JP4575788B2 - Gas chromatograph apparatus and VOC measuring apparatus using the same - Google Patents

Gas chromatograph apparatus and VOC measuring apparatus using the same Download PDF

Info

Publication number
JP4575788B2
JP4575788B2 JP2005007864A JP2005007864A JP4575788B2 JP 4575788 B2 JP4575788 B2 JP 4575788B2 JP 2005007864 A JP2005007864 A JP 2005007864A JP 2005007864 A JP2005007864 A JP 2005007864A JP 4575788 B2 JP4575788 B2 JP 4575788B2
Authority
JP
Japan
Prior art keywords
gas
calibration
output
peak
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005007864A
Other languages
Japanese (ja)
Other versions
JP2006194776A (en
Inventor
一夫 翁長
伊藤  猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIS Inc
Original Assignee
FIS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIS Inc filed Critical FIS Inc
Priority to JP2005007864A priority Critical patent/JP4575788B2/en
Publication of JP2006194776A publication Critical patent/JP2006194776A/en
Application granted granted Critical
Publication of JP4575788B2 publication Critical patent/JP4575788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガスクロマトグラフ装置およびそれを用いるVOC測定装置に関するものである。   The present invention relates to a gas chromatograph apparatus and a VOC measurement apparatus using the same.

ガスクロマトグラフ装置は、ガス中の成分の定性・定量分析に広く用いられており、これは被測定ガスをキャリアガスと共に、充填材が充填されているガス分離カラムに導入し、被測定ガス中に含まれるガス成分がガス分離カラム中の充填材との相互作用によるリテンションタイム差により分離され、この分離されたガス成分をガス分離カラムから導出して、熱伝導度検出器(TCD)や水素炎イオン化検出器(FID)等の検出器にて検出することにより、クロマトグラムが得られるものである(特許文献1参照)。   Gas chromatographs are widely used for qualitative and quantitative analysis of components in gas, which introduces a gas to be measured together with a carrier gas into a gas separation column packed with a packing material, The contained gas components are separated by the retention time difference due to the interaction with the packing material in the gas separation column, and the separated gas components are derived from the gas separation column to be used as a thermal conductivity detector (TCD) or hydrogen flame. A chromatogram is obtained by detecting with a detector such as an ionization detector (FID) (see Patent Document 1).

また近年、シックハウス症候群や化学物質過敏症の原因物質として、建物の内装材や什器に使用されている塗料や接着剤などから発生する揮発性有機化合物(VOC)が注目されており、このようなVOCの定性定量測定に上記のガスクロマトグラフ装置が使用されている。
特開2003−254956号公報
In recent years, volatile organic compounds (VOCs) generated from paints and adhesives used in building interior materials and furniture have attracted attention as a causative agent for sick house syndrome and chemical sensitivity. The gas chromatograph apparatus described above is used for qualitative and quantitative measurement of VOCs.
Japanese Patent Application Laid-Open No. 2003-254956

上記構成のガスクロマトグラフ装置では、被測定ガス中に含まれる複数種類の検出対象ガス成分のガス濃度を検出するのであるが、長時間の使用に伴って検出器の検出出力が変動するため、検出出力の校正を行う必要がある。しかも検出出力の変動量は測定対象のガス成分毎に異なるため、検出出力の校正を行う場合には高純度空気をキャリアガスとして所定濃度の検出対象ガス成分を混入した校正用の試料ガスを複数用意し、各々のガス成分毎に検出出力を校正しなければならず、校正の手間がかかり、測定の準備に長時間を必要としていた。   The gas chromatograph configured as described above detects the gas concentration of a plurality of types of gas components to be detected contained in the gas to be measured, but the detection output of the detector fluctuates with prolonged use. It is necessary to calibrate the output. In addition, since the amount of fluctuation in the detection output differs for each gas component to be measured, when calibrating the detection output, a plurality of sample gases for calibration mixed with a detection target gas component having a predetermined concentration using high-purity air as a carrier gas. It was necessary to prepare and calibrate the detection output for each gas component, which took time for calibration and required a long time for preparation for measurement.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、校正作業が容易に行えるガスクロマトグラフ装置およびそれを用いるVOC測定装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas chromatograph apparatus that can easily perform a calibration operation and a VOC measurement apparatus that uses the gas chromatograph apparatus.

上記目的を達成するために、請求項1の発明は、ガス成分に応じて流動遅延を生じさせる部材を充填したガス分離カラムと、空気をキャリアガスとしてガス分離カラムの吸気側からガス分離カラム内にガス流路を介して圧送する圧送手段と、ガス流路の途中に設けられ、該ガス流路内のキャリアガス中に複数種類の検出対象ガス成分を含む被測定ガスを供給するガス供給口と、ガス分離カラムの排気側に設けられて、各々の検出対象ガス成分のガス濃度に応じた出力を順次発生する半導体ガスセンサと、各検出対象ガス成分のリテンションタイムおよび半導体ガスセンサの出力のピークと該出力のピークに対応したガス濃度データとを対応付けた検量線データを記憶する記憶手段と、半導体ガスセンサの出力のピークおよびリテンションタイムをもとに各検出対象ガス成分のガス濃度を求めるガス濃度検出機能を有する演算手段と、演算手段の動作モードを、各検出対象ガス成分のガス濃度を求める検出モード、又は、ガス濃度の検出値を校正する校正モードの何れかに切り替えるモード切替手段と、校正モードにおいてガス供給口から供給する校正用ガスに含まれる検出対象ガス成分のガス種およびガス濃度を設定する校正条件設定手段とを備え、演算手段は、その動作モードが校正モードに切り替えられると、校正条件設定手段により設定されたガス種およびガス濃度と、半導体ガスセンサの出力のピークとをもとに、出力のピークから求めた検出対象ガス成分のガス濃度が校正条件設定手段により設定されたガス濃度に一致するよう出力を補正する校正計算式を求め、検出モードにおいて、校正用ガスに含まれていた検出対象ガス成分とそれ以外の他の検出対象ガス成分の両方について、半導体ガスセンサの出力のピークを校正計算式を用いて補正し、記憶手段に記憶された検量線データから補正後の検出出力に対応するガス濃度を求めることを特徴とする。   In order to achieve the above object, the invention of claim 1 includes a gas separation column filled with a member that causes a flow delay in accordance with a gas component, and the inside of the gas separation column from the intake side of the gas separation column using air as a carrier gas. A gas supply port for supplying a gas to be measured that includes a plurality of types of detection target gas components in a carrier gas in the gas flow path. A semiconductor gas sensor which is provided on the exhaust side of the gas separation column and sequentially generates an output corresponding to the gas concentration of each detection target gas component, and the retention time of each detection target gas component and the peak of the output of the semiconductor gas sensor Storage means for storing calibration curve data in association with gas concentration data corresponding to the output peak, output peak and retention type of the semiconductor gas sensor Calculation means having a gas concentration detection function for obtaining the gas concentration of each detection target gas component based on the operation mode of the calculation means, detection mode for obtaining the gas concentration of each detection target gas component, or detection of the gas concentration Mode switching means for switching to one of calibration modes for calibrating the value, and calibration condition setting means for setting the gas type and gas concentration of the detection target gas component contained in the calibration gas supplied from the gas supply port in the calibration mode. When the operation mode is switched to the calibration mode, the calculation means is obtained from the output peak based on the gas type and gas concentration set by the calibration condition setting means and the output peak of the semiconductor gas sensor. Obtain a calibration formula to correct the output so that the gas concentration of the gas component to be detected matches the gas concentration set by the calibration condition setting means. In this case, for both the detection target gas component contained in the calibration gas and other detection target gas components, the peak of the output of the semiconductor gas sensor is corrected using the calibration calculation formula and stored in the storage means. The gas concentration corresponding to the corrected detection output is obtained from the calibration curve data.

請求項2の発明は、請求項1の発明において、演算手段では、校正モードにおいてガス濃度の異なる2種の校正用ガスを注入して、2点のガス濃度における半導体ガスセンサの出力のピークを求めており、検量線データから高濃度側の校正用ガスのガス濃度における出力のピークを読み出した値をXOH、検量線データから低濃度側の校正用ガスのガス濃度における出力のピークを読み出した値をXOL、高濃度側の校正用ガスの注入時における半導体ガスセンサの出力のピークを測定した結果をXH、低濃度側の校正用ガスの注入時における半導体ガスセンサの出力のピークを測定した結果をXL、被測定ガスの注入時における半導体ガスセンサの出力のピークをX、出力のピークXを校正した値をXCとした場合に、演算手段が、logXC=(logXOH−logXOL)×(logX−logXL)/(logXH−logXL)+logXOLなる校正計算式を用いて半導体ガスセンサの出力のピークを校正することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the calculation means injects two kinds of calibration gases having different gas concentrations in the calibration mode to obtain the peak of the output of the semiconductor gas sensor at two gas concentrations. The value obtained by reading the output peak at the gas concentration of the calibration gas on the high concentration side from the calibration curve data is XOH, and the value obtained by reading the output peak at the gas concentration of the calibration gas on the low concentration side from the calibration curve data XOL, the result of measuring the peak of the output of the semiconductor gas sensor when the calibration gas on the high concentration side is injected is XH, and the result of measuring the peak of the output of the semiconductor gas sensor when the calibration gas on the low concentration side is injected is XL When the measured peak of the semiconductor gas sensor at the time of injection of the gas to be measured is X, and the value obtained by calibrating the output peak X is XC, the computing means is logXC And wherein the calibrating the peak of the output of the semiconductor gas sensor using (logXOH-logXOL) × (logX-logXL) / (logXH-logXL) + logXOL comprising calibration equation.

請求項3の発明は、請求項2の発明において、半導体ガスセンサの出力のピークとその対数値を1対1に対応付けたLOGテーブル、および、検量線データの出力のピークの対数値と各出力のピークにおけるガス濃度とを1対1で対応付けた検量線テーブルを記憶手段に登録しておき、LXを半導体ガスセンサの出力のピークの対数値、LXCを校正値XCの対数値、LXOH,LXOLをそれぞれ出力XOH,XOLの対数値、LXH,LXLをそれぞれ1点目および2点目の校正用ガス注入時における出力のピークXH,XLの対数値とし、A=(LX0H−LX0L)/(LXH−LXY)、B=(LX0L・LXH−LX0H・LXL)/(LXH−LXY)とした場合に、演算手段は、検出モードにおいて半導体ガスセンサの出力のピークを読み込むと、この出力のピークをLOGテーブルを用いて対数値に変換し、LXC=A×LLX+Bなる校正計算式を用いて出力のピークを補正した後、検量線テーブルから補正後の出力のピークに対応するガス濃度を読み込むことで、ガス濃度を求めることを特徴とする。   According to a third aspect of the present invention, there is provided a LOG table in which the output peak of the semiconductor gas sensor and its logarithmic value are in a one-to-one correspondence, and the logarithmic value of the peak of the calibration curve data and each output A calibration curve table in which the gas concentration at each peak is associated with the one-to-one correspondence is registered in the storage means, LX is the logarithmic value of the output peak of the semiconductor gas sensor, LXC is the logarithmic value of the calibration value XC, LXOH, LXOL Are the logarithmic values of the outputs XOH and XOL, and LXH and LXL are the logarithmic values of the output peaks XH and XL at the time of the first and second calibration gas injection, respectively, and A = (LX0H−LX0L) / (LXH −LXY), B = (LX0L·LXH−LX0H · LXL) / (LXH−LXY), the computing means outputs the output of the semiconductor gas sensor in the detection mode. When the peak is read, this output peak is converted to a logarithmic value using the LOG table, the output peak is corrected using the calibration formula LXC = A × LLX + B, and then the corrected output is calculated from the calibration curve table. The gas concentration is obtained by reading the gas concentration corresponding to the peak.

請求項4の発明は、請求項1乃至3の何れかの発明において、演算手段は、校正モードにおいて、校正条件設定手段により設定されたガス種の既知のリテンションタイムと、校正用ガスの注入時点から半導体ガスセンサの出力のピークが現れるまでの時間との時間差である補正時間を求め、検出モードにおいては、被測定ガスの注入時点より各検出対象ガス成分のリテンションタイムに上記補正時間を加算した時間が経過した時点で半導体ガスセンサの出力を取り込むことを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, in the calibration mode, the calculation means is a known retention time of the gas type set by the calibration condition setting means and a calibration gas injection time point. The correction time, which is the time difference from the time until the peak of the output of the semiconductor gas sensor appears, is obtained, and in the detection mode, the time obtained by adding the correction time to the retention time of each detection target gas component from the time of injection of the gas to be measured It is characterized in that the output of the semiconductor gas sensor is taken in at the time when elapses.

請求項5の発明は、VOC測定装置であって、請求項1乃至4の何れか1つのガスクロマトグラフ装置を用い、前記被測定ガス中のVOC成分の定性定量測定を行うことを特徴とする。   A fifth aspect of the present invention is a VOC measurement apparatus, characterized in that a qualitative quantitative measurement of a VOC component in the gas to be measured is performed using any one of the gas chromatograph apparatuses according to the first to fourth aspects.

請求項1の発明によれば、被測定ガスの検出手段として半導体ガスセンサを用いており、半導体ガスセンサでは経時変化によって生じる出力の変化が、全ての検出対象ガス成分に対して略同じ割合で発生することが実験により確認できたので、何れかの検出対象ガス成分について校正用ガスを注入したときの半導体ガスセンサの出力から校正計算式を求めれば、この校正計算式を用いて他の検出対象ガス成分が注入されたときの出力を校正できるから、個々の検出対処ガス成分について校正処理を行う必要が無く、校正作業が簡単に行えるガスクロマトグラフ装置を実現できる。   According to the first aspect of the present invention, the semiconductor gas sensor is used as the means for detecting the gas to be measured. In the semiconductor gas sensor, the output change caused by the change with time is generated at substantially the same rate with respect to all the detection target gas components. Therefore, if a calibration calculation formula is obtained from the output of the semiconductor gas sensor when a calibration gas is injected for any of the detection target gas components, another calibration target gas component can be obtained using this calibration calculation formula. Since the output when the gas is injected can be calibrated, it is not necessary to perform the calibration process for each detected gas component, and a gas chromatograph apparatus that can easily perform the calibration work can be realized.

請求項2の発明によれば、請求項1の発明と同様に校正作業が簡単に行えるガスクロマトグラフ装置を実現できる。   According to the second aspect of the present invention, a gas chromatograph apparatus can be realized in which the calibration work can be easily performed as in the first aspect of the present invention.

請求項3の発明によれば、演算手段は、検出モードにおいて半導体ガスセンサの出力のピークを読み込むと、この出力のピークをLOGテーブルを用いて対数値に変換し、LXC=A×LLX+Bなる校正計算式を用いて出力のピークを補正した後、検量線テーブルから補正後の出力のピークに対応するガス濃度を読み込むことで、ガス濃度を求めているので、対数演算が不要になって演算手段の処理量を減らすことができる。   According to the invention of claim 3, when the calculation means reads the output peak of the semiconductor gas sensor in the detection mode, the calculation means converts the output peak into a logarithmic value using the LOG table, and performs a calibration calculation of LXC = A × LLX + B. After correcting the output peak using the equation, the gas concentration is obtained by reading the gas concentration corresponding to the corrected output peak from the calibration curve table. The amount of processing can be reduced.

請求項4の発明によれば、演算手段が、校正モードにおいて、校正条件設定手段により設定されたガス種の既知のリテンションタイムと、校正用ガスの注入時点から半導体ガスセンサの出力のピークが現れるまでの時間との時間差である補正時間を求め、検出モードにおいては、被測定ガスの注入時点より各検出対象ガス成分のリテンションタイムに上記補正時間を加算した時間が経過した時点で半導体ガスセンサの出力を取り込んでいるので、各検出対象ガス成分のガス濃度をより正確に検出することができる。   According to the invention of claim 4, in the calibration mode, the known retention time of the gas type set by the calibration condition setting unit and the peak of the output of the semiconductor gas sensor from the time when the calibration gas is injected appear. In the detection mode, the output of the semiconductor gas sensor is output when the time obtained by adding the correction time to the retention time of each detection target gas component has elapsed in the detection mode. Since it is taken in, the gas concentration of each detection target gas component can be detected more accurately.

請求項5の発明によれば、請求項1のガスクロマトグラフ装置を用いてVOC測定装置を構成しているので、個々の検出対処ガス成分について校正処理を行う必要が無く、校正作業が簡単に行えるVOC測定装置を実現できる。   According to the fifth aspect of the present invention, since the VOC measurement device is configured by using the gas chromatograph device of the first aspect, it is not necessary to perform the calibration process for each detected gas component, and the calibration work can be easily performed. A VOC measurement device can be realized.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施形態はガスクロマトグラフ装置を用いたVOC測定器であり、図2に流路構成図を示す。このVOC測定器Aは、VOCを含まない清浄空気を所定圧力で充填したガスボンベ20と、ガスボンベ20から清浄空気がキャリアガスとしてガス流路21を介して圧送されてくるガス分離カラム1と、ガスボンベ20とガス分離カラム1の吸気側までのガス流路21の間に挿入された逆止弁22、定圧弁23および流量調整弁24と、ガス流路21内の圧力変化を検出するために設けた流量センサ25と、ガス分離カラム1の吸気側に設けられ、被測定ガスをキャリアガス内に注入して供給するガス供給口26と、ガス分離カラム1の大気に連通する排気口内に半導体ガスセンサからなる検出器30を備えている。   The present embodiment is a VOC measuring device using a gas chromatograph apparatus, and FIG. This VOC measuring device A includes a gas cylinder 20 filled with clean air containing no VOC at a predetermined pressure, a gas separation column 1 in which clean air is pumped as a carrier gas from a gas cylinder 20 through a gas flow path 21, and a gas cylinder. 20 and a check valve 22, a constant pressure valve 23, a flow rate adjustment valve 24 inserted between the gas flow path 21 to the intake side of the gas separation column 1, and provided for detecting a pressure change in the gas flow path 21. The semiconductor gas sensor is provided in the flow rate sensor 25, the gas supply port 26 provided on the intake side of the gas separation column 1 and supplied by injecting the gas to be measured into the carrier gas, and the exhaust port communicating with the atmosphere of the gas separation column 1 The detector 30 which consists of is provided.

ガス分離カラム1は、図3に示すように外面にラバー状のヒータ2を密接して配設して構成してある。このガス分離カラム1は、ステンレス、銅等の熱伝導性の高い金属にて形成された外筒1aと、外筒1a内に内挿された例えばテフロン(登録商標)からなる内筒1bとの2重筒構造を有し、内筒1b内には固定相となる充填材を充填している。この充填材は被測定ガス中の検出対象ガス成分やキャリアガスの種類に応じた適宜のものが用いられる。ラバー状のヒータ2はシリコーンラバーシート等の絶縁性ラバーにて抵抗体3を絶縁したフレキシブルなヒータであり、抵抗体3がガス分離カラム1の外周面に一端側から他端側に亘って螺旋状に周回するようにして、ガス分離カラム1の外面に密着して配設される。また、このガス分離カラム1には熱電対からなる温度センサ4が設けられており、この熱電対はポリフッ化エチレン樹脂(テフロン(登録商標)等)やガラスウール等の絶縁材にて絶縁被覆された状態でガス分離カラム1の外面に配設され、この温度センサ4にてガス分離カラム1の温度を検知するようにしている。   As shown in FIG. 3, the gas separation column 1 is configured such that a rubber heater 2 is closely disposed on the outer surface. The gas separation column 1 includes an outer cylinder 1a formed of a metal having high thermal conductivity such as stainless steel and copper, and an inner cylinder 1b made of, for example, Teflon (registered trademark) inserted in the outer cylinder 1a. It has a double cylinder structure, and the inner cylinder 1b is filled with a filler serving as a stationary phase. As this filler, an appropriate material according to the type of the detection target gas component or carrier gas in the gas to be measured is used. The rubber heater 2 is a flexible heater in which a resistor 3 is insulated with an insulating rubber such as a silicone rubber sheet. The resistor 3 spirals from one end side to the other end side on the outer peripheral surface of the gas separation column 1. The gas separation column 1 is arranged in close contact with the outer surface of the gas separation column 1. The gas separation column 1 is provided with a temperature sensor 4 made of a thermocouple. The thermocouple is insulated and coated with an insulating material such as a polyfluorinated ethylene resin (Teflon (registered trademark)) or glass wool. In this state, it is disposed on the outer surface of the gas separation column 1 and the temperature sensor 4 detects the temperature of the gas separation column 1.

次に本実施形態の回路構成について図1を参照して説明する。本実施形態のガスクロマトグラフ装置は電源部31と、カラムヒータ制御部32と、マイクロコンピュータからなる演算処理部33と、表示部34と、流量計測部35とからなり、電源部31は電源スイッチSWがオンされると、各部33〜35の動作用電源電圧+Vとを生成する機能を備えている。   Next, the circuit configuration of the present embodiment will be described with reference to FIG. The gas chromatograph apparatus according to the present embodiment includes a power supply unit 31, a column heater control unit 32, a calculation processing unit 33 including a microcomputer, a display unit 34, and a flow rate measurement unit 35. The power supply unit 31 includes a power switch SW. When turned on, it has a function of generating the operating power supply voltage + V of each of the units 33 to 35.

カラムヒータ制御部32は、ガス分離カラム1を加熱するヒータ2の温度をサーミスタからなる温度センサ36で検出し、その検出温度に基づいてPID制御部32aが位相制御部32bを通じてヒータ2への通電電力を制御することで、ガス分離カラム1の温度を予め設定した所定温度に保つようになっている。   The column heater control unit 32 detects the temperature of the heater 2 that heats the gas separation column 1 with a temperature sensor 36 that is a thermistor, and the PID control unit 32a supplies power to the heater 2 through the phase control unit 32b based on the detected temperature. By controlling the above, the temperature of the gas separation column 1 is kept at a predetermined temperature set in advance.

演算処理部33は、流量センサ25の検出出力を流量計測部35から取り込み、この検出出力に基づいて流量変化を検出してこの検出によりガス供給口26からの被測定ガスの注入タイミングを検出する判定処理機能と、半導体ガスセンサからなる検出器30のヒータ30aの通電を制御して、検出器30の感ガス体の温度をヒートクリーニングのための高温期間と検出出力を取り込むための低温期間とに交互に設定する温度制御機能と、低温期間で取り込んだ検出出力と注入タイミングの検出とに基づいて検出対象ガス成分の分析及び定量決定を行う分析処理機能と、ガス分離カラム1の温度を温度センサ36の検出信号より求める機能と、所定濃度の検出対象ガス成分を混入させた校正用ガスをガス供給口26から注入したときの検出出力をもとにガス濃度の検出値およびリテンションタイムを校正する校正機能と、表示部34に表示データを送出する機能とを備えている。   The arithmetic processing unit 33 takes in the detection output of the flow rate sensor 25 from the flow rate measurement unit 35, detects a flow rate change based on the detection output, and detects the injection timing of the gas to be measured from the gas supply port 26 by this detection. By controlling the energization of the heater 30a of the detector 30 consisting of a semiconductor gas sensor and the determination processing function, the temperature of the gas sensitive body of the detector 30 is divided into a high temperature period for heat cleaning and a low temperature period for taking in the detection output. A temperature control function that sets alternately, an analysis processing function that analyzes and quantitatively determines a gas component to be detected based on detection output and detection of injection timing taken in during a low temperature period, and a temperature sensor that detects the temperature of the gas separation column 1 The detection function when a calibration gas mixed with a detection target gas component having a predetermined concentration is injected from the gas supply port 26. It comprises a calibration function to calibrate the detection value and retention time of the gas concentration on the basis of the function of sending out the display data on the display unit 34.

表示部34は液晶表示器とコントローラから構成され、演算処理部33からの表示データによって、キャリアガスの流量、分析処理機能によって求められた検出対象ガス成分の分析結果や定量値、校正モードにおいて入力された校正条件の設定内容や校正用ガスの分析結果、更にガス分離カラム1の温度などを表示するようになっている。   The display unit 34 is composed of a liquid crystal display and a controller, and is input in the analysis result and quantitative value of the detection target gas component obtained by the flow rate of the carrier gas, the analysis processing function, and the calibration mode based on the display data from the arithmetic processing unit 33. The set contents of the calibration conditions, the analysis result of the calibration gas, and the temperature of the gas separation column 1 are displayed.

流量センサ25は、負特性サーミスタと白金コイルとを備えた風速センサを用いて構成しており、この流量センサ25をガス流路21内に臨ませて、白金コイルに電圧を印加して加熱し、加熱されているガス流路21内の温度を負特性サーミスタで検知するもので、一定量のキャリアガスがガス流路21内に流れているときには、負特性サーミスタが検知する温度は一定温度になるが、流量が変化すると、つまり流速が変化すると検知温度が変化し、またその後流量が安定すると流量(流速)に対応した一定温度に保たれるもので、その検知出力は流量計測部35でA/D変換された後、演算処理部33に取り込まれ、演算処理部33はその検知温度を流量に換算することでキャリアガスの流量を監視するようになっている。   The flow rate sensor 25 is configured by using a wind speed sensor including a negative characteristic thermistor and a platinum coil. The flow rate sensor 25 is exposed to the gas flow path 21 and is heated by applying a voltage to the platinum coil. The temperature in the heated gas flow path 21 is detected by a negative characteristic thermistor. When a certain amount of carrier gas is flowing in the gas flow path 21, the temperature detected by the negative characteristic thermistor is a constant temperature. However, when the flow rate changes, that is, when the flow rate changes, the detection temperature changes, and when the flow rate stabilizes thereafter, the detected temperature is maintained at a constant temperature corresponding to the flow rate (flow rate). After A / D conversion, the data is taken into the arithmetic processing unit 33, and the arithmetic processing unit 33 monitors the flow rate of the carrier gas by converting the detected temperature into a flow rate.

而して電源スイッチSWをオンして、ガスクロマトグラフ装置を動作させた後、ガスボンベ20のバルブを開くと、ガスボンベ20から清浄空気がキャリアガスとしてガス流路21に流され、流量調整弁24で調整された流量分がガス分離カラム1に圧送される。キャリアガスの流量は上述の流量センサ25によって常時検出されており、演算処理部33はこの流量センサ25の検知出力に基づいてキャリアガスの流量を監視する。   Thus, after the power switch SW is turned on and the gas chromatograph apparatus is operated, when the valve of the gas cylinder 20 is opened, clean air flows from the gas cylinder 20 as a carrier gas into the gas flow path 21, and the flow rate adjustment valve 24 The adjusted flow rate is pumped to the gas separation column 1. The flow rate of the carrier gas is constantly detected by the flow rate sensor 25 described above, and the arithmetic processing unit 33 monitors the flow rate of the carrier gas based on the detection output of the flow rate sensor 25.

このようにしてキャリアガスをガス分離カラム1内へ送っている状態で、ガス供給口26から検出対象ガス成分を含む被測定ガスを供給する打ち込み操作を行うと、被測定ガスがガス流路21内に送られることで、ガス供給口26よりも上流側のガス流路21内を流れるキャリアガスの流速(流量)が瞬間的に減少することになる。   When the carrier gas is sent into the gas separation column 1 in this manner and a driving operation for supplying the gas to be measured including the detection target gas component from the gas supply port 26 is performed, the gas to be measured becomes the gas flow path 21. As a result, the flow velocity (flow rate) of the carrier gas flowing in the gas flow path 21 on the upstream side of the gas supply port 26 is instantaneously reduced.

この瞬間的な減少によって流量センサ25の負特性サーミスタの検知温度が瞬間的に上昇することになる。この瞬間的な検知温度の変化は流量センサ25の検知出力と予め設定している基準レベルとの比較により演算処理部33で検知され、この検知されたタイミングで被測定ガスが注入されたと判断し、このタイミングに基づいて検出器30で検出されるガス成分のリテンションタイムを計測する。   This instantaneous decrease instantaneously increases the temperature detected by the negative characteristic thermistor of the flow sensor 25. This instantaneous change in the detected temperature is detected by the arithmetic processing unit 33 by comparing the detection output of the flow sensor 25 with a preset reference level, and it is determined that the gas to be measured has been injected at the detected timing. Based on this timing, the retention time of the gas component detected by the detector 30 is measured.

ここで本実施形態はガスクロマトグラフ装置を用いてVOC測定装置を構成したものであり、例えば室内の空気に含まれるガス成分を分析することで、環境中のVOCの定性定量測定を行うものであり、この場合被測定ガスに含まれる検出対象ガスのガス種は決まっているので(例えばトルエン、エチルベンゼン、メタキシレン、オルトキシレン、スチレンなど)、検出対象ガスに対する検出器30の検出出力と、ガス濃度換算値とを示す検量線データ(図4参照)およびリテンションタイムを演算処理部33のメモリ33aに予め登録しておく。   In this embodiment, a VOC measurement device is configured using a gas chromatograph device. For example, a qualitative quantitative measurement of VOC in the environment is performed by analyzing a gas component contained in indoor air. In this case, since the gas type of the detection target gas contained in the gas to be measured is determined (for example, toluene, ethylbenzene, metaxylene, orthoxylene, styrene, etc.), the detection output of the detector 30 for the detection target gas and the gas concentration Calibration curve data (see FIG. 4) indicating the converted value and the retention time are registered in advance in the memory 33a of the arithmetic processing unit 33.

ところで検出器30は半導体ガスセンサからなり、検出対象のガス成分のガス濃度に応じて感ガス体の抵抗値が変化するものであり、この抵抗値変化を電圧変化として演算処理部33が取り込んでいる。図4はガス濃度(ppb)を縦軸とし、検出器30の出力変化、すなわち電圧変化をA/D変換した値(bit)を横軸とした時の検量線データを示しており、Y=aX^bで表される。尚、図中の検量線データはトルエンのデータを示している。   By the way, the detector 30 is composed of a semiconductor gas sensor, and the resistance value of the gas sensitive body changes according to the gas concentration of the gas component to be detected. The arithmetic processing unit 33 captures this resistance value change as a voltage change. . FIG. 4 shows calibration curve data when the gas concentration (ppb) is the vertical axis and the output change of the detector 30, that is, the value (bit) obtained by A / D conversion of the voltage change is the horizontal axis, Y = It is represented by aX ^ b. The calibration curve data in the figure shows the data for toluene.

従って、演算処理部33は、ガス分離カラム1から出てくるガス成分を検出する検出器30の検出出力をもとに、ガス注入タイミングからそのピークの発生タイミングまでの時間を測定することで当該ガス成分のリテンションタイムを計測するとともに、そのリテンションタイムと検出されたピークをメモリ33aに登録してあるデータと照合して検出対象ガス成分を判定し、またそのときの検出出力のピーク値から検出ガス成分の濃度(定量値)を判定し、その決定結果を表示部34に表示するのである。尚ガス濃度の換算は検出出力のピーク高さによらず、ピーク波形の面積から算出しても良い。   Therefore, the arithmetic processing unit 33 measures the time from the gas injection timing to the peak generation timing based on the detection output of the detector 30 that detects the gas component output from the gas separation column 1. The retention time of the gas component is measured, the retention time and the detected peak are collated with the data registered in the memory 33a to determine the detection target gas component, and detected from the peak value of the detection output at that time The concentration (quantitative value) of the gas component is determined, and the determination result is displayed on the display unit 34. The conversion of the gas concentration may be calculated from the area of the peak waveform regardless of the peak height of the detection output.

図10(a)(b)は本実施形態のガスクロマトグラフ装置により測定されたクロマトグラムの一例を示している。図10(a)は3種類の検出対象ガス成分(トルエン、メタキシレン、スチレン)を各々1000ppbずつ含んだ被測定ガスのクロマトグラムであり、3つのピークP1、P2、P3がそれぞれトルエン、メタキシレン、スチレンに対応している。また図10(b)は2種類の検出対象ガス成分(エチルベンゼン、オルトキシレン)を各々1000ppbずつ含んだ被測定ガスのクロマトグラムであり、2つのピークP4,P5がそれぞれエチルベンゼン、オルトキシレンに対応している。   FIGS. 10A and 10B show examples of chromatograms measured by the gas chromatograph apparatus of this embodiment. FIG. 10A is a chromatogram of a gas to be measured containing 1000 ppb of each of three types of detection target gas components (toluene, metaxylene, and styrene). The three peaks P1, P2, and P3 are toluene and metaxylene, respectively. Corresponds to styrene. FIG. 10 (b) is a chromatogram of a gas to be measured containing 1000 ppb of two kinds of detection target gas components (ethylbenzene and orthoxylene). The two peaks P4 and P5 correspond to ethylbenzene and orthoxylene, respectively. ing.

以上のようにして被測定ガスに含まれるトルエン、エチルベンゼン、メタキシレン、オルトキシレン、スチレンなどのVCOのガス濃度が測定されるのであるが、測定を開始するにあたっては各々の検出対象ガス成分に対するガス感度を校正する必要がある。以下に本発明の要旨であるガス感度の校正方法について説明を行う。   As described above, the gas concentration of VCO such as toluene, ethylbenzene, metaxylene, orthoxylene, and styrene contained in the gas to be measured is measured. When starting the measurement, the gas corresponding to each detection target gas component is measured. Sensitivity needs to be calibrated. The gas sensitivity calibration method which is the gist of the present invention will be described below.

図10(a)(b)中に実線で示した曲線a,cは使用初期時に測定したクロマトグラムを、破線で示した曲線b,dは100日経過後に測定したクロマトグラムをそれぞれ示している。また、これらのクロマトグラムから得た各ガス成分の測定結果を下記の表1に示す。ここで図10(a)(b)および表1から判るように、各々の検出対象ガス成分に対する測定結果(各検出対象ガス成分に対応する検出出力のピーク高さ(bit)、および、検出出力のピークから求めたガス濃度(ppm))は、何れのガス成分においても100日経過後は使用初期時の約1.2倍になっており、複数の検出対象ガス成分に対して検出器30の出力値が略同じ割合で増加している。   Curves a and c shown by solid lines in FIGS. 10 (a) and 10 (b) show chromatograms measured at the beginning of use, and curves b and d shown by broken lines show chromatograms measured after 100 days. . The measurement results of each gas component obtained from these chromatograms are shown in Table 1 below. Here, as can be seen from FIGS. 10A and 10B and Table 1, the measurement results for each detection target gas component (the peak height (bit) of the detection output corresponding to each detection target gas component, and the detection output) The gas concentration (ppm) obtained from the peak of the above is about 1.2 times that in the initial stage of use after 100 days for any gas component. The output value increases at approximately the same rate.

Figure 0004575788
Figure 0004575788

上述のように検出器30に半導体ガスセンサを用いた本実施形態では、長期間の使用に応じて発生する検出出力の変動が、複数の検出対象ガス成分に対して略同じ割合で発生するので、検出器30の検出出力から求めたガス濃度を校正する場合は、何れかの検出対象ガス成分を含む校正ガスをガス供給口26から供給して、この時の検出値から当該検出対象ガス成分に対する補正係数を求めれば、この補正係数を用いて他の検出対象ガス成分に対する検出値を補正することが可能である。   In the present embodiment using the semiconductor gas sensor for the detector 30 as described above, the variation in detection output that occurs according to long-term use occurs at substantially the same rate with respect to a plurality of detection target gas components. When the gas concentration obtained from the detection output of the detector 30 is calibrated, a calibration gas containing any one of the detection target gas components is supplied from the gas supply port 26, and the detection value at this time corresponds to the detection target gas component. If the correction coefficient is obtained, it is possible to correct detection values for other detection target gas components using the correction coefficient.

また図4に示すように横軸を検出出力のピーク高さVS(bit)の対数、縦軸をガス濃度(ppb)の対数として検量線データを表すと、ガス濃度の一定区間内では、検出出力のピーク高さとガス濃度との関係を一次関数で表すことができる。図4中の折れ線L1は予め登録されている濃度テーブルの検量線データを示し、検出出力のピーク高さとガス濃度との関係はガス濃度の範囲(1:C1)と、範囲(C1:C2)においてそれぞれ直線で表される。ここで本実施形態は検出器30に半導体ガスセンサを用いており、経時変化によって検出器30の検出出力が変動する場合は、全てのガス濃度範囲において同じ割合で検出出力が変化することを試験データにより確認しているので、使用初期時の検量線データを示す折れ線L1が経時変化によって折れ線L2に平行移動するものと考えられる。したがって、検出器30の検出出力を校正する場合は、所定濃度Cxの検出対象ガス成分を含む校正用ガスを注入して、この時の検出器30の検出出力Xを求めた後、点(X,Cx)を通る折れ線L2が折れ線L1と重なるように、検出出力Xを補正すれば良い。   Also, as shown in FIG. 4, when the calibration curve data is expressed with the logarithm of the peak height VS (bit) of the detection output on the horizontal axis and the logarithm of the gas concentration (ppb) on the vertical axis, the detection is performed within a certain interval of the gas concentration. The relationship between the output peak height and the gas concentration can be expressed by a linear function. A polygonal line L1 in FIG. 4 indicates calibration curve data of a concentration table registered in advance, and the relationship between the peak height of the detection output and the gas concentration is a gas concentration range (1: C1) and a range (C1: C2). Are each represented by a straight line. Here, the present embodiment uses a semiconductor gas sensor for the detector 30. When the detection output of the detector 30 fluctuates due to changes over time, the test data indicates that the detection output changes at the same rate in all gas concentration ranges. Therefore, it is considered that the polygonal line L1 indicating the calibration curve data at the initial stage of use moves in parallel with the polygonal line L2 due to the change over time. Therefore, when the detection output of the detector 30 is calibrated, a calibration gas containing a detection target gas component having a predetermined concentration Cx is injected, and the detection output X of the detector 30 at this time is obtained, and then the point (X , Cx), the detection output X may be corrected so that the polygonal line L2 passing through the polygonal line L1 overlaps.

ここで、本実施形態では高濃度側の範囲(C1:C2)中の所定濃度C4の対象ガス成分(例えばトルエン)を含む校正用ガスを注入し、この時の検出器30の検出出力XHと、使用初期時の検出出力X0Hとを用いて検出出力を補正する方法(1点校正)と、高濃度側の範囲(C1:C2)中の所定濃度C3の対象ガス成分(例えばトルエン)を含む校正ガスと、低濃度側の範囲(1:C1)中の所定濃度C4の対象ガス成分を含む校正用ガスとを順番に注入し、各校正用ガスの注入時における検出器30の検出出力XH,XLと、使用初期時の検出出力X0H,X0Lとを用いて検出出力を補正する方法(2点校正)の何れかを用いて校正を行っており、各々の補正方法について以下に説明する。 ここで検出器30の検出出力から求めたガス濃度を校正するにあたっては、演算処理部33の動作モードを、各検出対象ガス成分のガス種およびガス濃度を求める検出モードから、ガス濃度の検出値を校正する校正モードに切り替える必要がある。すなわち演算処理部33には、動作モードを検出モード又は校正モードの何れかに切り替えるモード切替スイッチ(以下モード切替SWと称す)37の操作入力が与えられており、モード切替SW37の切替操作に応じて、演算処理部33の動作モードが校正モードに切り替えられる。また校正モードには、1種類の校正用ガスだけで出力の校正を行う1点校正モードと、ガス濃度の異なる2つの校正用ガスを用いて出力の校正を行う2点校正モードとがあり、上記のモード切替SW37を用いて1点校正モード又は2点校正モードの何れかを選択することができる。なお1点校正とは、ガス濃度が比較的低い範囲では検出出力の変動が小さいことを利用して、2点校正における低濃度側の校正用ガスを省いて、この時の検出出力を例えば100ppbのトルエンの基準出力で代用し、2点校正における高濃度側の校正用ガスのみを注入して、この時測定した検出出力と、100ppbのトルエンの基準出力とで出力の校正を行うモードである。   Here, in this embodiment, a calibration gas containing a target gas component (for example, toluene) having a predetermined concentration C4 in the high concentration side range (C1: C2) is injected, and the detection output XH of the detector 30 at this time is And a method of correcting the detection output using the detection output X0H at the initial use (one-point calibration) and a target gas component (for example, toluene) having a predetermined concentration C3 in the high concentration side range (C1: C2). The calibration gas and the calibration gas containing the target gas component having the predetermined concentration C4 in the low concentration side range (1: C1) are sequentially injected, and the detection output XH of the detector 30 when each calibration gas is injected. , XL and the detection outputs X0H, X0L at the time of initial use are calibrated using one of the methods for correcting the detection output (two-point calibration), and each correction method will be described below. Here, in calibrating the gas concentration obtained from the detection output of the detector 30, the operation mode of the arithmetic processing unit 33 is changed from the detection mode for obtaining the gas type and gas concentration of each detection target gas component to the detected value of the gas concentration. It is necessary to switch to the calibration mode for calibrating. That is, an operation input of a mode changeover switch (hereinafter referred to as a mode changeover switch) 37 that switches the operation mode to either the detection mode or the calibration mode is given to the arithmetic processing unit 33, and the operation processing unit 33 responds to the changeover operation of the mode changeover SW 37. Thus, the operation mode of the arithmetic processing unit 33 is switched to the calibration mode. The calibration mode includes a one-point calibration mode in which the output is calibrated using only one type of calibration gas, and a two-point calibration mode in which the output is calibrated using two calibration gases having different gas concentrations. Either the one-point calibration mode or the two-point calibration mode can be selected using the mode switching SW 37 described above. Note that the one-point calibration is based on the fact that the fluctuation in the detection output is small in the range where the gas concentration is relatively low, omitting the low concentration side calibration gas in the two-point calibration, and the detection output at this time is, for example, 100 ppb In this mode, only the high-concentration calibration gas in the two-point calibration is injected, and the output is calibrated with the detected output measured at this time and the 100 ppb toluene reference output. .

先ずモード切替SW37を用いて2点校正モードに切り替えられた場合の校正動作について以下に説明を行う。検査担当者はモード切替SW37を用いて演算処理部33の動作モードを校正モード(2点校正モード)に切り替えた後、校正条件設定手段たる入力部38を用いて1点目の校正用ガスのガス種およびガス濃度と、2点目の校正用ガス(ガス種は1点目と同じ)のガス濃度とを設定する。演算処理部33では、入力部38により校正条件が設定されると、所定の待ち時間が経過した後に表示部34に1点目(高濃度側)の測定開始を表示させるとともに、図示しないスピーカから「2点校正の1点目を測定します」「1点目の校正ガスを注入してください」といった音声メッセージを出力させる。このとき検査担当者がガス供給口26から1点目の校正用ガスを注入すると、演算処理部33は、上述と同様の方法で流量センサ25の検知出力から校正用ガスの注入タイミングを検出し、この注入タイミングから入力部38で設定されたガス種のリテンションタイムが経過した時点における検出器30の検出出力(ピーク高さ)XHを読み込む。1点目の校正用ガスの測定処理が終了すると、演算処理部33は、所定の待ち時間が経過した後に表示部34に2点目(低濃度側)の測定開始を表示させるとともに、スピーカから「2点校正の2点目を測定します」「2点目の校正ガスを注入してください」といった音声メッセージを出力させる。そして検査担当者がガス供給口26から2点目の校正用ガスを注入すると、演算処理部33は、上述と同様の方法で流量センサ25の検知出力から校正用ガスの注入タイミングを検出し、この注入タイミングから入力部38で設定されたガス種のリテンションタイムが経過した時点における検出器30の検出出力(ピーク高さ)XLを読み込む。ここでは校正用ガスとして、例えば100ppbのトルエンを含むガスと、1000ppbのトルエンを含むガスの2種類のガスを用いている。   First, the calibration operation when the mode switching SW 37 is used to switch to the two-point calibration mode will be described below. The inspector switches the operation mode of the arithmetic processing unit 33 to the calibration mode (two-point calibration mode) using the mode switching SW 37, and then uses the input unit 38 serving as calibration condition setting means for the first calibration gas. The gas type and gas concentration and the gas concentration of the second calibration gas (the gas type is the same as the first point) are set. When the calibration conditions are set by the input unit 38, the arithmetic processing unit 33 displays the first measurement (high concentration side) measurement start on the display unit 34 after a predetermined waiting time has elapsed, and from a speaker (not shown). A voice message such as “Measure the first point of the two-point calibration” or “Inject the first calibration gas” is output. At this time, when the person inspecting injects the first calibration gas from the gas supply port 26, the arithmetic processing unit 33 detects the injection timing of the calibration gas from the detection output of the flow sensor 25 in the same manner as described above. The detection output (peak height) XH of the detector 30 at the time when the retention time of the gas type set by the input unit 38 has elapsed from this injection timing is read. When the measurement process of the first calibration gas is completed, the arithmetic processing unit 33 displays the second point (low concentration side) measurement start on the display unit 34 after a predetermined waiting time has elapsed, and from the speaker. A voice message such as “Measure the second point of the two-point calibration” or “Inject the second calibration gas” is output. When the person inspecting injects the second calibration gas from the gas supply port 26, the arithmetic processing unit 33 detects the injection timing of the calibration gas from the detection output of the flow sensor 25 in the same manner as described above, The detection output (peak height) XL of the detector 30 at the time when the retention time of the gas type set by the input unit 38 has elapsed from this injection timing is read. Here, as the calibration gas, for example, two kinds of gases, that is, a gas containing 100 ppb of toluene and a gas containing 1000 ppb of toluene are used.

このようにして1点目および2点目の校正用ガスについて測定処理を終えると、演算処理部33は、2点のガス濃度における検出器30の検出出力のピーク高さと、上記2点のガス濃度における使用初期時の検出出力のピーク高さ(この値を基準出力と言う。)とをもとに、検出出力を校正する際に用いる以下の校正計算式(1)を作成する。   When the measurement process is completed for the first and second calibration gases in this way, the arithmetic processing unit 33 determines the peak height of the detection output of the detector 30 at the two gas concentrations and the two gas points. Based on the peak height of the detection output at the initial use of the concentration (this value is referred to as a reference output), the following calibration calculation formula (1) used when calibrating the detection output is created.

Figure 0004575788
Figure 0004575788

ここで、Xは検出器30の検出出力(ピーク高さ)を例えば0〜1000で規格化した値、XCは検出出力Xの校正値、XOHは1点目(高濃度側)のガス濃度における基準出力であり、予め登録された検量線データから読み出した値、XOLは2点目(低濃度側)のガス濃度における基準出力であり、予め登録された検量線データから読み出した値、XHは1点目(高濃度側)のガス注入時における検出器30の検出出力、XLは2点目(低濃度側)のガス注入時における検出器30の検出出力である。上記の校正計算式(1)を変形すると、校正計算式は以下の(2)式で表される。   Here, X is a value obtained by normalizing the detection output (peak height) of the detector 30 with, for example, 0 to 1000, XC is a calibration value of the detection output X, and XOH is the gas concentration at the first point (high concentration side). A reference output, a value read from pre-registered calibration curve data, XOL is a reference output at the second (low concentration side) gas concentration, a value read from pre-registered calibration curve data, XH is The detection output of the detector 30 at the time of gas injection at the first point (high concentration side), XL is the detection output of the detector 30 at the time of gas injection at the second point (low concentration side). When the calibration calculation formula (1) is modified, the calibration calculation formula is expressed by the following formula (2).

Figure 0004575788
Figure 0004575788

ここに補正係数A,Bは、予め登録された検量線データから読み出した2点のガス濃度における基準出力XOH,XOLと、1点目および2点目のガス注入時における検出器30の検出出力XH,XLを用いて算出することができ、以後の計算では予め求めておいた補正係数A,Bを用いて検出出力を校正できる。その後、検査担当者がモード切替SW37を用いて演算処理部33の動作モードを校正モードから検出モードに切り替えると、以後の検出モードでは演算処理部33は検出器30の検出出力を上記の校正計算式(2)を用いて補正し、補正後の検出出力とリテンションタイムをもとに検査対象ガスのガス濃度を算出するので、検出出力の経時変化をキャンセルすることができる。   Here, the correction coefficients A and B are the reference outputs XOH and XOL at the gas concentrations at the two points read from the calibration curve data registered in advance, and the detection outputs of the detector 30 at the time of the first and second gas injections. XH and XL can be used for calculation, and the detection output can be calibrated using correction coefficients A and B obtained in advance in subsequent calculations. Thereafter, when the person in charge of the inspection switches the operation mode of the arithmetic processing unit 33 from the calibration mode to the detection mode using the mode switching SW 37, the arithmetic processing unit 33 outputs the detection output of the detector 30 in the above-described calibration calculation in the subsequent detection modes. Since correction is performed using Equation (2) and the gas concentration of the inspection target gas is calculated based on the corrected detection output and retention time, the change in detection output with time can be cancelled.

なお演算処理部33が上述の校正計算式(3)を用いて校正処理を行う場合、対数演算が必要になるから、演算処理部33の演算速度が低下したり、演算処理部33に処理能力の高いCPUを用いる必要がある。そこで、検出器30の検出出力(ピーク高さ)を例えば0〜1000の範囲で規格化した値(規格化ピーク高さ)とその対数値とを1対1に対応付けたLOGテーブルと、予め登録された検量線データの検出出力(ピーク高さ)を規格化した値の対数値、および、各検出出力におけるガス濃度を1対1で対応付けた検量線テーブルとをメモリ33aに登録しておけば、演算処理部33は、メモリ33aに登録されたLOGテーブルと検量線テーブルとを用いて、対数計算を行うことなく校正計算を行ってガス濃度を求めることができ、演算処理部33の計算量を少なくできる。   In addition, when the arithmetic processing unit 33 performs the calibration processing using the above-described calibration calculation formula (3), logarithmic calculation is required, so that the calculation speed of the arithmetic processing unit 33 is reduced or the processing capacity of the arithmetic processing unit 33 is increased. It is necessary to use a high CPU. Therefore, a LOG table in which the detection output (peak height) of the detector 30 is normalized in a range of, for example, 0 to 1000 (normalized peak height) and the logarithmic value thereof in a one-to-one correspondence, The logarithm value of the value obtained by standardizing the detection output (peak height) of the registered calibration curve data and the calibration curve table in which the gas concentration at each detection output is correlated one to one are registered in the memory 33a. In this case, the arithmetic processing unit 33 can obtain the gas concentration by performing the calibration calculation without performing the logarithmic calculation using the LOG table and the calibration curve table registered in the memory 33a. The amount of calculation can be reduced.

ここで、LXを検出器30の検出出力Xの対数値、LXCを校正値XCの対数値、LXOH,LXOLをそれぞれ基準出力XOH,XOLの対数値、LXH,LXLをそれぞれ1点目および2点目の校正用ガス注入時における検出出力XH,XLの対数値とすると、上記の校正計算式(1)(2)は以下の式(3)(4)で表される。   Here, LX is the logarithm of the detection output X of the detector 30, LXC is the logarithm of the calibration value XC, LXOH and LXOL are the logarithm of the reference outputs XOH and XOL, and LXH and LXL are the first and second points, respectively. Assuming that the logarithmic values of the detection outputs XH and XL at the time of injection of the calibration gas for the eye, the above calibration calculation formulas (1) and (2) are expressed by the following formulas (3) and (4).

Figure 0004575788
Figure 0004575788

Figure 0004575788
Figure 0004575788

而して、演算処理部33では、校正モードにおいて検出器30の検出出力XH,XLを読み込むと、LOGテーブルを用いて検出出力XH,XLを対数値LXH,LXLに変換するとともに、検量線テーブルから1点目および2点目のガス濃度における基準出力の対数値LX0H,LX0Lを読み出した後、上記の式(5)(6)を用いて補正係数A,Bを算出しており、対数演算を行うことなく補正係数A,Bを求めることができる。そして、測定モードにおいては、演算処理部33が検出器30の検出出力Xを読み込むと、この検出出力XをLOGテーブルを用いて対数値LXに変換し、上記の式(4)を用いて校正値LXCを算出することができ、検量線テーブルから校正値LXCに最も近い検出出力(対数値)のガス濃度を選択することで、対数演算を行うことなく、検出出力Xを補正してガス濃度を求めることができる。   Thus, when the arithmetic processing unit 33 reads the detection outputs XH and XL of the detector 30 in the calibration mode, the arithmetic processing unit 33 converts the detection outputs XH and XL into logarithmic values LXH and LXL using the LOG table, and a calibration curve table. After reading the logarithmic values LX0H and LX0L of the reference output at the first and second gas concentrations from the above, the correction coefficients A and B are calculated using the above equations (5) and (6), and the logarithmic calculation Correction coefficients A and B can be obtained without performing. In the measurement mode, when the arithmetic processing unit 33 reads the detection output X of the detector 30, the detection output X is converted into a logarithmic value LX using a LOG table and calibrated using the above equation (4). The value LXC can be calculated, and by selecting the gas concentration of the detection output (logarithmic value) closest to the calibration value LXC from the calibration curve table, the gas concentration can be corrected by correcting the detection output X without performing logarithmic calculation. Can be requested.

次にモード切替SW37を用いて1点校正モードに切り替えられた場合の校正動作について以下に説明を行う。検査担当者はモード切替SW37を用いて演算処理部33の動作モードを校正モード(1点校正モード)に切り替えた後、入力部38を用いて高濃度側の校正用ガスのガス種およびガス濃度を設定する。演算処理部33では、入力部38により校正条件が設定されると、所定の待ち時間が経過した後に表示部34に測定開始を表示させるとともに、図示しないスピーカから「校正ガスを注入してください」といった音声メッセージを出力させる。このとき検査担当者がガス供給口26から高濃度側の校正用ガスを注入すると、演算処理部33は、上述と同様の方法で流量センサ25の検知出力から校正用ガスの注入タイミングを検出し、この注入タイミングから入力部38で設定されたガス種のリテンションタイムが経過した時点における検出器30の検出出力XHを読み込む。検出出力VHの測定を終えると、演算処理部33は、校正用ガスを注入して測定した検出出力VHと、予め登録されている検量線データから読み込んだ検出出力XL(すなわちトルエンの検量線データから100ppbの濃度における検出出力を読み込んだ値)と、上記2点のガス濃度における使用初期時の検出出力(この出力を基準出力と言う。)とをもとに、2点校正の場合と同様にして上記の校正計算式(1)(2)を作成し、以後の検出モードでは校正計算式(1)(2)を用いて検出器30の検出出力を補正する。   Next, the calibration operation when the mode switching SW 37 is used to switch to the one-point calibration mode will be described below. The inspector switches the operation mode of the arithmetic processing unit 33 to the calibration mode (one-point calibration mode) using the mode switching SW 37 and then uses the input unit 38 to select the gas type and gas concentration of the high-concentration gas. Set. In the arithmetic processing unit 33, when the calibration condition is set by the input unit 38, the measurement start is displayed on the display unit 34 after a predetermined waiting time has elapsed, and “inject calibration gas” from a speaker (not shown). The voice message is output. At this time, when the person in charge of the inspection injects the high-concentration calibration gas from the gas supply port 26, the arithmetic processing unit 33 detects the injection timing of the calibration gas from the detection output of the flow sensor 25 in the same manner as described above. The detection output XH of the detector 30 at the time when the retention time of the gas type set by the input unit 38 has elapsed from this injection timing is read. When the measurement of the detection output VH is completed, the arithmetic processing unit 33 detects the detection output VH measured by injecting the calibration gas and the detection output XL (that is, the calibration curve data of toluene) read from the calibration curve data registered in advance. From the detection output at a concentration of 100 ppb to 100 ppb) and the detection output at the initial stage of use at the above two gas concentrations (this output is referred to as a reference output). Thus, the above calibration calculation formulas (1) and (2) are created, and the detection output of the detector 30 is corrected using the calibration calculation formulas (1) and (2) in the subsequent detection modes.

また2点校正の場合と同様に、検出器30の検出出力(ピーク高さ)を例えば0〜1000の範囲で規格化した値(規格化ピーク高さ)とその対数値とを1対1に対応付けたLOGテーブルと、予め登録された検量線データの検出出力(ピーク高さ)を規格化した値の対数値、および、各検出出力におけるガス濃度を1対1で対応付けた検量線テーブルとを、図示しないメモリ33aに登録しておけば、演算処理部33は、メモリ33aに登録されたLOGテーブルと検量線テーブルとを用いて、対数計算を行うことなく校正計算を行ってガス濃度を求めることができ、演算処理部33の計算量を少なくできる。   Similarly to the case of two-point calibration, the value (normalized peak height) obtained by normalizing the detection output (peak height) of the detector 30 within a range of 0 to 1000, for example, and the logarithmic value thereof are 1: 1. Corresponding LOG table, logarithmic value of a standardized detection output (peak height) of calibration curve data registered, and a calibration curve table in which the gas concentration in each detection output is correlated on a one-to-one basis Are registered in the memory 33a (not shown), the arithmetic processing unit 33 uses the LOG table and the calibration curve table registered in the memory 33a to perform a calibration calculation without performing a logarithmic calculation, thereby calculating the gas concentration. And the calculation amount of the arithmetic processing unit 33 can be reduced.

すなわち、演算処理部33は、校正モードにおいて検出器30の検出出力XHを読み込むと、LOGテーブルを用いて検出出力XHと、検出出力XL(トルエンの検量線データから100ppbの濃度における検出出力を読み込んだ値)とを対数値LXH,LXLに変換するとともに、検量線テーブルから1点目および2点目のガス濃度における基準出力の対数値LX0H,LX0Lを読み出した後、2点校正で使用した上記の式(5)(6)を用いて補正係数A,Bを算出することで、対数演算を行うことなく補正係数A,Bを求めることができる。そして、測定モードにおいては、演算処理部33が検出器30の検出出力Xを読み込むと、この検出出力XをLOGテーブルを用いて対数値LXに変換し、上記の式(4)を用いて校正値LXCを算出することができ、検量線テーブルから校正値LXCに最も近い検出出力(対数値)のガス濃度を選択することで、対数演算を行うことなく、検出出力Xを補正してガス濃度を求めることができる。   That is, when the arithmetic processing unit 33 reads the detection output XH of the detector 30 in the calibration mode, it reads the detection output XH and the detection output XL (detection output at a concentration of 100 ppb from the calibration curve data of toluene using the LOG table. The logarithmic values LXH and LXL are converted into logarithmic values LXH and LXL, and the logarithmic values LX0H and LX0L of the reference outputs at the first and second gas concentrations are read from the calibration curve table, and then used in the two-point calibration. By calculating the correction coefficients A and B using the equations (5) and (6), the correction coefficients A and B can be obtained without performing logarithmic calculation. In the measurement mode, when the arithmetic processing unit 33 reads the detection output X of the detector 30, the detection output X is converted into a logarithmic value LX using a LOG table and calibrated using the above equation (4). The value LXC can be calculated, and by selecting the gas concentration of the detection output (logarithmic value) closest to the calibration value LXC from the calibration curve table, the gas concentration can be corrected by correcting the detection output X without performing logarithmic calculation. Can be requested.

なお本実施形態ではガス濃度のみを校正しているが、校正モードにおいて演算処理部33が入力部38により設定されたガス種のリテンションタイム(既知)と、校正用ガスの注入時より検出器30の出力に校正用ガスに含まれる検出対象ガス成分のピークが現れるまでの時間差(この時間差を補正時間dTと言う。)を求め、以後の検出モードでは、測定対象ガスの注入時点より各検出対象ガス成分のリテンションタイムに上記補正時間dTを加算した時間が経過した時点で半導体ガスセンサの出力のピークを取り込むことによって、各検出対象ガス成分のガス濃度をより正確に計測することが可能になる。   In this embodiment, only the gas concentration is calibrated. However, in the calibration mode, the arithmetic processing unit 33 detects the retention time (known) of the gas type set by the input unit 38 and the detector 30 from the time when the calibration gas is injected. The time difference until the peak of the detection target gas component contained in the calibration gas appears in the output of the calibration gas (this time difference is referred to as the correction time dT). By capturing the peak of the output of the semiconductor gas sensor when the time obtained by adding the correction time dT to the retention time of the gas component has elapsed, the gas concentration of each detection target gas component can be measured more accurately.

また校正に用いる校正用ガスに、トルエンなどの検出対象ガス成分に比べてガス濃度の長期安定性が高く、且つ、検出対象ガス成分のリテンションタイム内でピークが発生する基準ガス(例えばオクタンなど)を検出対象ガス成分と一緒に混合させても良く、校正モードにおいて演算処理部33が、検出器30の出力のピークから基準ガスのガス濃度を求め、当該ガス濃度と所定のしきい値レベルとの高低を比較することで校正用ガスが正常か否かを判断することができる。すなわち演算処理部33は、基準ガスのガス濃度がしきい値レベルを下回った場合には校正用ガスが劣化したと判断して、表示部34に校正用ガスの異常を表示させており、品質の劣化した校正用ガスを用いて誤った校正が行われるのを防止できる。   In addition, the calibration gas used for calibration has a long-term stability of the gas concentration compared to the detection target gas component such as toluene, and a reference gas (for example, octane) that generates a peak within the retention time of the detection target gas component. May be mixed together with the gas component to be detected. In the calibration mode, the arithmetic processing unit 33 obtains the gas concentration of the reference gas from the peak of the output of the detector 30, and calculates the gas concentration and a predetermined threshold level. It is possible to determine whether the calibration gas is normal or not by comparing the heights of the two. That is, the arithmetic processing unit 33 determines that the calibration gas has deteriorated when the gas concentration of the reference gas falls below the threshold level, and displays the abnormality of the calibration gas on the display unit 34. It is possible to prevent erroneous calibration using the deteriorated calibration gas.

尚、本実施形態ではガスクロマトグラフ装置を用いたVOC測定装置について説明を行ったが、ガスクロマトグラフ装置の用途をVOCの測定用に限定する趣旨のものではなく、例えば呼気ガスに含まれるガス成分を測定することで、疾病の発見や治療効果の確認を行う呼気成分分析装置にも利用することができるのは勿論で、用途に限定されるものではない。   In this embodiment, the VOC measurement device using the gas chromatograph device has been described. However, the purpose of the gas chromatograph device is not limited to the measurement of VOC. For example, the gas component contained in the exhaled gas is used. Of course, the measurement can be used for a breath component analyzer for finding a disease and confirming a therapeutic effect, and is not limited to the use.

本発明の一実施形態の回路構成図である。It is a circuit block diagram of one Embodiment of this invention. 同上の流路構成図である。It is a flow-path block diagram same as the above. 同上に用いるガス分離カラムの斜視図である。It is a perspective view of the gas separation column used for the same as the above. 同上に用いる検量線の説明図である。It is explanatory drawing of the calibration curve used for the same as the above. (a)(b)は同上を用いて測定したクロマトグラムの説明図である。(A) (b) is explanatory drawing of the chromatogram measured using the same as the above.

符号の説明Explanation of symbols

30 検出器
33 演算処理部
33a メモリ
38 入力部
30 detector 33 arithmetic processing unit 33a memory 38 input unit

Claims (5)

ガス成分に応じて流動遅延を生じさせる部材を充填したガス分離カラムと、
空気をキャリアガスとして前記ガス分離カラムの吸気側からガス分離カラム内にガス流路を介して圧送する圧送手段と、
前記ガス流路の途中に設けられ、該ガス流路内の前記キャリアガス中に複数種類の検出対象ガス成分を含む被測定ガスを供給するガス供給口と、
前記ガス分離カラムの排気側に設けられて、各々の検出対象ガス成分のガス濃度に応じた出力を順次発生する半導体ガスセンサと、
各検出対象ガス成分のリテンションタイムおよび前記半導体ガスセンサの出力のピークと該出力のピークに対応したガス濃度データとを対応付けた検量線データを記憶する記憶手段と、
前記半導体ガスセンサの出力のピークおよびリテンションタイムをもとに各検出対象ガス成分のガス濃度を求めるガス濃度検出機能を有する演算手段と、
前記演算手段の動作モードを、各検出対象ガス成分のガス濃度を求める検出モード、又は、ガス濃度の検出値を校正する校正モードの何れかに切り替えるモード切替手段と、
校正モードにおいて前記ガス供給口から供給する校正用ガスに含まれる検出対象ガス成分のガス種およびガス濃度を設定する校正条件設定手段とを備え、
前記演算手段は、その動作モードが校正モードに切り替えられると、前記校正条件設定手段により設定されたガス種およびガス濃度と、前記半導体ガスセンサの出力のピークとをもとに、前記出力のピークから求めた検出対象ガス成分のガス濃度が前記校正条件設定手段により設定されたガス濃度に一致するよう前記出力を補正する校正計算式を求め、検出モードにおいて、前記校正用ガスに含まれていた検出対象ガス成分とそれ以外の他の検出対象ガス成分の両方について、前記半導体ガスセンサの出力のピークを前記校正計算式を用いて補正し、前記記憶手段に記憶された検量線データから補正後の検出出力に対応するガス濃度を求めることを特徴とするガスクロマトグラフ装置。
A gas separation column packed with a member that causes a flow delay according to the gas component;
A pumping means for pumping air as a carrier gas from the intake side of the gas separation column into the gas separation column via a gas flow path;
A gas supply port which is provided in the middle of the gas flow path and supplies a measurement gas containing a plurality of types of detection target gas components in the carrier gas in the gas flow path;
A semiconductor gas sensor which is provided on the exhaust side of the gas separation column and sequentially generates an output corresponding to the gas concentration of each detection target gas component;
Storage means for storing calibration curve data in which the retention time of each detection target gas component and the peak of the output of the semiconductor gas sensor are associated with the gas concentration data corresponding to the peak of the output;
Arithmetic means having a gas concentration detection function for obtaining the gas concentration of each detection target gas component based on the peak of output of the semiconductor gas sensor and the retention time;
Mode switching means for switching the operation mode of the computing means to either a detection mode for obtaining the gas concentration of each detection target gas component or a calibration mode for calibrating the detection value of the gas concentration;
Calibration condition setting means for setting the gas type and gas concentration of the detection target gas component contained in the calibration gas supplied from the gas supply port in the calibration mode,
When the operation mode is switched to the calibration mode, the calculation means starts from the output peak based on the gas type and gas concentration set by the calibration condition setting means and the output peak of the semiconductor gas sensor. A calibration calculation formula for correcting the output so that the obtained gas concentration of the gas component to be detected matches the gas concentration set by the calibration condition setting means is obtained, and the detection contained in the calibration gas in the detection mode For both the target gas component and other detection target gas components, the peak of the output of the semiconductor gas sensor is corrected using the calibration calculation formula, and the corrected detection is performed from the calibration curve data stored in the storage means. A gas chromatograph apparatus for obtaining a gas concentration corresponding to an output.
演算手段では、校正モードにおいてガス濃度の異なる2種の校正用ガスを注入して、2点のガス濃度における半導体ガスセンサの出力のピークを求めており、前記検量線データから高濃度側の校正用ガスのガス濃度における出力のピークを読み出した値をXOH、前記検量線データから低濃度側の校正用ガスのガス濃度における出力のピークを読み出した値をXOL、高濃度側の校正用ガスの注入時における半導体ガスセンサの出力のピークを測定した結果をXH、低濃度側の校正用ガスの注入時における半導体ガスセンサの出力のピークを測定した結果をXL、被測定ガスの注入時における半導体ガスセンサの出力のピークをX、出力のピークXを校正した値をXCとした場合に、演算手段が、logXC=(logXOH−logXOL)×(logX−logXL)/(logXH−logXL)+logXOLなる校正計算式を用いて半導体ガスセンサの出力のピークを校正することを特徴とする請求項1記載のガスクロマトグラフ装置。   The calculation means injects two kinds of calibration gases having different gas concentrations in the calibration mode to obtain the peak of the output of the semiconductor gas sensor at the two gas concentrations, and uses the calibration curve data for calibration on the high concentration side. The value obtained by reading the output peak at the gas concentration of the gas is XOH, the value obtained by reading the output peak at the gas concentration of the calibration gas on the low concentration side from the calibration curve data is XOL, and the calibration gas on the high concentration side is injected. XH is the result of measuring the peak of the output of the semiconductor gas sensor at the time, XL is the result of measuring the peak of the output of the semiconductor gas sensor when the calibration gas on the low concentration side is injected, and the output of the semiconductor gas sensor at the time of injecting the measurement gas When the peak of X is X and the value obtained by calibrating the output peak X is XC, the calculation means is logXC = (logXOH−logXOL) × (logX−lo 2. The gas chromatograph according to claim 1, wherein the peak of the output of the semiconductor gas sensor is calibrated using a calibration calculation formula of (gXL) / (logXH-logXL) + logXOL. 半導体ガスセンサの出力のピークとその対数値を1対1に対応付けたLOGテーブル、および、前記検量線データの出力のピークの対数値と各出力のピークにおけるガス濃度とを1対1で対応付けた検量線テーブルを前記記憶手段に登録しておき、LXを半導体ガスセンサの出力のピークの対数値、LXCを校正値XCの対数値、LXOH,LXOLをそれぞれ出力XOH,XOLの対数値、LXH,LXLをそれぞれ1点目および2点目の校正用ガス注入時における出力のピークXH,XLの対数値とし、A=(LX0H−LX0L)/(LXH−LXY)、B=(LX0L・LXH−LX0H・LXL)/(LXH−LXY)とした場合に、演算手段は、検出モードにおいて半導体ガスセンサの出力のピークを読み込むと、この出力のピークを前記LOGテーブルを用いて対数値に変換し、LXC=A×LLX+Bなる校正計算式を用いて出力のピークを補正した後、検量線テーブルから補正後の出力のピークに対応するガス濃度を読み込むことで、ガス濃度を求めることを特徴とする請求項2記載のガスクロマトグラフ装置。   A LOG table in which the output peak of the semiconductor gas sensor is associated with the logarithmic value thereof in a one-to-one correspondence, and the logarithmic value of the output peak of the calibration curve data and the gas concentration in each output peak are in a one-to-one correspondence. The calibration curve table is registered in the storage means, LX is the logarithmic value of the output peak of the semiconductor gas sensor, LXC is the logarithmic value of the calibration value XC, LXOH and LXOL are the logarithmic values of the outputs XOH and XOL, LXH, Let LXL be the logarithmic values of the output peaks XH and XL at the time of the first and second calibration gas injection, respectively, A = (LX0H−LX0L) / (LXH−LXY), B = (LX0L·LXH−LX0H) When LXL) / (LXH-LXY), the calculation means reads the peak of the output of the semiconductor gas sensor in the detection mode. The log is converted into a logarithmic value using the LOG table, the output peak is corrected using the calibration formula LXC = A × LLX + B, and the gas concentration corresponding to the corrected output peak is calculated from the calibration curve table. The gas chromatograph according to claim 2, wherein the gas concentration is obtained by reading. 前記演算手段は、校正モードにおいて、前記校正条件設定手段により設定されたガス種の既知のリテンションタイムと、校正用ガスの注入時点から前記半導体ガスセンサの出力のピークが現れるまでの時間との時間差である補正時間を求め、検出モードにおいては、被測定ガスの注入時点より各検出対象ガス成分のリテンションタイムに上記補正時間を加算した時間が経過した時点で前記半導体ガスセンサの出力を取り込むことを特徴とする請求項1乃至3の何れか1つに記載のガスクロマトグラフ装置。   In the calibration mode, the arithmetic means is a time difference between the known retention time of the gas type set by the calibration condition setting means and the time from when the calibration gas is injected until the output peak of the semiconductor gas sensor appears. A certain correction time is obtained, and in the detection mode, the output of the semiconductor gas sensor is captured when a time obtained by adding the correction time to the retention time of each detection target gas component has elapsed since the injection of the gas to be measured. The gas chromatograph apparatus according to any one of claims 1 to 3. 請求項1乃至4の何れか1つのガスクロマトグラフ装置を用い、前記被測定ガス中のVOC成分の定性定量測定を行うことを特徴とするVOC測定装置。
5. A VOC measurement apparatus that performs qualitative quantitative measurement of a VOC component in the gas to be measured using the gas chromatograph apparatus according to any one of claims 1 to 4.
JP2005007864A 2005-01-14 2005-01-14 Gas chromatograph apparatus and VOC measuring apparatus using the same Active JP4575788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007864A JP4575788B2 (en) 2005-01-14 2005-01-14 Gas chromatograph apparatus and VOC measuring apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007864A JP4575788B2 (en) 2005-01-14 2005-01-14 Gas chromatograph apparatus and VOC measuring apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006194776A JP2006194776A (en) 2006-07-27
JP4575788B2 true JP4575788B2 (en) 2010-11-04

Family

ID=36800972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007864A Active JP4575788B2 (en) 2005-01-14 2005-01-14 Gas chromatograph apparatus and VOC measuring apparatus using the same

Country Status (1)

Country Link
JP (1) JP4575788B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730953B1 (en) 2015-10-05 2017-04-27 홍익대학교 산학협력단 System and Method for managing harmful gas
JP7447774B2 (en) * 2020-11-30 2024-03-12 株式会社島津製作所 Gas analyzer and gas analyzer status detection method
CN116008385B (en) * 2023-03-27 2023-06-09 北京英视睿达科技股份有限公司 TVOC monitoring equipment calibration method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138362U (en) * 1980-03-22 1981-10-20
JPH04264229A (en) * 1991-02-20 1992-09-21 Fuji Electric Co Ltd Method and apparatus for preparing calibration curve of dissolved gas component in liquid
JPH0580041A (en) * 1991-09-24 1993-03-30 Shimadzu Corp Data processor for chromatography
JPH10339725A (en) * 1997-06-07 1998-12-22 Horiba Ltd Measuring device for atmospheric contamination harmful substance
JP2000241376A (en) * 1999-02-18 2000-09-08 Nippon Ceramic Co Ltd Method for measuring sensitivity of butyric acid of malodor sensor
JP2004286726A (en) * 2003-01-31 2004-10-14 New Cosmos Electric Corp Gas analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138362U (en) * 1980-03-22 1981-10-20
JPH04264229A (en) * 1991-02-20 1992-09-21 Fuji Electric Co Ltd Method and apparatus for preparing calibration curve of dissolved gas component in liquid
JPH0580041A (en) * 1991-09-24 1993-03-30 Shimadzu Corp Data processor for chromatography
JPH10339725A (en) * 1997-06-07 1998-12-22 Horiba Ltd Measuring device for atmospheric contamination harmful substance
JP2000241376A (en) * 1999-02-18 2000-09-08 Nippon Ceramic Co Ltd Method for measuring sensitivity of butyric acid of malodor sensor
JP2004286726A (en) * 2003-01-31 2004-10-14 New Cosmos Electric Corp Gas analyzer

Also Published As

Publication number Publication date
JP2006194776A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US7194890B2 (en) Gas chromatograph and expired air component analyzer
Schultealbert et al. A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors
US20110197649A1 (en) Self-calibrating gas sensor
JP6264931B2 (en) Liquid chromatograph and column oven used for it
JP5835494B2 (en) Liquid chromatograph and column oven used for it
US7845206B2 (en) System, apparatus and method for dispensing chemical vapor
JP2016509219A (en) Residual oil measuring device
JP4575788B2 (en) Gas chromatograph apparatus and VOC measuring apparatus using the same
JP3809734B2 (en) Gas measuring device
JP4758791B2 (en) Gas concentration measuring apparatus and gas concentration measuring method
JP4210181B2 (en) Exhalation component analyzer
US11726060B2 (en) Flame ionisation detector and method for the analysis of an oxygen-containing measuring gas
US20230221275A1 (en) Gas measuring device and method for measuring cyanogen in the presence of hydrogen cyanide
JP6629941B2 (en) Gas detection method and gas detector
JP2003075384A (en) Semiconductor gas sensor for gas chromatograph
JP6775814B2 (en) Gas concentration measuring device
JP4588328B2 (en) Calorific value calculation device and method, and calorific value measurement system
JP2007183223A (en) Exharation inspection device for stock breeding
JP4588327B2 (en) Calorific value calculation device and method
JPH0816659B2 (en) Calibration method of gas concentration measuring instrument and apparatus used for the implementation
JP3849265B2 (en) Odor measuring device
JPH05126812A (en) Gas chromatograph
JP2005351817A (en) Heating value calculation expression generation unit, heating value calculation device, and heating value measuring system
JP2004028851A (en) System for gas chromatograph analysis system
RU2330279C1 (en) Method of testing gas analyser performances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

R150 Certificate of patent or registration of utility model

Ref document number: 4575788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250