Electric heating body
CN210503156U (en) Super high temperature resistant heat protection structure and aircraft thereof
JPH0312377A (en) Coated structural material
Ghosh Thermal behavior of glass–ceramic bond coat in a TBC system
JPH03288639A (en) Heat insulating material
JPS62264004A (en) Radiation reflecting plate, manufacture thereof and heat insulating device in which said reflecting plate is applied

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees