JP4574317B2 - Heating air conditioning method and heating air conditioning system - Google Patents

Heating air conditioning method and heating air conditioning system Download PDF

Info

Publication number
JP4574317B2
JP4574317B2 JP2004298664A JP2004298664A JP4574317B2 JP 4574317 B2 JP4574317 B2 JP 4574317B2 JP 2004298664 A JP2004298664 A JP 2004298664A JP 2004298664 A JP2004298664 A JP 2004298664A JP 4574317 B2 JP4574317 B2 JP 4574317B2
Authority
JP
Japan
Prior art keywords
air
temperature
conditioned space
air supply
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004298664A
Other languages
Japanese (ja)
Other versions
JP2006112677A (en
Inventor
太 三橋
寛之 守屋
健太郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2004298664A priority Critical patent/JP4574317B2/en
Publication of JP2006112677A publication Critical patent/JP2006112677A/en
Application granted granted Critical
Publication of JP4574317B2 publication Critical patent/JP4574317B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Central Heating Systems (AREA)
  • Air-Flow Control Members (AREA)

Description

本発明は,空調空間内に高温空気を供給して暖房を行う暖房空調方法とシステムに関する。   The present invention relates to a heating air-conditioning method and system for heating by supplying high-temperature air into an air-conditioned space.

冬季などにおいて暖房運転が行われる室内では,天井面付近に暖気が溜まりやすく,床面付近では温度低下となり,高さ方向に温度分布のバラツキが生じやすい。特に天井が高く,容積の大きな大空間を暖房する場合,3m以上の高さからノズルなどの吹出し口を用いて温風を室内に供給することが一般的に行われているが,高い位置から温風を供給すると,浮力の影響によって吹出し空気が上昇するため,居住域(一般に床上2m以下程度の空間)に温風が余計に到達しにくくなる。また,粉塵などの汚染物質が発生する工場空間などを暖房する場合,新鮮外気を含む温風を高い位置から供給したのでは,新鮮外気が居住域に到達しにくくなり,居住域の空気は冷たいままで攪拌されないため,汚染空気が希釈されず,空気質を悪化させてしまう。例えば天井高さ10mの部品工場で4mの高さから横方向に外気を含む温風を室内に供給した場合,外気が居住域に行き渡らないため粉塵濃度が総じて高くなり,ばらつきも大きい。   In a room where heating operation is performed in winter, warm air tends to accumulate near the ceiling surface, and the temperature decreases near the floor surface, and variations in temperature distribution tend to occur in the height direction. In particular, when heating a large space with a high ceiling and a large volume, it is common to supply warm air into the room from a height of 3 m or more using a blowout port such as a nozzle. When warm air is supplied, the blown air rises due to the influence of buoyancy, so it becomes difficult for the warm air to reach the living area (generally, a space of about 2 m or less above the floor). In addition, when heating a factory space where pollutants such as dust are generated, supplying hot air containing fresh outside air from a high position makes it difficult for fresh outside air to reach the living area, and the air in the living area is cold. Since it is not stirred and contaminated air is not diluted, the air quality deteriorates. For example, when warm air containing outside air is supplied from 4m to a room at a parts factory with a ceiling height of 10m, the outside air does not reach the living area, so the dust concentration is generally high and the variation is large.

このような問題を解決するために,天井付近に例えばエアジェットノズルを設置し,天井部の暖かい空気を居住域に吹き下ろすと同時に,居住域の汚染空気を攪拌することが行われている。しかし,高い位置から居住域に温風を到達させるためには,相当に速い吹出し速度で居住域に向って空気を吹出さなければならず,居住域にいる人間にドラフト不快感を与える要因となる。例えば天井高さ10mの部品工場において天井付近からエアジェットノズルで空気の攪拌を行った場合,汚染空気は混合希釈されるものの,依然として粉塵濃度のばらつきが大きい。ばらつきを解消するためには,さらにエアジェットノズルの運転台数を増やし,混合を促進する必要があるが,そうするとドラフト不快感をますます増長させてしまう。   In order to solve such a problem, for example, an air jet nozzle is installed in the vicinity of the ceiling, and the warm air on the ceiling is blown down to the living area and the contaminated air in the living area is stirred. However, in order for hot air to reach the living area from a high position, air must be blown toward the living area at a considerably high blowing speed, which may cause draft discomfort to people living in the living area. Become. For example, when air is stirred with an air jet nozzle from near the ceiling in a parts factory with a ceiling height of 10 m, the contaminated air is mixed and diluted, but the dispersion of the dust concentration is still large. In order to eliminate the variation, it is necessary to increase the number of operating air jet nozzles and promote mixing, but this will further increase draft discomfort.

そこで先行技術として,空調空間の床面に向けて小風量,低風速で温風を吹出すことにより,コアンダ効果によって温風を床面に這わせて広げて給気させる方法が公知である(例えば,特許文献1参照)。また,ファンと整流部材を設けることにより,空調空間内の天井付近の空気を,窓部から床面に沿って流すようにした装置も開示されている(例えば,特許文献2参照)。   Therefore, as a prior art, a method is known in which warm air is blown over the floor surface by the Coanda effect by blowing out warm air toward the floor surface of the air-conditioned space with a small air volume and low air speed ( For example, see Patent Document 1). An apparatus is also disclosed in which air near the ceiling in an air-conditioned space is made to flow along a floor surface from a window portion by providing a fan and a rectifying member (see, for example, Patent Document 2).

特開2000−291989号公報JP 2000-291989 A 特開2004−19951号公報Japanese Patent Laid-Open No. 2004-19951

これら特許文献1,2の発明によれば,居住域に温風を供給することができ,新鮮外気を到達させることによって,居住域の空気質の悪化を回避することが可能である。しかしながら,居住域にいる人間に対するドラフト不快感については,なお改善の余地があると考えられる。   According to the inventions of these Patent Documents 1 and 2, it is possible to supply warm air to the living area and to avoid the deterioration of the air quality in the living area by causing fresh outside air to reach. However, there is still room for improvement in terms of draft discomfort for people in the residential area.

本発明の目的は,居住域の空気質の悪化を回避しつつ,居住域のドラフト不快感をより改善することにある。   An object of the present invention is to further improve draft discomfort in a residential area while avoiding deterioration of air quality in the residential area.

本発明によれば,空調空間内に高温空気を供給して暖房を行う暖房空調方法であって,高温空気は,空調空間内の下方に形成される居住域に溜まっている空気よりも高温の空気であり,空調空間の一側面の下部に複数の給気口が縦に並べて配置され,前記複数の給気口から前記空調空間内の下方に形成される居住域に対して,旋回成分を与えた高温空気を供給し,一方で,前記空調空間内に供給した高温空気と同量の空気を空調空間内から排気し,居住域に温度センサを設置し,この温度センサで検出される室温に基づいて,高温空気を加熱する加熱器の加熱温度が制御されることを特徴とする,暖房空調方法が提供される。なお,本発明において空調空間内に供給される高温空気とは,空調空間内の下方に形成される居住域に溜まっている空気よりも高温の空気である。空調空間内に供給する高温空気の温度について上限値と下限値を設定し,高温空気の温度を所定の温度範囲に規制するようにしても良い。 According to the present invention, there is provided a heating / air-conditioning method in which heating is performed by supplying high-temperature air into an air-conditioned space, the high-temperature air having a higher temperature than air accumulated in a residential area formed below the air-conditioned space. A plurality of air inlets are arranged vertically in the lower part of one side surface of the air-conditioned space, and a swirl component is applied to a residential area formed below the air-conditioned space from the air inlets. The supplied high-temperature air is supplied, while the same amount of high-temperature air supplied into the air-conditioned space is exhausted from the air-conditioned space, and a temperature sensor is installed in the living area. Based on the above, a heating air-conditioning method is provided in which the heating temperature of a heater for heating high-temperature air is controlled . In the present invention, the high-temperature air supplied into the air-conditioned space is air that is hotter than the air accumulated in the living area formed below the air-conditioned space. An upper limit value and a lower limit value may be set for the temperature of the high-temperature air supplied into the air-conditioned space, and the temperature of the high-temperature air may be regulated within a predetermined temperature range.

また本発明によれば,空調空間内に高温空気を供給して暖房を行う暖房空調システムであって,高温空気は,空調空間内の下方に形成される居住域に溜まっている空気よりも高温の空気であり,空調空間内に高温空気を供給する給気口と,空調空間内から室内空気を排気する排気口とを備え,空調空間の一側面の下部に複数の給気口を縦に並べて配置し,前記複数の給気口から空調空間の内部下方の居住域に向かって高温空気を供気し,前記複数の給気口には,空調空間内に供給する高温空気に対して旋回成分を与えるガイド手段を設け,居住域に温度センサを設置し,この温度センサで検出される室温に基づいて,高温空気を加熱する加熱器の加熱温度が制御されることを特徴とする,暖房空調システムが提供される。この本発明の暖房空調システムにあっては,前記ガイド手段は,給気口の中心軸周りに放射状に配置される複数枚のガイドフィンを備え,これら複数枚のガイドフィンは,給気口の中心軸と直交する平面に対して互いに同じ角度で傾斜して設けられていても良い。また,前記ガイド手段は,給気口の中心軸周りに放射状に配置された複数枚のガイドフィンの周囲を囲むように配置された,給気口の中心軸を中心軸とする円筒形状の内壁面を有しても良い。更に,前記排気口から排気した空気を,前記給気口から再び空調空間内に供給させる戻りダクトを設けても良い。 Further, according to the present invention, there is provided a heating / air-conditioning system for heating by supplying high-temperature air into the air-conditioned space, wherein the high- temperature air has a higher temperature than air accumulated in a residential area formed below the air-conditioned space. Air supply port that supplies high-temperature air into the air-conditioned space and an exhaust port that exhausts indoor air from the air-conditioned space. Arranged side-by-side, supplying hot air from the plurality of air supply openings toward the living area below the air-conditioned space, and turning the plurality of air supply openings to the hot air supplied into the air-conditioned space Providing a guide means for providing a component, installing a temperature sensor in a living area, and controlling the heating temperature of a heater for heating hot air based on the room temperature detected by the temperature sensor, An air conditioning system is provided. In the heating and air conditioning system according to the present invention, the guide means includes a plurality of guide fins arranged radially around the central axis of the air supply port, and the plurality of guide fins are provided on the air supply port. They may be provided so as to be inclined at the same angle with respect to a plane orthogonal to the central axis. The guide means is a cylindrical inner member arranged so as to surround a plurality of guide fins arranged radially around the central axis of the air supply port. You may have a wall surface. Furthermore, a return duct may be provided for supplying the air exhausted from the exhaust port to the air-conditioned space again from the air supply port.

給気口から空調空間内に高温空気を供給すると,供給された高温空気に空調空間内の空気が誘引されて一緒に移動する誘引作用がはたらく。本発明では,空調空間内の下方に形成される居住域に向って給気口から高温空気を供給するに際し,給気される高温空気にガイド手段によって旋回成分を与えることにより,高温空気量に誘引される空調空間内の空気の誘引量(誘引比)を増加させることができる。そして,このように誘引量が増加することに伴い,運動量保存則に従って高温空気の速度は空調空間内に給気後速やかに減速することとなる。このため,居住域に向って高温空気を給気したことに伴うドラフト不快感をほとんど発生させない。   When high-temperature air is supplied into the air-conditioned space from the air supply port, the air-conditioned space is attracted to the supplied high-temperature air and moves together. In the present invention, when high-temperature air is supplied from the air supply port toward the living area formed in the lower part of the air-conditioned space, the swirl component is given to the high-temperature air supplied by the guide means, thereby increasing the amount of high-temperature air. The amount of attraction (attraction ratio) of air in the air-conditioned space to be attracted can be increased. As the amount of attraction increases in this way, the speed of the high-temperature air is quickly decelerated after supplying air into the conditioned space according to the law of conservation of momentum. For this reason, the draft discomfort accompanying the supply of high-temperature air toward the living area hardly occurs.

また,このように誘引量が増加することに伴い,空調空間内の下方に形成される居住域にある低温空気を,給気した高温空気と混合させて速やかに昇温させることができる。そして,居住域にあった低温空気と給気口から空調空間内に給気された高温空気とが混合されて昇温した空気(混合空気)は,昇温したことによって,給気後空調空間内を速やかに上昇し,天井付近に達することとなる。これにより,居住域で発生した汚染物質などを効率よく希釈して,天井付近に移動させることができる。   As the amount of attraction increases in this way, it is possible to quickly raise the temperature by mixing the low-temperature air in the living area formed below in the air-conditioned space with the supplied high-temperature air. The air that has been heated by mixing the low-temperature air in the living area and the high-temperature air that has been supplied into the air-conditioned space from the air supply port, It will rise quickly and reach the ceiling. As a result, pollutants generated in the living area can be efficiently diluted and moved to the vicinity of the ceiling.

また,こうして天井付近に上昇した空気は,空調空間の壁面に熱的に接触することにより,外気で冷却されて低温とされた壁面によって冷却され,居住域に再び降下することとなる。そして,その後,給気口から給気される高温空気と混合されて再び昇温し,天井付近に上昇することとなる。こうして,空調空間内の居住域の空気と天井付近の空気が循環することにより,居住域の空気が天井付近から降下してきた新鮮な空気に順次置換され,ドラフト不快感を発生させることなく居住域を暖房することができるようになる。   In addition, the air that has risen near the ceiling in this way comes into thermal contact with the wall surface of the air-conditioned space, and is cooled by the wall surface that has been cooled by the outside air to a low temperature, and then descends again to the residential area. And after that, it mixes with the high temperature air supplied from an air supply port, is heated up again, and rises to the ceiling vicinity. Thus, the air in the living area and the air in the vicinity of the ceiling circulate in the air-conditioned space, so that the air in the living area is sequentially replaced with fresh air that has descended from the vicinity of the ceiling, and there is no draft discomfort. You will be able to heat up.

また一方で,このように空調空間内の居住域の空気と天井付近の空気を循環させながら,排気口から空調空間内の空気を排気することにより,室内空気を給気口から供給した新鮮な高温空気に順次置換していく。こうして,居住域などで発生した汚染物質等を除去して,室内空気の悪化を回避することができるようになる。このように本発明によれば,空調空間内の居住域を置換換気方式によって暖房することが可能となる。   On the other hand, the air in the air-conditioned space is exhausted from the exhaust port while circulating the air in the living area in the air-conditioned space and the air in the vicinity of the ceiling. Replace with hot air one after another. In this way, it is possible to remove pollutants and the like generated in the living area and avoid deterioration of indoor air. Thus, according to the present invention, it is possible to heat the living area in the air-conditioned space by the replacement ventilation method.

以下,本発明の好ましい実施の形態を図面を参照にして説明する。図1は,本発明の実施の形態にかかる暖房空調システム1を説明するための概略構成図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram for explaining a heating air-conditioning system 1 according to an embodiment of the present invention.

空調空間10は,例えば事務室,電算室,客室,宴会場,遊技場,印刷室,病室,便所,厨房,機械室,ボイラ室,工場などであり,天井,床及び側壁で区画されている。この図1に示す例では,空調空間10の内部下方に形成される居住域(一般に床上2m以下程度の空間)11に,粉塵などの汚染質を発生させる人間12やその他の機器等(図示せず)が存在している。空調空間10内の一側面(図示では,空調空間10内の右側面)17の下部には給気口15が設けられ,同様に,空調空間10内の一側面17の上部には,排気口16が設けられている。なお,給気口15の詳しい構成については後述する。空調空間10の一側面17の下部背面側には,給気ユニット20が設けられており,この給気ユニット20の前面21が,空調空間10の一側面17の下部に露出している。   The air-conditioned space 10 is, for example, an office room, a computer room, a guest room, a banquet hall, a game room, a printing room, a hospital room, a toilet, a kitchen, a machine room, a boiler room, a factory, etc., and is partitioned by a ceiling, a floor, and a side wall. . In the example shown in FIG. 1, a person 12 or other equipment (not shown) that generates contaminants such as dust in a living area 11 (generally a space of about 2 m or less on the floor) 11 formed below the air-conditioned space 10. Z) is present. An air supply port 15 is provided at the lower part of one side surface (in the drawing, the right side surface in the air conditioned space 10) 17 in the air conditioned space 10, and similarly, an exhaust port is provided at the upper part of the one side surface 17 in the conditioned space 10. 16 is provided. The detailed configuration of the air supply port 15 will be described later. An air supply unit 20 is provided on the lower back side of one side surface 17 of the air-conditioned space 10, and the front surface 21 of the air supply unit 20 is exposed at the lower side of the one side surface 17 of the air-conditioned space 10.

こうして空調空間10の一側面17下部に露出した給気ユニット20の前面21には,図2に示すように,円形状の給気口15が縦横に並べて複数配置されている。給気ユニット20には,新鮮な外気OAを空調機22に取り込んで作られた高温空気SAが,給気ダクト23を経て供給されている。これにより,給気ユニット20の前面21に形成された複数の給気口15から,空調空間10の内部下方の居住域11に向かって高温空気SAが供給されるようになっている。なお,このように給気口15から供給される高温空気SAとは,空調空間10内の居住域11に溜まっている空気よりも高温の空気を意味する。空調機22は,外気OAを加熱して高温空気SAを作るための加熱器25やフィルタ(図示せず)を備えており,また,作った高温空気SAを給気ダクト23及び給気ユニット20を経て空調空間10内に供給する給気ファン27などを備えている。加熱器25は,例えば温水コイル,電気ヒータなどで構成される。   As shown in FIG. 2, a plurality of circular air inlets 15 are arranged in the vertical and horizontal directions on the front surface 21 of the air supply unit 20 exposed in the lower portion of the one side surface 17 of the air-conditioned space 10 in this way. The air supply unit 20 is supplied with high-temperature air SA produced by taking fresh outside air OA into the air conditioner 22 via the air supply duct 23. As a result, the high-temperature air SA is supplied from the plurality of air supply ports 15 formed in the front surface 21 of the air supply unit 20 toward the living area 11 below the air-conditioned space 10. Note that the high-temperature air SA supplied from the air supply port 15 in this way means air that is hotter than the air accumulated in the living area 11 in the air-conditioned space 10. The air conditioner 22 includes a heater 25 and a filter (not shown) for heating the outside air OA to produce the high temperature air SA, and the produced high temperature air SA is supplied with the air supply duct 23 and the air supply unit 20. And an air supply fan 27 that is supplied into the air-conditioned space 10. The heater 25 is composed of, for example, a hot water coil, an electric heater, or the like.

図3に示すように,各給気口15には,空調空間10内に吹き出される高温空気SAに旋回成分を与えるための複数枚のガイドフィン30がそれぞれ固定されている。各給気口15の中心軸上に支持部材31が配置されており,この支持部材31に複数枚のガイドフィン30がほぼ等間隔で装着されることにより,給気口15の中心軸周りに複数枚のガイドフィン30が放射状に配置されている。   As shown in FIG. 3, a plurality of guide fins 30 for fixing a swirling component to the high-temperature air SA blown into the air-conditioned space 10 are fixed to each air supply port 15. A support member 31 is disposed on the central axis of each air supply port 15, and a plurality of guide fins 30 are mounted on the support member 31 at substantially equal intervals, so that the support member 31 is arranged around the central axis of the air supply port 15. A plurality of guide fins 30 are arranged radially.

これら複数枚のガイドフィン30は,給気口15の中心軸15’と直交する平面(例えば,給気ユニット20の前面21)に対していずれも同じ傾斜角度となるように斜めに設けられている。図4,5は,各ガイドフィン30の傾斜角度の説明図であり,図4と図5では,各ガイドフィン30の傾斜方向が逆向きの関係になっている。即ち図4では,給気口15から空調空間10内に吹き出される高温空気SAに対して,給気ユニット20の前面21を空調空間10の室内側から見た場合において,反時計回転方向の旋回成分を与えるように,各ガイドフィン30が傾斜して設けられている。一方図5では,給気口15から空調空間10内に吹き出される高温空気SAに対して,給気ユニット20の前面21を空調空間10の室内側から見た場合において,時計回転方向の旋回成分を与えるように,各ガイドフィン30が傾斜して設けられている。   The plurality of guide fins 30 are provided obliquely so as to have the same inclination angle with respect to a plane orthogonal to the central axis 15 ′ of the air supply port 15 (for example, the front surface 21 of the air supply unit 20). Yes. 4 and 5 are explanatory diagrams of the inclination angle of each guide fin 30. In FIGS. 4 and 5, the inclination directions of the guide fins 30 are opposite to each other. That is, in FIG. 4, when the front surface 21 of the air supply unit 20 is viewed from the indoor side of the air-conditioned space 10 with respect to the high-temperature air SA blown into the air-conditioned space 10 from the air supply port 15, Each guide fin 30 is inclined and provided so as to give a swirl component. On the other hand, in FIG. 5, when the front surface 21 of the air supply unit 20 is viewed from the indoor side of the air-conditioned space 10 with respect to the high-temperature air SA blown into the air-conditioned space 10 from the air supply port 15, Each guide fin 30 is provided with an inclination so as to provide a component.

このように,各給気口15において支持部材31を中心に傾斜したフィン30を放射状に取り付けたことにより,給気ユニット20の内部から給気口15に向かって流れ込んできた高温空気SAを,給気口15を通過する際に,各フィン30の表面に沿わせて強制的に流すことができる。これにより,給気口15から空調空間10に向かって吹き出す高温空気SAに,中心軸15’を中心とする時計回転方向または反時計回転方向の旋回成分をそれぞれ与えるようになっている。   In this way, by attaching the fins 30 inclined about the support member 31 in each air supply port 15 in a radial manner, the high-temperature air SA that has flowed from the inside of the air supply unit 20 toward the air supply port 15 is When passing through the air supply port 15, it can be forced to flow along the surface of each fin 30. Thereby, the swirl component in the clockwise direction or the counterclockwise direction around the central axis 15 ′ is respectively given to the high-temperature air SA blown out from the air supply port 15 toward the air-conditioned space 10.

前述のように給気ユニット20の前面(空調空間10を形成している室の内部側の面)21には,複数の給気口15が縦横に並べて配置されているが,隣り合う給気口15から吹き出される高温空気SAの旋回成分は,互いに逆の回転方向の関係になっている。即ち,例えば図6に示すように上下方向に並んだ4つの給気口15a,15b,15c,15dを例にして説明すると,1番上の給気口15aと上から3番目の給気口15cでは,ガイドフィン30の傾斜方向が図4で説明した状態であり,これら給気口15aと給気口15cからは,給気ユニット20の前面21を空調空間10の室内側から見た場合において,反時計回転方向の旋回成分を与えられた高温空気SAが吹き出される。一方,上から2番目の給気口15bと4番目の給気口15dでは,ガイドフィン30の傾斜方向が図5で説明した状態であり,これら給気口15bと給気口15dからは,給気ユニット20の前面21を空調空間10の室内側から見た場合において,時計回転方向の旋回成分を与えられた高温空気SAが吹き出される。このように,隣り合う給気口15aと給気口15b,給気口15bと給気口15c,給気口15cと給気口15dの間において,それぞれ互いに逆の回転方向に旋回する高温空気SAを吹き出すようになっている。   As described above, a plurality of air supply ports 15 are arranged vertically and horizontally on the front surface 21 (surface on the inner side of the chamber forming the air-conditioned space 10) of the air supply unit 20. The swirling components of the high-temperature air SA blown out from the mouth 15 are in the relationship of mutually opposite rotation directions. That is, for example, as shown in FIG. 6, four air supply ports 15a, 15b, 15c, and 15d arranged in the vertical direction will be described as an example. The first air supply port 15a and the third air supply port from the top are described. In 15c, the inclination direction of the guide fin 30 is in the state described with reference to FIG. 4, and when the front surface 21 of the air supply unit 20 is viewed from the indoor side of the air-conditioned space 10 from the air supply port 15a and the air supply port 15c. , The hot air SA to which the swirl component in the counterclockwise direction is given is blown out. On the other hand, in the second air supply port 15b and the fourth air supply port 15d from the top, the inclination direction of the guide fin 30 is the state described in FIG. 5, and from these air supply ports 15b and 15d, When the front surface 21 of the air supply unit 20 is viewed from the indoor side of the air-conditioned space 10, the high-temperature air SA to which the swirl component in the clockwise direction is given is blown out. As described above, the high-temperature air swirling in the rotation directions opposite to each other between the adjacent air supply port 15a and the air supply port 15b, between the air supply port 15b and the air supply port 15c, and between the air supply port 15c and the air supply port 15d, respectively. SA is blown out.

即ち,図7に示すように,上下方向に並んだ4つの給気口15a’,15b’,15c’,15d’からいずれも同じ回転方向に旋回する高温空気SA(図7に示す例では,いずれも反時計回転方向に旋回する高温空気SA)を吹き出した場合,給気口15a’と給気口15b’の間,給気口15b’と給気口15c’の間及び給気口15c’と給気口15d’の間において,互いに打ち消しあう方向に高温空気SAが吹き出されることとなる。そうすると,各給気口15a’,15b’,15c’,15d’から吹き出される高温空気SAの旋回成分が相殺されてしまう。   That is, as shown in FIG. 7, high-temperature air SA that swirls in the same rotational direction from the four air supply ports 15a ′, 15b ′, 15c ′, and 15d ′ aligned in the vertical direction (in the example shown in FIG. 7, In either case, when high-temperature air SA) swirling in the counterclockwise direction is blown out, the air supply port 15a 'and the air supply port 15b', the air supply port 15b 'and the air supply port 15c', and the air supply port 15c The high-temperature air SA is blown out in a direction that cancels each other between “and the air supply port 15d”. As a result, the swirl components of the high-temperature air SA blown out from the air supply ports 15a ', 15b', 15c ', 15d' are canceled out.

一方,図6で説明したように,各給気口15a,15b,15c,15dから吹き出す高温空気SAの旋回成分を交互に逆の回転方向とすれば,給気口15aと給気口15bの間,給気口15bと給気口15cの間及び給気口15bと給気口15cの間のいずれにおいても,互いに同じ方向に高温空気SAが吹き出されることとなるので,各給気口15a,15b,15c,15dから吹き出される高温空気SAの旋回成分が相殺されず,お互いに旋回運動を助長しあうようになる。   On the other hand, as described with reference to FIG. 6, if the swirl components of the high-temperature air SA blown from the air supply ports 15a, 15b, 15c, and 15d are alternately reversed, the air supply ports 15a and 15b Since the hot air SA is blown out in the same direction between the air supply port 15b and the air supply port 15c and between the air supply port 15b and the air supply port 15c, each air supply port The swirling components of the high-temperature air SA blown out from 15a, 15b, 15c, and 15d are not cancelled, and the swirl motions are promoted.

なお,図6では,上下に配列された給気口15の関係について説明したが,先に図2で説明したように,給気ユニット20の前面21には複数の給気口15が縦横に並べて配置されている。この図示の形態では,図8に示すように,上下に配列された給気口15の関係では,隣り合う給気口15から吹き出される高温空気SAの旋回成分が,互いに逆の回転方向の関係となるように,各給気口15に設けられたフィン30の傾斜方向が設定されているが,左右に配列された給気口15の関係では,隣り合う給気口15から吹き出される高温空気SAの旋回成分が,互いに同じ回転方向の関係となるように,各給気口15に設けられたフィン30の傾斜方向が設定されている。   In FIG. 6, the relationship between the upper and lower air supply ports 15 has been described. However, as described above with reference to FIG. 2, a plurality of air supply ports 15 are arranged vertically and horizontally on the front surface 21 of the air supply unit 20. They are arranged side by side. In the illustrated embodiment, as shown in FIG. 8, in the relationship between the air supply ports 15 arranged vertically, the swirl components of the high-temperature air SA blown out from the adjacent air supply ports 15 are in opposite rotation directions. Although the inclination direction of the fin 30 provided in each air supply port 15 is set so that it may become a relationship, in the relationship of the air supply port 15 arranged in right and left, it blows off from the adjacent air supply port 15 The inclination direction of the fins 30 provided in each air supply port 15 is set so that the swirl components of the high-temperature air SA have the same rotational direction relationship.

図3に示すように,各給気口15に装着される複数枚のガイドフィン30の周囲には,円筒32が取付けてある。給気口15の中心軸15’に円筒32の中心軸を一致させた状態で,各給気口15毎に円筒32がそれぞれ装着されている。円筒32の内径は,各給気口15に取り付けられている複数枚のガイドフィン30の外径とほぼ等しく設定されている。従って各給気口15において,複数枚のガイドフィン30の外周は,円筒32の内壁面33(給気口15の中心軸15’を中心軸とする円筒形状の内壁面33)によって囲まれた状態になっている。これにより,図4,5に示すように,給気ユニット20の内部から給気口15を通って空調空間10内に吹き出される高温空気SAは,各給気口15に取り付けられている円筒32内を通過し,その際に,円筒32内において各ガイドフィン30の表面に沿って流れることにより,高温空気SAに時計回転方向または反時計回転方向の旋回成分が強制的に与えられる。   As shown in FIG. 3, a cylinder 32 is attached around the plurality of guide fins 30 attached to each air supply port 15. A cylinder 32 is attached to each air supply port 15 in a state where the center axis of the cylinder 32 coincides with the central axis 15 ′ of the air supply port 15. The inner diameter of the cylinder 32 is set to be substantially equal to the outer diameter of the plurality of guide fins 30 attached to each air supply port 15. Accordingly, in each air supply port 15, the outer periphery of the plurality of guide fins 30 is surrounded by the inner wall surface 33 of the cylinder 32 (cylindrical inner wall surface 33 centering on the central axis 15 ′ of the air supply port 15). It is in a state. As a result, as shown in FIGS. 4 and 5, the high-temperature air SA blown from the inside of the air supply unit 20 through the air supply port 15 into the air-conditioned space 10 is a cylinder attached to each air supply port 15. By passing through the inside of the cylinder 32 and flowing along the surface of each guide fin 30 in the cylinder 32, a swirl component in the clockwise direction or the counterclockwise direction is forcibly given to the high temperature air SA.

ここで図3に示すように,各給気口15において,給気口15の中心軸15’に沿った方向における円筒32の長さLは,同じく給気口15の中心軸15’に沿った方向におけるガイドフィン30の幅lの半分以上に設定されている。これにより,給気口15の中心軸15’に沿った方向において,ガイドフィン30の幅lのうちの少なくとも半分以上の部分が,周囲を円筒32の内壁面33で囲まれるように構成されている。なお,図3に示す例では,円筒32の長さLは,ガイドフィン30の幅lよりも更に長くなるように設定されており,これによって,給気口15の中心軸15’に沿った方向において,ガイドフィン30の幅lの全部の部分が,周囲を円筒32の内壁面33で囲まれた構成になっている。   Here, as shown in FIG. 3, in each air supply port 15, the length L of the cylinder 32 in the direction along the central axis 15 ′ of the air supply port 15 is also along the central axis 15 ′ of the air supply port 15. It is set to be more than half of the width l of the guide fin 30 in the above direction. Thereby, in the direction along the central axis 15 ′ of the air supply port 15, at least half of the width l of the guide fin 30 is configured to be surrounded by the inner wall surface 33 of the cylinder 32. Yes. In the example shown in FIG. 3, the length L of the cylinder 32 is set so as to be longer than the width l of the guide fin 30, and thereby, along the central axis 15 ′ of the air supply port 15. In the direction, all the portions of the width l of the guide fin 30 are surrounded by the inner wall surface 33 of the cylinder 32.

図1に示すように,空調空間10の上部に配置された排気口16には,排気ファン40を備えた排気ダクト41が接続されている。これにより,空調空間10内の空気(空調空間10に存在している人体や各種機器などによって汚染された空気)が,排気ダクト41を経て外部に排気EAされるようになっている。   As shown in FIG. 1, an exhaust duct 41 including an exhaust fan 40 is connected to the exhaust port 16 disposed in the upper part of the air-conditioned space 10. As a result, air in the air-conditioned space 10 (air contaminated by a human body or various devices existing in the air-conditioned space 10) is exhausted EA to the outside through the exhaust duct 41.

以上のように構成された暖房空調システム1において,暖房運転が行われる例えば冬期などは,低温の外部気温などによって空調空間10の壁面は低温となっており,壁面に熱的に接触した空調空間10内の空気は冷却されて下降し,空調空間10内の居住域11には必然的に低温空気が溜まってしまう。また,空調空間10内の居住域11には,人間12や各種機器などが存在しているので,居住域11には,粉塵などの汚染物質が溜まってしまう。   In the heating air-conditioning system 1 configured as described above, for example, in the winter season when the heating operation is performed, the wall surface of the air-conditioned space 10 is cold due to a low external temperature or the like, and the air-conditioned space that is in thermal contact with the wall surface The air in 10 is cooled and descends, and low-temperature air inevitably accumulates in the living area 11 in the air-conditioned space 10. In addition, since humans 12 and various devices are present in the living area 11 in the air-conditioned space 10, contaminants such as dust accumulate in the living area 11.

そこで,新鮮な外気を取り込んで空調機22で作った高温空気SAを,給気ファン27の稼動により,給気ダクト23及び給気ユニット20から給気口15を通じて空調空間10内に供給する。給気口15を通る際に,高温空気SAは各給気口15に取り付けられている円筒32内を通過し,その際に,円筒形状の内壁面33内において各ガイドフィン30の表面に沿って流れることにより,高温空気SAに時計回転方向または反時計回転方向の旋回成分が強制的に与えられる。こうして,空調空間10内に向かって,各給気口15から旋回しながら高温空気SAが給気される。なおこの場合,各給気口15においてガイドフィン30の周囲が円筒形状の内壁面33内で囲まれていることにより,円筒32(内壁面33)が無い場合に比べて,各給気口15から空調空間10内に給気される高温空気SAに,より強い旋回成分を確実に与えることができる。   Therefore, the hot air SA taken in by the air conditioner 22 by taking in fresh outside air is supplied into the air-conditioned space 10 from the air supply duct 23 and the air supply unit 20 through the air supply port 15 by the operation of the air supply fan 27. When passing through the air supply ports 15, the high-temperature air SA passes through the cylinders 32 attached to the respective air supply ports 15, and at this time, along the surface of each guide fin 30 within the cylindrical inner wall surface 33. As a result, the swirl component in the clockwise direction or the counterclockwise direction is forcibly given to the high-temperature air SA. In this way, the high-temperature air SA is supplied into the air-conditioned space 10 while turning from each supply port 15. In this case, the periphery of the guide fins 30 is surrounded by the cylindrical inner wall surface 33 in each air supply port 15, so that each air supply port 15 is compared with the case where there is no cylinder 32 (inner wall surface 33). Thus, a stronger swirl component can be reliably given to the high-temperature air SA supplied into the air-conditioned space 10.

そして,各給気口15から旋回しながら空調空間10内に向かって高温空気SAが給気されると,各給気口15から吹き出した高温空気SAに,空調空間10内の居住域11にあった低温空気が誘引されて混合される誘引作用がはたらく。この場合,図示の暖房空調システム1にあっては,給気口15から吹き出す高温空気SAに旋回成分が与えられるので,高温空気SAに誘引される居住域11の低温空気の誘引量(誘引比)が増加する。これに伴い,運動量保存則に従って高温空気SAの速度は,各給気口15から吹き出した後,速やかに減速することとなる。このため,居住域11に向って高温空気SAを給気したことに伴うドラフト不快感をほとんど発生させずに済む。   When hot air SA is supplied toward the air-conditioned space 10 while turning from each air supply port 15, the hot air SA blown out from each air supply port 15 is transferred to the living area 11 in the air-conditioned space 10. The low temperature air that has been attracted is attracted and mixed. In this case, in the illustrated heating air-conditioning system 1, since the swirl component is given to the high-temperature air SA blown from the air supply port 15, the amount of low-temperature air attracted by the high-temperature air SA (attraction ratio) ) Will increase. Along with this, the speed of the high-temperature air SA is quickly reduced after being blown out from each air supply port 15 in accordance with the law of conservation of momentum. For this reason, the draft discomfort accompanying the supply of the high-temperature air SA toward the living area 11 can be hardly generated.

また,このように誘引量が増加することに伴い,空調空間10内の下方に形成される居住域11にある低温空気を,給気した高温空気SAと速やかに混合させることができる。この場合,給気口15から供給される高温空気SAは,居住域11に溜まっている空気よりも高温の空気であるから,こうして高温空気SAと居住域11内の空気とを混合させることによって,給気ユニット20の近傍において,昇温した空気(混合空気)を速やかに作り出すことができる。こうして昇温した空気(混合空気)は,昇温したことによって,給気直後において空調空間10内を速やかに上昇し,空調空間10内の天井付近に達することとなる。これにより,居住域11で発生した汚染物質などを効率よく希釈して,空調空間10内の天井付近に移動させることができる。   Further, as the amount of attraction increases, the low-temperature air in the living area 11 formed below the air-conditioned space 10 can be quickly mixed with the supplied high-temperature air SA. In this case, since the high temperature air SA supplied from the air supply port 15 is higher in temperature than the air accumulated in the living area 11, the high temperature air SA and the air in the living area 11 are mixed in this way. In the vicinity of the air supply unit 20, the heated air (mixed air) can be quickly created. The air (mixed air) thus heated rises quickly in the air-conditioned space 10 immediately after the supply of air, and reaches the vicinity of the ceiling in the air-conditioned space 10 due to the temperature rise. Thereby, the pollutant etc. which generate | occur | produced in the residential area 11 can be diluted efficiently, and it can move to the ceiling vicinity in the air-conditioning space 10. FIG.

また,こうして空調空間10内の天井付近に上昇した空気は,空調空間10の壁面(天井面や側壁面)に熱的に接触することにより,外気で冷却された壁面によって冷却され,居住域11に再び降下することとなる。この場合,空調空間10の側壁面が窓部になっているような場合は,特にその側壁面では空調空間10の空気が冷却されるので,空調空間10内の天井付近から居住域11に空気が下降していく。   Further, the air that has risen near the ceiling in the air-conditioned space 10 is cooled by the wall surface cooled by the outside air by being in thermal contact with the wall surface (ceiling surface or side wall surface) of the air-conditioned space 10. It will descend again. In this case, when the side wall surface of the air-conditioned space 10 is a window portion, the air in the air-conditioned space 10 is cooled particularly on the side wall surface. Goes down.

こうして空調空間10内の天井付近から居住域11に移動した空気(低温空気)は,その後,給気口15から給気される高温空気SAと混合されて再び昇温し,空調空間10内の天井付近に上昇することとなる。こうして,空調空間10内の居住域11の空気と天井付近の空気が循環することにより,ドラフト不快感を発生させることなく,空調空間10内の気温を平均化させることが可能となる。   The air (cold air) thus moved from the vicinity of the ceiling in the air-conditioned space 10 to the living area 11 is then mixed with the high-temperature air SA supplied from the air supply port 15 and heated again, so that the air in the air-conditioned space 10 It will rise near the ceiling. Thus, the air in the air-conditioned space 10 and the air in the vicinity of the ceiling circulate, so that the air temperature in the air-conditioned space 10 can be averaged without causing draft discomfort.

また一方で,このように空調空間10内の居住域11の空気と天井付近の空気を循環させながら,排気口16から空調空間10内の空気を排気することにより,室内空気を給気口15から供給した新鮮な高温空気SAに順次置換していく。こうして,居住域11などで発生した汚染物質等を除去して,室内空気の悪化を回避することが可能となる。   On the other hand, the air in the air-conditioned space 10 is exhausted from the exhaust port 16 while the air in the living area 11 in the air-conditioned space 10 and the air in the vicinity of the ceiling are circulated in this manner. The fresh high-temperature air SA supplied from is sequentially replaced. In this way, it is possible to remove contaminants and the like generated in the living area 11 and avoid deterioration of indoor air.

この暖房空調システム1によれば,居住域11に向って給気された高温空気SAは,給気後,居住域11にあった低温空気と速やかに混合されて,空調空間10内の天井付近に上昇してしまうので,空調空間10内の居住域11にいる人間12に対して高温空気SAが直接吹付けられることが少なく,ドラフトによる不快感を低減できる。また,居住域11で発生した汚染物質などを空調空間10内の天井付近に移動させ,循環中に排気することにより,空調空間10内の居住域11の空気質を良好に保って快適な環境を作ることができる。   According to the heating air-conditioning system 1, the hot air SA supplied toward the living area 11 is quickly mixed with the low-temperature air in the living area 11 after supplying air, and is near the ceiling in the air-conditioned space 10. Therefore, the high-temperature air SA is less likely to be directly blown against the person 12 in the living area 11 in the air-conditioned space 10, and uncomfortable feeling due to the draft can be reduced. In addition, by moving pollutants generated in the living area 11 to the vicinity of the ceiling in the air-conditioned space 10 and exhausting them during circulation, the air quality of the living area 11 in the air-conditioned space 10 is kept good and a comfortable environment. Can be made.

以上,本発明の好ましい実施の形態の一例を説明したが,本発明は図示の形態に限定されない。図1では,給気口15が設けられた空調空間10内の一側面17の上部に排気口16を設けた例を示したが,排気口16を,空調空間10の天井面や床面,側面などに設けても良い。また,給気ユニット20をペリカウンタ部に設置して,窓部で冷却されて発生したコールドドラフトを給気ユニット20で誘引して上昇/処理させても良い。   Although an example of a preferred embodiment of the present invention has been described above, the present invention is not limited to the illustrated embodiment. In FIG. 1, an example in which the exhaust port 16 is provided on the upper portion of the one side surface 17 in the air-conditioned space 10 in which the air supply port 15 is provided is shown, but the exhaust port 16 is connected to the ceiling surface or floor surface of the air-conditioned space 10. It may be provided on the side surface. Alternatively, the air supply unit 20 may be installed in the pericounter unit, and the cold draft generated by cooling at the window unit may be attracted by the air supply unit 20 to be raised / processed.

また,例えば各給気口15においてガイドフィン30の周囲を囲んでいる円筒形状の内壁面33を吸音材で構成しても良い。その場合,各給気口15に取付けられる円筒32自体を吸音材で構成しても良いし,円筒32の内面に吸音材を配置するようにしても良い。吸音材として例えば発泡ウレタンなどを使用することにより,発生騒音を抑制できる。   Further, for example, the cylindrical inner wall surface 33 surrounding the guide fins 30 in each air supply port 15 may be made of a sound absorbing material. In that case, the cylinder 32 itself attached to each air supply port 15 may be made of a sound absorbing material, or the sound absorbing material may be arranged on the inner surface of the cylinder 32. By using, for example, urethane foam as the sound absorbing material, generated noise can be suppressed.

また図9に示すように,給気ユニット20の前面21の前方に多数の通気孔50が形成された多孔板51を前面21と平行に配置し,各給気口15の前方に所定の隙間Mを空けて多孔板51が設けられるように構成しても良い。そうすれば,各給気口15から噴出された高温空気SAを,更に多孔板51に形成された通気孔50を通して空調空間10内に給気することにより,気流減衰特性をより向上させることができる。なお,このように多孔板51を給気口15の前方に設ける場合,多孔板51の開口率(通気孔50の面積)は40%以上が好ましい。また,給気口15から多孔板51までの離隔距離Mが,給気口15の開口直径Dの7%以上となっていることが好ましい。   As shown in FIG. 9, a perforated plate 51 in which a large number of air holes 50 are formed in front of the front surface 21 of the air supply unit 20 is arranged in parallel with the front surface 21, and a predetermined gap is formed in front of each air supply port 15. You may comprise so that the perforated plate 51 may be provided in M. Then, the high-temperature air SA ejected from each air supply port 15 is further supplied into the air-conditioned space 10 through the vent holes 50 formed in the perforated plate 51, thereby further improving the airflow attenuation characteristics. it can. When the porous plate 51 is provided in front of the air supply port 15 in this way, the aperture ratio of the porous plate 51 (the area of the vent hole 50) is preferably 40% or more. Further, the separation distance M from the air supply port 15 to the perforated plate 51 is preferably 7% or more of the opening diameter D of the air supply port 15.

なお図3等では,各給気口15に装着した円筒32の内壁面33によってガイドフィン30の周囲を囲む例を説明したが,円筒32を省略することも可能である。円筒32があれば,空調空間10内に給気する際に,高温空気SAに時計回転方向または反時計回転方向の旋回成分をより確実に与えることができるようになる。但し,ガイドフィン30の周囲を囲む内壁面33を備えていれば十分であり,必ずしも円筒32としなくても良い。即ち,給気ユニット20の前面21が充分な厚さを有し,円形状の給気口15を形成した際に,円筒形上に形成される内壁面33の長さLが,ガイドフィン30の幅lの半分以上となる場合であれば,円筒32を省略できる。例えば,給気ユニット20の前面21を吸音効果の優れるグラスウール等で充分な厚さに構成すれば,円筒32を省略できるだけでなく,発生騒音の抑制も期待できる。   In addition, in FIG. 3 etc., although the example surrounding the circumference | surroundings of the guide fin 30 by the inner wall surface 33 of the cylinder 32 with which each supply port 15 was mounted was demonstrated, the cylinder 32 can also be abbreviate | omitted. If the cylinder 32 is provided, the swirl component in the clockwise direction or the counterclockwise direction can be more reliably given to the high-temperature air SA when air is supplied into the air-conditioned space 10. However, it is sufficient if the inner wall surface 33 surrounding the guide fin 30 is provided, and the cylinder 32 is not necessarily required. That is, when the front surface 21 of the air supply unit 20 has a sufficient thickness and the circular air supply port 15 is formed, the length L of the inner wall surface 33 formed on the cylindrical shape is the guide fin 30. The cylinder 32 can be omitted if it is more than half of the width l. For example, if the front surface 21 of the air supply unit 20 is made of glass wool or the like having an excellent sound absorbing effect to a sufficient thickness, not only the cylinder 32 can be omitted, but also generation noise can be expected.

また,図4,5では,支持部材31に複数のガイドフィン30を放射状に取り付けた構成を説明したが,各給気口15に装着される吹出部材の構成は,この形態に限定されない。例えば本出願人が先に特開平9-250803号で開示した旋回流形成板の如き構成でも良い。即ち,例えば図10に示すように,円形状の平板55の中央に円形状の支持部材31を残すようにし,支持部材31の周りを扇形状のガイドフィン30として打ち抜き,各ガイドフィン30を所定の角度に折り曲げて傾斜させることによって,容易に形成することができる。いずれにしても,旋回成分を与えることができるガイドフィン30を形成できれば良い。   4 and 5, the configuration in which the plurality of guide fins 30 are radially attached to the support member 31 has been described. However, the configuration of the blowing member attached to each air supply port 15 is not limited to this configuration. For example, a configuration such as a swirl flow forming plate previously disclosed by the present applicant in Japanese Patent Laid-Open No. 9-250803 may be used. That is, for example, as shown in FIG. 10, a circular support member 31 is left in the center of a circular flat plate 55, and the periphery of the support member 31 is punched out as a fan-shaped guide fin 30, and each guide fin 30 is predetermined. It can be easily formed by bending and inclining at an angle of. In any case, it is only necessary to form the guide fins 30 that can give the swirl component.

また先に図8に示した形態では,上下に配列された給気口15の間では,隣り合う給気口15から吹き出される高温空気SAの旋回成分が,互いに逆の回転方向の関係となるが,横に配置された給気口15の間では,隣り合う給気口15から吹き出される高温空気SAの旋回成分が,互いに同じ回転方向の関係となるように設定された例を示したが,各給気口15に設けられるフィン30の傾斜方向は,必ずしもこのような設定としなくても良い。例えば,図示はしないが,横に配列された給気口15の間では,隣り合う給気口15から吹き出される高温空気SAの旋回成分が,互いに逆の回転方向の関係となるが,上下に配置された給気口15の間では,隣り合う給気口15から吹き出される高温空気SAの旋回成分が,互いに同じ回転方向の関係となるように設定されていても良い。また,上下左右に配列された給気口15のいずれの間においても,隣り合う給気口15から吹き出される高温空気SAの旋回成分が,互いに逆の回転方向の関係となるように,各給気口15に設けられたフィン30の傾斜方向が設定されていても良い。更に,全部の給気口15から吹き出される高温空気SAの旋回成分が,いずれも同じ回転方向の関係となるように設定されていてもよい。また,各給気口15から吹き出される高温空気SAの旋回成分が,不規則に同じ回転方向となったり逆の回転方向となるように設定されていてもよい。各給気口15から吹き出される高温空気SAの旋回成分の回転方向は,任意に設定できる。   In the embodiment shown in FIG. 8, the swirl components of the high-temperature air SA blown out from the adjacent air supply ports 15 between the air supply ports 15 arranged vertically are However, an example is shown in which the swirl components of the high-temperature air SA blown from the adjacent air supply ports 15 are set to have the same rotational direction between the air supply ports 15 arranged horizontally. However, the inclination direction of the fins 30 provided in each air supply port 15 does not necessarily have to be set as described above. For example, although not shown, the swirl components of the high-temperature air SA blown from the adjacent air supply ports 15 are in the opposite rotational directions between the air supply ports 15 arranged side by side. The swirl components of the high-temperature air SA blown out from the adjacent air supply ports 15 may be set so as to have the same rotational direction relationship between the air supply ports 15 arranged at the same position. Further, between any of the air supply ports 15 arranged vertically and horizontally, each swirl component of the high-temperature air SA blown out from the adjacent air supply ports 15 has a relationship in the opposite rotation direction. The inclination direction of the fins 30 provided in the air supply port 15 may be set. Further, the swirl components of the high-temperature air SA blown from all the air supply ports 15 may be set so that all have the same rotational direction. Further, the swirl component of the high-temperature air SA blown from each air supply port 15 may be set so as to be irregularly the same rotation direction or the reverse rotation direction. The rotation direction of the swirl component of the high-temperature air SA blown from each air supply port 15 can be arbitrarily set.

また,給気ダクト23に円形状の給気口15を直接開口させて,その給気口15から空調空間10内に高温空気SAを吹き出すように構成し,そこに高温空気SAに旋回成分を与えるための複数枚のガイドフィン30と円筒32を取り付けても良い。そうすれば,給気ユニット20を省略することができる。その他,建築的に構築された給気ユニットにガイドフィンや円筒,多孔板を取り付け,給気ユニット内に給気を通風しても良い。給気ユニットは,壁や2重床を利用しても良い。   In addition, a circular air supply port 15 is directly opened in the air supply duct 23, and the high temperature air SA is blown into the air-conditioned space 10 from the air supply port 15, and the swirl component is added to the hot air SA there. A plurality of guide fins 30 and a cylinder 32 for giving may be attached. Then, the air supply unit 20 can be omitted. In addition, a guide fin, a cylinder, or a perforated plate may be attached to an air supply unit constructed architecturally, and the air supply may be ventilated in the air supply unit. The air supply unit may use a wall or a double floor.

給気ユニットへのダクト接続は,給気ユニットの上方や側方から行っても良いし,下方から行っても良い。また,二重床内に給気を通風して給気ユニットへ送風しても良い。この場合は,給気ユニットまでの給気ダクトを省略できる。さらに給気ユニットを柱の周囲に設置しても良い。   The duct connection to the air supply unit may be performed from above or from the side of the air supply unit, or from the lower side. Moreover, you may ventilate an air supply in a double floor, and you may ventilate to an air supply unit. In this case, the air supply duct to the air supply unit can be omitted. Further, an air supply unit may be installed around the pillar.

また例えば,図1中に点線で記入した戻りダクト45設けることにより,排気EAの一部を空調機22に戻して,再利用するように構成しても良い。また,排気ファン40を省略し,空調空間10内の下方に供給した高温空気SAによって,空調空間10の上部に溜まった加熱空気を順次押し出すようにしても良い。また,排気口16を空調空間10の天井に形成してもよい。更に,本発明の暖房空調システムは,常時人間が滞在するような居室に限らず,前述したような人間や各種機器類などが存在する種々の空調空間,ペンシルビルやアトリウム,ドーム,平屋の工場などについても適用できる。   Further, for example, by providing a return duct 45 indicated by a dotted line in FIG. 1, a part of the exhaust EA may be returned to the air conditioner 22 and reused. Further, the exhaust fan 40 may be omitted, and the heated air accumulated in the upper part of the air-conditioned space 10 may be sequentially pushed out by the high-temperature air SA supplied downward in the air-conditioned space 10. Further, the exhaust port 16 may be formed in the ceiling of the air-conditioned space 10. Furthermore, the heating / air-conditioning system of the present invention is not limited to a room where humans always stay, but various air-conditioned spaces such as those described above, where there are humans and various devices, pencil buildings, atriums, domes, one-story factories. It can also be applied to.

なお図1に示したように,空調空間10内の居住域11に温度センサ46を設置し,温度センサ46で検出される室温に基いて空調機22における加熱器25の加熱温度を制御し,居住域11の室温が一定温度となるように運転しても良い。この場合,本実施の形態では,空調空間10内に給気した高温空気SAが,一旦天井付近に上昇した後,冷却されて居住域11に達することとなるので,温度センサ46のある居住域11に到達するまでに時間遅れが生じる。このため,加熱器25の加熱温度に上限値と下限値を設定し,空調空間10内に給気される高温空気SAの温度(給気温度)を所定の温度範囲に規制すると良い。高温空気SAの温度範囲を規制しないと,図11に示すように,空調空間10内に給気される高温空気SAの温度(給気温度)の変動幅が大きくなって,居住域11の室温が安定するまでに長時間を要してしまう。これに対して,高温空気SAの温度範囲を一定の範囲内に規制すれば,空調空間10内に給気される高温空気SAの温度(給気温度)の変動幅が小さく抑制され,居住域11の室温が安定するまでの時間も短くできる。なお,空調空間10内に給気される高温空気SAの温度(給気温度)を一定とし,例えば居住域11に設置した温度センサ46の検出温度が設定値となるように,給気ファン27の稼動量を制御して高温空気SAの給気量を変化させても良い。更に,温水やヒータを用いた床暖房などを付加しても良い。   As shown in FIG. 1, a temperature sensor 46 is installed in the living area 11 in the air-conditioned space 10, and the heating temperature of the heater 25 in the air conditioner 22 is controlled based on the room temperature detected by the temperature sensor 46. You may drive | operate so that the room temperature of the residential area 11 may become fixed temperature. In this case, in the present embodiment, the high-temperature air SA supplied into the air-conditioned space 10 once rises near the ceiling and is then cooled and reaches the living area 11. There is a time delay until 11 is reached. For this reason, an upper limit value and a lower limit value are set for the heating temperature of the heater 25, and the temperature of the high-temperature air SA (air supply temperature) supplied into the air-conditioned space 10 is preferably regulated within a predetermined temperature range. If the temperature range of the high-temperature air SA is not regulated, as shown in FIG. 11, the fluctuation range of the temperature (supply-air temperature) of the high-temperature air SA supplied into the air-conditioned space 10 becomes large, and the room temperature of the living area 11 It takes a long time to stabilize. On the other hand, if the temperature range of the high-temperature air SA is regulated within a certain range, the fluctuation range of the temperature of the high-temperature air SA (the supply air temperature) supplied into the air-conditioned space 10 is suppressed to be small, and the living area The time until the room temperature of 11 is stabilized can also be shortened. It is to be noted that the temperature of the high-temperature air SA supplied into the air-conditioned space 10 (supply temperature) is constant and, for example, the supply fan 27 is set so that the detected temperature of the temperature sensor 46 installed in the living area 11 becomes a set value. The amount of supply of the high-temperature air SA may be changed by controlling the amount of operation. Further, warm water or floor heating using a heater may be added.

図12に示すように,平面視で15m×16mの床を有し,その内部の一部に7.1m×7.2mの間仕切(非空調空間)が形成された床面積190m,天井高さ10mの空調空間10(機械工作室)にて測定を行った。本発明の実施例では,幅0.6m,高さ2.1mの前面に給気口を形成した給気ユニット20を床上に設置した。先に図1等で説明した場合と同様に,この給気ユニット20の前面に開口させた複数の各給気口に高温空気SAに旋回成分を与えるための複数枚のガイドフィンをそれぞれ装着して,ガイドフィンの周囲を円筒によって囲んだ構成とし,各給気口から平均吹出し初速度0.9m/sで旋回成分を与えた高温空気SAを室内に給気した。一方,比較例1では,本発明の実施例と同様の給気ユニット20であるが,各給気口に旋回成分を与えるためのガイドフィンは装着せず,吹出し速度を0.3m/sの微風速で高温空気SAを室内に給気した。また比較例2では,高さ4mの位置に設置した直径500mmのノズル(図示せず)によって,水平方向に向って高温空気SAを給気した。 As shown in FIG. 12, a floor area of 15 m × 16 m in a plan view, a floor area of 190 m 2 in which a partition (non-air-conditioned space) is formed in a part of the interior is 7.1 m × 7.2 m, the ceiling height Measurement was performed in a 10 m conditioned space 10 (machine working room). In the embodiment of the present invention, the air supply unit 20 having an air supply port formed on the front surface having a width of 0.6 m and a height of 2.1 m is installed on the floor. As in the case described above with reference to FIG. 1 and the like, a plurality of guide fins for imparting a swirling component to the hot air SA are respectively attached to a plurality of air supply openings opened on the front surface of the air supply unit 20. The guide fin is surrounded by a cylinder, and hot air SA to which a swirling component is given at an average outlet initial speed of 0.9 m / s is supplied into the room from each air supply port. On the other hand, in Comparative Example 1, the air supply unit 20 is the same as that of the embodiment of the present invention, but no guide fins are provided for giving a swirling component to each air supply port, and the blowing speed is 0.3 m / s. Hot air SA was supplied indoors at a slight wind speed. In Comparative Example 2, hot air SA was supplied in the horizontal direction by a nozzle (not shown) having a diameter of 500 mm installed at a height of 4 m.

空調空間10内には,図12中に示したように,工作機械H1〜H4が配置されており,これら各工作機械H1〜H4や室内にいる作業員(図示せず)による汚染物質などが発生している。図12中に示した各地点A〜Dにおいて,温度,汚染質の空間分布を実測し,比較した。地点Aは給気ユニットの前方直近であり,地点Bは,地点Aよりも離れた給気ユニットの前方位置であり,地点Cは,地点Bよりも更に離れた給気ユニットの前方位置である。地点Dは,給気ユニットの前方ではなく,間仕切を回り込んだ位置である。汚染物質を模擬するため,地点Bの床上1mの位置からトレーサガスとして密度を空気と同等に調整したSFとHeの混合ガスを一定流量で放出し,本発明の実施例と比較例1,2の場合の空間濃度を実測した。なお,空調空間10の壁面および天井は,断熱性に劣る石綿スレートと曇りガラスで構築されているため,平均熱通過率は6W/(m・K)程度であり,暖房貫流負荷が大きい。本発明の実施例と比較例1,2のいずれの場合も,空調風量(全外気運転)を4000m/h,給気温度を30℃と同じ条件に調整し,外気温度が10℃の時にそれぞれ測定した。 As shown in FIG. 12, machine tools H1 to H4 are arranged in the conditioned space 10, and contaminants and the like by these machine tools H1 to H4 and workers (not shown) in the room are present. It has occurred. At each point A to D shown in FIG. 12, the spatial distribution of temperature and pollutants was measured and compared. Point A is immediately in front of the air supply unit, point B is the front position of the air supply unit farther than point A, and point C is the front position of the air supply unit further away from point B. . The point D is not the front of the air supply unit, but a position around the partition. In order to simulate the pollutant, a mixed gas of SF 6 and He whose density is adjusted to be equal to that of air as a tracer gas from a position 1 m above the floor of the point B is discharged at a constant flow rate. The spatial density in the case of 2 was measured. In addition, since the wall surface and ceiling of the air-conditioned space 10 are constructed of asbestos slate and frosted glass that are inferior in heat insulation, the average heat passage rate is about 6 W / (m 2 · K), and the heating through-flow load is large. In both the examples of the present invention and Comparative Examples 1 and 2, the air conditioning air volume (total outside air operation) was adjusted to 4000 m 3 / h, the supply air temperature was adjusted to the same condition as 30 ° C., and the outside air temperature was 10 ° C. Each was measured.

図13は,同一の空調風量,給気温度,外気温度,室内負荷での運転時における,C点で実測した本発明の実施例と比較例1,2それぞれ場合における空調空間10内の上下の温度分布を比較したグラフである。本発明の実施例では,旋回誘引流によって空間全体の混合を促進できるため,高い位置からノズル吹出しで温風を供給している比較例2に比べて,足下の温度や床上1m付近の居住域の温度が2℃程度高くなっている。また,旋回流を与えずに居住域から温風を供給した比較例1に比べても,本発明の実施例は足下の温度を2℃程度高くできており,旋回流によって吹出し誘引量を増加させた効果が確認できる。   FIG. 13 shows the upper and lower sides in the air-conditioned space 10 in the case of the embodiment of the present invention and the comparative examples 1 and 2 measured at point C during operation with the same air-conditioning air volume, supply air temperature, outside air temperature, and indoor load. It is the graph which compared temperature distribution. In the embodiment of the present invention, the mixing of the entire space can be promoted by the swirl-induced flow. Therefore, compared with Comparative Example 2 in which warm air is supplied from a high position by blowing nozzles, the foot temperature and the residential area near 1 m above the floor are used. Is about 2 ° C higher. In addition, compared with Comparative Example 1 in which warm air was supplied from the living area without giving a swirling flow, the embodiment of the present invention was able to raise the temperature at the foot by about 2 ° C, and the amount of blow-out attraction was increased by the swirling flow. The effect made can be confirmed.

図14は,地点Bの床上1mの位置からトレーサガスを放出した場合の濃度分布を,本発明の実施例(左図)と比較例2(右図)について比較したグラフである。トレーサガス濃度は1時間の平均値を算出し,排気口濃度で除して無次元化した。30℃に加熱した外気をノズルで供給した比較例2では,居住域の空気の混合が難しいため,地点Cの床上1mの位置では排気口濃度の7倍程度の高濃度になっている。これに対して,本発明の実施例では空間全体で排気口濃度と同程度の濃度を示しており,居住域で高濃度にならないことが確認できた。   FIG. 14 is a graph comparing the concentration distribution in the case where the tracer gas is released from the position 1 m above the floor of the point B in the example of the present invention (left figure) and the comparative example 2 (right figure). The tracer gas concentration was averaged over one hour and divided by the exhaust port concentration to make it dimensionless. In Comparative Example 2 in which the outside air heated to 30 ° C. is supplied by the nozzle, it is difficult to mix the air in the living area, so the concentration at the position 1 m above the floor at point C is about 7 times the exhaust port concentration. On the other hand, in the Example of this invention, the density | concentration comparable as an exhaust port density | concentration was shown in the whole space, and it has confirmed that it did not become high concentration in a residential area.

次に,図15に示すような幅40m,長さ50m,天井高さ8.5mの北側工場空間と,幅40m,長さ50m,天井高さ8.5mの南側工場空間のそれぞれにおいて,本発明の実施例による暖房運転を行った場合と,本発明の実施例による暖房運転に加えて天井部の暖気の吹き下ろしを意図したエアジェットノズルからの吹出しを行った場合の温熱環境を比較した。図15中に,各給気ユニット20と各排気口16と各エアジェットノズル60のそれぞれの位置を示す。外気温度が4℃の時の上下温度分布を北側工場空間のA地点と南側工場空間のB地点のそれぞれで測定した。その結果,図16のようになった。北側工場空間のA地点と南側工場空間のB地点の何れにおいても,エアジェットノズルからの吹出しを停止しても,居住域内の上下温度差は1.5℃以内であり,本発明の実施例によって居住域を良好な温度に保てることが確認できた。   Next, in each of the north factory space having a width of 40 m, a length of 50 m, and a ceiling height of 8.5 m, and the south factory space having a width of 40 m, a length of 50 m, and a ceiling height as shown in FIG. Comparison was made between the thermal environment when the heating operation according to the embodiment of the invention was performed and when the air jet nozzle was blown from the air jet nozzle intended to blow down the warm air in the ceiling in addition to the heating operation according to the embodiment of the present invention. . FIG. 15 shows the positions of the air supply units 20, the exhaust ports 16, and the air jet nozzles 60. The vertical temperature distribution when the outside air temperature was 4 ° C. was measured at point A in the north factory space and point B in the south factory space. As a result, it became as shown in FIG. Even at the point A in the north factory space and the point B in the south factory space, even if the blowout from the air jet nozzle is stopped, the temperature difference in the living area is within 1.5 ° C. It was confirmed that the living area could be kept at a good temperature.

図17は,エアジェットノズル運転時および停止時について床上1.1mの高さにおけるPMVを比較したグラフである。なお,PMVを求めるにあたり,北側工場空間と南側工場空間のそれぞれ内部において複数点箇所で測定を行い,居住域の温熱感のばらつきを検出した。また,PMVは,着衣量を0.8clo,代謝量を1.2metとして算出した。エアジェットノズルを運転した場合では,ノズル噴流によって居住域の風速ばらつきが大きくなるため,各空間内におけるPMVのばらつきが大きくなった。また,エアジェットノズルを運転した場合では,ドラフト不快感が生じるため,全体的に「どちらでもない」から「やや涼しい」側の値になっている。一方,本発明の実施例では,ドラフト不快感が小く,暖房時の快適性を向上できることが判る。   FIG. 17 is a graph comparing PMV at a height of 1.1 m above the floor when the air jet nozzle is operating and when it is stopped. When obtaining PMV, measurements were made at multiple points in each of the north factory space and the south factory space to detect thermal variations in the residential area. PMV was calculated with a clothing amount of 0.8 clo and a metabolic amount of 1.2 met. When the air jet nozzle was operated, the variation in the wind speed in the living area was increased due to the nozzle jet, so the variation in PMV in each space increased. In addition, when the air jet nozzle is operated, draft discomfort occurs, so the overall value is from “None” to “Slightly cool”. On the other hand, in the embodiment of the present invention, it can be seen that the draft discomfort is small and the comfort during heating can be improved.

本発明は,事務所ビル,商業ビルなどといった業務用ビルの他,ホール,設備等の他の建築物にも適用できる。   The present invention can be applied to other buildings such as halls and facilities in addition to business buildings such as office buildings and commercial buildings.

本発明の実施の形態にかかる暖房空調システムを説明するための概略構成図である。It is a schematic structure figure for explaining the heating air-conditioning system concerning an embodiment of the invention. 給気ユニットの前面図である。It is a front view of an air supply unit. 図2におけるZ−Z断面拡大図である。FIG. 3 is an enlarged view of a ZZ cross section in FIG. 2. 空調空間の室内側から見て反時計回転方向の旋回成分を低温空気に与えるようにガイドフィンを取り付けた給気口の斜視図である。It is a perspective view of the air supply opening which attached the guide fin so that the turning component of a counterclockwise rotation direction might be given to low temperature air seeing from the indoor side of an air-conditioned space. 空調空間の室内側から見て時計回転方向の旋回成分を低温空気に与えるようにガイドフィンを取り付けた給気口の斜視図である。It is a perspective view of the air supply opening which attached the guide fin so that the turning component of a clockwise rotation direction might be given to low temperature air seeing from the indoor side of an air-conditioned space. 隣り合う給気口から吹き出される低温空気の旋回成分を交互に逆の回転方向とした給気口の説明図である。It is explanatory drawing of the air supply port which made the swirl component of the low temperature air blown off from an adjacent air supply port alternately the reverse rotation direction. 隣り合う給気口から吹き出される低温空気の旋回成分を同じ回転方向とした給気口の説明図である。It is explanatory drawing of the air supply port which made the rotation component of the low temperature air blown off from an adjacent air supply port the same rotation direction. 上下に配列された給気口と横に配置された給気口のいずれの間においても,隣り合う給気口から吹き出される低温空気の旋回成分が,互いに逆の回転方向の関係となるように設定された給気口の説明図である。The swirl components of the low-temperature air blown out from the adjacent air supply ports are in the relationship of opposite rotation directions between the air supply ports arranged vertically and the air supply ports arranged horizontally. It is explanatory drawing of the air supply opening set to. 給気ユニットの前面の前方に多数の通気孔が形成された多孔板を前面と平行に配置した本発明の実施の形態の説明図である。It is explanatory drawing of embodiment of this invention which has arrange | positioned the perforated plate in which many ventilation holes were formed ahead of the front surface of the air supply unit in parallel with the front surface. 円形状の平板を打ち抜いて形成したガイドフィンの斜視図である。It is a perspective view of a guide fin formed by punching a circular flat plate. 高温空気の温度範囲を一定の範囲内に規制した場合と規制しない場合の給気温度と室温の制御状態を示すグラフである。It is a graph which shows the control state of the supply air temperature and the room temperature when not restrict | limiting when the temperature range of high temperature air is controlled in a fixed range. 本発明の実施例と比較例1,2にかかる空調空間の平面図であり,各機器等の配置を示している。It is a top view of the air-conditioning space concerning the Example of this invention and Comparative Examples 1 and 2, and has shown arrangement | positioning of each apparatus. 本発明の実施例と比較例1,2を比較した空調空間内の上下の温度分布を示すグラフである。It is a graph which shows the temperature distribution of the upper and lower sides in the air-conditioned space which compared the Example of this invention and Comparative Examples 1 and 2. FIG. 空調空間内の濃度分布を示す本発明の実施例のグラフ(左図)と,比較例2のグラフ(右図)である。It is the graph (left figure) of the Example of this invention which shows concentration distribution in an air-conditioned space, and the graph (right figure) of the comparative example 2. FIG. 本発明の実施例による暖房運転と,本発明の実施例による暖房運転に加えて天井部の暖気の吹き下ろしを行った北側工場空間と南側工場空間の平面図であり,各給気ユニット等の配置を示している。FIG. 4 is a plan view of a north factory space and a south factory space in which heating operation according to an embodiment of the present invention and heating operation according to an embodiment of the present invention are performed in addition to blowing down warm air from a ceiling, The arrangement is shown. 北側工場空間と南側工場空間の上下温度分布を示すグラフである。It is a graph which shows the up-and-down temperature distribution of north side factory space and south side factory space. エアジェットノズル運転時および停止時のPMVを比較したグラフである。It is the graph which compared PMV at the time of an air jet nozzle operation and a stop.

符号の説明Explanation of symbols

1 暖房空調システム
10 空調空間
11 居住域
12 人間
15 給気口
16 排気口
20 給気ユニット
22 空調機
23 給気ダクト
25 加熱器
27 給気ファン
30 ガイドフィン
32 円筒
40 排気ファン
41 排気ダクト
SA 高温空気
EA 排気
DESCRIPTION OF SYMBOLS 1 Heating air-conditioning system 10 Air-conditioned space 11 Living area 12 Human 15 Air supply port 16 Exhaust port 20 Air supply unit 22 Air conditioner 23 Air supply duct 25 Heater 27 Air supply fan 30 Guide fin 32 Cylinder 40 Exhaust fan 41 Exhaust duct SA High temperature Air EA exhaust

Claims (5)

空調空間内に高温空気を供給して暖房を行う暖房空調方法であって,
高温空気は,空調空間内の下方に形成される居住域に溜まっている空気よりも高温の空気であり,
空調空間の一側面の下部に複数の給気口が縦に並べて配置され,前記複数の給気口から前記空調空間内の下方に形成される居住域に対して,旋回成分を与えた高温空気を供給し,一方で,前記空調空間内に供給した高温空気と同量の空気を空調空間内から排気し,
居住域に温度センサを設置し,この温度センサで検出される室温に基づいて,高温空気を加熱する加熱器の加熱温度が制御されることを特徴とする,暖房空調方法。
A heating and air conditioning method for heating by supplying high-temperature air into an air-conditioned space,
High-temperature air is air that is hotter than the air that accumulates in the residential area formed below in the air-conditioned space.
A plurality of air inlets are arranged vertically in the lower part of one side of the air-conditioned space, and high-temperature air that gives a swirl component to the living area formed below the air-conditioned space from the air inlets On the other hand, the same amount of high-temperature air supplied into the air-conditioned space is exhausted from the air-conditioned space ,
A heating and air-conditioning method, wherein a temperature sensor is installed in a living area, and a heating temperature of a heater for heating high-temperature air is controlled based on a room temperature detected by the temperature sensor .
空調空間内に高温空気を供給して暖房を行う暖房空調システムであって,
高温空気は,空調空間内の下方に形成される居住域に溜まっている空気よりも高温の空気であり,
空調空間内に高温空気を供給する給気口と,空調空間内から室内空気を排気する排気口とを備え,
空調空間の一側面の下部に複数の給気口を縦に並べて配置し,前記複数の給気口から空調空間の内部下方の居住域に向かって高温空気を供気し,
前記複数の給気口には,空調空間内に供給する高温空気に対して旋回成分を与えるガイド手段を設け
居住域に温度センサを設置し,この温度センサで検出される室温に基づいて,高温空気を加熱する加熱器の加熱温度が制御されることを特徴とする,暖房空調システム。
A heating and air conditioning system for heating by supplying high-temperature air into an air-conditioned space,
Hot air is air that is hotter than the air that accumulates in the residential area formed below in the air-conditioned space.
It has an air supply port that supplies high-temperature air into the air-conditioned space, and an exhaust port that exhausts indoor air from the air-conditioned space.
A plurality of air inlets are arranged vertically in the lower part of one side of the air-conditioned space, and hot air is supplied from the plurality of air inlets toward a residential area below the air-conditioned space,
The plurality of air supply ports are provided with guide means for giving a swirl component to the high-temperature air supplied into the air-conditioned space ,
A heating and air-conditioning system , wherein a temperature sensor is installed in a living area, and a heating temperature of a heater for heating high-temperature air is controlled based on a room temperature detected by the temperature sensor .
前記ガイド手段は,給気口の中心軸周りに放射状に配置される複数枚のガイドフィンを備え,これら複数枚のガイドフィンは,給気口の中心軸と直交する平面に対して互いに同じ角度で傾斜して設けられていることを特徴とする,請求項2に記載の暖房空調システム。   The guide means includes a plurality of guide fins arranged radially around the central axis of the air supply port, and the plurality of guide fins are at the same angle with respect to a plane perpendicular to the central axis of the air supply port. The heating air-conditioning system according to claim 2, wherein the heating air-conditioning system is provided with an inclination. 前記ガイド手段は,給気口の中心軸周りに放射状に配置された複数枚のガイドフィンの周囲を囲むように配置された,給気口の中心軸を中心軸とする円筒形状の内壁面を有することを特徴とする,請求項3に記載の暖房空調システム。   The guide means includes a cylindrical inner wall surface that surrounds a plurality of guide fins arranged radially around the central axis of the air supply port and that has a central axis about the central axis of the air supply port. The heating air-conditioning system according to claim 3, comprising: 前記排気口から排気した空気を,前記給気口から再び空調空間内に供給させる戻りダクトを設けたことを特徴とする,請求項2,3または4に記載の暖房空調システム。   The heating air-conditioning system according to claim 2, 3 or 4, further comprising a return duct for supplying air exhausted from the exhaust port into the air-conditioned space again from the air supply port.
JP2004298664A 2004-10-13 2004-10-13 Heating air conditioning method and heating air conditioning system Active JP4574317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004298664A JP4574317B2 (en) 2004-10-13 2004-10-13 Heating air conditioning method and heating air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004298664A JP4574317B2 (en) 2004-10-13 2004-10-13 Heating air conditioning method and heating air conditioning system

Publications (2)

Publication Number Publication Date
JP2006112677A JP2006112677A (en) 2006-04-27
JP4574317B2 true JP4574317B2 (en) 2010-11-04

Family

ID=36381335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004298664A Active JP4574317B2 (en) 2004-10-13 2004-10-13 Heating air conditioning method and heating air conditioning system

Country Status (1)

Country Link
JP (1) JP4574317B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503621B2 (en) * 2007-01-29 2010-07-14 高砂熱学工業株式会社 Air supply chamber
DE202009013664U1 (en) * 2009-11-02 2010-01-14 Weiss Klimatechnik Gmbh Air conditioned room
JP7443941B2 (en) 2020-06-02 2024-03-06 三菱電機株式会社 ventilation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291989A (en) * 1999-04-07 2000-10-20 Takasago Thermal Eng Co Ltd Air-conditioning equipment and air-conditioning method
JP2002372268A (en) * 2001-06-14 2002-12-26 Takasago Thermal Eng Co Ltd Displacement ventilation system
JP2003279100A (en) * 2002-03-26 2003-10-02 Takasago Thermal Eng Co Ltd Task ambient air conditioning method and air conditioning system
JP2003322356A (en) * 2002-05-02 2003-11-14 Takasago Thermal Eng Co Ltd Air-conditioning system blowing air from floor and air- conditioning method
JP2004019951A (en) * 2002-06-12 2004-01-22 Takasago Thermal Eng Co Ltd Air circulator for heated room

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311319Y2 (en) * 1986-04-30 1991-03-19
JP3752030B2 (en) * 1996-01-09 2006-03-08 高砂熱学工業株式会社 Air-conditioned air floor blowing device
JP3933280B2 (en) * 1997-11-19 2007-06-20 空研工業株式会社 Air outlet device
JP4601730B2 (en) * 1998-05-08 2010-12-22 パナソニックエコシステムズ株式会社 Building ventilation structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291989A (en) * 1999-04-07 2000-10-20 Takasago Thermal Eng Co Ltd Air-conditioning equipment and air-conditioning method
JP2002372268A (en) * 2001-06-14 2002-12-26 Takasago Thermal Eng Co Ltd Displacement ventilation system
JP2003279100A (en) * 2002-03-26 2003-10-02 Takasago Thermal Eng Co Ltd Task ambient air conditioning method and air conditioning system
JP2003322356A (en) * 2002-05-02 2003-11-14 Takasago Thermal Eng Co Ltd Air-conditioning system blowing air from floor and air- conditioning method
JP2004019951A (en) * 2002-06-12 2004-01-22 Takasago Thermal Eng Co Ltd Air circulator for heated room

Also Published As

Publication number Publication date
JP2006112677A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP5490485B2 (en) Replacement ventilation equipment for large space rooms
JP3936962B1 (en) Radiant air conditioning unit
JP2008134032A (en) Air conditioning system
JP2009276041A (en) Air-conditioning ventilation system for building
JP4006196B2 (en) Replacement ventilation system and replacement ventilation method
JPH01300135A (en) Ventilation and circulating type air cooling and heating facility
JP5090775B2 (en) Replacement ventilation air conditioning system and replacement ventilation air conditioning method
CN114576842A (en) Construction method of air conditioning system and design method of air conditioning system
JP2010261645A (en) Displacement ventilation system and displacement ventilation method
JP4574317B2 (en) Heating air conditioning method and heating air conditioning system
JP3883195B2 (en) Replacement ventilation air conditioning system combined with radiant cooling air conditioning system
JP4421347B2 (en) Displacement ventilation system
JP5785633B2 (en) Air supply device
JP6480690B2 (en) Whole building air conditioning system
JPH11141954A (en) Central air-conditioning system
JP6221134B2 (en) Air conditioning equipment
KR100611881B1 (en) Blowing vane of diffuser for interior air-conditioning
JP2005257090A (en) Ventilation system and blowout port
JP4503621B2 (en) Air supply chamber
JP4953743B2 (en) Radiant air conditioning unit
KR102606894B1 (en) Cooling-heating system type vertical air current for enhancing disinfection efficiency with total heat exchanger
JP7191557B2 (en) Whole building air conditioning system
WO2022113659A1 (en) Air blowing system
JP7387255B2 (en) Whole building air conditioning system
JP2022082842A (en) Air blowing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140827

Year of fee payment: 4