JP4573395B2 - Elevator power feeder - Google Patents

Elevator power feeder Download PDF

Info

Publication number
JP4573395B2
JP4573395B2 JP2000127775A JP2000127775A JP4573395B2 JP 4573395 B2 JP4573395 B2 JP 4573395B2 JP 2000127775 A JP2000127775 A JP 2000127775A JP 2000127775 A JP2000127775 A JP 2000127775A JP 4573395 B2 JP4573395 B2 JP 4573395B2
Authority
JP
Japan
Prior art keywords
car
current
induction
elevator
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000127775A
Other languages
Japanese (ja)
Other versions
JP2001310879A (en
Inventor
達司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000127775A priority Critical patent/JP4573395B2/en
Publication of JP2001310879A publication Critical patent/JP2001310879A/en
Application granted granted Critical
Publication of JP4573395B2 publication Critical patent/JP4573395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Elevator Control (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、昇降行程が長いエレベータのかごおよびかごの周辺機器に電力を供給するエレベータ給電装置に関するものである。
【0002】
【従来の技術】
従来のエレベータでは図8に示すようにエレベータの制御装置とかごの間にエレベータケーブルを使用しかごへの電力を供給する構造を採用している。
【0003】
【発明が解決しようとする課題】
しかしながら、昇降行程が長いエレベータではエレベータケーブル長さに比例してこのケーブルの抵抗が増大するので、通電による電圧降下も大きくなる。この通電による電圧降下を抑えるためには抵抗値を低く抑える必要があり、そのためにはケーブルの断面積を大きくする必要がある。これを実現するためには例えば多くの線心数が必要となり、それに伴い、ケーブルが大型化し重さが重くなるためエレベータの昇降行程に限界があった。また、ケーブルにねじれが発生し易くなり、昇降時の動特性が悪くなるだけでなく、かごとの衝突などにより機器類が破損するという問題があった。
このような問題を解決するために特開平5−294568号公報では走行中に発電機又は蓄電池により給電し、停止中に非接触給電する方式が提案されているが、この方式ではすべての停止階に給電装置を設置しなければならずコスト高となるという問題があった。
【0004】
また、傾斜のある斜行エレベータでは図9に示すようにかごへの電力供給を行うエレベータケーブルをカーテンのように吊り下げ伸縮させたり、ケーブルを横たえた状態でローラの上を移動させたりしていたが、このエレベータケーブルが収縮するときはカーテンのように畳み込まれるためケーブルは局部的に極度な曲げ応力を受ける。このためケーブルの内部導体が早期に断線するという問題があった。
【0005】
また、特開平6−135658号公報などではトロリによって電力の供給を行う方式が提案されているが、この方式では、トロリ線と集電子は接触により摩耗するため定期的な点検、取替が必要であり、摺動音の発生、さらには感電する恐れがあるという問題があった。
【0006】
以上の問題を解決する方法として、常時エレベータケーブルを使用しないで誘導線から非接触で電流を取り出す方法が考えられるが、エレベータは昇降や地震によってかごが揺れるため、揺れが大きい場合にはかごに設置された受電コイルと昇降路に敷設された誘導線のギャップを大きくする必要があり、この場合、電力伝達効率が低くなるという問題があった。
【0007】
また、誘導線路から非接触で電流を取り出す受電コイルは巻線を流れる電流によって発熱するため、大きな電流を受電するためには巻線の線径を太くし抵抗値を小さくするなどして発熱量を抑える必要があった。
しかし、このような構成では受電コイルが大きくなり広い設置スペースを要するという問題があった。
【0008】
また、誘導線路から受電する電力は常時使用するかご照明、表示器などと、一時的に比較的大きな電力を使用するカゴドア駆動装置用があり、全てを非接触で給電するためには誘導線の電流を大きくし、かつ受電コイルも大容量型とする必要があった。しかし、このような給電装置の構成では一次側電源装置、受電コイルも大型化し、広い設置スペースを要するという問題があった。
【0009】
この発明は上記のような問題点を解決するためになされたもので、上記問題を発生しやすいエレベータケーブルを用いずにエレベータのかごに給電でき、発熱を抑えた小形のエレベータ給電装置を安価に提供することを目的とする。
【0010】
【課題を解決するための手段】
第1の発明に係るエレベータ給電装置は、時間と共に変化する電流を供給する電力供給手段と、エレベータのかごの左側かごの移動方向とほぼ並行に敷設され、上記電力供給手段から上記電流を受けて流す第1誘導線と、上記かごの右側に該かごの移動方向とほぼ並行に敷設され、上記電力供給手段から上記第1誘導線に流れる電流と同相の電流を受けて流す第2誘導線と、上記第1誘導線よりも上記かご側で上記第1誘導線との間に隙間を形成して上記かごの左側に取り付けられ、上記第1誘導線から電磁誘導で電流を取り出す第1受電コイル、上記第2誘導線よりも上記かご側で上記第2誘導線との間に隙間を形成して上記かごの右側に取り付けられ、上記第2誘導線から電磁誘導で電流を取り出す第2受電コイルと、上記第1及び第2受電コイルの各々が取り出した電流を合成し、上記かごへの供給電流を一定に保つ合成手段とを備えたものである。
【0011】
また、第2の発明に係るエレベータ給電装置は、時間と共に変化する電流を供給する電力供給手段と、エレベータのかごの前側に該かごの移動方向とほぼ並行に敷設され、上記電力供給手段から上記電流を受けて流す第1誘導線と、上記かごの後ろ側に該かごの移動方向とほぼ並行に敷設され、上記電力供給手段から上記第1誘導線に流れる電流と同相の電流を受けて流す第2誘導線と、上記第1誘導線よりも上記かご側で上記第1誘導線との間に隙間を形成して上記かごの前側に取り付けられ、上記第1誘導線から電磁誘導で電流を取り出す第1受電コイルと、上記第2誘導線よりも上記かご側で上記第2誘導線との間に隙間を形成して上記かごの後ろ側に取り付けられ、上記第2誘導線から電磁誘導で電流を取り出す第2受電コイルと、上記第1及び第2受電コイルの各々が取り出した電流を合成し、上記かごへの供給電流を一定に保つ合成手段と備えたものである。
【0012】
また、第3の発明に係るエレベータ給電装置は、第1誘導線エレベータのかごを案内するガイドレールの一方の近傍に敷設し、第2誘導線を、上記ガイドレールの他方の近傍に敷設したものである。
【0014】
また、第の発明に係るエレベータ給電装置は、時間とともに変化する電流は正弦波電流であるものである。
【0015】
また、第の発明に係るエレベータ給電装置は、時間とともに変化する電流は三角波電流であるものである。
【0016】
また、第の発明に係るエレベータ給電装置は、誘導線から電磁誘導で電流を取り出す受電コイルの磁性体の表面積を増加させた形状にしたものである。
【0017】
また、第の発明に係るエレベータ給電装置は、かごにエレベータのかごドア駆動装置用電力供給バッテリーを設置したものである。
【0018】
【発明の実施の形態】
実施の形態1.
図1はこの発明に係るエレベータ給電装置を含む昇降用エレベータ装置の構成図である。また、図3はエレベータ給電装置を示す構成図である。図1において、エレベータの機械室の一次電源装置4は請求項1、3、4に示される電力供給手段に相当し、この一次電源装置4を起点として誘導線5をエレベータ昇降路1にエレベータかご2の移動方向と平行に敷設し、かご2に受電ユニット6を取付けた。誘導線5は図3に示すようにガイドレール9の近傍に取付金15を用いて取付けられ、図4に示すように一時電源装置4(図4の左上部)とは反対側の端部(図4の左下部)は電気的にループを構成している。また、電圧制御装置10は図1、図2には示されていないがエレベータかご2の上部に取付けられている。受電ユニット6の内部には図3に示すように受電コイル11a,11bが収納されており、受電コイル11a,11bは各々誘導線5a,5bが中心に位置するように取付けられる。
【0019】
誘導線5に一次電源装置4から正弦波の電流が供給されると誘導線の5a,5bの周囲(受電コイル11a,11b内の磁性体内を含む)の磁束密度が変化するため受電コイル11a,11bに変化を阻止する方向に逆起電力が生じる。この逆起電力が電圧制御装置10へ送られる。ここで、受電コイル11a,11bの磁性体は図5に示すように放熱性の良いフィン形状となっており、受電コイル11a,11bの発熱による温度上昇を抑制する効果がある。
【0020】
また、図4は本給電装置の回路構成を示したもので、図中、図1と同符号は同一または相当部分を示す。受電ユニット6内の受電コイル11a,11bによって発生した電圧(逆起電力)は電圧制御装置10内のダイオード101、平滑コンデンサ102によって整流、平滑され交流電圧から直流電圧に変換される。さらに直流に変換された電圧はインバータ103によって商用周波数の交流電圧に変換され、変圧器104によって所定の電圧に変換された上でかごの照明器具8,かごドア駆動装置7に常時給電される。ここで、かごドア駆動装置7はドア制御回路71,バッテリー72,バッテリーの充電を行う充電回路73,バッテリー電圧を昇圧する昇圧回路74,ドアモータを回転させる(ドアを開閉する)ときにオンする切換スイッチ75で構成されており、電圧制御装置10からドア制御回路71,バッテリー充電回路73に給電される。
【0021】
以上のように構成したので以下のメリットがある
(1)エレベータケーブルなしで常時かごへ非接触で給電可能となり、定期的な点検、取替が不要となる。
(2)誘導線5をエレベータのかご2の最も変位が少ないガイドレール15の近傍に敷設することによって、受電コイル11と誘導線5のギャップを最小とし電力伝達効率を高めることができる。
(3)受電コイル11の磁性体を放熱性の良いフィン形状とすることにより、受電コイル11の発熱による温度上昇を抑制でき受電コイルを大きくすることなしに大きな電力を受電できる。
(4)一時的に比較的大きな電力を要するかごドア駆動用電力を、かごに設置したバッテリーから供給するようにしたので、誘導線路からの受電電力を少なくでき(常時使用電力のみで可)、一次側電源容量,受電コイルを小型化できる。
(5)バッテリーは停電時のドア駆動用電源としても使用できる。
尚、当然ながらエレベータが利用されないままの状態が継続した場合は、誘導線への電流は流さない。
【0022】
図2は斜行エレベータに適用した場合を示したものであるが、機器の構成などは縦方向に移動するエレベータでの実施例と同じである。
図5は受電ユニット内の受電コイルの形状を示したものであり、図5(a)のように断面が凹状の長い形状に巻線を巻いた形状や図5(b)のように製造上有利な断面が凹状の短い形状に巻線を巻いたコイルを複数個並べたものでも良い。
更に図5(c)のように断面がE型形状のコイルでもよい。
【0023】
実施の形態2.
実施の形態1ではかご2が揺れると、誘導線と受電コイルが離れたり近づいたりすることにより、受電ユニットが取り出す電流が変化する。この変化は平滑コンデンサによってかなり吸収できるものの、平滑コンデンサの能力によっては十分に取り除くことはできない場合もある。従って、受電効率を十分に高められないという問題がある。
【0024】
そこで、この実施の形態2では上記の問題を解決するために、図6に示すようにエレベータのかご2の中央部を中心として左右対称の位置に1本ずつ正弦波電流を流す誘導線5を当該かご2の移動方向とほぼ並行に敷設し、この誘導線5から電磁誘導で電流を取り出す受電コイルを備えた受電ユニット6を左右に1つずつ、かご2に取り付ける。一次電源装置4から同相で左右の誘導線に正弦波電流を流す。こうして、かご2の左右に1つずつ設けられた誘導線の受電ユニット6が取り出した電流は、電圧制御装置10へ送られて、図7に示す合成回路16によって合成される。合成後の動作は実施の形態1と同様である。
【0025】
このようにすると、かごが例えば左に揺れた場合、かごの右側に取り付けられた受電ユニットの受電コイルが右の誘導線から取り出す電流はこの受電ユニットが右側の誘導線から離れた分少なくなるが、左側に取り付けられた受電ユニットの受電コイルが左の誘導線から取り出す電流はこの受電ユニットが左側の誘導線に近づいた分多くなる。従って、右側の受電ユニットが受け取った電流と左側の受電ユニットが受け取った電流とを合成すれば、かごが左右どの位置に移動しようとも、ほぼ一定の電流を得ることができる。
なお、かごの揺れは、受電コイルが受電できる範囲内であることを前提としており、それ以上大きい揺れの場合はこの発明とは関係のない非常緊急停止装置などが装備されているものとする。
【0026】
このように、かごの左右に設けられた誘導線によって取り出される電流を合成することで、かごが揺れても、合成された電流はほぼ一定値となり、安定した電力供給を受けることができる。
【0027】
同様に、エレベータのかご2の中央部を中心として前後対称の位置に1本ずつ正弦波電流を流す誘導線5を当該かご2の移動方向とほぼ並行に敷設し、この誘導線5から電磁誘導で電流を取り出す受電コイルを備えた受電ユニット6を前後に1つずつ、かご2に取り付ける。こうして、かご2の前後に1つずつ設けられた誘導線の受電ユニット6が取り出した電流は、電圧制御装置10へ送られて、図7に示す合成回路16によって合成される。合成後の動作は実施の形態1と同様である。
【0028】
このように、かごの前後に設けられた誘導線によって発生する電流を合成することで、合成された電流はほぼ一定値となり、安定した電力供給を受けることができる。
【0029】
また、特開平5−294568号公報で示された従来例と異なり、停止階毎に特別な装置を設ける必要がないので、比較的安価に提供できる。
【0030】
なお、上記の実施の形態では電流として正弦波電流を取り扱ったが、時間的に変化する電流であればよい。例えば、三角波でもよい。
【0031】
【発明の効果】
この発明によれば、誘導線から電磁誘導で電流を取り出すので、エレベータケーブルが不要となり、ケーブルの収縮による断線の問題が解消されるだけでなく、ケーブルのねじれによるかごの揺れがなくなり、昇降時の動特性が改善され、さらに、かごとの衝突による機器類の破損を防止できるという効果を奏する。さらに、停止階毎に特別な装置を設ける必要がないので、比較的安価に提供できるという効果を奏する。
また、この発明によれば、かごの左右に設けられた誘導線から取り出される電流を合成し、かごへの供給電流を一定に保つので、かごが左右に揺れても、合成された電流はほぼ安定したものとなり、安定した電力供給を受けることができるという効果を奏する。
また、この発明によれば、かごの前後に設けられた誘導線から取り出される電流を合成し、かごへの供給電流を一定に保つので、かごが前後に揺れても、合成された電流はほぼ一定値となり、安定した電力供給を受けることができるという効果を奏する。
【0032】
また、この発明によれば、誘導線をかご揺れが最も少ないエレベータのガイドレール近傍に敷設したので、受電コイルと誘導線のギャップを最小とし電力伝達効率を高めることができるという効果を奏する。
【0035】
また、この発明によれば、受電コイルの磁性体の表面積を増加させた形状にしたので、受電コイルの発熱による温度上昇を抑制でき受電コイルを大きくすることなしに大きな電力を受電できるという効果を奏する。
【0036】
また、この発明によれば、一時的に比較的大きな電力を要するかごドア駆動用電力をかごに設置したバッテリーから供給するようにしたので、誘導線路からの受電電力を少なくでき(常時使用電力のみで可)、一次側電源容量,受電コイルを小型化できるという効果を奏する。
【図面の簡単な説明】
【図1】この発明に係るエレベータ給電装置を含む昇降用エレベータ装置の構成図である。
【図2】この発明に係るエレベータ給電装置を含む斜行エレベータ装置の構成図である。
【図3】エレベータ給電装置を示す構成図である。
【図4】図3に示すエレベータ給電装置の回路構成を示す構成図である。
【図5】受電コイル磁性体の概観を示す図である。
【図6】この発明に係るエレベータ給電装置の実施の形態2を示す構成図である。
【図7】図6に示すエレベータ給電装置の回路構成を示す構成図である。
【図8】従来の昇降用エレベータにおいてエレベータケーブルを使用してかごへの電力を供給を示す図である。
【図9】従来の斜行エレベータにおいてエレベータケーブルを使用してかごへの電力供給を示す図である。
【符号の説明】
1 エレベータ昇降路、2 かご、3 巻上機、4 一次電源装置、5 誘導線、6 受電ユニット、7 かごドア駆動装置、8 かご照明器具,9 ガイドレール、10 電圧制御装置、11 受電コイル、12 ドアモータ、13 エレベータケーブル、14 エレベータ制御装置、15 取付金、16 合成回路、71 ドア制御回路、72 バッテリー,73 バッテリー充電回路,74 昇圧回路,75 切換スイッチ、76 インバータ、101 ダイオード、102平滑コンデンサ、103 インバータ、104 変圧器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an elevator power supply apparatus that supplies electric power to an elevator car having a long up-and-down stroke and peripheral equipment of the car.
[0002]
[Prior art]
As shown in FIG. 8, the conventional elevator employs a structure in which an elevator cable is used between the elevator controller and the car to supply power to the car.
[0003]
[Problems to be solved by the invention]
However, in an elevator with a long up-and-down stroke, the resistance of this cable increases in proportion to the length of the elevator cable, so that the voltage drop due to energization also increases. In order to suppress the voltage drop due to the energization, it is necessary to keep the resistance value low, and for this purpose, it is necessary to increase the cross-sectional area of the cable. In order to realize this, for example, a large number of wire cores are required, and accordingly, the cable becomes large and heavy, so that there is a limit to the elevator up / down stroke. In addition, the cable is liable to be twisted, resulting in a problem that not only the dynamic characteristics during raising and lowering are deteriorated, but also the equipment is damaged due to a collision of the car.
In order to solve such problems, Japanese Patent Application Laid-Open No. 5-294568 has proposed a method in which power is supplied by a generator or a storage battery during traveling and non-contact power is supplied during a stop. In this method, all stop floors are proposed. There is a problem that the power supply apparatus must be installed in the apparatus, resulting in high cost.
[0004]
In addition, as shown in FIG. 9, in an inclined elevator with an inclination, an elevator cable for supplying electric power to a car is suspended and expanded like a curtain, or moved on a roller with the cable lying down. However, when the elevator cable contracts, it is folded like a curtain, so that the cable is locally subjected to extreme bending stress. For this reason, there was a problem that the inner conductor of the cable was disconnected early.
[0005]
Japanese Patent Application Laid-Open No. 6-135658 proposes a method of supplying power by a trolley. However, in this method, the trolley wire and the current collector are worn by contact, so that periodic inspection and replacement are necessary. Therefore, there is a problem that there is a risk of generation of sliding noise and electric shock.
[0006]
As a method of solving the above problems, there is a method of taking out current from the induction wire without using an elevator cable at all times, but the elevator shakes the car due to ups and downs or earthquakes. It is necessary to increase the gap between the installed power receiving coil and the induction wire laid in the hoistway, and in this case, there is a problem that the power transmission efficiency is lowered.
[0007]
In addition, since the receiving coil that takes out current from the induction line in a non-contact manner generates heat due to the current flowing through the winding, in order to receive a large current, the heating value is increased by increasing the wire diameter of the winding and reducing the resistance value. It was necessary to suppress.
However, in such a configuration, there is a problem that the power receiving coil becomes large and a large installation space is required.
[0008]
In addition, the power received from the induction line is available for car lighting, display, etc. that are always used, and the cage door drive device that uses relatively large power temporarily. It was necessary to increase the current and make the receiving coil a large capacity type. However, such a configuration of the power supply apparatus has a problem that the primary side power supply apparatus and the power receiving coil are also enlarged and a large installation space is required.
[0009]
The present invention has been made to solve the above-described problems. A small elevator power supply apparatus that can supply power to an elevator car without using an elevator cable that easily generates the above-described problems and suppresses heat generation at low cost. The purpose is to provide.
[0010]
[Means for Solving the Problems]
An elevator power feeder according to a first aspect of the present invention is an electric power supply means for supplying a current that varies with time, and is laid on the left side of the elevator car substantially in parallel with the moving direction of the car, and the electric current is supplied from the electric power supply means. A first induction wire that receives and flows, and a second induction that is laid on the right side of the cage substantially in parallel with the direction of movement of the cage and receives a current in phase with the current flowing from the power supply means to the first induction wire. A first gap is formed on the left side of the car by forming a gap between the first lead wire and the first lead wire on the car side from the first lead wire, and a current is extracted from the first lead wire by electromagnetic induction . A gap is formed between the power receiving coil and the second induction wire on the car side of the second induction wire and is attached to the right side of the cage, and a current is extracted from the second induction wire by electromagnetic induction. 2 power receiving coils and the first and second Each took out current of the second power receiving coil by synthesizing, in which a synthesizing means for keeping the current supplied to the car fixed.
[0011]
The elevator power supply apparatus according to the second aspect of the present invention is a power supply means for supplying a current that changes with time , and is laid on the front side of the elevator car substantially in parallel with the moving direction of the car. A first induction wire that receives and flows current, and is laid on the rear side of the cage in parallel with the moving direction of the cage, and receives and flows a current in phase with the current flowing from the power supply means to the first induction wire. A gap is formed between the second guide wire and the first guide wire on the car side from the first guide wire, and is attached to the front side of the car. A current is generated from the first guide wire by electromagnetic induction. A gap is formed between the first receiving coil to be taken out and the second induction wire on the car side from the second induction wire, and is attached to the rear side of the cage, and electromagnetic induction from the second induction wire is performed. A second power receiving coil for extracting current; The current each of the serial first and second receiving coil is taken out and synthesized, in which a synthesizing means for keeping the current supplied to the car fixed.
[0012]
The elevator power feeder according to the third aspect of the invention is configured such that the first guide wire is laid in the vicinity of one of the guide rails for guiding the elevator car, and the second guide wire is laid in the vicinity of the other of the guide rails. one in which the.
[0014]
In the elevator power feeder according to the fourth aspect of the invention, the current that changes with time is a sine wave current.
[0015]
In the elevator power feeder according to the fifth aspect of the invention, the current that changes with time is a triangular wave current.
[0016]
Moreover, the elevator electric power feeder which concerns on 6th invention is made into the shape which increased the surface area of the magnetic body of the receiving coil which takes out an electric current from an induction wire by electromagnetic induction.
[0017]
Moreover, the elevator electric power feeder which concerns on 7th invention installs the electric power supply battery for elevator car door drive devices in a cage | basket | car.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a block diagram of an elevator apparatus for raising / lowering including an elevator power supply apparatus according to the present invention. FIG. 3 is a block diagram showing an elevator power feeder. In FIG. 1, a primary power supply device 4 of an elevator machine room corresponds to the power supply means shown in claims 1, 3, and 4, and starts from the primary power supply device 4 with an induction wire 5 as an elevator hoistway 1. The power receiving unit 6 was attached to the car 2. As shown in FIG. 3, the guide wire 5 is mounted in the vicinity of the guide rail 9 using a mounting bracket 15, and as shown in FIG. 4, the end (on the opposite side to the temporary power supply device 4 (upper left portion in FIG. 4)) The lower left part of FIG. 4 electrically constitutes a loop. Although not shown in FIGS. 1 and 2, the voltage control device 10 is attached to the upper portion of the elevator car 2. As shown in FIG. 3, power receiving coils 11a and 11b are housed inside the power receiving unit 6, and the power receiving coils 11a and 11b are attached so that the guide wires 5a and 5b are located at the center.
[0019]
When a sinusoidal current is supplied to the induction wire 5 from the primary power supply device 4, the magnetic flux density around the induction wires 5a and 5b (including the magnetic bodies in the reception coils 11a and 11b) changes. A counter electromotive force is generated in the direction of preventing the change in 11b. This back electromotive force is sent to the voltage control apparatus 10. Here, the magnetic bodies of the power receiving coils 11a and 11b have fin shapes with good heat dissipation as shown in FIG. 5, and have an effect of suppressing temperature rise due to heat generated by the power receiving coils 11a and 11b.
[0020]
FIG. 4 shows a circuit configuration of the power feeding apparatus, in which the same reference numerals as those in FIG. 1 denote the same or corresponding parts. The voltage (back electromotive force) generated by the power receiving coils 11a and 11b in the power receiving unit 6 is rectified and smoothed by the diode 101 and the smoothing capacitor 102 in the voltage control device 10 and converted from an AC voltage to a DC voltage. Further, the voltage converted to DC is converted into an AC voltage of commercial frequency by the inverter 103, converted to a predetermined voltage by the transformer 104, and then constantly supplied to the car lighting device 8 and the car door driving device 7. Here, the car door driving device 7 is a door control circuit 71, a battery 72, a charging circuit 73 that charges the battery, a booster circuit 74 that boosts the battery voltage, and a switching that is turned on when the door motor is rotated (opens and closes the door). The switch 75 is configured to supply power to the door control circuit 71 and the battery charging circuit 73 from the voltage control device 10.
[0021]
The configuration described above has the following merits: (1) It is possible to always supply power to the car without contact without an elevator cable, and periodic inspection and replacement are not required.
(2) By laying the guide wire 5 in the vicinity of the guide rail 15 with the least displacement of the elevator car 2, the gap between the power receiving coil 11 and the guide wire 5 can be minimized and the power transmission efficiency can be increased.
(3) By making the magnetic body of the receiving coil 11 into a fin shape with good heat dissipation, temperature rise due to heat generation of the receiving coil 11 can be suppressed, and large power can be received without enlarging the receiving coil.
(4) Since the car door drive power, which requires a relatively large amount of power temporarily, is supplied from the battery installed in the car, the power received from the induction line can be reduced. The primary power supply capacity and receiving coil can be reduced in size.
(5) The battery can also be used as a door drive power supply during a power failure.
Of course, when the state where the elevator is not used continues, the current to the induction wire does not flow.
[0022]
FIG. 2 shows a case where the present invention is applied to a skew elevator, but the configuration of the equipment is the same as that of the embodiment in the elevator that moves in the vertical direction.
FIG. 5 shows the shape of the power receiving coil in the power receiving unit. In FIG. 5A, the winding is wound into a long shape having a concave cross section as shown in FIG. A plurality of coils in which windings are wound in a short shape with an advantageous concave section may be arranged.
Further, as shown in FIG. 5C, a coil having an E-shaped cross section may be used.
[0023]
Embodiment 2. FIG.
In the first embodiment, when the car 2 swings, the current taken out by the power receiving unit changes due to the guide wire and the power receiving coil being separated or approaching each other. Although this change can be considerably absorbed by the smoothing capacitor, it may not be sufficiently removed depending on the ability of the smoothing capacitor. Therefore, there is a problem that power reception efficiency cannot be sufficiently increased.
[0024]
Therefore, in the second embodiment, in order to solve the above-described problem, as shown in FIG. 6, the induction wires 5 for passing the sinusoidal current one by one to the left and right symmetrical positions around the central portion of the elevator car 2 are provided. A power receiving unit 6 provided with a power receiving coil that is laid substantially parallel to the moving direction of the car 2 and takes out current from the induction wire 5 by electromagnetic induction is attached to the car 2 one by one on the left and right. A sine wave current is passed from the primary power supply 4 to the left and right induction wires in phase. In this way, the currents taken out by the power receiving units 6 of the induction wires provided one by one on the left and right of the car 2 are sent to the voltage control device 10 and synthesized by the synthesis circuit 16 shown in FIG. The operation after synthesis is the same as that in the first embodiment.
[0025]
In this way, for example, when the car swings to the left, the current taken by the power receiving coil of the power receiving unit attached to the right side of the car from the right induction line is reduced by the distance that the power receiving unit is away from the right induction line. The current taken out from the left induction wire by the power reception coil of the power reception unit attached to the left side increases as the power reception unit approaches the left induction wire. Therefore, by synthesizing the current received by the right power receiving unit and the current received by the left power receiving unit, a substantially constant current can be obtained regardless of which position the car moves to the left or right.
Note that the swing of the car is based on the premise that the receiving coil is within a range where power can be received, and in the case of a larger swing, an emergency emergency stop device that is not related to the present invention is provided.
[0026]
In this way, by synthesizing the currents extracted by the guide wires provided on the left and right sides of the car, even if the car shakes, the synthesized current becomes a substantially constant value and can receive a stable power supply.
[0027]
Similarly, an induction wire 5 for passing a sinusoidal current one by one in a longitudinally symmetrical position around the center of the elevator car 2 is laid almost in parallel with the moving direction of the car 2, and electromagnetic induction is generated from the induction wire 5. Are attached to the car 2 one by one on the front and rear sides, each having a power receiving coil for taking out current. Thus, the currents taken out by the power receiving units 6 of the induction wires provided one by one before and after the car 2 are sent to the voltage control device 10 and synthesized by the synthesis circuit 16 shown in FIG. The operation after synthesis is the same as that in the first embodiment.
[0028]
Thus, by synthesizing the currents generated by the induction wires provided before and after the car, the synthesized current becomes a substantially constant value and can receive a stable power supply.
[0029]
Further, unlike the conventional example disclosed in Japanese Patent Application Laid-Open No. 5-294568, it is not necessary to provide a special device for each stop floor, so that it can be provided at a relatively low cost.
[0030]
In the above embodiment, a sine wave current is used as the current, but any current that changes with time may be used. For example, a triangular wave may be used.
[0031]
【The invention's effect】
According to the present invention, since the current is extracted from the induction wire by electromagnetic induction, the elevator cable is not necessary, and not only the problem of disconnection due to the contraction of the cable is eliminated, but also the car is not shaken due to the twisting of the cable, As a result, the device can be prevented from being damaged due to the collision of the car. Furthermore, since there is no need to provide a special device for each stop floor, there is an effect that it can be provided at a relatively low cost.
In addition, according to the present invention, the currents taken from the induction wires provided on the left and right sides of the car are combined, and the current supplied to the car is kept constant. It becomes stable and has an effect of being able to receive a stable power supply.
In addition, according to the present invention, the current taken from the induction wires provided before and after the car is synthesized, and the current supplied to the car is kept constant, so that even if the car shakes back and forth, the synthesized current is almost It becomes a constant value, and there is an effect that a stable power supply can be received.
[0032]
Further, according to the present invention, since the guide wire is laid in the vicinity of the guide rail of the elevator with the least car sway, there is an effect that the power transmission efficiency can be enhanced by minimizing the gap between the power receiving coil and the guide wire.
[0035]
In addition, according to the present invention, since the surface area of the magnetic body of the power receiving coil is increased, the temperature rise due to heat generation of the power receiving coil can be suppressed and a large amount of power can be received without enlarging the power receiving coil. Play.
[0036]
In addition, according to the present invention, since the car door driving power that requires a relatively large amount of power temporarily is supplied from the battery installed in the car, the power received from the induction line can be reduced (only the power used at all times). The primary power supply capacity and the receiving coil can be reduced in size.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an elevator apparatus for raising and lowering including an elevator power supply apparatus according to the present invention.
FIG. 2 is a configuration diagram of a skew elevator apparatus including an elevator power supply apparatus according to the present invention.
FIG. 3 is a configuration diagram illustrating an elevator power feeder.
4 is a configuration diagram showing a circuit configuration of the elevator power supply device shown in FIG. 3; FIG.
FIG. 5 is a diagram showing an overview of a receiving coil magnetic body.
FIG. 6 is a configuration diagram showing an embodiment 2 of an elevator power supply apparatus according to the present invention.
7 is a configuration diagram showing a circuit configuration of the elevator power supply device shown in FIG. 6. FIG.
FIG. 8 is a diagram showing supply of electric power to a car using an elevator cable in a conventional lift elevator.
FIG. 9 is a diagram showing power supply to a car using an elevator cable in a conventional skew elevator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Elevator hoistway, 2 cars, 3 hoisting machine, 4 primary power supply device, 5 induction wire, 6 power receiving unit, 7 car door drive device, 8 car lighting fixture, 9 guide rail, 10 voltage control apparatus, 11 receiving coil, 12 Door motor, 13 Elevator cable, 14 Elevator control device, 15 Mounting bracket, 16 Composite circuit, 71 Door control circuit, 72 Battery, 73 Battery charging circuit, 74 Booster circuit, 75 Changeover switch, 76 Inverter, 101 Diode, 102 Smoothing capacitor , 103 inverter, 104 transformer.

Claims (7)

時間と共に変化する電流を供給する電力供給手段と、
エレベータのかごの左に該かごの移動方向とほぼ並行に敷設され、上記電力供給手段から上記電流を受けて流す第1誘導線と、
上記かごの右側に該かごの移動方向とほぼ並行に敷設され、上記電力供給手段から上記第1誘導線に流れる電流と同相の電流を受けて流す第2誘導線と、
上記第1誘導線よりも上記かご側で上記第1誘導線との間に隙間を形成して上記かごの左に取り付けられ、上記第1誘導線から電磁誘導で電流を取り出す第1受電コイルと
上記第2誘導線よりも上記かご側で上記第2誘導線との間に隙間を形成して上記かごの右側に取り付けられ、上記第2誘導線から電磁誘導で電流を取り出す第2受電コイルと、
上記第1及び第2受電コイルの各々が取り出した電流を合成し、上記かごへの供給電流を一定に保つ合成手段と
を備えたことを特徴とするエレベータ給電装置。
Power supply means for supplying a current that varies with time;
Laid on the left side of the elevator car substantially parallel to the moving direction of the car, a first induction line for flowing receiving said current from said power supply means,
A second induction wire that is laid on the right side of the car substantially parallel to the moving direction of the car and receives a current in phase with the current flowing from the power supply means to the first induction wire;
It mounted on the left side of the car to form a gap between the first guide wire in the car side of the first induction line, the first power-receiving carp to take out current by an electromagnetic induction from said first induction line And
A second receiving coil that is attached to the right side of the car by forming a gap between the second induction wire and the second induction wire on the cage side, and for extracting current from the second induction wire by electromagnetic induction; ,
An elevator power supply apparatus comprising: combining means for combining the currents taken by each of the first and second power receiving coils and maintaining a constant current supplied to the car .
時間と共に変化する電流を供給する電力供給手段と、
エレベータのかごの前に該かごの移動方向とほぼ並行に敷設され、上記電力供給手段から上記電流を受けて流す第1誘導線と、
上記かごの後ろ側に該かごの移動方向とほぼ並行に敷設され、上記電力供給手段から上記第1誘導線に流れる電流と同相の電流を受けて流す第2誘導線と、
上記第1誘導線よりも上記かご側で上記第1誘導線との間に隙間を形成して上記かごの前に取り付けられ、上記第1誘導線から電磁誘導で電流を取り出す第1受電コイルと
上記第2誘導線よりも上記かご側で上記第2誘導線との間に隙間を形成して上記かごの後ろ側に取り付けられ、上記第2誘導線から電磁誘導で電流を取り出す第2受電コイルと、
上記第1及び第2受電コイルの各々が取り出した電流を合成し、上記かごへの供給電流を一定に保つ合成手段と
を備えたことを特徴とするエレベータ給電装置。
Power supply means for supplying a current that varies with time;
Laid before side of the elevator car substantially parallel to the moving direction of the car, a first induction line for flowing receiving said current from said power supply means,
A second induction wire that is laid on the rear side of the cage substantially in parallel with the direction of movement of the cage, and receives a current in phase with the current flowing from the power supply means to the first induction wire;
Attached to the front side of the car to form a gap between the first guide wire in the car side of the first induction line, the first power-receiving carp to take out current by an electromagnetic induction from said first induction line And
A second power receiving coil that is attached to the rear side of the cage by forming a gap between the second induction wire and the second induction wire on the cage side, and takes out current from the second induction wire by electromagnetic induction. When,
An elevator power supply apparatus comprising: combining means for combining the currents taken by each of the first and second power receiving coils and maintaining a constant current supplied to the car .
第1誘導線は、エレベータのかごを案内するガイドレールの一方の近傍に敷設され、
第2誘導線は、上記ガイドレールの他方の近傍に敷設されたことを特徴とする請求項1又は請求項2記載のエレベータ給電装置。
The first guide wire is laid near one of the guide rails that guides the elevator car ,
The elevator power feeder according to claim 1 or 2, wherein the second guide wire is laid in the vicinity of the other of the guide rails .
時間とともに変化する電流は正弦波電流であることを特徴とする請求項1〜に記載のエレベータ給電装置。Current which varies with time elevator feed unit according to claim 1 to 3, characterized in that the sinusoidal current. 時間とともに変化する電流は三角波電流であることを特徴とする請求項1〜に記載のエレベータ給電装置。Current which varies with time elevator feed unit according to claim 1 to 3, characterized in that the triangular wave current. 誘導線から電磁誘導で電流を取り出す受電コイルの磁性体の表面積を増加させた形状にしたことを特徴とする請求項1〜に記載のエレベータ給電装置。Elevator feed unit according to claim 1 to 3, characterized in that it has a shape with increased surface area of the magnetic body of the power receiving coil to retrieve the current electromagnetic induction from the induction line. かごにエレベータのかごドア駆動装置用電力供給バッテリーを設置したことを特徴とする請求項1〜に記載のエレベータ給電装置。The elevator power supply apparatus according to any one of claims 1 to 3 , wherein a power supply battery for an elevator car door drive device is installed in the car.
JP2000127775A 2000-04-27 2000-04-27 Elevator power feeder Expired - Fee Related JP4573395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127775A JP4573395B2 (en) 2000-04-27 2000-04-27 Elevator power feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127775A JP4573395B2 (en) 2000-04-27 2000-04-27 Elevator power feeder

Publications (2)

Publication Number Publication Date
JP2001310879A JP2001310879A (en) 2001-11-06
JP4573395B2 true JP4573395B2 (en) 2010-11-04

Family

ID=18637310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127775A Expired - Fee Related JP4573395B2 (en) 2000-04-27 2000-04-27 Elevator power feeder

Country Status (1)

Country Link
JP (1) JP4573395B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993713B2 (en) * 2007-05-08 2012-08-08 東芝エレベータ株式会社 Power supply device for elevator
KR101211517B1 (en) * 2009-02-06 2013-01-09 주식회사 리프텍 Lift Apparatus For Construction Of Power Supply Apparatus
JP7136155B2 (en) * 2020-05-29 2022-09-13 フジテック株式会社 Elevator power supply abnormality monitoring device
JP6965964B1 (en) * 2020-06-11 2021-11-10 フジテック株式会社 Elevator abnormal heat generation monitoring system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124746A (en) * 1973-03-23 1974-11-29
JPH0646531A (en) * 1992-07-23 1994-02-18 Mitsubishi Electric Home Appliance Co Ltd Charger
JPH06156934A (en) * 1992-11-19 1994-06-03 Hitachi Ltd Signal transmission device for elevator
JPH07157237A (en) * 1993-12-03 1995-06-20 Hitachi Ltd Power feeder for elevator
JPH0956088A (en) * 1995-08-15 1997-02-25 Ishikawajima Harima Heavy Ind Co Ltd Feeder device for elevator
JPH1051982A (en) * 1996-07-29 1998-02-20 Hitachi Kiden Kogyo Ltd Non-contacting feeding device
JPH1094103A (en) * 1996-09-17 1998-04-10 Toyota Autom Loom Works Ltd Non-contact feed system to moving body and pickup coil unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124746A (en) * 1973-03-23 1974-11-29
JPH0646531A (en) * 1992-07-23 1994-02-18 Mitsubishi Electric Home Appliance Co Ltd Charger
JPH06156934A (en) * 1992-11-19 1994-06-03 Hitachi Ltd Signal transmission device for elevator
JPH07157237A (en) * 1993-12-03 1995-06-20 Hitachi Ltd Power feeder for elevator
JPH0956088A (en) * 1995-08-15 1997-02-25 Ishikawajima Harima Heavy Ind Co Ltd Feeder device for elevator
JPH1051982A (en) * 1996-07-29 1998-02-20 Hitachi Kiden Kogyo Ltd Non-contacting feeding device
JPH1094103A (en) * 1996-09-17 1998-04-10 Toyota Autom Loom Works Ltd Non-contact feed system to moving body and pickup coil unit

Also Published As

Publication number Publication date
JP2001310879A (en) 2001-11-06

Similar Documents

Publication Publication Date Title
KR101930601B1 (en) Arrangement, system and a method for a vehicle with electric energy
US9850095B2 (en) Elevator generating electric energy using displacement thereof
CN108946404B (en) Wireless power transmission device for elevator car and elevator
JP2002504880A (en) elevator
JP2003528555A (en) Electric Telher with non-contact power transmission
EP3438035A1 (en) Wireless power transmission system
MXPA04012176A (en) Device for inductively transmitting electric power.
JP2005324797A (en) Induction power distribution system
JP2007076787A (en) Non-contact power feeding device of elevator
JP2009044918A (en) Non-contact power feeder
CN106487200A (en) electromagnetic propulsion system with wireless power transmission system
CN106477436A (en) Electromechanical propulsion system with Wireless power transmission system
JP5089113B2 (en) Contactless power feeding device to elevator car
JP2005224045A (en) Non-contact power feeding device and wire-less system provided with it
JP4573395B2 (en) Elevator power feeder
KR102249729B1 (en) Wireless charging power supply system and pick-up system during running of electric vehicles and industrial equipment
JP3142369B2 (en) Elevator power supply
JP3303686B2 (en) Non-contact power supply system for mobile object and pickup coil unit
CN103043512A (en) Elevator car power supply device and control method thereof
JPH05207606A (en) Noncontact power supply for moving object
JPH0956088A (en) Feeder device for elevator
JP2008154342A (en) Non-contact power feeding device
WO2018025535A1 (en) Movable body system
JP4999443B2 (en) Non-contact power feeding device
KR101587126B1 (en) Power Supply Apparatus and Power Transmission Apparatus Using Same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4573395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees