JP4572527B2 - Method for manufacturing ceramic building materials - Google Patents

Method for manufacturing ceramic building materials Download PDF

Info

Publication number
JP4572527B2
JP4572527B2 JP2003365221A JP2003365221A JP4572527B2 JP 4572527 B2 JP4572527 B2 JP 4572527B2 JP 2003365221 A JP2003365221 A JP 2003365221A JP 2003365221 A JP2003365221 A JP 2003365221A JP 4572527 B2 JP4572527 B2 JP 4572527B2
Authority
JP
Japan
Prior art keywords
ceramic building
building materials
water
raw material
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003365221A
Other languages
Japanese (ja)
Other versions
JP2005126294A (en
Inventor
卓見 泉谷
昌宏 吹擧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003365221A priority Critical patent/JP4572527B2/en
Publication of JP2005126294A publication Critical patent/JP2005126294A/en
Application granted granted Critical
Publication of JP4572527B2 publication Critical patent/JP4572527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

この出願の発明は、窯業系建材の製造方法に関するものである。さらに詳しくは、この出願の発明は、高い強度を有し、耐凍害性に優れた新しい窯業系建材の製造方法に関するものである。   The invention of this application relates to a method for manufacturing ceramic building materials. More specifically, the invention of this application relates to a method for manufacturing a new ceramic building material having high strength and excellent frost damage resistance.

窯業系建材は、外壁材、屋根材等の外装材として広く用いられており、表面に柄、目地等の凹凸模様、着色、塗装等の施された多種多様の意匠を有するものが提供されている。また、窯業系建材では、その使用目的から、強度、軽量性、耐水性、耐凍害性等の物性が要求されている。   Ceramic-based building materials are widely used as exterior materials such as outer wall materials and roofing materials, and are provided with a wide variety of designs with patterns, uneven patterns such as joints, coloring, painting, etc. on the surface. Yes. In addition, ceramic building materials are required to have physical properties such as strength, light weight, water resistance, and frost damage resistance for the purpose of use.

従来の窯業系建材の製造方法では、窯業系建材は、通常、少なくともセメントを主成分とし、補強繊維や無機質充填材を含有してなる原料スラリーを抄造、押出し、または注型して湿潤板とし、これをプレス機によって脱水成形して模様付けし、次いで養生して得られる。また、上塗り塗装を施すことにより、化粧被膜を形成している。   In the conventional method for manufacturing ceramic building materials, the ceramic building materials are usually made of wet at least by making, extruding or casting a raw slurry containing at least cement as a main component and containing reinforcing fibers and inorganic fillers. This is obtained by dehydrating and patterning with a press machine and then curing. In addition, a decorative coating is formed by applying a top coat.

しかし、このような方法によって得られる窯業系建材は耐水性に乏しく、降雨等により水が窯業系建材内部に浸透して濡れ染みが発生したり、表面塗膜と基板の密着性が低下したり、浸透した水分の凍結により窯業系建材そのものが劣化したりするという問題があった。   However, the ceramic building materials obtained by such a method have poor water resistance, and water penetrates into the ceramic building materials due to rain, etc., and wet stains occur, or the adhesion between the surface coating film and the substrate decreases. There was a problem that the ceramic building material itself deteriorated due to freezing of the penetrated water.

そこで、窯業系建材の製造においては、原料スラリーに予め撥水成分を混合することにより、窯業系建材に耐水性を付与する方法(例えば、特許文献1)や、成形、養生後に撥水剤を塗布し、乾燥して窯業系建材の表面に撥水被膜を形成する方法(例えば、特許文献2)が検討された。   Therefore, in the production of ceramic building materials, a method of imparting water resistance to the ceramic building materials by mixing a water repellent component in advance with the raw slurry (for example, Patent Document 1), and a water repellent after molding and curing. The method (for example, patent document 2) which apply | coats and dries and forms a water-repellent film on the surface of ceramics-type building materials was examined.

しかし、原料スラリーに撥水成分を混合する方法では、十分な耐水性が発揮されるためには比較的多量の撥水成分を混合しなければならず、原料スラリーが硬化しにくくなる上、得られる窯業系建材の強度や耐久性が低下するという新たな問題が発生した。そこで、強度を上げる目的でオートクレーブ養生の時間を延長することも検討されたが、生産性が著しく低下する上、得られる窯業系建材の比重が上がるために切断や釘打ちが困難となり、施工性が低下するという問題もあった。また、原料スラリーに撥水剤を大量に添加した場合には、製造コストが増大するという問題があった。さらに、このような方法では、耐水性を高めることができても、浸透した微量の水分が凍結した場合には、窯業系建材の破壊が起こりやすく、十分な耐凍害性が得られないという問題もあった。   However, in the method of mixing the water-repellent component with the raw material slurry, a relatively large amount of the water-repellent component must be mixed in order to exhibit sufficient water resistance, and the raw material slurry becomes difficult to harden and can be obtained. A new problem has arisen in that the strength and durability of the ceramic building materials produced are reduced. Therefore, it was also considered to extend the autoclave curing time for the purpose of increasing the strength, but the productivity dropped significantly, and the specific gravity of the resulting ceramic building materials increased, making it difficult to cut and nail, making the workability There was also a problem of lowering. Further, when a large amount of water repellent is added to the raw slurry, there is a problem that the manufacturing cost increases. Furthermore, in such a method, even if the water resistance can be increased, if a small amount of permeated water freezes, the ceramic building materials are likely to be destroyed, and sufficient frost resistance cannot be obtained. There was also.

一方、窯業系建材の表面に撥水被膜を形成する方法では、養生時に撥水剤が揮発しやすいため、基板表面に十分な撥水性を付与するためには、塗布量を多くする必要があった。また、このような方法では、水分の浸透を少量に抑え、濡れ染みの発生を防止することができても、水分が凍結した場合にはその体積膨張により窯業系建材の破壊が生じるという問題が残った。   On the other hand, in the method of forming a water-repellent coating on the surface of ceramic building materials, the water-repellent agent tends to volatilize during curing, so it is necessary to increase the coating amount in order to provide sufficient water repellency to the substrate surface. It was. In addition, in such a method, even though moisture penetration can be suppressed to a small amount and the occurrence of wet stains can be prevented, there is a problem in that when the moisture freezes, the ceramic building materials are destroyed due to the volume expansion. The remaining.

したがって、窯業系建材の製造において、強度を維持しながら高い耐凍害性を実現することは非常に困難であったのが実情である。
特開2001−180997 特開2003−95767 特開平3−218988
Therefore, in the production of ceramic building materials, it is very difficult to achieve high frost resistance while maintaining strength.
JP 2001-180997 A JP 2003-95767 A JP-A-3-218888

そこで、この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、生産性や施工性の低下、あるいは、製造コストの上昇を伴うことなく、高い強度と耐凍害性を有する窯業系建材を製造するための方法を提供することを課題としている。   Therefore, the invention of this application has been made in view of the circumstances as described above, solves the problems of the prior art, without lowering productivity and workability, or accompanied by an increase in manufacturing cost, It is an object to provide a method for producing a ceramic building material having high strength and frost damage resistance.

この出願の発明は、上記の課題を解決するものとして、少なくともセメント成分を固形分として含有する原料スラリーを抄造、押出し、または注型し、得られた湿潤板を成形、養生する窯業系建材の製造方法において、原料スラリーに、水に難溶性のカルシウム化合物である水酸化カルシウムをセメント成分量に対して5〜10重量%で添加し、湿潤板の成形後にオートクレーブ養生を行うことを特徴とする窯業系建材の製造方法を提供する。 The invention of this application, as to solve the above problems, even without least papermaking raw material slurry containing the cement components as solids, extrusion or casting, shaping the resulting wet sheet, ceramic system for curing It characterized the method of manufacturing a building material, the raw material slurry, water calcium hydroxide calcium compound slightly soluble is added at 5 to 10% by weight relative to the cement component amount, to perform the autoclave curing after molding of the wet plate A method for manufacturing ceramic building materials is provided.

記発明の窯業系建材の製造方法では、原料スラリー中に水に難溶性のカルシウム化合物である水酸化カルシウムをセメント成分量に対して5〜10重量%添加し、オートクレーブ養生することにより、窯業系建材の細孔構造において微細孔領域の空隙が多くなる。窯業系建材に侵入した水分は、微細孔領域の表面張力の影響で凍結しにくくなる上、水分の凍結が起こっても窯業系建材が水分の体積増加の影響を受けにくくなるため、窯業系建材そのものの耐凍害性が向上する。一方、窯業系建材の強度は、水に難溶性のカルシウム化合物の添加の影響を受けず、無添加の場合と同等あるいはそれ以上となる。 In the method of manufacturing the above SL onset Ming ceramic building materials, calcium hydroxide calcium compound slightly soluble in water in the feed slurry was added 5 to 10% by weight relative to the cement component amount, by autoclave curing, In the pore structure of ceramic building materials, the voids in the fine pore region increase. Moisture that has penetrated into ceramic building materials is less likely to freeze due to the surface tension of the micropore region, and even if moisture freezes, ceramic building materials are less susceptible to the effects of increased water volume. Its frost resistance is improved. On the other hand, the strength of ceramic building materials is not affected by the addition of a calcium compound that is hardly soluble in water, and is equal to or higher than the case of no addition.

水に難溶性のカルシウム化合物やマグネシウム化合物は、一般に膨張剤として使用されており(例えば、特許文献3)、窯業系建材の製造においてこれらを原料スラリーに添加することは、湿潤板の水硬過程における膨張の原因となるため、好ましくないと考えられている。   Calcium and magnesium compounds that are sparingly soluble in water are generally used as expansion agents (for example, Patent Document 3), and adding these to the raw material slurry in the production of ceramic building materials is the hydraulic process of the wet plate This is considered to be unfavorable because it causes expansion.

しかし、この出願の発明者らは、原料スラリーに水に難溶性のカルシウム化合物である水酸化カルシウムを5〜10重量%混合し、抄造、押出し、または注型することにより得られた湿潤板を成形し、その後オートクレーブ養生を行うことにより、水硬過程における膨張を起こすことなく、耐凍害性の高い窯業系建材を得ることができることを明らかにし、本願発明に至ったものである。 However, the inventors of the present application prepared a wet plate obtained by mixing 5-10% by weight of calcium hydroxide , which is a calcium compound that is sparingly soluble in water, into a raw material slurry, and making, extruding, or casting. By forming and then performing autoclave curing, it has been clarified that a ceramic building material having high frost resistance can be obtained without causing expansion in the hydraulic process, and the present invention has been achieved.

なお、本明細書において、「水に難溶性」とは、水に対する溶解性が低いこと、すなわち、水に全くないしほとんど溶解しないことを意味する。   In the present specification, “slightly soluble in water” means that the solubility in water is low, that is, it is not or hardly dissolved in water.

この出願の発明の窯業系建材の製造方法において、原料スラリーはセメント成分を含有し、かつ、セメント成分量に対して5〜10重量%の水に難溶性のカルシウム化合物である水酸化カルシウムを含有するものであればよく、その組成や粘度、含水率等はとくに限定されない。例えば、セメント成分以外にも、補強繊維、無機質充填材、増粘剤、顔料等を含有していてもよく、それらの配合や含水率は抄造、押出し、または注型の条件等に応じて適宜調整できる。 In the method for manufacturing a ceramic building material according to the invention of this application, the raw material slurry contains a cement component and contains calcium hydroxide , which is a calcium compound hardly soluble in water of 5 to 10% by weight based on the amount of the cement component. The composition, viscosity, moisture content and the like are not particularly limited. For example, in addition to the cement component, it may contain reinforcing fibers, inorganic fillers, thickeners, pigments, etc., and their blending and water content are appropriately determined according to the conditions of papermaking, extrusion, or casting. Can be adjusted.

この出願の発明の窯業系建材の製造方法において、水に難溶性のカルシウム化合物の添加量が、原料スラリー中のセメント成分に対して5重量%未満の場合には、十分な効果が得られず、窯業系建材の強度や耐凍害性の向上が見られない。一方、水に難溶性のカルシウム化合の添加量が、原料スラリー中のセメント成分に対して10重量%より多い場合には、高い強度と耐凍害性を有する窯業系建材が得られるものの、過剰のカルシウム分により窯業系建材の表面に白化現象が見られる場合があり、好ましくない。 The method of manufacturing a ceramic-based building materials of the invention of this application, the amount of calcium compound slightly soluble in water, in the case of less than 5% by weight relative to the cement component in the raw material slurry, sufficient effect can not be obtained No improvement in strength and frost resistance of ceramic building materials. On the other hand, the amount of calcium compound slightly soluble in water, if more than 10% by weight relative to the cement component in the raw material slurry, although ceramic building materials having high strength and frost resistance is obtained, the excess may whitening phenomenon is observed more surfaces of ceramic building materials in calcium content, it is not preferred.

この出願の発明の窯業系建材の製造方法では、水に難溶性のカルシウム化合物である水酸化カルシウムは、原料スラリーに対しどのような方法あるいは順序で、添加、混合されてもよい。 In the method for manufacturing a ceramic building material of the invention of this application, calcium hydroxide , which is a calcium compound hardly soluble in water , may be added and mixed in any method or order with respect to the raw material slurry.

この出願の発明の窯業系建材の製造方法は、水に難溶性のカルシウム化合物である水酸化カルシウムを含有する原料スラリーを抄造、押出しまたは注型し、湿潤板を得た後、これをプレス成形し、さらに養生するものであるが、養生工程においては、少なくとも1回のオートクレーブ養生を行うものとする。 The manufacturing method of the ceramic building material of the invention of this application is that a raw material slurry containing calcium hydroxide , which is a calcium compound that is sparingly soluble in water , is formed, extruded or cast to obtain a wet plate, which is then press-molded. However, in the curing process, at least one autoclave curing is performed.

オートクレーブ養生の条件は、とくに限定されないが、例えば160〜180℃の範囲で4〜8時間行うことができる。もちろん、オートクレーブ養生の前に室温養生や蒸気養生を行ってもよい。例えば、40〜100℃で10〜40時間、オートクレーブ養生に耐えうる強度が得られるまで養生を行った後、オートクレーブ養生を行うことができる。   Although the conditions of autoclave curing are not specifically limited, For example, it can carry out in the range of 160-180 degreeC for 4 to 8 hours. Of course, room temperature curing or steam curing may be performed before the autoclave curing. For example, after curing is performed at 40 to 100 ° C. for 10 to 40 hours until the strength capable of withstanding the autoclave curing is obtained, the autoclave curing can be performed.

この出願の発明の窯業系建材の製造方法では、原料スラリーに水に難溶性のカルシウム化合物をセメント成分量に対して5〜10重量%で添加し、抄造、押出し、または注型し、得られた湿潤板を成形した後、オートクレーブ養生を行うことにより、高い耐凍害性を示す窯業系建材が得られる。このような窯業系建材では、内部の細孔構造において微細孔領域の空隙が多くなっていることから、微細孔領域に侵入した水分が微細孔の表面張力の影響で凍結しにくくなり、かつ凍結による体積増加、基材破壊も起こりにくくなるものと考えられる。   In the method for producing a ceramic building material of the invention of this application, a calcium compound hardly soluble in water is added to the raw material slurry at 5 to 10% by weight with respect to the amount of the cement component, and papermaking, extrusion, or casting is performed. After forming the wet plate, a ceramic building material exhibiting high frost resistance can be obtained by performing autoclave curing. In such a ceramic building material, since the voids in the micropore region are increased in the internal pore structure, moisture that has entered the micropore region is less likely to freeze due to the surface tension of the micropores, and It is considered that the volume increase due to the substrate and the substrate destruction are less likely to occur.

この出願の発明の窯業系建材の製造方法において、このような微細孔が得られる機構は定かではないが、水和−ポゾラン反応(可溶性シリカが水酸化カルシウムと反応し,不溶性のシリカ質化合物を生成する反応)を経て、オートクレーブ養生時に結晶化が起こる過程で、水に難溶性のカルシウム化合物が、トバモライト(ケイ酸カルシウム)の結晶成長を抑制することが影響しているものと考えられる。   In the method for producing ceramic building materials according to the invention of this application, the mechanism by which such fine pores are obtained is not clear, but the hydration-pozzolanic reaction (soluble silica reacts with calcium hydroxide and insoluble siliceous compounds are formed). It is considered that a calcium compound hardly soluble in water suppresses the crystal growth of tobermorite (calcium silicate) in the process of crystallization during autoclave curing through a reaction to be generated.

以下、実施例を示し、この発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Hereinafter, examples will be shown, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.

<実施例1>
セメント40重量部、フライアッシュ40重量部、シリカ10重量部、パルプ10重量部からなる原料スラリーに、重量部の水酸化カルシウム(Ca(OH) 2 を湿式混合し、抄造、プレス成形した後、80℃で24時間の蒸気養生を行った。
<Example 1>
4 parts by weight of calcium hydroxide (Ca (OH) 2 ) was wet mixed with a raw material slurry consisting of 40 parts by weight of cement, 40 parts by weight of fly ash, 10 parts by weight of silica, and 10 parts by weight of pulp, followed by papermaking and press molding. Thereafter, steam curing was performed at 80 ° C. for 24 hours.

得られた基材を160×40×12mm(長さ×幅×厚さ)の試験片に切断し、スパン100mm、試験速度2mm/minで3点曲げ強度測定を行った。   The obtained base material was cut into a test piece of 160 × 40 × 12 mm (length × width × thickness), and a three-point bending strength measurement was performed at a span of 100 mm and a test speed of 2 mm / min.

なお、曲げ強度は、次式により算出した。   The bending strength was calculated by the following formula.

k=3×s×m/(2×h×w2
(ただし、kは曲げ強度(MPa)、sはスパン(mm)、mは曲げ破壊荷重(N)、hは幅(mm)、wは厚さ(mm)を表す)
また、蒸気養生に次いで、180℃で4時間のオートクレーブ養生を行い、得られた窯業系建材についても、前記と同様の方法により曲げ強度を測定した。
k = 3 × s × m / (2 × h × w 2 )
(Where k is bending strength (MPa), s is span (mm), m is bending fracture load (N), h is width (mm), and w is thickness (mm))
Further, after steam curing, autoclave curing at 180 ° C. for 4 hours was performed, and the bending strength of the obtained ceramic building materials was measured by the same method as described above.

さらに、窯業系建材を70×70×12mmの試験片に切断し、ASTM B法に基づき、100サイクルおよび200サイクル後の体積増加率を求めて耐凍害性を評価した。   Furthermore, the ceramic building materials were cut into 70 × 70 × 12 mm test pieces, and the frost damage resistance was evaluated by obtaining the volume increase rate after 100 cycles and 200 cycles based on the ASTM B method.

結果を表1に示した。
参考例1
水酸化カルシウムに換わり、酸化カルシウム(CaO)重量部添加した以外は、実施例1と同様の方法により窯業系建材を製造し、曲げ強度および耐凍害性を評価した。
The results are shown in Table 1.
< Reference Example 1 >
A ceramic building material was produced in the same manner as in Example 1 except that 2 parts by weight of calcium oxide (CaO) was added instead of calcium hydroxide , and bending strength and frost damage resistance were evaluated.

結果を表1に示した。
参考例2
水酸化カルシウムに換わり、炭酸カルシウム(CaCO3)を2重量部添加した以外は、実施例1と同様の方法により窯業系建材を製造し、曲げ強度および耐凍害性を評価した。
The results are shown in Table 1.
< Reference Example 2 >
A ceramic building material was produced in the same manner as in Example 1 except that 2 parts by weight of calcium carbonate (CaCO 3 ) was added instead of calcium hydroxide , and bending strength and frost damage resistance were evaluated.

結果を表1に示した。
参考例3
水酸化カルシウムに換わり、酸化マグネシウム(MgO)を3重量部添加した以外は、実施例1と同様の方法により窯業系建材を製造し、曲げ強度および耐凍害性を評価した。
The results are shown in Table 1.
< Reference Example 3 >
A ceramic building material was produced in the same manner as in Example 1 except that 3 parts by weight of magnesium oxide (MgO) was added instead of calcium hydroxide , and bending strength and frost damage resistance were evaluated.

結果を表1に示した。
<比較例1>
水酸化カルシウムを添加しなかった以外は、実施例1と同様の方法により窯業系建材を製造し、曲げ強度および耐凍害性を評価した。
The results are shown in Table 1.
<Comparative Example 1>
A ceramic building material was produced in the same manner as in Example 1 except that calcium hydroxide was not added, and the bending strength and frost damage resistance were evaluated.

結果を表1に示した。
参考例4
水酸化カルシウムに換わり、酸化カルシウムの添加量を5重量部とした以外は、実施例1と同様の方法により窯業系建材を製造し、曲げ強度および耐凍害性を評価した。
The results are shown in Table 1.
< Reference Example 4 >
Instead of calcium hydroxide, except that the amount of calcium oxide and 5 parts by weight, to produce a ceramic-based building materials in the same manner as in Example 1 to evaluate flexural strength and frost resistance.

結果を表1に示した。
<比較例
水酸化カルシウム(Ca(OH)2)の添加量を1重量%とした以外は、実施例と同様の方法により窯業系建材を製造し、曲げ強度および耐凍害性を評価した。
The results are shown in Table 1.
<Comparative example 2 >
A ceramic building material was produced in the same manner as in Example 1 except that the amount of calcium hydroxide (Ca (OH) 2 ) was 1% by weight, and the bending strength and frost damage resistance were evaluated.

結果を表1に示した。   The results are shown in Table 1.

Figure 0004572527
表1より、原料スラリーに、水に難溶性のカルシウム化合物を、セメント成分量に対して5〜10重量%添加して得られた窯業系建材(実施例1、参考例1〜2)では、蒸気養生後には強度の低下が見られるものの、オートクレーブ養生後には、無添加の場合(比較例1)と同等の曲げ強度が得られ、かつ耐凍害性が向上することが示された。
Figure 0004572527
From Table 1, in the ceramic building materials ( Example 1, Reference Examples 1-2 ) obtained by adding 5 to 10% by weight of the calcium compound, which is sparingly soluble in water, to the raw material slurry, Although a decrease in strength was observed after steam curing, it was shown that after autoclave curing, bending strength equivalent to that in the case of no addition (Comparative Example 1) was obtained and frost damage resistance was improved.

一方、原料スラリーに、水に難溶性のマグネシウム化合物を、セメント成分量に対して5〜10重量%添加して得られた窯業系建材(参考例3)では、オートクレーブ養生後の曲げ強度が向上することが確認された。また、耐凍害性についても、無添加の場合に比較して向上していることが示された。 On the other hand, the raw material slurry, the magnesium compound slightly soluble in water, the ceramic building materials obtained by adding 5 to 10% by weight relative to the cement component amount (Reference Example 3), flexural strength after autoclave curing is improved Confirmed to do. In addition, it was shown that the frost damage resistance was also improved compared to the case of no addition.

しかし、原料スラリーに、水に難溶性のカルシウム化合物である酸化カルシウムを、セメント成分量に対して10重量%より多く添加した場合(参考例4)には、強度や耐凍害性の向上が見られたものの、窯業系建材表面に白化現象が見られた。また、原料スラリーに、水に難溶性のカルシウム化合物である水酸化カルシウムを、5重量%より少なく添加した場合(比較例)には、強度や耐凍害性の向上は見られなかった。 However, when calcium oxide , which is a calcium compound that is sparingly soluble in water , is added to the raw material slurry in an amount of more than 10% by weight based on the amount of cement component ( Reference Example 4 ), strength and frost damage resistance are improved. However, a whitening phenomenon was observed on the ceramic building materials surface. In addition, when calcium hydroxide , which is a calcium compound hardly soluble in water, was added to the raw material slurry in an amount of less than 5% by weight (Comparative Example 2 ), no improvement in strength and frost damage resistance was observed.

以上詳しく説明したとおり、この出願の発明によって、高い強度と耐凍害性を示す窯業系建材を製造する方法が提供される。この出願の発明の窯業系建材の製造方法では、養生時間を延長したり、窯業系建材の比重を増大させたり、撥水剤を使用したりすることなく、窯業系建材の強度や耐凍害性を向上させることが可能となる。したがって、生産性や施工性の低下や、製造コストの上昇を伴うことなく、窯業系建材の強度と耐凍害性を両立させることができ、有用である。   As described in detail above, the invention of this application provides a method for producing a ceramic building material exhibiting high strength and frost resistance. In the method of manufacturing a ceramic building material of the invention of this application, the strength and frost damage resistance of the ceramic building material can be obtained without extending the curing time, increasing the specific gravity of the ceramic building material, or using a water repellent. Can be improved. Therefore, the strength and the frost damage resistance of the ceramic building materials can be made compatible without lowering the productivity and workability and increasing the manufacturing cost, which is useful.

Claims (1)

少なくともセメント成分を固形分として含有する原料スラリーを抄造、押出し、または注型し、得られた湿潤板を成形、養生する窯業系建材の製造方法において、原料スラリーに、水に難溶性のカルシウム化合物である水酸化カルシウムをセメント成分量に対して5〜10重量%で添加し、湿潤板の成形後にオートクレーブ養生を行うことを特徴とする窯業系建材の製造方法。 In the manufacturing method of ceramic building materials in which a raw material slurry containing at least a cement component as a solid content is made, extruded, or cast, and the resulting wet plate is molded and cured, the raw material slurry is poorly water-soluble calcium compound A method for producing a ceramic building material, comprising adding 5 to 10% by weight of calcium hydroxide to the amount of cement component, and performing autoclave curing after forming a wet plate.
JP2003365221A 2003-10-24 2003-10-24 Method for manufacturing ceramic building materials Expired - Fee Related JP4572527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365221A JP4572527B2 (en) 2003-10-24 2003-10-24 Method for manufacturing ceramic building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365221A JP4572527B2 (en) 2003-10-24 2003-10-24 Method for manufacturing ceramic building materials

Publications (2)

Publication Number Publication Date
JP2005126294A JP2005126294A (en) 2005-05-19
JP4572527B2 true JP4572527B2 (en) 2010-11-04

Family

ID=34643971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365221A Expired - Fee Related JP4572527B2 (en) 2003-10-24 2003-10-24 Method for manufacturing ceramic building materials

Country Status (1)

Country Link
JP (1) JP4572527B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI122360B (en) * 2005-11-18 2011-12-30 Nordkalk Oy Ab Aqueous suspension based on hydraulic binder and process for its preparation
FI122343B (en) * 2005-11-18 2011-12-15 Nordkalk Oy Ab Method and apparatus for preparing solid suspensions
JP2008050231A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Method for producing calcium oxide-mixed cement and calcium oxide-mixed cement cured body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162560A (en) * 1986-12-25 1988-07-06 三菱マテリアル株式会社 Magnesia whisker reinforced inorganic material
JPH03218988A (en) * 1990-01-25 1991-09-26 Matsushita Electric Works Ltd Production of lightweight gas concrete product
JP2000109377A (en) * 1998-10-01 2000-04-18 Kenzai Techno Kenkyusho:Kk Heat-insulating material made of low-heat conductive light-weight cellular concrete
JP2001328876A (en) * 2000-05-16 2001-11-27 Sumitomo Kinzoku Kozan Siporex Kk Method for producing alc
JP2002060264A (en) * 2000-08-11 2002-02-26 Asahi Glass Co Ltd Fiber-reinforced cement formed body and its production process
JP2004090250A (en) * 2002-08-29 2004-03-25 Asahi Glass Co Ltd Manufacturing method for lightweight cement molded object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162560A (en) * 1986-12-25 1988-07-06 三菱マテリアル株式会社 Magnesia whisker reinforced inorganic material
JPH03218988A (en) * 1990-01-25 1991-09-26 Matsushita Electric Works Ltd Production of lightweight gas concrete product
JP2000109377A (en) * 1998-10-01 2000-04-18 Kenzai Techno Kenkyusho:Kk Heat-insulating material made of low-heat conductive light-weight cellular concrete
JP2001328876A (en) * 2000-05-16 2001-11-27 Sumitomo Kinzoku Kozan Siporex Kk Method for producing alc
JP2002060264A (en) * 2000-08-11 2002-02-26 Asahi Glass Co Ltd Fiber-reinforced cement formed body and its production process
JP2004090250A (en) * 2002-08-29 2004-03-25 Asahi Glass Co Ltd Manufacturing method for lightweight cement molded object

Also Published As

Publication number Publication date
JP2005126294A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP6948947B2 (en) Methods for Producing Hydrophobic Finishing Compositions, Articles, Mat Overlay Cementum Boards and Cementum Boards
RU2427550C2 (en) Light gypsum board and gypsum suspension composition for making said board
JP2002540050A (en) Polymer cement composite material and method for producing the same
CN108530009A (en) A kind of inner wall of building lightweight plastering gupsum
JP2013512848A (en) Lightweight gypsum product with high water resistance
US9272952B2 (en) Admixture composition for a tile cement mortar and a tile cement mortar composition comprising the same
EP1546059B1 (en) Cement-based thin-set or medium bed or underlayment mortar or grout and method for setting tiles or for applying an underlayment mortar to a substrate
JPS60176978A (en) Manufacture of high strength cement product
KR20120091697A (en) Cement composition for surface treatment of concrete
JP4572527B2 (en) Method for manufacturing ceramic building materials
WO2019115634A1 (en) Geopolymeric coating system for fiber cement products
JP6735290B2 (en) Dry-curable plaster composition for coating material, gypsum-based coating material, and method for applying gypsum-based coating material
JP4192006B2 (en) Manufacturing method of inorganic board
JP3844194B2 (en) Manufacturing method of inorganic board
JPH10330146A (en) Production of hydraulic inorganic molded product
KR102342986B1 (en) Gypsum board
EP3674273B1 (en) Additive composition for tile cement mortar and tile cement mortar comprising same
JP2648583B2 (en) Ceramic composition and method for producing ceramic plate
JPS6055457B2 (en) Manufacturing method for gypsum-based building materials with excellent water repellency
JP2899587B1 (en) Cement-based extruded product and method for producing the same
JP2017014065A (en) Inorganic board and manufacturing method therefor
JP2000239609A (en) Wet plastering material
JPH11180749A (en) Production of inorganic cement plate
JP2002060284A (en) Fiber-reinforced cement plate and method of producing the same
KR20240053349A (en) Composition for antifungal gypsum board and antifungal gypsum board comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees